JP2009191305A - Method for effectively utilizing iron content and zinc content in secondary dust generated from reduction furnace - Google Patents

Method for effectively utilizing iron content and zinc content in secondary dust generated from reduction furnace Download PDF

Info

Publication number
JP2009191305A
JP2009191305A JP2008031680A JP2008031680A JP2009191305A JP 2009191305 A JP2009191305 A JP 2009191305A JP 2008031680 A JP2008031680 A JP 2008031680A JP 2008031680 A JP2008031680 A JP 2008031680A JP 2009191305 A JP2009191305 A JP 2009191305A
Authority
JP
Japan
Prior art keywords
zinc
iron
reduction furnace
content
secondary dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008031680A
Other languages
Japanese (ja)
Other versions
JP4681623B2 (en
Inventor
Kensuke Shimomura
健介 下村
Tomoyuki Kamijo
知幸 上條
Yoshihiro Kamikawa
義弘 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamada Heavy Industries Co Ltd
Original Assignee
Hamada Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamada Heavy Industries Co Ltd filed Critical Hamada Heavy Industries Co Ltd
Priority to JP2008031680A priority Critical patent/JP4681623B2/en
Publication of JP2009191305A publication Critical patent/JP2009191305A/en
Application granted granted Critical
Publication of JP4681623B2 publication Critical patent/JP4681623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for practically recovering a zinc with which in the case of recovering the zinc from secondary dust generated in a reduction furnace for reducing sub-production materials, such as iron and zinc-containing dust, slurry, etc., generated from an iron-making process, a zinc concentration ratio and also, a zinc recovering ratio are raised. <P>SOLUTION: This method is separated into the portion for using a zinc raw material containing much zinc fine particles and the portion for using the iron-making material containing much iron particles, by passing through the following two processes; a first process, in which after turning to slurry having 8-10 pH to the secondary dust generated in the reduction furnace, the fine particles of much zinc content stuck on the large particles of much iron content, are exfoliated under micro state with the treatment method, such as supersonic cleaning; and a second process, in which the portion containing much fine particles of much zinc content and the portion containing much iron particles, generated in the first process, are separated with the means, such as a wetting type magnetic separation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製鉄工程で発生する亜鉛含有のダストおよびスラリー中の鉄分の有効利用方法、とくに、亜鉛含有のダストおよびスラリーを脱亜鉛する還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用に関する。   The present invention relates to a method for effectively utilizing zinc-containing dust generated in an iron-making process and iron in a slurry, and more particularly, effective utilization of iron and zinc in secondary dust generated from a reduction furnace for dezincing zinc-containing dust and slurry. Regarding usage.

製鉄工程で発生する亜鉛含有のダストやスラリー中の鉄分を有効に回収するための還元処理には、回転炉床式還元炉やロータリーキルンなどの還元炉が用いられている。   A reduction furnace such as a rotary hearth type reduction furnace or a rotary kiln is used for the reduction treatment for effectively recovering the zinc-containing dust generated in the iron making process and the iron content in the slurry.

これらの還元炉で、転炉ダストのような酸化亜鉛を含む原料を還元する場合は、排ガス中から亜鉛を多く含むダストが回収される。例えば、ロータリーキルン式の還元炉からは、亜鉛を20〜50質量%、トータル鉄を10〜25質量%含むダストが回収される。また、回転炉床式還元炉では鉄含有物の飛散が少ないため、この還元炉からのダストは亜鉛比率が高く、亜鉛を30〜60質量%、トータル鉄を2〜15質量%含むダストが回収される。   In these reduction furnaces, when a raw material containing zinc oxide such as converter dust is reduced, dust containing a large amount of zinc is recovered from the exhaust gas. For example, dust containing 20 to 50% by mass of zinc and 10 to 25% by mass of total iron is recovered from a rotary kiln type reduction furnace. Further, in the rotary hearth type reducing furnace, since the iron-containing material is less scattered, the dust from the reducing furnace has a high zinc ratio, and the dust containing 30 to 60% by mass of zinc and 2 to 15% by mass of total iron is recovered. Is done.

この亜鉛含有二次ダストからは、金属亜鉛や炭酸亜鉛が製造される。しかし、この亜鉛含有二次ダストは、亜鉛以外の不純物を多く含み、亜鉛濃度が低いことから、亜鉛製品原料や金属亜鉛原料を製造するためのコストが多く掛かるという問題がある。   From this zinc-containing secondary dust, metallic zinc and zinc carbonate are produced. However, since this zinc-containing secondary dust contains a large amount of impurities other than zinc and has a low zinc concentration, there is a problem that costs for producing zinc product raw materials and metal zinc raw materials are high.

この問題解決のために、不純物を除去して亜鉛の純度を高める濃縮方法が特許文献1に開示されている。これは、亜鉛を含む還元性金属酸化物を還元処理する回転炉床式還元炉やロータリーキルンなどの還元炉から発生する亜鉛含有ダストと水とを混合してスラリーとし、次いで、このスラリー中の粉体の粒子径や比重の違いを利用して、ハイドロサイクロンのような湿式分離装置によって亜鉛濃縮粉体のスラリーと亜鉛の少ない粉体のスラリーとに分離する方法である。   In order to solve this problem, Patent Document 1 discloses a concentration method for removing impurities to increase the purity of zinc. This is a mixture of zinc-containing dust generated from a reduction furnace such as a rotary hearth type reduction furnace or rotary kiln that reduces zinc-containing reducing metal oxide and water to form a slurry. This is a method of separating into a zinc-concentrated powder slurry and a zinc-poor powder slurry by a wet separation device such as a hydrocyclone by utilizing the difference in particle diameter and specific gravity of the body.

また、特許文献2には、還元炉から発生する亜鉛含有二次ダストの他の不純物除去、亜鉛濃縮方法の例として、製鉄ダストを還元焼成する際に発生する含亜鉛製鉄二次ダストを水でリパルプして可溶性塩類を溶出せしめた後、湿式磁選を行って磁着物を分離し、次いで該パルプを固液分離して亜鉛を含む非磁性物とハロゲン化合物をそれぞれ回収分離するものである。   Patent Document 2 discloses, as an example of a method for removing impurities and zinc concentration in zinc-containing secondary dust generated from a reduction furnace, zinc-containing secondary dust generated when iron-making dust is reduced and fired with water. After repulping and eluting soluble salts, wet magnetic separation is performed to separate magnetic deposits, and then the pulp is solid-liquid separated to recover and separate zinc-containing nonmagnetic substances and halogen compounds.

また、還元炉から発生する亜鉛含有二次ダストでなく、高炉から発生するダストの亜鉛濃縮あるいは亜鉛除去の方法も多々提案されている。   In addition, many methods have been proposed for concentrating or removing zinc from dust generated from a blast furnace instead of zinc-containing secondary dust generated from a reduction furnace.

例えば、特許文献3には、スラリー状の高炉ガス灰に分散剤を投入し次いで超音波を照射することにより含亜鉛量の高いスラリーと含亜鉛量の低いスラリーに分離せしめる高炉ガス灰の処理方法が開示されている。   For example, Patent Document 3 discloses a blast furnace gas ash treatment method in which a slurry is introduced into a slurry blast furnace gas ash and then irradiated with ultrasonic waves to separate a slurry with a high zinc content and a slurry with a low zinc content. Is disclosed.

また、特許文献4には、スラリー状の高炉ダストに分散剤を加え、次いで超音波を照射して該スラリーに含まれるダスト粒子を分散させたまま負圧利用の湿式サイクロンに導いて亜鉛含有量の高いスラリーと低いスラリーに分離する高炉ダストの処理方法が開示されている。   Further, in Patent Document 4, a dispersant is added to slurry blast furnace dust, and then irradiated with ultrasonic waves, and the dust particles contained in the slurry are dispersed and led to a wet cyclone using negative pressure. A method of treating blast furnace dust that separates into a high slurry and a low slurry is disclosed.

さらに、特許文献5には、ノズルを介して高圧水を容器内へ噴射するとともに、そのノズルからの高圧水に吸引させた空気を噴射水に取り込んで、容器内に水と空気の二流体噴射流を発生させる工程と、容器内のこの二流体噴射流に、スラリー状の高炉ダストを添加して、二流体噴射流の有する攪拌力により、高炉ダストの粒子に付着している亜鉛含有量の高い部分を粒子から剥離させる工程を有する高炉ダストの脱亜鉛方法が開示されている。   Furthermore, in Patent Document 5, high-pressure water is injected into a container through a nozzle, and air sucked into the high-pressure water from the nozzle is taken into the injection water, and water and air are injected into the container in two fluids. A step of generating a flow, and adding the slurry-like blast furnace dust to the two-fluid jet in the container, and by the stirring force of the two-fluid jet, the zinc content adhering to the particles of the blast furnace dust A method for dezincing blast furnace dust having a step of exfoliating a high part from particles is disclosed.

さらに、特許文献6には、ダストを発生する炉の形式を特定せず、亜鉛の回収率を向上させる方法として、例えば、中心軸を横に向け、その中心軸の回りに回転運動すると共に、中心軸に直交する2方向に往復運動する回転ドラム内に、Znが付着したダストを連続的に投入して回転ドラムの中心軸方向に送り、回転ドラムから連続的に排出されるダストを湿式サイクロンにより連続分級処理するダスト処理方法が示されている。   Furthermore, Patent Document 6 does not specify the type of furnace that generates dust, and as a method of improving the recovery rate of zinc, for example, turning the central axis sideways and rotating around the central axis, Into a rotating drum that reciprocates in two directions perpendicular to the central axis, dust with Zn attached is continuously thrown in and sent in the central axis direction of the rotating drum, and the dust continuously discharged from the rotating drum is wet cyclone. Shows a dust treatment method in which continuous classification treatment is performed.

また、特許文献7には、本発明が適用できる炭酸アンモニウム溶解法による炭酸亜鉛製造プロセスが開示されている。   Patent Document 7 discloses a zinc carbonate production process by an ammonium carbonate dissolution method to which the present invention can be applied.

先述の特許文献2には、還元炉から発生する亜鉛含有二次ダストの可溶性塩類を溶出せしめるために水でリパルプすることが示されているが、このようなリパルプの際に亜鉛の溶出ロスを抑えるためpHを調整することが行われる。これは非特許文献1に示されるように、亜鉛が両性金属ゆえpHが9〜10程度で水溶液への溶出量が最低となるという化学の一般的知見に基づくものである。   In the above-mentioned Patent Document 2, it is shown that water is repulped in order to elute soluble salts of zinc-containing secondary dust generated from a reduction furnace. In order to suppress it, the pH is adjusted. As shown in Non-Patent Document 1, this is based on the general knowledge of chemistry that since zinc is an amphoteric metal, the pH is about 9 to 10 and the amount of elution into the aqueous solution is minimized.

さらに、非特許文献2には、特許文献1などで使用されるハイドロサイクロンの設計50%分級粒径d50* [単位マイクロメーター]を計算する方法が示されている。
特開2005−21841 特開昭55−104434 特開昭52−002807 特開昭53−081479 特開平10−317018 特開平5−132724 特許第737379号 公害防止技術と法規編集委員会編集、「新公害防止の技術と法規[水質編]2006」、(社)日本産業環境管理協会発行 化学工学協会;化学工学便覧第4版、昭和39年、丸善
Further, Non-Patent Document 2 shows a method of calculating the design 50% classified particle diameter d 50 * [unit micrometer] of the hydrocyclone used in Patent Document 1 and the like.
JP-A-2005-21841 JP-A-55-104434 JP 52-002807 JP-A-53-081479 JP 10-317018 A JP-A-5-132724 Patent No. 737379 Edited by Pollution Prevention Technology and Regulations Editorial Committee, “New Pollution Prevention Technology and Regulations [Water Quality] 2006”, published by Japan Industrial Environment Management Association Chemical Engineering Association; Chemical Engineering Handbook 4th Edition, 1964, Maruzen

ところが、前記特許文献1に記載の還元炉から発生する二次ダストから亜鉛を回収する方法は、(ドライ状態での亜鉛回収スラリー中のZn質量%/ドライ状態での処理前スラリーのZn質量%)によって示される亜鉛濃縮率は1.3〜1.9倍とされている。しかしながら、二次ダスト中に含有される亜鉛総量中どれだけの亜鉛を分離回収できたを示す亜鉛回収率は示されていない。出願人は、この特許文献1と同様の方法で追試を行ったところ、亜鉛回収率は60%前後であった。この亜鉛回収率は、特許文献3,特許文献4,特許文献5に記載の高炉ダストからの亜鉛回収方法による亜鉛回収率の実績値70〜90%に比して低い。   However, the method of recovering zinc from the secondary dust generated from the reduction furnace described in Patent Document 1 is (Zn mass% in the zinc recovery slurry in the dry state / Zn mass% of the slurry before treatment in the dry state). ), The zinc concentration rate is 1.3 to 1.9 times. However, the zinc recovery rate indicating how much zinc can be separated and recovered from the total amount of zinc contained in the secondary dust is not shown. The applicant conducted a supplementary test in the same manner as in Patent Document 1, and the zinc recovery rate was around 60%. This zinc recovery rate is lower than the actual value of 70 to 90% of the zinc recovery rate by the zinc recovery method from blast furnace dust described in Patent Literature 3, Patent Literature 4 and Patent Literature 5.

このように、亜鉛回収率が低いと、鉄分の多い残留物を再度還元炉に利用した場合に装入亜鉛総量が増え、その結果、還元炉の主製品である還元鉄の亜鉛含有値が高くなって高炉での使用の際、持ち込まれる亜鉛総量が増加することになる。その結果、還元鉄の亜鉛値レベルを抑えるためには、残留物全量を還元炉へ使用できず鉄源が有効利用できず、また、得られた還元鉄を高炉で使用する際、その使用量に制限を受けることになる。   Thus, when the zinc recovery rate is low, the total amount of charged zinc increases when the iron-rich residue is used again in the reduction furnace. As a result, the zinc content of the reduced iron, which is the main product of the reduction furnace, is high. In the case of use in a blast furnace, the total amount of zinc brought in increases. As a result, in order to reduce the zinc level of reduced iron, the entire residue cannot be used in the reduction furnace, the iron source cannot be used effectively, and when the obtained reduced iron is used in the blast furnace, the amount used Will be subject to restrictions.

また、特許文献2においても、その実施例の記載によると亜鉛回収率は63%と、通常の高炉ダストの亜鉛回収方法であるZn回収率70〜90%に比べると低い。   Also in Patent Document 2, according to the description of the examples, the zinc recovery rate is 63%, which is lower than the Zn recovery rate of 70 to 90% which is a normal zinc recovery method for blast furnace dust.

さらに、特許文献6の場合のように、高炉ダストに限定されないZn付着ダスト全般に関して亜鉛と鉄との分離技術も幾つか提案されているが、20〜60%のような高Zn含有値で、かつ塩類成分が10〜20%も付着した還元炉ダストの脱亜鉛に実質的に適用されるような技術は知られていない。   Furthermore, as in the case of Patent Document 6, several techniques for separating zinc and iron have been proposed for Zn-attached dust in general not limited to blast furnace dust, but with a high Zn content value such as 20 to 60%, In addition, there is no known technique that can be substantially applied to the dezincification of reducing furnace dust having a salt component adhering to 10 to 20%.

本願発明の課題は、製鉄工程で発生する鉄および亜鉛含有のダスト、スラジ等の副生成物を還元する還元炉において発生した亜鉛含有量および塩類含有量が高い二次ダストから亜鉛を回収するに当たって、亜鉛濃縮率とともに亜鉛回収率を上げることができる実用的な亜鉛回収方法を提供することにある。   The object of the present invention is to recover zinc from secondary dust having a high zinc content and salt content generated in a reduction furnace that reduces by-products such as iron and zinc-containing dust and sludge generated in the iron making process. Another object of the present invention is to provide a practical zinc recovery method capable of increasing the zinc recovery rate together with the zinc concentration rate.

本発明は、製鉄工程で発生する鉄および亜鉛含有の副生物を還元する還元炉において発生する亜鉛含有二次ダストの亜鉛回収率の向上をダストのミクロな構造解析に基づいて完成したものである。   The present invention has been completed on the basis of microstructural analysis of dust to improve zinc recovery of zinc-containing secondary dust generated in a reduction furnace that reduces iron and zinc-containing by-products generated in the iron making process. .

図1は、還元炉において発生するいわゆる還元炉二次ダストのSEM写真である。   FIG. 1 is an SEM photograph of so-called reducing furnace secondary dust generated in a reducing furnace.

図2は、SEM写真、定量分析結果等から、模式的に示す還元炉二次ダストのミクロ構造を示す。同図に示すように、還元炉二次ダストのミクロ構造は、金属元素としてFe分を主体とする数μないし数十μの大きさを持つベース粒子の上に、1μ以下の非常に微細なZn分を主体とする非溶解の粒子が付着しており、さらに、表面にはカリウム、カルシウム、ナトリウム、塩素などの塩類が付着している構造である。   FIG. 2 schematically shows the microstructure of the reduction furnace secondary dust schematically shown from SEM photographs, quantitative analysis results, and the like. As shown in the figure, the microstructure of the reducing furnace secondary dust has a very fine structure of 1 μm or less on base particles having a size of several μ to several tens μ mainly composed of Fe as a metal element. The structure is such that non-dissolved particles mainly composed of Zn are adhered, and further, salts such as potassium, calcium, sodium, and chlorine are adhered to the surface.

表1は、この様な還元炉二次ダストのミクロ構造と、高炉ダストのミクロ構造との比較を示す。同表に示すように高炉ダストと還元炉ダストの組成、大きさなどが大幅に異なる。すなわち、還元炉の二次ダストは高炉ダストに比して、亜鉛微粒子の付着量がはるかに多く、その付着粒子の大きさも、1μ以下と非常に微細である。   Table 1 shows a comparison between the microstructure of the reducing furnace secondary dust and the microstructure of the blast furnace dust. As shown in the table, the composition and size of blast furnace dust and reducing furnace dust are significantly different. That is, the secondary dust of the reducing furnace has a much larger amount of zinc fine particles attached than the blast furnace dust, and the size of the attached particles is very fine, 1 μm or less.

また、表2は、還元炉の二次ダストの分析例を示す。同表に示すように、亜鉛微粒子と共にカリウム、カルシウム、ナトリウム、塩素などの塩類成分が合計10〜20%程度も含有されているが、それらの大半は、図2の模式図に示すように、亜鉛微粒子とともに表面に付着しており、ベース粒子からの微細なZn分を主体とする粒子を剥離することが高炉ダストに比べてより難しい。   Table 2 shows an analysis example of secondary dust in the reduction furnace. As shown in the table, salt components such as potassium, calcium, sodium and chlorine are contained together with zinc fine particles in a total amount of about 10 to 20%, most of which are as shown in the schematic diagram of FIG. It adheres to the surface together with the zinc fine particles, and it is more difficult to separate particles mainly composed of fine Zn from the base particles than blast furnace dust.

また、その後のFeを主体とする粒子を集めた部分とZnを主体とする粒子を集めた部分をマクロに分離することも、Znを主体とする粒子が非常に微細であるだけより難しいという問題がある。   In addition, it is also difficult to separate the portion where the particles mainly composed of Fe and the portion where particles mainly composed of Zn are collected into macro, because the particles mainly composed of Zn are very fine. There is.

本発明に係る還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法に係る基本的な方法は、製鉄工程から発生する鉄および亜鉛含有の副生物を還元する還元炉で発生した二次ダストを、液体に懸濁したスラリーとした上で、亜鉛含有量の多い微粒子を鉄含有量の多い大きな粒子からミクロ状で剥離する第一の工程と、その亜鉛微粒子を多く含む部分と鉄粒子を多く含む部分をマクロ状で分離する第二の工程と、分離された亜鉛微粒子を多く含む部分を亜鉛原料として利用し、または、分離された鉄粒子を多く含む部分を製鉄原料として利用する第三の工程の三工程を順次行うことである。   The basic method relating to the effective utilization method of the iron and zinc contents of the secondary dust generated from the reduction furnace according to the present invention is the two methods generated in the reduction furnace that reduces iron and zinc-containing by-products generated from the iron making process. The first dust is made into a slurry suspended in a liquid, and the first step of microscopically peeling fine particles having a high zinc content from large particles having a high iron content, a portion containing the zinc fine particles and iron The second step of separating the portion containing a large amount of particles in a macro form and the portion containing a large amount of separated zinc fine particles as a raw material for zinc, or the portion containing a large amount of separated iron particles as a raw material for iron making The third step is to sequentially perform the three steps.

本発明において、「ミクロ状で剥離する」および「マクロ状で分離する」とは、それぞれ以下の事項を意味する。   In the present invention, “separate in a micro state” and “separate in a macro state” mean the following matters, respectively.

すなわち、「ミクロ状で剥離する」とは、還元炉で発生した二次ダストは、前述のとおりの図2に示すミクロ構造を有しており、このミクロ構造において、金属元素としてFe分を主体とするベース粒子から、非常に微細なZn分を主体とする粒子を、かかるミクロ状態の構造で物理的に剥離することである。この亜鉛微粒子の鉄粒子集合体からのミクロ状態の剥離は、ミクロ状態での剥離が実質的に行えればどんな方法でも良いが、撹拌翼などを用いた機械的な強撹拌、分散剤を併用しての撹拌洗浄、超音波洗浄などによって行う。   That is, “microscopic peeling” means that the secondary dust generated in the reduction furnace has the microstructure shown in FIG. 2 as described above, and in this microstructure, the main component is Fe content as a metal element. From the base particles, the particles mainly composed of very fine Zn are physically peeled off in such a micro-structure. The zinc fine particles can be removed from the aggregate of iron particles in a micro state by any method as long as the micro state can be substantially peeled off. However, mechanical strong stirring using a stirring blade or the like and a dispersing agent are used in combination. It is performed by stirring and ultrasonic cleaning.

また、「マクロ状で分離する」とは、「ミクロ状で剥離」されたZn分を主体とする粒子の集合体とFe分を主体とするベース粒子の集合体をマクロ状態で物理的に分離することである。本発明において、このマクロ状に分離する手段としては、湿式磁選法、ハイドロサイクロン法、浮遊選鉱、その他の分離法が適用できる。   In addition, “separate in a macro form” means that an aggregate of particles mainly composed of Zn separated from a micro part and a base particle composed mainly of Fe are physically separated in a macro state. It is to be. In the present invention, a wet magnetic separation method, a hydrocyclone method, a flotation method, and other separation methods can be applied as the means for separating in a macro form.

実質的なミクロ状の剥離状況、すなわち、亜鉛含有量の多い微粒子を鉄含有量の多い大きな粒子からのミクロ状の剥離の結果の確認とその評価は、前述のSEM等による直接観察のみならず、粒度分布調査による評価や、第二工程のマクロ状の分離結果からの逆評価でも可能である。実質的に評価できる方法なら何でも良い。   Confirmation and evaluation of the microscopic delamination status, that is, microscopic delamination of fine particles with high zinc content from large particles with high iron content, as well as direct observation by SEM etc. Evaluation by particle size distribution investigation and reverse evaluation from the macroscopic separation result in the second step are also possible. Any method that can be substantially evaluated can be used.

本発明によって以下の効果を奏する。   The present invention has the following effects.

還元炉二次ダストからの亜鉛回収総量が増加することにより、亜鉛の有効活用量が増え、資源の有効活用とコスト削減に寄与する。   Increasing the total amount of zinc recovered from the reduction furnace secondary dust increases the effective use of zinc, contributing to effective use of resources and cost reduction.

従来の方法よりZn回収率が向上することにより亜鉛回収後の残留鉄分側の亜鉛含有量が減少する結果、高炉への持込亜鉛総量の制約のある下でも残留鉄分の再利用が容易になり、同様に、資源の有効活用とコスト削減が得られる。   As a result of the improvement of the Zn recovery rate compared to the conventional method, the zinc content on the residual iron content side after zinc recovery is reduced. As a result, the residual iron content can be easily reused even under restrictions on the total amount of zinc brought into the blast furnace. Similarly, effective utilization of resources and cost reduction can be obtained.

本発明に基づいて、還元炉からの二次ダストの最初の処理は、還元炉から発生する二次ダストを淡水またはpH調整水に懸濁してpHを8以上10以下に調整しスラリーとした上で、第一の工程と第二の工程の処理を行う。その際に前記pHを維持するために必要であれば、ソーダ灰や水酸化ナトリウムなどのアルカリ性薬剤の添加も行う。スラリー化の際の配合割合は、液重量100に対してダスト重量3〜35程度であり、好ましくは、液重量100に対してダスト重量が5〜15の範囲である。これらの配合比を外れても処理できない訳ではないが、ダスト重量が少ない側、すなわち、希釈側は、装置が大きくなり設備費が高くなる。ダスト重量が多い側、すなわち、濃厚側は塩類の洗浄効率や超音波照射効率が低下し、スラリーの均一化や移送などのハンドリングが難しくなる。また磁選の際にマクロな分離の効率が低下する。   Based on the present invention, the initial treatment of the secondary dust from the reduction furnace is performed by suspending the secondary dust generated from the reduction furnace in fresh water or pH-adjusted water and adjusting the pH to 8 to 10 to obtain a slurry. Thus, the first process and the second process are performed. At that time, if necessary to maintain the pH, an alkaline agent such as soda ash or sodium hydroxide is also added. The mixing ratio at the time of slurrying is about 3 to 35 dust weights with respect to the liquid weight 100, and preferably the dust weight is within the range of 5 to 15 with respect to the liquid weight 100. Even if these blending ratios are deviated, it cannot be treated, but on the side where the dust weight is small, that is, the dilution side, the apparatus becomes large and the equipment cost becomes high. On the side where the dust is heavy, that is, on the thick side, the salt washing efficiency and the ultrasonic irradiation efficiency are lowered, and handling such as uniformizing and transferring the slurry becomes difficult. In addition, the efficiency of macro separation is reduced during magnetic separation.

本発明の第1の工程である図2に示す鉄粒子集合体からのミクロ状態の亜鉛微粒子の剥離において、機械的な強撹拌手段として、撹拌エネルギー密度12w/mで撹拌しながら2時間洗浄した場合の、多数のベース粒子についてのSEMの観察結果を表3に示す。この表3から、単なるスラリー化のみの場合に較べて、強撹拌の場合の微粒子の剥離が進んでいることがわかる。 In the exfoliation of the microscopic zinc fine particles from the iron particle aggregate shown in FIG. 2, which is the first step of the present invention, as a mechanical strong stirring means, washing is performed for 2 hours while stirring at a stirring energy density of 12 w / m 3. Table 3 shows SEM observation results for a large number of base particles. From Table 3, it can be seen that the separation of the fine particles in the case of strong stirring is progressing as compared with the case of mere slurrying.

また、同じく鉄粒子集合体からのミクロ状態の亜鉛微粒子の剥離にスラリーに超音波を照射する手段は、効率および効果、しいては処理コストの面から最も好適である。具体的にはダストを液に投入してスラリー化して、さらに十分に撹拌して懸濁させた状態で、超音波を照射する。   Similarly, the means for irradiating the slurry with ultrasonic waves for peeling the microscopic zinc fine particles from the iron particle aggregate is most preferable from the viewpoints of efficiency and effect, and the processing cost. Specifically, dust is put into a liquid to form a slurry, and further, ultrasonic waves are irradiated in a state of being sufficiently stirred and suspended.

とくに、超音波の周波数は160KHz以下が好適である。下限側は特に規定しないが、通常市販されている超音波発信機や発信子の下限側が20ないし25KHz程度であるから、実質的にはこれ以上となる。160KHzまでは大きな差異がない。ただし、750KHzでは効果が著しく低下する。したがって、160KHzまでなら好適な結果が得られる範囲といえる。   In particular, the frequency of the ultrasonic wave is preferably 160 KHz or less. Although the lower limit side is not particularly defined, since the lower limit side of the ultrasonic transmitters and transmitters that are usually marketed is about 20 to 25 KHz, it is substantially higher than this. There is no significant difference up to 160 KHz. However, the effect is significantly reduced at 750 KHz. Therefore, it can be said that a preferable result can be obtained up to 160 KHz.

超音波洗浄の処理時間は0.5分から10分程度が好適であり、1.6分から10分程度がより好適な範囲である。短すぎると剥離が不十分であり、特に0.5分より短くすると急激に効果が減少する。10分程度までは効果が向上するが、10分を越えて長い処理をしても効果が殆ど向上せず、工業的な価値がない。   The treatment time for ultrasonic cleaning is preferably about 0.5 to 10 minutes, and more preferably about 1.6 to 10 minutes. If it is too short, peeling will be insufficient, and if it is shorter than 0.5 minutes, the effect will be drastically reduced. The effect is improved up to about 10 minutes, but the effect is hardly improved even if the treatment is performed longer than 10 minutes, and there is no industrial value.

この超音波洗浄の際にヘキサメタリン酸ナトリウムなどの分散剤を併用することは、使用しない場合との有意差が認められず、コストを掛けて使用する必要はない。逆に有機系の分散剤は、亜鉛微粒子を多く含む部分を塩基性炭酸亜鉛の原料とする場合には、その塩基性炭酸亜鉛の用途によっては僅かに残留した有機物成分が問題となる場合もあるので、使用しないことが好ましい。  The use of a dispersing agent such as sodium hexametaphosphate in combination with this ultrasonic cleaning does not require a significant difference from the case where it is not used, and it is not necessary to use it at a high cost. On the other hand, in the case of using an organic dispersant as a raw material for basic zinc carbonate, a portion containing a large amount of fine zinc particles may cause a problem of slightly remaining organic components depending on the use of the basic zinc carbonate. Therefore, it is preferable not to use it.

このように、本発明に係る還元炉の二次ダストの亜鉛剥離に関しては、高炉ダストの処理に好適と言われる超音波処理条件とは異なる条件となる。これは表1に示すように対象となるダスト成分、性状が異なるためである。   Thus, regarding zinc peeling of the secondary dust of the reduction furnace which concerns on this invention, it becomes conditions different from the ultrasonic treatment conditions said to be suitable for the treatment of blast furnace dust. This is because the target dust components and properties are different as shown in Table 1.

第一の剥離工程の超音波処理およびその後のマクロ状の分離濃縮を行う第二の工程でのスラリーのpHを8から10の範囲にすることが、超音波による亜鉛微粒子の剥離あるいは剥離後のマクロ状の亜鉛濃縮に悪影響することがなく、Zn回収率の向上に寄与する。   The pH of the slurry in the second step in which the ultrasonic treatment in the first exfoliation step and the subsequent macroscopic separation and concentration are made to be in the range of 8 to 10 can be achieved after exfoliation or exfoliation of zinc fine particles by ultrasonic waves. It does not adversely affect the macroscopic zinc concentration and contributes to the improvement of the Zn recovery rate.

図3は、各種金属のpHとの関連での水溶液への溶出量を示す。亜鉛は両性金属であるために、pHが9〜10程度で水溶液への溶出量が最低となる。この溶出量が最低となるpH域において、NaやKやClなどの成分を多く含む還元炉ダストに対して、pH調整を、代表的なアルカリであるソーダ灰、水酸化ナトリウムや水酸化カリウムなどで行うと、液中のNaイオンやKイオンが増加し、これによりNaやKの溶解速度は遅くなることが考えられ、それらと共に大きなFe粒子の周りに付着しているZn微粒子を超音波洗浄で剥離する場合には不利な方向となる。   FIG. 3 shows the amount of elution into an aqueous solution in relation to the pH of various metals. Since zinc is an amphoteric metal, the amount of elution into the aqueous solution is minimized at a pH of about 9-10. In the pH range where the amount of elution is the lowest, pH adjustment is performed on reducing furnace dust that contains a large amount of components such as Na, K, and Cl, soda ash, sodium hydroxide, potassium hydroxide, and the like, which are representative alkalis. In this case, Na ions and K ions in the liquid increase, which may slow the dissolution rate of Na and K. Together with them, Zn fine particles adhering around large Fe particles are ultrasonically cleaned. When it peels off, it becomes a disadvantageous direction.

これらの懸念に対し、本願発明者は、後述の実施例のように実際に処理を行った結果、以下のようにミクロ状の剥離およびマクロ状の分離挙動に影響を受けずに溶解ロスを抑えて亜鉛回収率が向上することを発見した。すなわち、pHを9〜10程度の領域に調整したスラリーでも、pH調整を行わないスラリーと比較して、超音波洗浄などによるミクロ状の剥離効果、その結果としての湿式磁選などによるマクロ状の亜鉛分離の効果が影響を受けないことを発見した。   In response to these concerns, the inventor of the present invention, as a result of actual processing as in the examples described later, suppressed the dissolution loss without being affected by the microscopic separation and macroscopic separation behavior as follows. It was discovered that the zinc recovery rate was improved. That is, even in a slurry whose pH is adjusted to a range of about 9 to 10, compared to a slurry in which pH is not adjusted, the microscopic peeling effect by ultrasonic cleaning or the like, and the resulting macroscopic zinc by wet magnetic separation or the like We found that the effect of separation was not affected.

図4は、還元炉二次ダストのスラリーのpH値と液中のZn濃度の関係を示す。同図に示すように、pH調整範囲の下限側は、pHが8以上あればZnの溶解濃度は充分である。還元炉発生二次ダストのスラリーの場合、理論値からは多少値の偏倚はあるがpHが8以上となればスラリー溶液中へのZnの溶解量が10ppmを切り、pH調整をしない場合のpHが7前後でのZn溶解量の100〜1000ppm以上と比較すると溶解ロス量は1/100のオーダーとなる。pHが高い側の10を上回る範囲もなお溶解量が少なくロス防止の観点からは良好ではあるが、pH調整用アルカリ薬剤の使用量が対数的に増加し、経済的に好ましくない。このため、実施上は、pHは10が上限となる。また、経済的な観点からはpH9以下とすることが好ましいが、不純物成分を多量に含む還元炉二次ダストはpH変動が予期しがたく、アルカリ性薬剤によるpH制御が難しいので、pH範囲としては、下限の8から2.0幅程度が最低必要である。   FIG. 4 shows the relationship between the pH value of the reducing furnace secondary dust slurry and the Zn concentration in the liquid. As shown in the figure, if the pH is 8 or more on the lower limit side of the pH adjustment range, the Zn dissolution concentration is sufficient. In the case of a slurry of secondary dust generated in a reducing furnace, there is a slight deviation from the theoretical value, but if the pH is 8 or more, the amount of Zn dissolved in the slurry solution is less than 10 ppm, and the pH when pH adjustment is not performed However, the amount of dissolution loss is on the order of 1/100 when compared with the Zn dissolution amount of 100 to 1000 ppm or more at around 7. The range over 10 on the high pH side is still good in terms of the amount of dissolution and prevention of loss, but the amount of the pH-adjusting alkaline agent increases logarithmically and is not economically preferable. For this reason, in practice, the upper limit of the pH is 10. From an economical point of view, the pH is preferably 9 or less. However, the reducing furnace secondary dust containing a large amount of impurity components is unlikely to change in pH and is difficult to control with an alkaline agent. The lower limit of about 8 to 2.0 width is the minimum required.

本発明において、第二の工程である亜鉛微粒子を多く含む部分と鉄粒子を多く含む部分をマクロ状に分離する手段としての湿式の磁力選別の適用は、簡易で確実な分離効果、すなわち、亜鉛濃縮効果が得られることから、最も、好適な方法の一つである。また、スラリーを充分に撹拌して懸濁した状態での磁力選別の適用は、使用する磁選機械の形式や種類による磁着部の面積に応じた磁選時間の確保を前提とする限り、湿式磁力選別条件や磁力選別機の型式には特に制約がない。その実施に際しては、強磁場である必要でなく、0.1〜0.2テスラ程度あれば十分である。   In the present invention, the application of wet magnetic separation as a means for separating the portion containing a large amount of zinc fine particles and the portion containing a large amount of iron particles in the second step into a macro form is a simple and reliable separation effect, that is, zinc Since a concentration effect is obtained, this is one of the most preferable methods. In addition, the application of magnetic separation in a state where the slurry is sufficiently stirred and suspended is a wet magnetic force as long as it is premised on securing the magnetic separation time according to the area of the magnetized part depending on the type and type of the magnetic separation machine used. There are no particular restrictions on the sorting conditions and the magnetic sorter type. In the implementation, it is not necessary to use a strong magnetic field, and about 0.1 to 0.2 Tesla is sufficient.

ハイドロサイクロンも、また同様に第二の工程として好適なマクロ状の分離方法である。ハイドロサイクロンによる亜鉛と鉄の分離は、超音波処理などのミクロ状の剥離処理を行った後に行うと、前述のスラリーのミクロ状の剥離なしでハイドロサイクロン分離に供するに比較して良好な分離結果が得られる。使用するハイドロサイクロンとしては、とくに負圧利用のハイドロサイクロンや、磁場を有するハイドロサイクロンを使用する必要はなく、上下の排出側が大気開放されている通常のハイドロサイクロンで十分である。   Hydrocyclone is also a suitable macro-type separation method as the second step. Separation of zinc and iron by hydrocyclone is better after separation after micro-peeling treatment such as ultrasonic treatment, compared to the case where the slurry is subjected to hydrocyclone separation without micro-peeling. Is obtained. As the hydrocyclone to be used, it is not particularly necessary to use a hydrocyclone utilizing negative pressure or a hydrocyclone having a magnetic field, and a normal hydrocyclone whose upper and lower discharge sides are open to the atmosphere is sufficient.

しかしながら、還元炉二次ダストから剥離された亜鉛粒子の粒度を考慮すると、下記の1式で算出された50%分級粒径d50* [マイクロメーター]を10マイクロ以下に設計したハイドロサイクロンを使用することがより好ましい。 However, in consideration of the particle size of the zinc particles peeled from the secondary dust of the reduction furnace, a hydrocyclone designed to have a 50% classified particle size d 50 * [micrometer] calculated by the following formula of 10 μm or less is used. More preferably.

また、本発明を適用する還元炉の型式は、炉内で脱亜鉛現象が発生する還元炉であれば、回転炉床式還元炉、ロータリーキルン式還元炉、その他の形式の炉でも構わない。しかし、回転炉床式還元炉では炉内での鉄からの脱亜鉛率が80〜97%と高く、その結果その二次ダスト中の亜鉛含有量も高いので、資源有効活用の観点から効果を奏する。つまりは、本発明を適用する還元炉の形式としては回転炉床式還元炉が好適である。   Further, the type of the reduction furnace to which the present invention is applied may be a rotary hearth type reduction furnace, a rotary kiln type reduction furnace, or other types of furnaces as long as the dezincification phenomenon occurs in the furnace. However, in the rotary hearth type reduction furnace, the dezincification rate from iron in the furnace is as high as 80 to 97%, and as a result, the zinc content in the secondary dust is also high. Play. In other words, a rotary hearth type reduction furnace is suitable as a form of the reduction furnace to which the present invention is applied.

本発明において、第一と第二の工程を経て、亜鉛微粒子を多く含む部分を、例えば、特許第737379号に記載されているような炭酸亜鉛製造プロセスの原料として用いると、同一の製品生産能力でもその製造設備の規模が小さくなる。これは原料Zn濃度が大幅に高くなることで洗浄、溶解、精製などに用いる反応装置の大きさを小さくできることによる。また精製により除去されたFe分など残渣量が減ることにより、その製造コストが低減する。言い換えれば、亜鉛微粒子を多く含む部分を亜鉛原料として利用する方法として、炭酸アンモニウム溶解法によってZn含有原料から高純度の炭酸亜鉛を晶出する高純度炭酸亜鉛を製造する方法を用いることが本願発明の効果をより活用する方法である。   In the present invention, when a portion containing a large amount of zinc fine particles is used as a raw material for a zinc carbonate production process as described in, for example, Japanese Patent No. 737379 after the first and second steps, the same product production capacity However, the scale of the manufacturing facility is reduced. This is because the size of the reaction apparatus used for cleaning, dissolution, purification, etc. can be reduced by significantly increasing the raw material Zn concentration. Further, the production cost is reduced by reducing the amount of residues such as Fe removed by purification. In other words, the present invention uses a method for producing high-purity zinc carbonate that crystallizes high-purity zinc carbonate from a Zn-containing raw material by an ammonium carbonate dissolution method as a method for using a portion containing a large amount of zinc fine particles as a zinc raw material. It is a way to make better use of the effects of.

ただし、本発明の第二の工程後の亜鉛微粒子を多く含む部分の亜鉛源としての有効利用は、必ずしも炭酸亜鉛製造プロセスに制限されることなく、非鉄製錬メーカーに於ける再生亜鉛地金製造の原料などいかなる方法でも構わない。   However, the effective use as a zinc source of the portion containing a large amount of zinc fine particles after the second step of the present invention is not necessarily limited to the zinc carbonate production process, and the production of recycled zinc ingots in non-ferrous smelting manufacturers Any method such as raw material may be used.

また、本発明の前記第二の工程後、得られる鉄粒子を多く含む部分の有効利用法としては、製鉄プロセスの何れかの工程、例えば乾燥後に高炉や転炉に直接戻すことでも構わないが、まだ、亜鉛が多少とも残留していることから、脱亜鉛機能の大きな還元炉にリサイクルして使用することが製鉄プロセス全体から見て好適である。   Further, after the second step of the present invention, as an effective utilization method of the portion containing a large amount of iron particles obtained, any step of the iron making process, for example, may be directly returned to the blast furnace or converter after drying. However, since some zinc still remains, it is preferable to recycle and use it in a reduction furnace having a large dezincing function from the whole iron making process.

以下、実施例に基づいて本願発明のより具体的な態様を説明する。   Hereinafter, more specific modes of the present invention will be described based on examples.

図5は、実施例1に係る処理フローを示す。同図において、本発明に基づく処理のためのダストはこの二次ダストをスラリー化し、亜鉛微粒子を鉄粒子集合体からミクロ状に剥離する第一の工程を超音波洗浄処理で行った後、得られたミクロ状に剥離の進んだスラリーを、亜鉛粒子を多く含む部分と鉄粒子を多く含む部分を分離するためのマクロ状の分離を行うため湿式磁選を行った。   FIG. 5 illustrates a processing flow according to the first embodiment. In the figure, the dust for the treatment according to the present invention is obtained after the secondary dust is slurried and the first step of exfoliating the zinc fine particles from the iron particle aggregate in a micro shape is performed by ultrasonic cleaning treatment. Wet magnetic separation was performed on the resulting slurry, which was peeled microscopically, in order to perform macroscopic separation for separating a portion containing a large amount of zinc particles and a portion containing a large amount of iron particles.

表4には実施例1および比較例に用いたダストの組成および実施条件を示す。ダストは表4に記した鉄、亜鉛の組成の4種類のダストを使用した。何れも、製鉄プロセスから発生するダスト・スラッジを還元鉄とし製鉄プロセスに戻すために回転炉床式還元炉で処理する際に乾式集塵機で捕捉された二次ダストである。   Table 4 shows the composition and working conditions of the dust used in Example 1 and the Comparative Example. As the dust, four types of dust having the composition of iron and zinc shown in Table 4 were used. Both are secondary dusts captured by a dry dust collector when treated in a rotary hearth type reducing furnace in order to convert dust sludge generated from the iron making process into reduced iron and return it to the iron making process.

これらのダストをpH調整水でスラリー化した後、何れのダストも第一の工程として超音波処理を行う水準と、比較のため超音波処理を行わない水準の両方を行った。超音波洗浄を行った水準は、処理時間は全て10分間の条件とし、周波数は表4に示すよう28KHzから750KHzの5水準とした。   After these dusts were slurried with pH-adjusted water, both dusts were subjected to both the level of ultrasonic treatment as the first step and the level of no ultrasonic treatment for comparison. As for the level at which ultrasonic cleaning was performed, the treatment time was set to 10 minutes, and the frequency was set to 5 levels from 28 KHz to 750 KHz as shown in Table 4.

第二の工程は、全て湿式磁力選別は電磁石を用いたフィルタータイプの湿式磁選装置を用いて行った。表4に示すように、0.3テスラ程度の強磁力と0.1テスラ程度の弱磁力の、磁力は2水準を設けた。   In the second step, all wet magnetic separation was performed using a filter type wet magnetic separation apparatus using an electromagnet. As shown in Table 4, two levels of magnetic force, a strong magnetic force of about 0.3 Tesla and a weak magnetic force of about 0.1 Tesla, were provided.

磁選後の磁着側および非磁着側(残留側)をそれぞれ脱水、乾燥を行い、その後に分析を行った。   The magnetized side and the non-magnetized side (residual side) after magnetic separation were dehydrated and dried, respectively, and then analyzed.

図6と図7は、超音波洗浄の有無の両方のケースでの湿式磁選後のZnとFeのそれぞれの濃縮率を示す。図6は非磁着側のZn濃縮率(亜鉛回収側スラリーのZn質量%(ドライ)/処理前スラリーのZn質量%(ドライ))を、また、図7は磁着側のFe濃縮率(鉄回収側スラリーのFe質量%(ドライ)/処理前スラリーのFe質量%(ドライ))を示す。   6 and 7 show the respective enrichment rates of Zn and Fe after wet magnetic separation in both cases with and without ultrasonic cleaning. 6 shows the Zn concentration ratio on the non-magnetization side (Zn mass% of the zinc recovery side slurry (dry) / Zn mass% of the slurry before treatment (dry)), and FIG. It shows Fe mass% (dry) of the iron recovery side slurry / Fe mass% (dry) of the slurry before treatment.

さらに、図8は、非磁着側のZn回収率(亜鉛回収側スラリー含有のZn質量(ドライ)/処理前スラリー含有のZn質量(ドライ))を示す。非磁着側のZn濃縮率は、超音波洗浄の有無によってあまり変化しなかったが、非磁着側のZn回収率は超音波洗浄を行うことにより大幅に改善され、ダスト組成によっては80〜90%以上の量比率で亜鉛回収ができた。また超音波洗浄により鉄分の含有量の少ないダストでは磁着側の鉄分の濃縮率が大きく改善された。すなわち、鉄源として再度還元炉に使用するために好ましい結果が得られたことが分かる。   Further, FIG. 8 shows the non-magnetization-side Zn recovery rate (Zn recovery-side slurry-containing Zn mass (dry) / pre-treatment slurry-containing Zn mass (dry)). The Zn concentration rate on the non-magnetization side did not change much depending on the presence or absence of ultrasonic cleaning, but the Zn recovery rate on the non-magnetization side was greatly improved by performing ultrasonic cleaning, depending on the dust composition. Zinc could be recovered at an amount ratio of 90% or more. In addition, the ultrasonic cleaning greatly improved the concentration of iron on the magnetized side in dusts with low iron content. That is, it can be seen that preferable results were obtained for use again in the reduction furnace as an iron source.

図6〜図8に示すように、超音波洗浄処理条件において、周波数750KHzの水準のみが超音波洗浄の効果が認められなかったのに対し、160KHz以下の周波数で洗浄したものは何れも効果が認められた。   As shown in FIGS. 6 to 8, in the ultrasonic cleaning treatment conditions, only the level of the frequency of 750 KHz did not show the effect of the ultrasonic cleaning, whereas those cleaned at a frequency of 160 KHz or less are all effective. Admitted.

また超音波照射を行えば、磁力の強弱に係わらず、ともに良好な亜鉛〜鉄分離成績が得られた。即ち第一工程のミクロ状の剥離が良好に行われていれば、第二工程の湿式磁選は0.1テスラ程度の磁力で十分と判断される。   Moreover, when the ultrasonic irradiation was performed, good zinc-iron separation results were obtained regardless of the strength of the magnetic force. That is, if the microscopic peeling in the first step is performed well, it is judged that the wet magnetic separation in the second step is sufficient with a magnetic force of about 0.1 Tesla.

処理フローは実施例1の場合と同じある。pH調整実施のケースでは、ダストを懸濁する際にpHを測定しながら水酸化ナトリウム水溶液添加を行うことによりpH8〜10に調整を行った。   The processing flow is the same as in the first embodiment. In the case of pH adjustment, the pH was adjusted to 8 to 10 by adding an aqueous sodium hydroxide solution while measuring the pH when suspending the dust.

pH調整有無双方とも、表5に記載の周波数で超音波処理を行い、その後に湿式磁選を行った。磁選の方式および磁力の強度は実施例1と同様である。   Both with and without pH adjustment were subjected to ultrasonic treatment at the frequencies shown in Table 5, followed by wet magnetic separation. The magnetic separation method and the strength of the magnetic force are the same as in the first embodiment.

図9および図10は、表5に示す超音波処理・湿式磁選後の非磁着側回収物のZnとFe含有量、および磁着側の回収物のZnとFe含有量を、pH調整有無の比較でそれぞれ示している。また、図11は、非磁着側の亜鉛回収率のpH調整有無の比較を示す図である。   FIG. 9 and FIG. 10 show whether the pH and the Zn and Fe contents of the non-magnetization-side collected material after ultrasonic treatment / wet magnetic separation shown in Table 5 and the Zn and Fe contents of the magnetized-side collected material are adjusted for pH. It shows by comparison of each. Moreover, FIG. 11 is a figure which shows the comparison of the presence or absence of pH adjustment of the zinc recovery rate by the side of non-magnetization.

図9および図10から、磁選後の非磁着側および磁着側のZnあるいはFeの成分値(ドライ状態の質量%)は、それぞれのダストでpH調整有無による実験・分析誤差以上の有意な差異はないと判断された。カリウム、カルシウム、ナトリウムや塩素などの溶解挙動が淡水とpH8〜10のアルカリ水とで異なり、その結果、超音波洗浄による亜鉛微粒子のミクロ剥離挙動が異なるという懸念された現象はなかった。また、図11に示すように、磁選の非磁着側への亜鉛回収率は2〜5%向上して、pH調整を行うほうが好ましい効果が得られた。また実施例1の結果と同様に、磁選の磁力の強弱による差はないと判断された。   From FIG. 9 and FIG. 10, the component values (mass% in dry state) of the non-magnetized side and the magnetized side after magnetic separation are significantly more than the experimental / analysis error due to the presence or absence of pH adjustment in each dust. It was judged that there was no difference. There was no feared phenomenon that the dissolution behavior of potassium, calcium, sodium, chlorine, etc. was different between fresh water and alkaline water of pH 8-10, and as a result, the micro-peeling behavior of zinc fine particles by ultrasonic cleaning was different. Moreover, as shown in FIG. 11, the zinc recovery rate to the non-magnetization side of magnetic separation was improved by 2 to 5%, and it was more preferable to adjust the pH. Further, similar to the result of Example 1, it was determined that there was no difference due to the strength of the magnetic separation.

図12に示すように、超音波洗浄によるミクロな剥離後のマクロな亜鉛分離濃縮方法としてハイドロサイクロンを用いた例を示す。   As shown in FIG. 12, an example is shown in which a hydrocyclone is used as a macro zinc separation / concentration method after micro separation by ultrasonic cleaning.

15%Zn−30%Fe組成の還元炉二次ダストを、44KHzの超音波を照射した場合と、照射しない場合の両方でハイドロサイクロンでの分離を行った。用いたハイドロサイクロンは、特許文献1と同様に負圧を利用しない通常タイプのサイクロンである。ハイドロサイクロンでは、上排出側に亜鉛を多く含む小粒度の部分が排出され、鉄分を多く含む比較的粒径の大きな部分が下側に排出された。図13に上排出側亜鉛濃縮率を、また、図14に上排出側の亜鉛回収率を示す。同図に示すように、何れも超音波照射実施のほうが好ましい値が得られた。これによって、超音波照射によるミクロな亜鉛微粒子剥離の場合は、第二工程のマクロ状の亜鉛濃縮法がハイドロサイクロンによる場合でも効果あることが判明した。   The reduction furnace secondary dust having a composition of 15% Zn-30% Fe was separated by hydrocyclone both when irradiated with ultrasonic waves of 44 KHz and when not irradiated. The hydrocyclone used is a normal type cyclone that does not use negative pressure as in Patent Document 1. In the hydrocyclone, a small particle size portion containing a large amount of zinc was discharged on the upper discharge side, and a relatively large particle size portion containing a large amount of iron was discharged on the lower side. FIG. 13 shows the upper discharge side zinc concentration rate, and FIG. 14 shows the upper discharge side zinc recovery rate. As shown in the figure, the preferred values were obtained when the ultrasonic irradiation was performed. As a result, in the case of micro zinc fine particle peeling by ultrasonic irradiation, it has been found that the macro zinc concentration method in the second step is effective even when hydrocyclone is used.

表6は、従来法、比較法および本発明法のそれぞれで5日間分操業した還元炉製品として、還元ペレットのZn値の比較を示す。還元炉は回転炉床式の還元炉である。   Table 6 shows a comparison of Zn values of the reduced pellets as reducing furnace products operated for 5 days in each of the conventional method, the comparative method, and the present invention method. The reduction furnace is a rotary hearth type reduction furnace.

原料および還元ペレットのサンプリングおよび分析は一日3回のシフト毎に1回実施した。   Sampling and analysis of raw materials and reduced pellets were performed once every three shifts per day.

従来法とは、図15に示す処理フローによるものであって、還元炉二次ダストの鉄分を有効利用せず、二次ダストを外部に委託処理するものである。当然ながら、二次ダストを全くリサイクルしていないので、還元炉製品のZn値は低い結果が得られた。Zn値の管理上限0.15%は1シフトも超えることはできなかった。   The conventional method is based on the processing flow shown in FIG. 15, and does not effectively use the iron content of the reducing furnace secondary dust, but outsources the secondary dust to the outside. Of course, since the secondary dust was not recycled at all, the Zn value of the reduction furnace product was low. The control upper limit of 0.15% for the Zn value could not exceed 1 shift.

比較法とは、特許文献1に記載の方法で亜鉛分離を行ったもので、下側排出物を還元炉にリサイクルする方法であり、図16にその処理フローを示す。前述のようにハイドロサイクロンだけの処理では亜鉛回収率が低いため、還元炉にリサイクルされる鉄分と共に亜鉛も多く再装入された結果、還元ペレットのZn値が高くなり、5日間の15シフト中の7シフトで管理上限0.15%を超えた。その結果各シフトの還元ペレットは高炉での使用時に配合制限を行わざるを得なかった。   The comparative method is a method in which zinc is separated by the method described in Patent Document 1, and the lower emission is recycled to the reduction furnace. FIG. 16 shows the processing flow. As mentioned above, the treatment with only hydrocyclone has a low zinc recovery rate. As a result, a large amount of zinc was recharged together with the iron that was recycled to the reduction furnace. The upper management limit of 0.15% was exceeded in 7 shifts. As a result, the reduction pellets of each shift had to be compounded when used in a blast furnace.

本発明の実施例は、図17に示す処理フローに基づくものである。二次ダストをスラリー化後、超音波洗浄を行い湿式磁選機で分離した磁着物質を還元炉に再装入を行った。スラリー濃度は12%で、周波数28KHzの超音波で洗浄を行い、ドラム式の湿式磁選機でマクロな分離を行った。   The embodiment of the present invention is based on the processing flow shown in FIG. After the secondary dust was slurried, the magnetized material separated by a wet magnetic separator after ultrasonic cleaning was recharged in a reduction furnace. The slurry concentration was 12%, washing was performed with ultrasonic waves having a frequency of 28 KHz, and macro separation was performed with a drum-type wet magnetic separator.

従来法よりは、還元ペレットの亜鉛値は高くなったが、1シフトも管理上限0.15%を超えることはなかった。   Although the zinc value of the reduced pellets was higher than that of the conventional method, even one shift did not exceed the control upper limit of 0.15%.

比較例の上排出側物質または本発明による非磁着側物質は、前記特許文献7に開示された炭酸アンモニウム溶解法による炭酸亜鉛製造プロセスの原料とした。 何れも二次ダストを無処理で直接原料として使用するのに比べて、炭酸亜鉛製造時の精製残渣の発生量が少ない結果が得られた。その中でも本発明法の方が、より残渣発生原単位が少なかった。   The upper discharge side substance or the non-magnetization side substance according to the present invention in the comparative example was used as a raw material for the zinc carbonate production process by the ammonium carbonate dissolution method disclosed in Patent Document 7. In either case, the amount of purified residue generated during the production of zinc carbonate was less than when secondary dust was used directly as a raw material without any treatment. Among them, the method of the present invention had less residue generation unit.

還元炉二次ダストのSEM(Scanning Electron Microscope)観察結果を示す写真である。It is a photograph which shows the SEM (Scanning Electron Microscope) observation result of a reduction furnace secondary dust. SEM観察結果による還元炉ダストの構造を示す模式図である。It is a schematic diagram which shows the structure of the reduction furnace dust by a SEM observation result. 金属イオンの溶解度とpHの関係を示すグラフの一例である。It is an example of the graph which shows the solubility of metal ion, and pH. 還元炉二次ダストのスラリーのpH値と液中Zn濃度の実績値を示すグラフである。It is a graph which shows the actual value of pH value of slurry of a reduction furnace secondary dust, and Zn concentration in liquid. 実施例1および実施例2の処理フローを示す図である。It is a figure which shows the processing flow of Example 1 and Example 2. FIG. 実施例1の非磁着側のZn濃縮率を示すグラフである。4 is a graph showing the Zn concentration ratio on the non-magnetically adhered side of Example 1. 実施例1の磁着側のFe濃縮率を示すグラフである。3 is a graph showing the Fe concentration ratio on the magnetic adhesion side of Example 1. 実施例1の非磁着側のZn回収率を示すグラフである。2 is a graph showing the Zn recovery rate on the non-magnetization side of Example 1. 実施例2の超音波処理・磁選後の非磁着側成分のpH調整有無による比較を示すグラフである。It is a graph which shows the comparison by the presence or absence of pH adjustment of the non-magnetization side component after the ultrasonic treatment of Example 2, and magnetic selection. 実施例2の超音波処理・磁選後の磁着側成分のpH調整有無による比較を示すグラフである。It is a graph which shows the comparison by the presence or absence of pH adjustment of the adhesion side component after the ultrasonic treatment and magnetic separation of Example 2. 実施例2の超音波処理・磁選後の非磁着側Zn回収率のpH調整有無による結果比較を示すグラフである。It is a graph which shows the result comparison by the presence or absence of pH adjustment of the non-magnetization side Zn collection | recovery rate after the ultrasonic treatment of Example 2, and magnetic selection. 実施例3の処理フローを示す図である。FIG. 10 is a diagram illustrating a processing flow of Example 3. 実施例3のサイクロン上排出側のZn濃縮率を示すグラフである。It is a graph which shows the Zn concentration rate by the side of discharge on the cyclone of Example 3. 実施例3のサイクロン上排出側のZn回収率を示すグラフである。It is a graph which shows the Zn recovery rate of the discharge side on a cyclone of Example 3. 実施例4に対する従来法の処理フローを示す図である。It is a figure which shows the processing flow of the conventional method with respect to Example 4. FIG. 実施例4の比較法の処理フローを示す図である。FIG. 10 is a diagram showing a processing flow of a comparison method of Example 4. 実施例4の本発明法の処理フローを示す図である。It is a figure which shows the processing flow of this invention method of Example 4. FIG.

Claims (9)

製鉄工程から発生する鉄および亜鉛含有の副生物を還元する還元炉から発生した二次ダストを、液体に懸濁したスラリーとした上で亜鉛含有量の多い微粒子を鉄含有量の多い大きな粒子からミクロ状に剥離する第一の工程と、その亜鉛微粒子を多く含む部分と鉄粒子を多く含む部分をマクロ状に分離する第二の工程と、分離された亜鉛微粒子を多く含む部分を亜鉛原料として利用する第三の工程の三工程を順次行う還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   Secondary dust generated from a reduction furnace that reduces iron and zinc-containing by-products generated from the iron making process is made into a slurry suspended in a liquid, and fine particles with high zinc content are converted from large particles with high iron content. The first step of peeling microscopically, the second step of separating the portion containing a large amount of zinc fine particles and the portion containing a large amount of iron particles into a macro shape, and the portion containing a large amount of separated zinc fine particles as a zinc raw material Effective utilization method of iron content and zinc content of secondary dust generated from a reduction furnace that sequentially performs three steps of the third step to be used. 製鉄工程から発生する鉄および亜鉛含有の副生物を還元する還元炉から発生した二次ダストを、液体に懸濁したスラリーとした上で亜鉛含有量の多い微粒子を鉄含有量の多い大きな粒子からミクロ状に剥離する第一の工程と、その亜鉛微粒子を多く含む部分と鉄粒子を多く含む部分をマクロ状に分離する第二の工程と、分離された鉄粒子を多く含む部分を製鉄原料として利用する第三の工程の三工程を順次行う還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   Secondary dust generated from a reduction furnace that reduces iron and zinc-containing by-products generated from the iron making process is made into a slurry suspended in a liquid, and fine particles with high zinc content are converted from large particles with high iron content. The first step of peeling microscopically, the second step of separating the portion containing a large amount of zinc fine particles and the portion containing a large amount of iron particles into a macro shape, and the portion containing a large amount of separated iron particles as an iron production raw material Effective utilization method of iron content and zinc content of secondary dust generated from a reduction furnace that sequentially performs three steps of the third step to be used. 第一の工程において、液体に懸濁したスラリーとした上で亜鉛含有量の多い微粒子を鉄含有量の多い大きな粒子からミクロ状に剥離する手段が、撹拌翼などを用いた機械的な強撹拌、分散剤を併用しての撹拌洗浄、超音波洗浄の何れかである請求項1または請求項2に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   In the first step, the slurry is suspended in a liquid and the means for separating microparticles with a high zinc content from microparticles with a high iron content in a microscopic form is mechanically stirred using a stirring blade. The method for effectively using the iron and zinc contents of the secondary dust generated from the reduction furnace according to claim 1, wherein the washing is agitated washing using a dispersant and ultrasonic washing together. 超音波洗浄において照射する超音波の周波数が160KHz以下である請求項3に記載の鉄および亜鉛含有の製鉄工程副産物の有効活用方法。   The effective use method of the iron and zinc-containing iron-making process by-product of Claim 3 whose frequency of the ultrasonic wave irradiated in ultrasonic cleaning is 160 KHz or less. 第二の工程において、亜鉛微粒子を多く含む部分と鉄粒子を多く含む部分をマクロ状に分離する手段が、湿式磁選法、ハイドロサイクロン法、浮遊選鉱の何れかである請求項1または請求項2に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   3. The method according to claim 1 or 2, wherein in the second step, the means for separating the portion containing a large amount of zinc fine particles and the portion containing a large amount of iron particles into a macro shape is any one of a wet magnetic separation method, a hydrocyclone method, and a flotation process. Effective utilization method of iron content and zinc content of secondary dust generated from the reduction furnace described in 1. 第一の工程および第二の工程におけるスラリーのpH範囲が、8以上10以下である請求項1または請求項2に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   The method for effectively utilizing the iron and zinc contents of the secondary dust generated from the reduction furnace according to claim 1 or 2, wherein the pH range of the slurry in the first step and the second step is 8 or more and 10 or less. 還元炉が、回転炉床式還元炉である請求項1から請求項6に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   The method for effectively utilizing the iron and zinc contents of secondary dust generated from the reduction furnace according to claim 1, wherein the reduction furnace is a rotary hearth type reduction furnace. 分離された亜鉛微粒子を多く含む部分を亜鉛原料として利用する第三の工程が、炭酸アンモニウム溶解法によってZn含有原料から高純度の炭酸亜鉛を晶出する高純度炭酸亜鉛を製造する方法である請求項1に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   The third step of using a portion containing a large amount of separated zinc fine particles as a zinc raw material is a method for producing high-purity zinc carbonate that crystallizes high-purity zinc carbonate from a Zn-containing raw material by an ammonium carbonate dissolution method Item 2. An effective utilization method of iron and zinc in secondary dust generated from the reduction furnace according to item 1. 分離された鉄粒子を多く含む部分の利用方法が、還元炉に装入することにより鉄分を製鉄原料として再度有効利用する方法である請求項2に記載の還元炉から発生する二次ダストの鉄分および亜鉛分の有効利用方法。   The method of using a portion containing a large amount of separated iron particles is a method of effectively reusing iron as a raw material for iron making by charging the iron into a reduction furnace, and the iron content of secondary dust generated from the reduction furnace according to claim 2. And effective use of zinc content.
JP2008031680A 2008-02-13 2008-02-13 Effective utilization of iron and zinc in secondary dust generated from a reduction furnace Active JP4681623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031680A JP4681623B2 (en) 2008-02-13 2008-02-13 Effective utilization of iron and zinc in secondary dust generated from a reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031680A JP4681623B2 (en) 2008-02-13 2008-02-13 Effective utilization of iron and zinc in secondary dust generated from a reduction furnace

Publications (2)

Publication Number Publication Date
JP2009191305A true JP2009191305A (en) 2009-08-27
JP4681623B2 JP4681623B2 (en) 2011-05-11

Family

ID=41073592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031680A Active JP4681623B2 (en) 2008-02-13 2008-02-13 Effective utilization of iron and zinc in secondary dust generated from a reduction furnace

Country Status (1)

Country Link
JP (1) JP4681623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038129A (en) * 2009-08-06 2011-02-24 Hamada Heavy Industries Ltd Method for reutilizing product in iron-manufacturing process
CN110684903A (en) * 2019-11-07 2020-01-14 郑州大学 Method for enhancing dissolution of valuable metals in oil-contaminated cylinder liner honing waste based on electronic motion
CN110747308A (en) * 2019-11-18 2020-02-04 武汉科技大学 Converter LT zinc-containing dust online treatment system and treatment method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592387A (en) * 2019-10-29 2019-12-20 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc from high-zinc gas mud

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104434A (en) * 1979-02-06 1980-08-09 Dowa Mining Co Ltd Treating method for iron manufacturing dust containing zinc
JP2005021841A (en) * 2003-07-04 2005-01-27 Hamada Heavy Industries Ltd Processing method of zinc-containing dust, and producing method of zinc carbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104434A (en) * 1979-02-06 1980-08-09 Dowa Mining Co Ltd Treating method for iron manufacturing dust containing zinc
JP2005021841A (en) * 2003-07-04 2005-01-27 Hamada Heavy Industries Ltd Processing method of zinc-containing dust, and producing method of zinc carbonate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038129A (en) * 2009-08-06 2011-02-24 Hamada Heavy Industries Ltd Method for reutilizing product in iron-manufacturing process
CN110684903A (en) * 2019-11-07 2020-01-14 郑州大学 Method for enhancing dissolution of valuable metals in oil-contaminated cylinder liner honing waste based on electronic motion
CN110747308A (en) * 2019-11-18 2020-02-04 武汉科技大学 Converter LT zinc-containing dust online treatment system and treatment method thereof
CN110747308B (en) * 2019-11-18 2023-10-13 武汉科技大学 Online treatment system and method for zinc-containing dust in converter LT

Also Published As

Publication number Publication date
JP4681623B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
Zhan et al. Recovery of active cathode materials from lithium-ion batteries using froth flotation
KR101735425B1 (en) System and method for aluminium black dross recycling
WO2012008032A1 (en) Soil cleaning method
JP5944522B2 (en) Method of separating and recovering iron from waste nonferrous slag discharged from nonferrous metal smelting process
WO2014125558A1 (en) Wet-mode nickel oxide ore smelting method
JP4681623B2 (en) Effective utilization of iron and zinc in secondary dust generated from a reduction furnace
JP2013095971A5 (en)
Ke et al. Sulfidation of heavy-metal-containing metallurgical residue in wet-milling processing
JP2013095971A (en) Hydrometallurgical process of nickel oxide ore
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
WO2015159685A1 (en) Wet-mode nickel oxide ore smelting method
JP2009189964A (en) Wet type magnetic separation method of fine particle mixture
WO2004062023A1 (en) Method of recovering cobalt from lithium ion battery and cobalt recovering system
Ni et al. Selective comminution and grinding mechanisms of spent carbon anode from aluminum electrolysis using ball and rod mills
Wang et al. Study on ultrasonic leaching and recovery of fluoride from spent cathode carbon of aluminum electrolysis
JP5832184B2 (en) Reusing wet dust in blast furnace products
JP5832183B2 (en) Reusing wet dust in blast furnace products
CN1179057C (en) Method for upgrading steel plant dust
JP7268382B2 (en) How to dispose of used lithium-ion batteries
Xue et al. Comprehensive utilization of spent magnesia-chrome refractories with gravity separation followed by flotation
CN110369119A (en) A kind of steel mill&#39;s dust waste iron, carbon, zinc comprehensive recycling process
JP5303786B2 (en) Reuse of generated materials in steelmaking process
JP5303779B2 (en) Effective utilization of iron and zinc in secondary dust generated from a reduction furnace
JP2005246226A (en) Treating method for fly ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Ref document number: 4681623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250