JP2009191346A - Surface treatment agent, surface treatment method, and surface-treated carbon steel - Google Patents

Surface treatment agent, surface treatment method, and surface-treated carbon steel Download PDF

Info

Publication number
JP2009191346A
JP2009191346A JP2008036505A JP2008036505A JP2009191346A JP 2009191346 A JP2009191346 A JP 2009191346A JP 2008036505 A JP2008036505 A JP 2008036505A JP 2008036505 A JP2008036505 A JP 2008036505A JP 2009191346 A JP2009191346 A JP 2009191346A
Authority
JP
Japan
Prior art keywords
treatment
concentration
surface treatment
treatment liquid
organic chelating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008036505A
Other languages
Japanese (ja)
Other versions
JP5101332B2 (en
Inventor
Toshio Sao
俊生 佐尾
Akihiro Sakanishi
彰博 坂西
Takashi Yoshiyama
隆士 吉山
Shigenori Fukuoka
重範 福岡
Atsunari Ueda
篤斉 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoeisha Chemical Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyoeisha Chemical Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoeisha Chemical Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Kyoeisha Chemical Co Ltd
Priority to JP2008036505A priority Critical patent/JP5101332B2/en
Publication of JP2009191346A publication Critical patent/JP2009191346A/en
Application granted granted Critical
Publication of JP5101332B2 publication Critical patent/JP5101332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment agent containing no phosphor, and to provide a surface treatment method using the surface treatment agent containing no phosphor. <P>SOLUTION: The surface treatment agent is formed of an aqueous solution which contains one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates, and in which the concentration of the organic chelating agents is adjusted to 1 g/L to 300 g/L, and the pH is 4.0 to 9.0. The surface treatment method includes the steps of: immersing carbon steel into a treatment liquid in which Fe<SP>2+</SP>is added to the surface treatment agent formed of the aqueous solution that contains one or more organic chelating agents selected from the aminocarboxylic acids and the aminocarboxylates; and adjusting the pH of the treatment liquid, the concentration of the organic chelating agent in the treatment liquid, the concentration of Fe<SP>2+</SP>in the treatment liquid, the concentration of Fe<SP>3+</SP>in the treatment liquid, and the oxidation-reduction potential of the treatment liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素鋼の表面処理剤及び表面処理方法、並びに表面処理された炭素鋼に関する。   The present invention relates to a surface treatment agent and a surface treatment method for carbon steel, and a surface-treated carbon steel.

炭素鋼製の鉄鋼線材の伸線工程の前処理として、鉄鋼線材表面の酸化スケールを除去するために、塩酸または硫酸で洗浄を行い、更に酸を除去するため水洗を行う。その後、鉄鋼線材の表面に潤滑皮膜を形成する。これらの処理を連続的に行うが、酸洗浄直後の鉄鋼線材表面は活性化された状態となり、水洗後に表面に水錆が発生する。皮膜処理時に線材表面に水錆が残留し、処理後の皮膜が茶褐色に着色する。その結果、伸線処理後の鉄鋼線材にも水錆による着色が発生する。鉄鋼線材表面の水錆による変色は、美観を損ね商品価値を下げるだけでなく、伸線時のダイス寿命を短くし、生産性を低下させる。   As a pretreatment for the wire drawing process of the steel wire made of carbon steel, washing is performed with hydrochloric acid or sulfuric acid in order to remove the oxide scale on the surface of the steel wire, and further washing with water to remove the acid. Thereafter, a lubricating film is formed on the surface of the steel wire. Although these treatments are performed continuously, the surface of the steel wire immediately after the acid cleaning becomes activated, and water rust is generated on the surface after the water cleaning. Water rust remains on the surface of the wire during the coating treatment, and the treated coating is colored brown. As a result, the steel wire after the wire drawing treatment is also colored by water rust. Discoloration due to water rust on the surface of steel wires not only detracts from aesthetics and lowers the product value, but also shortens the die life during wire drawing and reduces productivity.

特許文献1では、ホスホン酸塩を含むスマット除去液を用いた処理を水洗後に行うことにより、水洗後に発生したスマット(水錆)を除去し、製品の品質を向上させている。
特許第3207636号公報
In patent document 1, the process using the smut removal liquid containing a phosphonate is performed after water washing, the smut (water rust) which generate | occur | produced after water washing is removed, and the quality of a product is improved.
Japanese Patent No. 3206636

しかし、特許文献1のスマット除去液にはリンが含まれるため、処理後に浸リンによる鉄鋼線材の遅れ破壊が発生した。また、廃液処理が困難であることが問題となっていた。浸リンの影響や廃液処理を考慮すると、炭素鋼の表面処理剤にはリンが含まれていないことが好ましい。そこで、リン含有表面処理剤と同等の効果を有し、かつ、リンを含有しない表面処理剤を開発することが望まれていた。   However, since the smut removing liquid of Patent Document 1 contains phosphorus, delayed breakage of the steel wire due to immersion phosphorus occurred after the treatment. In addition, it has been a problem that waste liquid treatment is difficult. Considering the influence of phosphorus immersion and waste liquid treatment, it is preferable that the surface treatment agent for carbon steel does not contain phosphorus. Therefore, it has been desired to develop a surface treatment agent that has the same effect as a phosphorus-containing surface treatment agent and that does not contain phosphorus.

本発明は、上記課題を解決するためになされたものであって、リンを含有しない表面処理剤、及び、リンを含有しない表面処理剤を使用した表面処理方法を提供する。   This invention is made | formed in order to solve the said subject, Comprising: The surface treatment method which uses the surface treatment agent which does not contain phosphorus, and the surface treatment agent which does not contain phosphorus is provided.

上記課題を解決するために、本発明は、アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有し、前記有機キレート剤の濃度が1g/L以上300g/L以下であり、pHが4.0以上9.0以下に調整された水溶液からなる表面処理剤を提供する。   In order to solve the above problems, the present invention contains one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylic acid salts, and the concentration of the organic chelating agent is 1 g / L or more and 300 g / L or less. And a surface treating agent comprising an aqueous solution having a pH adjusted to 4.0 or more and 9.0 or less.

本発明の表面処理剤は、有効薬剤としてリンを含有しない有機キレート剤を使用する。そのため、処理後の浸リンによる遅れ破壊を防止できる。また、廃液処理が容易となるため、従来のリン含有水処理剤と比べて取り扱いが容易となる。   The surface treating agent of the present invention uses an organic chelating agent that does not contain phosphorus as an effective agent. Therefore, it is possible to prevent delayed destruction due to immersion phosphorus after processing. Moreover, since waste liquid processing becomes easy, handling becomes easy compared with the conventional phosphorus containing water processing agent.

有機キレート剤の濃度が1g/L未満であると、例えば水錆除去といった表面処理能力が不十分であり、300g/Lより高くなると炭素鋼表面を過剰に溶解する。従って、有機キレート剤濃度は1g/L以上300g/L以下とされ、好ましくは5g/L以上200g/L以下、より好ましくは10g/L以上100g/L以下とされる。   When the concentration of the organic chelating agent is less than 1 g / L, the surface treatment capability such as removal of water rust is insufficient, and when it is higher than 300 g / L, the carbon steel surface is excessively dissolved. Therefore, the organic chelating agent concentration is 1 g / L or more and 300 g / L or less, preferably 5 g / L or more and 200 g / L or less, more preferably 10 g / L or more and 100 g / L or less.

また、水溶液のpHが4.0未満であると表面処理後の炭素鋼表面に酸化スケールが発生する。水溶液のpHが9.0を超えると表面処理能力が低下する。pHが4.0以上9.0以下の範囲であれば、高い表面処理能力を有する表面処理剤とすることができる。pHの範囲は、好ましくは4.5以上8.5以下、より好ましくは4.8以上8.0以下とされる。   Further, if the pH of the aqueous solution is less than 4.0, an oxide scale is generated on the surface of the carbon steel after the surface treatment. When the pH of the aqueous solution exceeds 9.0, the surface treatment ability decreases. If pH is the range of 4.0 or more and 9.0 or less, it can be set as the surface treating agent which has high surface treatment capability. The pH range is preferably 4.5 or more and 8.5 or less, more preferably 4.8 or more and 8.0 or less.

上記発明において、前記水溶液が、界面活性剤またはグリコール系溶剤を含有することが好ましい。界面活性剤またはグリコール系溶剤により、表面処理後の炭素鋼表面に酸化スケールが発生するのを抑制する効果が得られる。   In the above invention, the aqueous solution preferably contains a surfactant or a glycol solvent. The effect of suppressing the generation of oxide scale on the surface of the carbon steel after the surface treatment is obtained by the surfactant or the glycol solvent.

また、本発明は、アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有する水溶液からなる表面処理剤に対してFe2+を添加した処理液に、炭素鋼を浸漬する工程と、前記処理液のpHと、前記処理液中の前記有機キレート剤の濃度と、前記処理液中のFe2+の濃度と、前記処理液中のFe3+濃度と、前記処理液の酸化還元電位とを調整する工程とを有する表面処理方法を提供する。 Further, the present invention immerses carbon steel in a treatment liquid in which Fe 2+ is added to a surface treatment agent comprising an aqueous solution containing one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates. The process, the pH of the treatment liquid, the concentration of the organic chelating agent in the treatment liquid, the concentration of Fe 2+ in the treatment liquid, the Fe 3+ concentration in the treatment liquid, and the oxidation of the treatment liquid And a step of adjusting the reduction potential.

有機キレート剤を含有する表面処理剤に対してFe2+を添加した処理液を用いることで、処理液の酸化還元電位を低くし表面処理能力を向上させることができる。処理液のpHと、処理液中の有機キレート剤濃度と、処理液中のFe2+の濃度と、表面処理により発生するFe3+濃度と、処理液の酸化還元電位とを調整しながら炭素鋼の表面を処理するによって、表面処理能力を高めることができる。また、鉄鋼線材を処理対象とする場合は、線材表面の過溶解による伸線性への悪影響を抑制することができる。 By using a treatment liquid in which Fe 2+ is added to a surface treatment agent containing an organic chelating agent, the oxidation-reduction potential of the treatment liquid can be lowered and the surface treatment ability can be improved. While adjusting the pH of the treatment liquid, the concentration of the organic chelating agent in the treatment liquid, the concentration of Fe 2+ in the treatment liquid, the Fe 3+ concentration generated by the surface treatment, and the oxidation-reduction potential of the treatment liquid, By treating the surface, the surface treatment capability can be increased. Moreover, when making an iron and steel wire into a process target, the bad influence on the wire drawing property by the overmelting of the wire surface can be suppressed.

この場合、前記処理液のpHを、4.0以上9.0以下の範囲に調整することが好ましい。   In this case, it is preferable to adjust the pH of the treatment liquid to a range of 4.0 or more and 9.0 or less.

処理液のpHが4.0未満であると、表面処理後の炭素鋼表面に酸化スケールが発生する。pHが9.0を超えると、表面処理能力が低下する。また、鉄鋼線材を表面処理する場合は、表面処理により除去した水錆が水酸化鉄として析出する。処理液のpHが4.0以上9.0以下、好ましくは4.5以上8.5以下、より好ましくは4.8以上8.0以下の範囲であれば、表面処理能力を向上させることができるとともに、表面処理後の酸化スケールの発生を防止することができる。   When the pH of the treatment liquid is less than 4.0, an oxide scale is generated on the surface of the carbon steel after the surface treatment. When the pH exceeds 9.0, the surface treatment ability decreases. Moreover, when surface-treating a steel wire, the water rust removed by surface treatment precipitates as iron hydroxide. If the pH of the treatment liquid is 4.0 or more and 9.0 or less, preferably 4.5 or more and 8.5 or less, more preferably 4.8 or more and 8.0 or less, the surface treatment ability can be improved. In addition, the generation of oxide scale after the surface treatment can be prevented.

この場合、前記有機キレート剤の濃度を、1g/L以上300g/L以下の範囲に調整することが好ましい。   In this case, it is preferable to adjust the concentration of the organic chelating agent to a range of 1 g / L to 300 g / L.

処理液中の有機キレート剤の濃度が1g/L未満であると、表面処理能力が不十分である。有機キレート剤の濃度が300g/Lより高くなると、炭素鋼表面を過剰に溶解する。鉄鋼線材を処理した場合は、表面処理後の伸線性に悪影響を与える。処理液中の有機キレート剤濃度を、1g/L以上300g/L以下、好ましくは5g/L以上200g/L以下、より好ましくは10g/L以上100g/L以下の範囲に調整することにより、処理液の表面処理能力を高め、処理後の炭素鋼に良好な物性を与えることができる。   When the concentration of the organic chelating agent in the treatment liquid is less than 1 g / L, the surface treatment ability is insufficient. When the concentration of the organic chelating agent is higher than 300 g / L, the carbon steel surface is excessively dissolved. When a steel wire is processed, the wire drawing after the surface treatment is adversely affected. By adjusting the organic chelating agent concentration in the treatment liquid to a range of 1 g / L to 300 g / L, preferably 5 g / L to 200 g / L, more preferably 10 g / L to 100 g / L. The surface treatment ability of the liquid can be increased, and good physical properties can be imparted to the treated carbon steel.

この場合、前記Fe2+の濃度を、10mg/L以上に調整することが好ましい。処理液中のFe2+濃度が10mg/L未満であると、酸化還元電位が高くなり還元力が弱くなるので、表面処理能力が低下する。従って、Fe2+の濃度は、10mg/L以上、好ましくは30mg/L以上、より好ましくは50mg/L以上に調整される。 In this case, the Fe 2+ concentration is preferably adjusted to 10 mg / L or more. When the Fe 2+ concentration in the treatment liquid is less than 10 mg / L, the oxidation-reduction potential becomes high and the reduction power becomes weak, so that the surface treatment ability is lowered. Therefore, the Fe 2+ concentration is adjusted to 10 mg / L or more, preferably 30 mg / L or more, more preferably 50 mg / L or more.

この場合、前記Fe3+の濃度を、1000mg/L以下に調整することが好ましい。表面処理が進行すると、例えば鉄鋼線材表面の水錆が処理液中に溶解することにより、Fe3+が増加する。Fe3+の濃度が1000mg/Lを超えると、Fe3+の酸化作用により酸化還元電位が高くなり還元力が弱くなるため、表面処理能力が低下する。また、Fe3+の酸化作用により炭素鋼の地金を腐食する。このため、鉄鋼線材の場合は伸線時の断線回数が大幅に増加するという問題が生じる。 In this case, it is preferable to adjust the Fe 3+ concentration to 1000 mg / L or less. When the surface treatment proceeds, for example, water rust on the surface of the steel wire is dissolved in the treatment liquid, thereby increasing Fe 3+ . When the concentration of Fe 3+ exceeds 1000 mg / L, the oxidation-reduction potential increases due to the oxidation action of Fe 3+ and the reducing power becomes weak, so that the surface treatment ability decreases. Moreover, the ingot of carbon steel is corroded by the oxidizing action of Fe 3+ . For this reason, in the case of a steel wire rod, the problem that the frequency | count of disconnection at the time of wire drawing increases significantly arises.

この場合、前記酸化還元電位を、水素標準電極電位に対して510mV以下に調整することが好ましい。処理液の酸化還元電位は、表面処理能力と炭素鋼地金の腐食性に影響するパラメータである。酸化雰囲気では、表面処理能力が不十分であり、酸化による地金腐食量も多くなる。酸化還元電位が水素標準電極電位に対して510mV以下、好ましくは460mV以下、より好ましくは410mV以下であれば、表面処理能力が向上し、地金の腐食も防止することができる。   In this case, the oxidation-reduction potential is preferably adjusted to 510 mV or less with respect to the hydrogen standard electrode potential. The oxidation-reduction potential of the treatment liquid is a parameter that affects the surface treatment ability and the corrosivity of the carbon steel ingot. In an oxidizing atmosphere, the surface treatment capability is insufficient, and the amount of metal corrosion due to oxidation increases. When the oxidation-reduction potential is 510 mV or less, preferably 460 mV or less, more preferably 410 mV or less with respect to the hydrogen standard electrode potential, the surface treatment ability is improved, and corrosion of the metal can be prevented.

上記発明において、前記水溶液が界面活性剤またはグリコール系溶剤を含有してもよい。表面処理工程から次の工程(例えば皮膜処理工程)までの時間が長い場合、表面処理後の炭素鋼表面に酸化スケールが発生する。表面処理剤に界面活性剤またはグリコール系溶剤を更に含有させることで、表面処理後の防錆性能を更に向上させることができる。   In the above invention, the aqueous solution may contain a surfactant or a glycol solvent. When the time from the surface treatment process to the next process (for example, the film treatment process) is long, an oxide scale is generated on the surface of the carbon steel after the surface treatment. By further containing a surfactant or glycol solvent in the surface treatment agent, the rust prevention performance after the surface treatment can be further improved.

また、本発明は、アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有する水溶液にFe2+を添加した処理液に浸漬され、前記処理液のpHと、前記処理液中の有機キレート剤の濃度と、前記処理液中のFe2+の濃度と、前記処理液中のFe3+濃度と、前記処理液の酸化還元電位とを調整することによって、表面が処理された炭素鋼を提供する。 Further, the present invention is immersed in a treatment solution obtained by adding Fe 2+ to an aqueous solution containing one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates, and the pH of the treatment solution and the treatment The surface was treated by adjusting the concentration of the organic chelating agent in the liquid, the concentration of Fe 2+ in the treatment liquid, the Fe 3+ concentration in the treatment liquid, and the oxidation-reduction potential of the treatment liquid. Provide carbon steel.

上記工程により処理された炭素鋼は、表面処理が確実に施され、処理後の酸化スケール発生が抑制される。そのため、美観に優れる。また、例えば鉄鋼線材の場合は、伸線時にダイスへのダメージを小さくしダイス寿命を延ばすことができ、地金の腐食が少なく伸線時の断線回数を大幅に減少させることができる。   The carbon steel treated by the above process is reliably subjected to surface treatment, and generation of oxidized scale after the treatment is suppressed. Therefore, it is excellent in aesthetics. For example, in the case of a steel wire rod, damage to the die can be reduced at the time of wire drawing and the die life can be extended, corrosion of the metal can be reduced, and the number of wire breaks at the time of wire drawing can be greatly reduced.

本発明によれば、炭素鋼表面を過剰に溶解させること無く、表面処理を実施することが可能となる。また、表面処理後の酸化スケールの発生を抑制することができる。本発明の表面処理剤にはリンが含まれないため、浸リンによる遅れ破壊が発生せず、廃液処理も容易である。
本発明の表面処理剤及び表面処理方法により処理を施された炭素鋼は、表面処理が確実に施され、表面処理後の酸化スケールの発生も抑制されるので、美観に優れる。例えば鉄鋼線材においては、伸線時にダイスへのダメージを小さくしダイス寿命を延ばすことができ、地金の腐食が少なく伸線時の断線回数を大幅に減少させることができる。
According to the present invention, surface treatment can be performed without excessively dissolving the carbon steel surface. Moreover, generation | occurrence | production of the oxide scale after surface treatment can be suppressed. Since the surface treatment agent of the present invention does not contain phosphorus, delayed destruction due to phosphorus immersion does not occur, and waste liquid treatment is easy.
The carbon steel treated by the surface treatment agent and the surface treatment method of the present invention is excellent in aesthetics because the surface treatment is reliably performed and the generation of oxide scale after the surface treatment is also suppressed. For example, in a steel wire rod, damage to the die can be reduced at the time of wire drawing, and the die life can be extended. Corrosion of the metal can be reduced and the number of wire breaks during wire drawing can be greatly reduced.

以下に、炭素鋼製の鉄鋼線材表面の水錆を除去する場合を例に挙げて、本発明に係る表面処理剤及び表面処理方法を説明する。
炭素鋼製の鉄鋼線材は、酸洗浄工程、水洗工程、水錆除去工程、表面皮膜処理工程の順で前処理を行った後、乾式伸線工程にて伸線される。
Below, the case where the water rust of the steel wire rod made of carbon steel is removed is taken as an example, and the surface treatment agent and the surface treatment method according to the present invention will be described.
A steel wire made of carbon steel is pre-treated in the order of an acid washing step, a water washing step, a water rust removal step, and a surface film treatment step, and then drawn in a dry drawing step.

<酸洗浄工程>
酸洗浄工程にて、塩酸または硫酸が用いて線材の表面に形成された酸化スケール(Fe、Fe、FeO)を除去する。酸濃度、処理温度、処理時間、及び液中の鉄濃度は、酸化スケールの除去能力、線材の地金の腐食度合い、処理効率などを考慮して決定される。例えば、表1に示す条件にて酸洗浄が行われる。
酸洗浄処理は、単槽で行っても良いし、複数槽を用いた多段式で行っても良い。
<Acid cleaning process>
In the acid cleaning step, hydrochloric acid or sulfuric acid is used to remove oxide scale (Fe 2 O 3 , Fe 3 O 4 , FeO) formed on the surface of the wire. The acid concentration, the treatment temperature, the treatment time, and the iron concentration in the liquid are determined in consideration of the ability to remove oxide scale, the degree of corrosion of the bare metal of the wire, the treatment efficiency, and the like. For example, acid cleaning is performed under the conditions shown in Table 1.
The acid cleaning treatment may be performed in a single tank or a multistage system using a plurality of tanks.

Figure 2009191346
Figure 2009191346

<水洗工程>
酸洗浄後、線材に付着した酸を除去するために水洗を行う。水洗工程は、多段式水槽またはシャワーにより行うことができる。
<Washing process>
After the acid cleaning, water washing is performed to remove the acid attached to the wire. The water washing step can be performed by a multistage water tank or a shower.

<水錆除去工程>
水錆除去工程にて、酸洗浄後に発生した錆(水錆)を除去する。
本実施形態の表面処理剤は、アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有する水溶液からなる。具体的に、アミノカルボン酸として、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、及びトリエチレンテトラミン六酢酸が挙げられる。アミノカルボン酸塩としては、上記したアミノカルボン酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩、アミン塩、及びアルカノールアミン塩が挙げられる。
<Water rust removal process>
In the water rust removal step, rust (water rust) generated after acid cleaning is removed.
The surface treatment agent of this embodiment consists of an aqueous solution containing one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates. Specific examples of the aminocarboxylic acid include nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid. Examples of aminocarboxylic acid salts include sodium salts, potassium salts, lithium salts, ammonium salts, amine salts, and alkanolamine salts of aminocarboxylic acids described above.

有機キレート剤の濃度は、1g/L以上300g/L以下、好ましくは5g/L以上200g/L以下、より好ましくは10g/L以上100g/L以下とされる。   The concentration of the organic chelating agent is 1 g / L or more and 300 g / L or less, preferably 5 g / L or more and 200 g / L or less, more preferably 10 g / L or more and 100 g / L or less.

pHは、4.0以上9.0以下、好ましくは4.5以上8.5以下、より好ましくは4.8以上8.0以下とされる。pHを調整するために、塩酸、硫酸、硝酸、酢酸などの酸や、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、水酸化ナトリウム、水酸化カリウムなどのアルカリを、表面処理剤に添加する。   The pH is 4.0 or more and 9.0 or less, preferably 4.5 or more and 8.5 or less, and more preferably 4.8 or more and 8.0 or less. In order to adjust the pH, an acid such as hydrochloric acid, sulfuric acid, nitric acid or acetic acid, or an alkali such as monoethanolamine, diethanolamine, triethanolamine, sodium hydroxide or potassium hydroxide is added to the surface treatment agent.

水錆除去を促進させるために、上記の表面処理剤に還元剤を添加することができる。還元剤の具体例としては、アスコルビン酸、エリソルビン酸、酒石酸、シュウ酸、クエン酸、リンゴ酸、及びこれらの塩、塩化第一鉄(FeCl)、硫化第一鉄(FeS)が挙げられる。 In order to promote removal of water rust, a reducing agent can be added to the surface treatment agent. Specific examples of the reducing agent include ascorbic acid, erythorbic acid, tartaric acid, oxalic acid, citric acid, malic acid, and salts thereof, ferrous chloride (FeCl 2 ), and ferrous sulfide (FeS).

水錆除去後の酸化スケールの発生を抑制するために、上記の表面処理剤に界面活性剤またはグリコール系溶剤を添加しても良い。界面活性剤の例として、アルキルアミノプロピオン酸ナトリウムが挙げられる。グリコール系溶剤の例として、プロピレングリコールが挙げられる。   In order to suppress the generation of oxide scale after removal of water rust, a surfactant or glycol solvent may be added to the surface treatment agent. An example of a surfactant is sodium alkylaminopropionate. An example of the glycol solvent is propylene glycol.

本実施形態において、上記の表面処理剤に対してFe2+を添加し、水錆除去のための処理液とする。Fe2+を添加することにより、処理液の酸化還元電位を低下させ、水錆除去能力を向上させる。処理液中のFe2+の濃度は、10mg/L以上、好ましくは30mg/L以上、より好ましくは50mg/L以上とする。Fe2+は、表面処理剤に塩化第一鉄を溶解させて添加することができる。あるいは、有機キレート剤濃度が低下したため水錆除去能力が低下し使用不可となった処理液を、未使用の表面処理剤に混合させても良い。この場合は、使用不可となった処理液を再利用するので、処理コストを低減し廃液量を削減できるという利点がある。 In this embodiment, Fe < 2+ > is added with respect to said surface treating agent, and it is set as the processing liquid for water rust removal. By adding Fe 2+ , the oxidation-reduction potential of the treatment liquid is lowered and the water rust removal ability is improved. The concentration of Fe 2+ in the treatment liquid is 10 mg / L or more, preferably 30 mg / L or more, more preferably 50 mg / L or more. Fe 2+ can be added by dissolving ferrous chloride in the surface treatment agent. Or you may mix the processing liquid which the water rust removal capability fell and became unusable because the organic chelating agent density | concentration fell to an unused surface treating agent. In this case, since the processing liquid that has become unusable is reused, there are advantages that the processing cost can be reduced and the amount of waste liquid can be reduced.

上記の処理液に水錆が発生した鉄鋼線材を浸漬し、水錆除去処理を行う。水錆除去処理の間、処理液のpH、処理液中の有機キレート剤の濃度、Fe2+濃度、Fe3+濃度、及び処理液の酸化還元電位の値を測定し、管理する。 The steel wire in which water rust is generated is immersed in the above-described processing liquid, and water rust removal processing is performed. During the water rust removal treatment, the pH of the treatment liquid, the concentration of the organic chelating agent in the treatment liquid, the Fe 2+ concentration, the Fe 3+ concentration, and the oxidation-reduction potential value of the treatment liquid are measured and managed.

水錆除去処理の間、処理液のpHを、4.0以上9.0以下、好ましくは4.5以上8.5以下、より好ましくは4.8以上8.0以下の範囲で調整する。処理液のpHは、上述した酸またはアルカリを添加することで調整することができる。   During the water rust removal treatment, the pH of the treatment liquid is adjusted in the range of 4.0 to 9.0, preferably 4.5 to 8.5, more preferably 4.8 to 8.0. The pH of the treatment liquid can be adjusted by adding the acid or alkali described above.

処理液中の有機キレート剤濃度は、1g/L以上300g/L以下、好ましくは5g/L以上200g/L以下、より好ましくは10g/L以上100g/L以下とする。有機キレート剤の濃度は、細管式等速電気泳動法、キャピラリー電気泳動法、または滴定法により測定を行う。処理液中の有機キレート剤濃度が1g/L未満となると、十分な水錆除去が実施できなくなるため、処理液を交換する。   The concentration of the organic chelating agent in the treatment liquid is 1 g / L or more and 300 g / L or less, preferably 5 g / L or more and 200 g / L or less, more preferably 10 g / L or more and 100 g / L or less. The concentration of the organic chelating agent is measured by capillary tube isotachophoresis, capillary electrophoresis, or titration. When the concentration of the organic chelating agent in the treatment liquid is less than 1 g / L, sufficient water rust removal cannot be performed, so the treatment liquid is replaced.

水錆除去処理の間、処理液中のFe2+の濃度を、10mg/L以上、好ましくは30mg/L以上、より好ましくは50mg/L以上に調整する。Fe2+濃度が上記値より小さくなった場合は、塩化第一鉄または使用不可となった処理液を添加する。なお、Fe2+濃度は、例えばエチレンジアミン四酢酸溶液を用いた滴定法により測定する。 During the water rust removal treatment, the concentration of Fe 2+ in the treatment liquid is adjusted to 10 mg / L or more, preferably 30 mg / L or more, more preferably 50 mg / L or more. When the Fe 2+ concentration becomes smaller than the above value, ferrous chloride or a treatment liquid that cannot be used is added. The Fe 2+ concentration is measured by, for example, a titration method using an ethylenediaminetetraacetic acid solution.

水錆除去処理が進行すると、鉄鋼線材表面の水錆が処理液中に溶解し、処理液中のFe3+濃度が増加する。Fe3+濃度を、例えばエチレンジアミン四酢酸溶液を用いた滴定法により測定し、1000mg/Lを超えた場合は処理液を交換する。 As the water rust removal treatment proceeds, the water rust on the surface of the steel wire is dissolved in the treatment liquid, and the Fe 3+ concentration in the treatment liquid increases. The Fe 3+ concentration is measured, for example, by a titration method using an ethylenediaminetetraacetic acid solution. When the concentration exceeds 1000 mg / L, the treatment liquid is replaced.

水錆除去処理中の処理液の酸化還元電位は、水素標準電極電位に対して510mV以下、好ましくは460mV以下、より好ましくは410mV以下に調整する。酸化還元電位の調整は、例えば、L−アスコルビン酸ナトリウムの添加及びエアーバブリングにより行う。   The oxidation-reduction potential of the treatment liquid during the water rust removal treatment is adjusted to 510 mV or less, preferably 460 mV or less, more preferably 410 mV or less with respect to the hydrogen standard electrode potential. The redox potential is adjusted by, for example, adding sodium L-ascorbate and air bubbling.

有機キレート剤の濃度が高いほど、また、処理液の温度が高いほど、水錆除去に要する時間が短くなる。一方、高濃度の有機キレート剤を含有する処理液に長時間浸漬すると、地金が腐食される。従って、処理時の有機キレート剤濃度及び処理液の温度に応じて、鉄鋼線材の浸漬時間を適宜設定する必要がある。   The higher the concentration of the organic chelating agent and the higher the temperature of the treatment liquid, the shorter the time required to remove water rust. On the other hand, if it is immersed for a long time in the process liquid containing a high concentration organic chelating agent, a metal will be corroded. Therefore, it is necessary to appropriately set the immersion time of the steel wire according to the concentration of the organic chelating agent during the treatment and the temperature of the treatment liquid.

有機キレート剤としてエチレンジアミン四酢酸カリウム塩を含有する処理液に鉄鋼線材を浸漬して、有機キレート剤の濃度、pH、処理温度、及び処理時間の関係を調査した。処理条件を表2に示す。試料として、線材(材質:S−45C、平均直径:15mm、長さ:10cm)10本を糸で束ねたワークを使用し、表1に示した塩酸を用いた条件により酸処理を施した後、水洗した。pHは、水酸化カリウムを添加することにより調整した。Fe2+及びFe3+は、それぞれ塩化第一鉄及び塩化第二鉄(FeCl)を添加することにより調整した。酸化還元電位は3.3mol/L銀−塩化銀電極を用いて測定し、L−アスコルビン酸ナトリウムを添加して酸化還元電位の値を調整した。 A steel wire was immersed in a treatment liquid containing ethylenediaminetetraacetic acid potassium salt as an organic chelating agent, and the relationship among the concentration, pH, treatment temperature, and treatment time of the organic chelating agent was investigated. Table 2 shows the processing conditions. As a sample, a work in which 10 wires (material: S-45C, average diameter: 15 mm, length: 10 cm) are bundled with yarn is used, and acid treatment is performed under the conditions using hydrochloric acid shown in Table 1. , Washed with water. The pH was adjusted by adding potassium hydroxide. Fe 2+ and Fe 3+ were adjusted by adding ferrous chloride and ferric chloride (FeCl 3 ), respectively. The oxidation-reduction potential was measured using a 3.3 mol / L silver-silver chloride electrode, and sodium L-ascorbate was added to adjust the value of the oxidation-reduction potential.

Figure 2009191346
Figure 2009191346

処理液中の有機キレート剤(エチレンジアミン四酢酸カリウム塩)の濃度(有効成分濃度)は、以下の手順にて測定した。
(有機キレート剤有効成分濃度測定方法)
(1)処理液5mlをホールピペットで採取し、容量300mlの三角フラスコまたはビーカーに入れる。
(2)蒸留水またはイオン交換水100ml添加し、処理液を希釈する。
(3)pH9のホウ酸緩衝液(市販品、または、含水硼砂5gを蒸留水1Lに希釈したもの)10mlを添加する。
(4)指示薬としてムレキシド希釈粉末を少量添加する。
(5)1/40M硫酸銅水溶液で滴定する。赤紫色から紫色に呈色した時点で滴定を終了する。式(1)により、有機キレート剤濃度を算出する。
有機キレート剤濃度(mg/L)=0.128×硫酸銅水溶液滴下量(ml)・・・(1)
The concentration (active ingredient concentration) of the organic chelating agent (ethylenediaminetetraacetic acid potassium salt) in the treatment liquid was measured by the following procedure.
(Organic chelating agent active ingredient concentration measurement method)
(1) Collect 5 ml of the treatment solution with a whole pipette and place it in a 300 ml Erlenmeyer flask or beaker.
(2) Add 100 ml of distilled water or ion exchange water to dilute the treatment solution.
(3) Add 10 ml of pH 9 borate buffer solution (commercially available product or diluted 5 g of hydrous borax in 1 L of distilled water).
(4) Add a small amount of murexide diluted powder as an indicator.
(5) Titrate with 1/40 M copper sulfate aqueous solution. The titration is finished when the color changes from purple to purple. The organic chelating agent concentration is calculated according to the formula (1).
Organic chelating agent concentration (mg / L) = 0.128 × copper sulfate aqueous solution dropping amount (ml) (1)

図1乃至図6に、pHがそれぞれ4.0,4.5,5.0,8.0,8.5,9.0の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフを示す。同図において、横軸を処理液温度、縦軸を処理時間とした。処理時間は、処理後の試料の外観を目視により観察した場合に外観が清浄であり、重量減少が0.1%以下となる最小浸漬時間とした。   In FIG. 1 to FIG. 6, the treatment liquid temperature when water rust removal is performed using treatment liquids having pH of 4.0, 4.5, 5.0, 8.0, 8.5, and 9.0, respectively. The graph showing the relationship between processing time is shown. In the figure, the horizontal axis represents the treatment liquid temperature and the vertical axis represents the treatment time. The treatment time was set to the minimum immersion time when the appearance of the sample after treatment was visually observed and the appearance was clean and the weight loss was 0.1% or less.

いずれのpHの場合も、処理液温度が高くなるに従い、また、有機キレート剤濃度が高くなるに従い、処理時間が短くなった。また、同じ有機キレート剤濃度及び処理液温度では、pHが低いほど処理時間が短くなる傾向が見られた。
pH5.0以下の場合、有機キレート剤濃度200g/L以上の処理液に長時間浸漬すると地金が腐食した(重量減少が0.1%より大きくなった)。pH5.0以上の場合、有機キレート剤濃度1g/Lの処理液では水錆を除去することができなかった。
In any case, the treatment time was shortened as the treatment solution temperature was increased and the organic chelating agent concentration was increased. Further, at the same organic chelating agent concentration and treatment solution temperature, the treatment time tended to be shorter as the pH was lower.
In the case of pH 5.0 or less, the metal was corroded when immersed in a treatment solution having an organic chelating agent concentration of 200 g / L or more for a long time (weight reduction was greater than 0.1%). When the pH was 5.0 or more, water rust could not be removed with a treatment liquid having an organic chelating agent concentration of 1 g / L.

処理液中のFe2+濃度の影響を調査した。試料として、線材(材質:S−45C、平均直径:15mm、長さ:10cm)10本を糸で束ねたワークを使用し、表1に示した塩酸を用いた条件により酸処理を施した後、水洗した。有機キレート剤としてエチレンジアミン四酢酸を用い、有機キレート剤濃度を50g/Lとした。pH5.0となるように、水酸化カリウムを添加して調整した。処理液量を500ml、処理液温度を20℃とした。Fe2+として、塩化第一鉄を処理液に添加した。Fe2+濃度及びFe3+濃度を以下で説明する滴定法により測定した。処理液の酸化還元電位の測定には、3.3mol/L銀−塩化銀電極を使用した。 The influence of the Fe 2+ concentration in the treatment liquid was investigated. As a sample, a work in which 10 wires (material: S-45C, average diameter: 15 mm, length: 10 cm) are bundled with yarn is used, and acid treatment is performed under the conditions using hydrochloric acid shown in Table 1. , Washed with water. Ethylenediaminetetraacetic acid was used as the organic chelating agent, and the concentration of the organic chelating agent was 50 g / L. It adjusted by adding potassium hydroxide so that it might become pH 5.0. The amount of the treatment liquid was 500 ml, and the treatment liquid temperature was 20 ° C. Ferrous chloride was added to the treatment liquid as Fe 2+ . Fe 2+ concentration and Fe 3+ concentration were measured by the titration method described below. A 3.3 mol / L silver-silver chloride electrode was used to measure the oxidation-reduction potential of the treatment liquid.

(Fe3+濃度測定方法)
(1)サンプルとして、処理液を2ml採取する。
(2)20%硫酸アルミニウム水溶液(硫酸アルミニウム14〜18水和物20gを水に溶解させ、全量を100mlとしたもの)を10ml添加する。
(3)pH緩衝溶液(塩化アンモニウム10.7g及び99.7%酢酸20mlを水に溶解させ、全量を1000mlとしたもの)を20ml添加する。
(4)10%スルホサリチル酸溶液(スルホサリチル酸2水和物10gを水に溶解させ全量を100mlとしたもの)を2ml添加する。Fe3+が存在すれば、この時点で赤紫色に呈色する。
(5)上記の液を40℃に加温し、0.1Mエチレンジアミン四酢酸(EDTA)で滴定する。赤紫色から黄褐色に呈色した時点で滴定を終了する。式(2)によりFe3+濃度を算出する。
Fe3+濃度(ppm)=EDTA滴下量(ml)×5.585×500×F・・・(2)
ここで、Fは0.1Mエチレンジアミン四酢酸のファクターを表す。
(Fe 3+ concentration measurement method)
(1) Collect 2 ml of the processing solution as a sample.
(2) Add 10 ml of 20% aluminum sulfate aqueous solution (20 g of aluminum sulfate 14-18 hydrate dissolved in water to make the total amount 100 ml).
(3) 20 ml of a pH buffer solution (10.7 g of ammonium chloride and 20 ml of 99.7% acetic acid dissolved in water to make the total volume 1000 ml) is added.
(4) Add 2 ml of 10% sulfosalicylic acid solution (10 g of sulfosalicylic acid dihydrate dissolved in water to make the total amount 100 ml). If Fe 3+ is present, it turns reddish purple at this point.
(5) Warm the above solution to 40 ° C. and titrate with 0.1 M ethylenediaminetetraacetic acid (EDTA). The titration is finished when the color changes from reddish purple to tan. The Fe 3+ concentration is calculated from equation (2).
Fe 3+ concentration (ppm) = EDTA drop amount (ml) × 5.585 × 500 × F (2)
Here, F represents a factor of 0.1 M ethylenediaminetetraacetic acid.

(Fe2+濃度測定方法)
(1)上記のFe3+濃度測定の操作を行った液に、過硫酸アンモニウム(ペルオキソ二硫酸アンモニウム)を約2g添加する。この時点で赤紫色に呈色する。
(2)上記の液を40℃に加温し、0.1Mエチレンジアミン四酢酸溶液で滴定する。赤紫色から黄褐色に呈色した時点で滴定を終了する。式(3)によりFe2+濃度を算出する。
Fe2+濃度(ppm)=EDTA滴下量(ml)×5.585×500×F・・・(3)
ここで、Fは0.1Mエチレンジアミン四酢酸のファクターを表す。
(Fe 2+ concentration measurement method)
(1) About 2 g of ammonium persulfate (ammonium peroxodisulfate) is added to the liquid subjected to the above-described Fe 3+ concentration measurement operation. At this time, it turns reddish purple.
(2) Warm the above solution to 40 ° C. and titrate with 0.1 M ethylenediaminetetraacetic acid solution. The titration is finished when the color changes from reddish purple to tan. The Fe 2+ concentration is calculated from equation (3).
Fe 2+ concentration (ppm) = EDTA drop amount (ml) × 5.585 × 500 × F (3)
Here, F represents a factor of 0.1 M ethylenediaminetetraacetic acid.

Fe2+濃度を変えた各処理液に120秒浸漬した後、鉄鋼線材の外観を目視で観察し、水錆除去の程度を評価した。表3に結果を示す。 After immersing for 120 seconds in each treatment solution with different Fe 2+ concentrations, the appearance of the steel wire was visually observed to evaluate the degree of water rust removal. Table 3 shows the results.

Figure 2009191346
Figure 2009191346

Fe2+濃度が10mg/L未満であると、酸化還元電位が高くなり還元力が弱くなったため、処理後の水錆残留量が多かった。Fe2+濃度が10mg/L以上で、水錆をほぼ除去することができ、50mg/L以上で水錆を完全に除去することができた。 When the Fe 2+ concentration was less than 10 mg / L, the redox potential was high and the reducing power was weak, so that the amount of residual water rust after treatment was large. When the Fe 2+ concentration was 10 mg / L or more, water rust could be almost removed, and when the Fe 2+ concentration was 50 mg / L or more, water rust could be completely removed.

処理液中のFe3+濃度の影響を調査した。試料として、線材(材質:S−45C、平均直径:15mm、長さ:10cm)10本を糸で束ねたワークを使用し、表1に示した塩酸を用いた条件により酸処理を施した後、水洗した。有機キレート剤としてエチレンジアミン四酢酸を用い、有機キレート剤濃度を50g/Lとした。pH5.0となるように、水酸化カリウムを添加して調整した。処理液量を500ml、処理液温度を20℃とした。Fe2+濃度が100mg/Lとなるように塩化第一鉄を処理液に添加した。Fe3+として第二塩化鉄を添加した。なお、Fe2+濃度及びFe3+濃度は上述した方法で測定した。処理液の酸化還元電位の測定には、3.3mol/L銀−塩化銀電極を使用した。 The influence of the Fe 3+ concentration in the treatment liquid was investigated. As a sample, a work in which 10 wires (material: S-45C, average diameter: 15 mm, length: 10 cm) are bundled with yarn is used, and acid treatment is performed under the conditions using hydrochloric acid shown in Table 1. , Washed with water. Ethylenediaminetetraacetic acid was used as the organic chelating agent, and the concentration of the organic chelating agent was 50 g / L. It adjusted by adding potassium hydroxide so that it might become pH 5.0. The amount of the treatment liquid was 500 ml, and the treatment liquid temperature was 20 ° C. Ferrous chloride was added to the treatment solution so that the Fe 2+ concentration was 100 mg / L. Ferric chloride was added as Fe 3+ . The Fe 2+ concentration and the Fe 3+ concentration were measured by the method described above. A 3.3 mol / L silver-silver chloride electrode was used to measure the oxidation-reduction potential of the treatment liquid.

Fe3+濃度を変えた各処理液に120秒浸漬した後、鉄鋼線材の外観を目視で観察し、水錆除去の程度を評価した。表4に結果を示す。 After immersing for 120 seconds in each treatment solution with different Fe 3+ concentrations, the appearance of the steel wire was visually observed to evaluate the degree of water rust removal. Table 4 shows the results.

Figure 2009191346
Figure 2009191346

Fe3+濃度が1500mg/L以上の場合、Fe3+の酸化作用により酸化還元電位が高くなり還元力が弱くなったため、水錆除去能力が低下して鉄鋼線材表面に水錆が残留した。また、Fe3+の酸化作用によって鉄鋼線材の地金を腐食された。このため、伸線時の断線回数が大幅に増加することが予想される。Fe3+濃度が1000mg/L以下の場合、鉄鋼線材表面の水錆をほぼ除去することができ、500mg/L以下で水錆を確実に除去することができた。 When the Fe 3+ concentration was 1500 mg / L or more, the oxidation / reduction potential was increased due to the oxidation action of Fe 3+ and the reduction power was weakened. In addition, the ingot of the steel wire rod was corroded by the oxidizing action of Fe 3+ . For this reason, it is anticipated that the number of disconnections during wire drawing will increase significantly. When the Fe 3+ concentration was 1000 mg / L or less, water rust on the steel wire surface could be almost removed, and water rust could be reliably removed at 500 mg / L or less.

水錆除去処理の間の処理液の酸化還元電位の影響を調査した。試料として、線材(材質:S−45C、平均直径:15mm、長さ:10cm)10本を糸で束ねたワークを使用し、表1に示した塩酸を用いた条件により酸処理を施した後、水洗した。有機キレート剤としてエチレンジアミン四酢酸を用い、有機キレート剤濃度を50g/Lとした。pH5.0となるように、水酸化カリウムを添加して調整した。処理液量を500ml、処理液温度を20℃とした。Fe2+濃度が100mg/Lとなるように塩化第一鉄を処理液に添加した。Fe3+濃度は0mg/Lとした。酸化還元電位は、3.3mol/L銀−塩化銀電極を用いて測定し、L−アスコルビン酸ナトリウムの添加及びエアーバブリングにより酸化還元電位の値を調整した。 The influence of the oxidation-reduction potential of the treatment liquid during the water rust removal treatment was investigated. As a sample, a work in which 10 wires (material: S-45C, average diameter: 15 mm, length: 10 cm) are bundled with yarn is used, and acid treatment is performed under the conditions using hydrochloric acid shown in Table 1. , Washed with water. Ethylenediaminetetraacetic acid was used as the organic chelating agent, and the concentration of the organic chelating agent was 50 g / L. It adjusted by adding potassium hydroxide so that it might become pH 5.0. The amount of the treatment liquid was 500 ml, and the treatment liquid temperature was 20 ° C. Ferrous chloride was added to the treatment solution so that the Fe 2+ concentration was 100 mg / L. The Fe 3+ concentration was 0 mg / L. The oxidation-reduction potential was measured using a 3.3 mol / L silver-silver chloride electrode, and the value of the oxidation-reduction potential was adjusted by addition of sodium L-ascorbate and air bubbling.

酸化還元電位が異なる各処理液に鉄鋼線材を120秒浸漬した。浸漬後の鉄鋼線材の外観を目視で観察し、水錆除去の程度を評価した。表5に結果を示す。酸化還元電位(vsSHE)が510mV以下で水錆をほぼ除去でき、460mV以下で確実に除去することができた。   The steel wire was immersed for 120 seconds in each treatment solution having a different oxidation-reduction potential. The appearance of the steel wire after immersion was visually observed to evaluate the degree of water rust removal. Table 5 shows the results. Water rust could be almost removed when the oxidation-reduction potential (vsSHE) was 510 mV or less, and it could be reliably removed at 460 mV or less.

Figure 2009191346
Figure 2009191346

界面活性剤またはグリコール系溶剤を添加した表面処理剤を処理に用いた場合の水錆除去処理後の防錆性能を調査した。試料として、線材(材質:S−45C、平均直径:15mm、長さ:10cm)10本を糸で束ねたワークを使用した。
10wt%塩酸水溶液中に試料を5分間浸漬して酸洗処理を施した後、水道水に2分間浸漬して水洗処理を行った。その後、試料を室温で2分間静置し、試料表面に水錆を発生させた。表6に示す処理液1乃至処理液3に、水錆を発生させた試料を浸漬して水錆除去処理を行い、室温で静置した。
The rust prevention performance after the water rust removal treatment when a surface treatment agent to which a surfactant or glycol solvent was added was used for the treatment was investigated. As a sample, a work in which 10 wires (material: S-45C, average diameter: 15 mm, length: 10 cm) were bundled with a thread was used.
The sample was immersed in a 10 wt% hydrochloric acid aqueous solution for 5 minutes to perform pickling treatment, and then immersed in tap water for 2 minutes to perform water washing treatment. Then, the sample was left still for 2 minutes at room temperature, and water rust was generated on the sample surface. A sample in which water rust was generated was immersed in the treatment liquid 1 to treatment liquid 3 shown in Table 6 to perform a water rust removal treatment, and left at room temperature.

Figure 2009191346
Figure 2009191346

処理液1で水錆除去処理を行った試料は、処理後約5時間で試料表面に酸化スケールの発生が確認された。一方、処理液2(界面活性剤添加)または処理液3(グリコール系溶剤添加)で水錆除去処理を行った試料は、処理後35時間経過しても酸化スケールの発生は確認されなかった。このように、処理液中に界面活性剤またはグリコール系溶剤を添加することで、水錆除去処理後の防錆性能を向上させることができた。   In the sample subjected to the water rust removal treatment with the treatment liquid 1, generation of oxide scale was confirmed on the sample surface about 5 hours after the treatment. On the other hand, in the samples subjected to the water rust removal treatment with the treatment liquid 2 (surfactant addition) or the treatment liquid 3 (glycol solvent addition), generation of oxide scale was not confirmed even after 35 hours from the treatment. Thus, the rust prevention performance after the water rust removal process was able to be improved by adding surfactant or a glycol-type solvent in a process liquid.

<表面皮膜処理工程>
上記の水錆除去工程により水錆を除去した鉄鋼線材表面に、表面皮膜処理剤を用いて表面皮膜を形成する。表面皮膜処理剤は以下の作用を供する。
(1)鉄鋼線材表面に皮膜を形成し、伸線工程時において鉄鋼線材とダイスとの間に潤滑剤を運搬する。同時に、潤滑剤と混合して潤滑性を向上させる。
(2)伸線後の鉄鋼線材表面に適当量残存し、成形加工時の潤滑性を向上させる。
(3)酸洗工程時に線材表面に付着した酸液を中和する。
(4)伸線工程までの間に線材表面の錆(酸化スケール)発生を防止する。
<Surface film treatment process>
A surface film is formed on the surface of the steel wire from which water rust has been removed by the water rust removal process using a surface film treatment agent. The surface film treatment agent provides the following actions.
(1) A film is formed on the surface of the steel wire, and the lubricant is transported between the steel wire and the die during the wire drawing process. At the same time, it is mixed with a lubricant to improve lubricity.
(2) Appropriate amount remains on the surface of the steel wire after drawing to improve the lubricity during forming.
(3) Neutralize the acid solution adhering to the wire surface during the pickling step.
(4) Rust (oxidized scale) generation on the surface of the wire is prevented before the wire drawing process.

一般に、表面皮膜処理剤として、石灰石鹸処理液またはリン酸塩処理液が用いられる。水錆除去工程で説明した成分の表面処理剤を用いて水錆除去処理を行う場合は、石灰石鹸処理液を使用する。リン酸塩処理液を使用した場合、鉄鋼線材表面に残存する有機キレート剤がリン酸処理液に混入する。このため、鉄鋼線材表面にリン酸塩(リン酸亜鉛)皮膜が形成されないなど、表面処理性が阻害される。石灰石鹸処理液を使用した場合は、有機キレート剤が混入することで石鹸石灰の分散性が向上し、その結果表面処理性能が向上するので好ましい。
本実施形態では、濃度5〜15%、温度30〜80℃の石灰石鹸処理液に鉄鋼線材を浸漬し、表面皮膜処理を行う。
In general, a lime soap treatment solution or a phosphate treatment solution is used as the surface film treatment agent. When performing a water rust removal process using the surface treating agent of the component demonstrated in the water rust removal process, a lime soap treatment liquid is used. When the phosphating solution is used, the organic chelating agent remaining on the steel wire surface is mixed into the phosphating solution. For this reason, surface treatment property is inhibited, for example, a phosphate (zinc phosphate) film is not formed on the steel wire surface. When a lime soap treatment liquid is used, the organic chelating agent is mixed, so that the dispersibility of soap lime is improved, and as a result, the surface treatment performance is improved, which is preferable.
In this embodiment, a steel wire is immersed in a lime soap treatment solution having a concentration of 5 to 15% and a temperature of 30 to 80 ° C., and surface coating is performed.

<乾式伸線工程>
表面皮膜を形成した後、伸線加工を行う。乾式伸線で使用される潤滑剤の基本成分は、粉末状の金属石鹸類と無機物質である。一般的な配合割合は、金属石鹸類50〜80%、無機物質20〜50%であり、これに対し数%の添加剤が加えられる。
本実施形態では、上記の表面処理剤及び水錆除去工程により、鉄鋼線材表面の水錆が確実に除去され、水錆除去工程後の酸化スケール発生が抑制されている。そのため、伸線時にダイスへのダメージを小さくダイス寿命を延ばすことができる。また、地金の腐食が少なく伸線時の断線回数を大幅に減少させることができる。
<Dry wire drawing process>
After forming the surface film, wire drawing is performed. The basic components of the lubricant used in dry drawing are powdered metal soaps and inorganic substances. The general blending ratio is 50 to 80% for metal soaps and 20 to 50% for inorganic substances. On the other hand, several percent of additives are added.
In this embodiment, the surface treatment agent and the water rust removal step reliably remove the water rust on the surface of the steel wire, and suppress the generation of oxide scale after the water rust removal step. Therefore, damage to the die can be reduced during wire drawing, and the die life can be extended. Moreover, there is little corrosion of a metal | base metal and the frequency | count of disconnection at the time of wire drawing can be reduced significantly.

本実施形態の表面処理剤を用い、上述の手順にて表面処理を行った鉄鋼線材は、表面が過剰に溶解されずに線材表面の水錆を確実に除去され、水錆除去後の酸化スケールの発生が抑制される。従って、美観に優れた鉄鋼線材となる。また、本実施形態の表面処理剤はリンを含有しないため、本実施形態の水錆除去処理を施した鉄鋼線材には浸リンによる遅れ破壊が発生しない。   The steel wire that has been subjected to the surface treatment in the above-described procedure using the surface treatment agent of the present embodiment, the surface is not excessively dissolved, the water rust on the surface of the wire is reliably removed, and the oxide scale after water rust removal Is suppressed. Therefore, the steel wire rod is excellent in aesthetic appearance. Moreover, since the surface treating agent of this embodiment does not contain phosphorus, the delayed fracture due to immersion phosphorus does not occur in the steel wire material that has been subjected to the water rust removal treatment of this embodiment.

鉄鋼線材(材質:S−45C、平均直径:15mm)の伸線前処理を実施した。1回の線材処理重量を2tとした。   A wire drawing pretreatment of a steel wire (material: S-45C, average diameter: 15 mm) was performed. One wire processing weight was set to 2t.

酸洗浄条件は、10wt%硫酸を使用し、温度60℃、処理時間1200秒、液中の鉄濃度500g/L以下とした。水錆除去は、有機キレート剤としてエチレンジアミン四酢酸を含有する処理液(処理開始時の条件を表7に示す)に鉄鋼線材を60秒間浸漬して行った。水錆除去処理中の有機キレート剤濃度が1g/L未満となるまで、途中有機キレート剤を添加せずに連続使用した。表面皮膜処理条件は、石灰石鹸処理液の濃度を10wt%、温度を60℃とした。   The acid cleaning conditions were 10 wt% sulfuric acid, a temperature of 60 ° C., a treatment time of 1200 seconds, and an iron concentration in the liquid of 500 g / L or less. Water rust removal was performed by immersing the steel wire in a treatment solution containing ethylenediaminetetraacetic acid as an organic chelating agent (conditions at the start of treatment are shown in Table 7) for 60 seconds. Until the organic chelating agent concentration during the water rust removal treatment was less than 1 g / L, the organic chelating agent was continuously used without being added. The surface film treatment conditions were such that the concentration of the lime soap treatment solution was 10 wt% and the temperature was 60 ° C.

Figure 2009191346
Figure 2009191346

図7に、処理開始からの水錆除去処理液中の全鉄濃度(Fe2+濃度+Fe3+濃度)と有機キレート剤濃度との関係を示す。同図において、横軸が全鉄濃度、縦軸が有機キレート剤濃度である。図8に、水錆除去処理液中の全鉄濃度と線材処理量との関係を示す。同図において、横軸が線材処理量、縦軸が全鉄濃度である。処理によって有機キレート剤濃度が減少し、それに伴い鉄濃度が増加した。処理開始時の有機キレート剤濃度が58mg/Lの場合、鉄鋼線材処理量2090t(全鉄濃度2080ppm)まで処理液を使用することが出来た。 FIG. 7 shows the relationship between the total iron concentration (Fe 2+ concentration + Fe 3+ concentration) and the organic chelating agent concentration in the water rust removal treatment liquid from the start of the treatment. In the figure, the horizontal axis represents the total iron concentration and the vertical axis represents the organic chelating agent concentration. In FIG. 8, the relationship between the total iron density | concentration in a water rust removal processing liquid and a wire processing amount is shown. In the figure, the horizontal axis represents the amount of wire rod treated and the vertical axis represents the total iron concentration. Treatment reduced the organic chelating agent concentration and increased the iron concentration accordingly. When the concentration of the organic chelating agent at the start of the treatment was 58 mg / L, the treatment liquid could be used up to a steel wire treatment amount of 2090 t (total iron concentration of 2080 ppm).

水錆除去後、表面皮膜処理及び乾式伸線処理を行った鉄鋼線材の外観は、水錆による着色が発生せず、美観に優れる。一方、水錆除去処理を行なわずに伸線処理した線材は、表面に残留する水錆により着色した。   After the removal of water rust, the appearance of the steel wire material that has been subjected to the surface film treatment and the dry wire drawing treatment is excellent in appearance without coloring due to water rust. On the other hand, the wire that was drawn without performing the water rust removal treatment was colored by water rust remaining on the surface.

pH4.0の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH 4.0, and process time. pH4.5の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH4.5, and process time. pH5.0の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH5.0, and process time. pH8.0の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH 8.0, and process time. pH8.5の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH8.5, and process time. pH9.0の処理液を用いて水錆除去を行った場合の処理液温度と処理時間との関係を表すグラフである。It is a graph showing the relationship between the process liquid temperature at the time of performing water rust removal using the process liquid of pH 9.0, and process time. 処理開始からの処理液中の全鉄濃度と有機キレート剤濃度との関係を表すグラフである。It is a graph showing the relationship between the total iron density | concentration in the process liquid after a process start, and an organic chelating agent density | concentration. 処理液中の全鉄濃度と線材処理量との関係を表すグラフである。It is a graph showing the relationship between the total iron concentration in a process liquid, and a wire processing amount.

Claims (10)

アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有し、前記有機キレート剤の濃度が1g/L以上300g/L以下であり、pHが4.0以上9.0以下に調整された水溶液からなる表面処理剤。   One or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylic acid salts are contained, the concentration of the organic chelating agent is 1 g / L or more and 300 g / L or less, and the pH is 4.0 or more and 9.0. A surface treatment agent comprising an aqueous solution prepared as follows. 前記水溶液が、界面活性剤またはグリコール系溶剤を含有する請求項1に記載の表面処理剤。   The surface treatment agent according to claim 1, wherein the aqueous solution contains a surfactant or a glycol solvent. アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有する水溶液からなる表面処理剤に対してFe2+を添加した処理液に、炭素鋼を浸漬する工程と、
前記処理液のpHと、前記処理液中の前記有機キレート剤の濃度と、前記処理液中のFe2+の濃度と、前記処理液中のFe3+濃度と、前記処理液の酸化還元電位とを調整する工程とを有する表面処理方法。
A step of immersing carbon steel in a treatment liquid in which Fe 2+ is added to a surface treatment agent comprising an aqueous solution containing one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates;
The pH of the treatment liquid, the concentration of the organic chelating agent in the treatment liquid, the concentration of Fe 2+ in the treatment liquid, the Fe 3+ concentration in the treatment liquid, and the oxidation-reduction potential of the treatment liquid. And a step of adjusting the surface.
前記処理液のpHを、4.0以上9.0以下の範囲に調整する請求項3に記載の表面処理方法。   The surface treatment method according to claim 3, wherein the pH of the treatment liquid is adjusted to a range of 4.0 or more and 9.0 or less. 前記有機キレート剤の濃度を、1g/L以上300g/L以下の範囲に調整する請求項3に記載の表面処理方法。   The surface treatment method of Claim 3 which adjusts the density | concentration of the said organic chelating agent in the range of 1 g / L or more and 300 g / L or less. 前記Fe2+の濃度を、10mg/L以上に調整する請求項3に記載の表面処理方法。 The surface treatment method according to claim 3, wherein the concentration of Fe 2+ is adjusted to 10 mg / L or more. 前記Fe3+の濃度を、1000mg/L以下に調整する請求項3に記載の表面処理方法。 The surface treatment method according to claim 3, wherein the concentration of Fe 3+ is adjusted to 1000 mg / L or less. 前記酸化還元電位を、水素標準電極電位に対して510mV以下に調整する請求項3に記載の表面処理方法。   The surface treatment method according to claim 3, wherein the oxidation-reduction potential is adjusted to 510 mV or less with respect to a hydrogen standard electrode potential. 前記水溶液が、界面活性剤またはグリコール系溶剤を含有する請求項3乃至請求項8のいずれか1項に記載の表面処理方法。   The surface treatment method according to claim 3, wherein the aqueous solution contains a surfactant or a glycol solvent. アミノカルボン酸及びアミノカルボン酸塩から選択される1種類以上の有機キレート剤を含有する水溶液にFe2+を添加した処理液に浸漬され、前記処理液のpHと、前記処理液中の有機キレート剤の濃度と、前記処理液中のFe2+の濃度と、前記処理液中のFe3+濃度と、前記処理液の酸化還元電位とを調整することによって、表面が処理された炭素鋼。 It is immersed in a treatment solution in which Fe 2+ is added to an aqueous solution containing one or more organic chelating agents selected from aminocarboxylic acids and aminocarboxylates, and the pH of the treatment solution and the organic chelating agent in the treatment solution Carbon steel whose surface has been treated by adjusting the concentration of Fe, the concentration of Fe 2+ in the treatment liquid, the Fe 3+ concentration in the treatment liquid, and the oxidation-reduction potential of the treatment liquid.
JP2008036505A 2008-02-18 2008-02-18 Carbon steel surface treatment method and surface treated carbon steel Active JP5101332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036505A JP5101332B2 (en) 2008-02-18 2008-02-18 Carbon steel surface treatment method and surface treated carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036505A JP5101332B2 (en) 2008-02-18 2008-02-18 Carbon steel surface treatment method and surface treated carbon steel

Publications (2)

Publication Number Publication Date
JP2009191346A true JP2009191346A (en) 2009-08-27
JP5101332B2 JP5101332B2 (en) 2012-12-19

Family

ID=41073629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036505A Active JP5101332B2 (en) 2008-02-18 2008-02-18 Carbon steel surface treatment method and surface treated carbon steel

Country Status (1)

Country Link
JP (1) JP5101332B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071111A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Ind Ltd Method and apparatus for washing metallic filter, and washing liquid for metallic filter
CN115305474A (en) * 2022-07-13 2022-11-08 宁波钢铁有限公司 Cleaning method for nondestructively removing protective coating on steel surface and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235490A (en) * 1985-12-24 1987-10-15 Sumitomo Chem Co Ltd Method for dissolving and removing iron oxide
JPH0216388B2 (en) * 1982-08-27 1990-04-17 Dai Ichi Kogyo Seiyaku Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216388B2 (en) * 1982-08-27 1990-04-17 Dai Ichi Kogyo Seiyaku Co Ltd
JPS62235490A (en) * 1985-12-24 1987-10-15 Sumitomo Chem Co Ltd Method for dissolving and removing iron oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071111A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Ind Ltd Method and apparatus for washing metallic filter, and washing liquid for metallic filter
CN115305474A (en) * 2022-07-13 2022-11-08 宁波钢铁有限公司 Cleaning method for nondestructively removing protective coating on steel surface and application
CN115305474B (en) * 2022-07-13 2023-09-26 宁波钢铁有限公司 Cleaning method for nondestructively removing steel surface protective coating and application thereof

Also Published As

Publication number Publication date
JP5101332B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
JP5462804B2 (en) Acidic aqueous solution containing a chelating agent and use of the aqueous solution
JP5179818B2 (en) Metal-containing acidic polishing bath stabilizer
TWI718527B (en) NEAR NEUTRAL pH PICKLE ON MULTI-METALS AND METHOD FOR PICKLING A SURFACE TO REMOVE METALLIC OXIDES THEREON
CN105696001A (en) Rust removing and preventing agent
RU2583500C2 (en) Etching of stainless steel in oxidative electrolytic bath with acid
JP6169479B2 (en) Rust removal / rust prevention agent and removal / rust prevention method
JP2015537124A (en) Polishing and passivating stainless steel surfaces
KR20090119928A (en) Method for removing deposits containing magnetite and copper from containers in industrial and power plants
JP5101332B2 (en) Carbon steel surface treatment method and surface treated carbon steel
CN103898529B (en) Rust-removing method
TW201518548A (en) Method for treating surface of aluminum can
JP2017160484A (en) Agent for removing weldment burnt deposit for electrolytic polishing and electrolytic polishing method
TW201625816A (en) Composition and method for micro etching of copper and copper alloys
JP2015523469A (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JP4669375B2 (en) Steel pickling method and steel pickling solution
KR100936348B1 (en) High corrosion resistance surface treatment solution fostering material of low chromium stainless steel and passcivity treatment method of stainless steel by using the fostering material
KR100805727B1 (en) Agent for inhibiting stain and rust of pickling steel strip
JPH02101174A (en) Treatment with zinc phosphate for cold working
JP7462105B1 (en) Method for inhibiting decomposition of surfactant, method for cleaning aluminum or aluminum alloy, and method for producing aluminum material having cleaned surface
JP5864243B2 (en) Stainless steel surface treatment method
JP2007119803A (en) Method for cleaning inside face of copper tube or copper alloy tube
KR20140121831A (en) Use of nitrogen compounds in the pickling of stainless steel
US6168670B1 (en) Method of pickling articles of copper and metals less noble than copper
JP2012251227A (en) Electropolishing solution for stainless steel and stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250