JP2009190467A - Road surface friction coefficient estimating device - Google Patents

Road surface friction coefficient estimating device Download PDF

Info

Publication number
JP2009190467A
JP2009190467A JP2008030729A JP2008030729A JP2009190467A JP 2009190467 A JP2009190467 A JP 2009190467A JP 2008030729 A JP2008030729 A JP 2008030729A JP 2008030729 A JP2008030729 A JP 2008030729A JP 2009190467 A JP2009190467 A JP 2009190467A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
surface friction
rear wheel
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030729A
Other languages
Japanese (ja)
Other versions
JP5033009B2 (en
Inventor
Yoshinobu Yamazaki
義暢 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008030729A priority Critical patent/JP5033009B2/en
Publication of JP2009190467A publication Critical patent/JP2009190467A/en
Application granted granted Critical
Publication of JP5033009B2 publication Critical patent/JP5033009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately obtain a highly precise road surface friction coefficient estimation value in a road surface friction coefficient estimation device for estimating a road surface friction coefficient from a relation between a vehicle body deceleration, front and rear wheel slide rate difference and a road surface friction coefficient. <P>SOLUTION: A road surface friction coefficient instantaneous value calculation part 2e sets a road surface friction coefficient instantaneous value μM by referring to a map showing the relation of Gx-ds-μ. When the road surface friction coefficient instantaneous value μM is equal to or more than μMH, and a vehicle body deceleration Gx is equal to or more than GXH, when the road surface friction coefficient instantaneous value μM is equal to or more than μMM, and the vehicle body deceleration Gx is equal to or more than GXM, or when the road surface friction coefficient instantaneous value μM is equal to or more than μML, and the vehicle body deceleration Gx is equal to or more than GXL, a road surface friction coefficient setting part 2g updates this time road surface friction coefficient μn with a road surface friction coefficient instantaneous value μM. When the body speed V is equal to or less than the vehicle speed threshold, when an absolute value ¾θH¾ of a steering angle is equal to or more than a steering threshold, when the acceleration opening θACC is equal to or more than the threshold, and when the vehicle body deceleration Gx is equal to or more than the threshold, the road surface friction coefficient setting part 2g outputs the value of the previous road surface friction coefficient. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車体減速度と前後輪すべり率差と路面摩擦係数の関係を基に、精度良く路面摩擦係数を推定する路面摩擦係数推定装置に関する。   The present invention relates to a road surface friction coefficient estimating device that accurately estimates a road surface friction coefficient based on a relationship among a vehicle body deceleration, a front and rear wheel slip ratio difference, and a road surface friction coefficient.

近年、車両においてはトラクション制御,制動力制御,あるいはトルク配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御パラメータの演算、あるいは、補正に路面摩擦係数を用いるものも多く、その制御を適切に実行するためには、正確な路面摩擦係数を推定する必要がある。   In recent years, various control techniques for traction control, braking force control, torque distribution control, and the like have been proposed and put into practical use in vehicles. Many of these techniques use a road surface friction coefficient for calculation or correction of necessary control parameters, and in order to appropriately execute the control, it is necessary to estimate an accurate road surface friction coefficient.

例えば、特開2003−237558号公報では、4輪の平均車輪速度を車体速度として求め、この車体速度を微分して車両の前後加速度として演算し、主ブレーキ制動時に動力配分制御装置の油圧多板クラッチの締結を解放方向にさせ、後輪の車輪速度と前輪の車輪速度の差を前輪の車輪速度で除してすべり速度差変数(前後輪すべり率差)を演算し、車両の前後加速度、すべり速度差変数を基に、予め設定しておいたマップを基に路面状態を推定する技術が開示されている。
特開2003−237558号公報
For example, in Japanese Patent Application Laid-Open No. 2003-237558, the average wheel speed of four wheels is obtained as a vehicle body speed, the vehicle body speed is differentiated and calculated as the longitudinal acceleration of the vehicle, and the hydraulic multi-plate of the power distribution control device during main brake braking When the clutch is engaged in the release direction, the difference between the wheel speed of the rear wheel and the wheel speed of the front wheel is divided by the wheel speed of the front wheel to calculate the slip speed difference variable (front / rear wheel slip ratio difference), and the longitudinal acceleration of the vehicle, A technique for estimating a road surface state based on a map set in advance based on a slip speed difference variable is disclosed.
JP 2003-237558 A

しかしながら、上述の特許文献1に開示される技術では、車体減速度と前後輪すべり率差と路面摩擦係数の関係は、例えば、図7に示すようになることが一般的に知られており、前後輪すべり率差の小さな領域では誤差が多くなり精度の良い路面摩擦係数が推定できないという課題がある。すなわち、前後輪すべり率差は、ステアリングの操舵を行うことによっても生じるため、大きく転舵した場合には、その転舵による前後輪のすべり率差も含まれて誤差が大きくなり、精度の良い値が推定できないという問題がある。そして、このような誤差を多く含む路面摩擦係数の値を車両の各種制御に利用すると、安定して適切な制御が行えなくなる虞がある。   However, in the technique disclosed in Patent Document 1 described above, it is generally known that the relationship between the vehicle body deceleration, the difference between the front and rear wheel slip ratios, and the road surface friction coefficient is, for example, as shown in FIG. There is a problem that in a region where the difference between the front and rear wheel slip ratios is small, errors increase and it is impossible to estimate an accurate road friction coefficient. That is, the difference between the front and rear wheel slip ratios is also caused by steering, so when turning a large amount, the difference between the front and rear wheel slip ratios due to the turning is increased, and the error is large, and the accuracy is high. There is a problem that the value cannot be estimated. And if the value of the road surface friction coefficient including many errors is used for various types of vehicle control, there is a risk that stable and appropriate control cannot be performed.

本発明は上記事情に鑑みてなされたもので、車体減速度と前後輪すべり率差と路面摩擦係数の関係から路面摩擦係数を推定する路面摩擦係数推定装置において、精度の良い路面摩擦係数推定値を適切に出力し、安定して適切な車両制御を行えるようにする路面摩擦係数推定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a road surface friction coefficient estimation device that estimates a road surface friction coefficient from the relationship between vehicle body deceleration, front / rear wheel slip ratio difference, and road surface friction coefficient, a highly accurate road surface friction coefficient estimation value is provided. An object of the present invention is to provide a road surface friction coefficient estimating device that appropriately outputs the vehicle and enables stable and appropriate vehicle control.

本発明は、車両が走行している路面の路面摩擦係数を設定する路面摩擦係数設定装置において、ステアリングの操舵角を検出する操舵角検出手段と、車両の車体減速度を検出する車体減速度検出手段と、各車輪の車輪速を検出する車輪速検出手段と、車両の車速を検出する車速検出手段と、上記車輪速と上記車速を基に、前輪のすべり率と後輪のすべり率との差を前後輪すべり率差として検出する前後輪すべり率差検出手段と、車体減速度と前後輪すべり率差と路面摩擦係数の関係を予め記憶しておく記憶手段と、上記車体減速度検出手段で検出した車体減速度と上記前後輪すべり率差検出手段で検出した前後輪すべり率差とに基づいて上記記憶手段から路面摩擦係数を推定する路面摩擦係数設定手段と、上記操舵角が予め設定した閾値以上の場合に上記路面摩擦係数の推定を禁止する禁止手段とを備えたことを特徴としている。   The present invention relates to a road surface friction coefficient setting device for setting a road surface friction coefficient of a road surface on which a vehicle is traveling, steering angle detection means for detecting a steering angle of a steering, and vehicle body deceleration detection for detecting vehicle body deceleration. Means, wheel speed detecting means for detecting the wheel speed of each wheel, vehicle speed detecting means for detecting the vehicle speed of the vehicle, and the slip ratio of the front wheels and the slip ratio of the rear wheels based on the wheel speed and the vehicle speed. Front / rear wheel slip ratio difference detecting means for detecting the difference as a front / rear wheel slip ratio difference, storage means for previously storing the vehicle body deceleration, the front / rear wheel slip ratio difference and the road surface friction coefficient, and the vehicle body deceleration detection means The road surface friction coefficient setting means for estimating the road surface friction coefficient from the storage means based on the vehicle body deceleration detected in step 5 and the front and rear wheel slip ratio difference detection means detected by the front and rear wheel slip ratio difference detection means, and the steering angle is preset. Over the threshold It is characterized in that a prohibition means for prohibiting the estimation of the road surface friction coefficient when.

本発明による路面摩擦係数推定装置によれば、以下の効果を得ることができる。   According to the road surface friction coefficient estimating apparatus according to the present invention, the following effects can be obtained.

(1)禁止手段で操舵角により路面摩擦係数の設定の実行条件を規定することで、前後輪すべり率差の小さな領域で転舵により生じる誤差の影響が排除でき、精度の良い路面摩擦係数の推定を行うことができる。 (1) By defining the execution condition for setting the road surface friction coefficient by the steering angle by the prohibiting means, the influence of errors caused by steering can be eliminated in a region where the difference between the front and rear wheel slip ratios is small. Estimation can be performed.

(2)また、路面摩擦係数設定手段は、路面摩擦係数が高い時とそれより低い時とを判別するための、車体減速度に応じた前後輪すべり率差基準値を有する。そして、禁止手段による操舵角の閾値を、その前後輪すべり率さがステアリング操作(転舵)により発生する操舵角以下に設定する。これにより、路面摩擦係数が高い時は前後輪すべり率差が低くなるため、路面摩擦係数の設定には最低でも路面摩擦係数が高いことを判別するための前後輪すべり率差(前後輪すべり率差基準値)を検出することが要求される。一方、前後輪すべり率差は転舵によっても発生し、特に低速走行時は大きくなることから、操舵角の閾値をこのステアリングの操作により発生する操舵角以下に設定することで、路面摩擦係数が高いことを判定する時に転舵による影響を排除でき、精度の良い路面摩擦係数の推定を行うことができる。 (2) Further, the road surface friction coefficient setting means has a front and rear wheel slip ratio difference reference value according to the vehicle body deceleration for determining when the road surface friction coefficient is high or low. Then, the threshold of the steering angle by the prohibiting means is set to be equal to or less than the steering angle at which the front and rear wheel slip ratio is generated by the steering operation (steering). As a result, when the road surface friction coefficient is high, the difference between the front and rear wheel slip ratios becomes lower. Therefore, the difference between the front and rear wheel slip ratios (the front and rear wheel slip ratios) for determining that the road surface friction coefficient is at least high when setting the road surface friction coefficient. It is required to detect (difference reference value). On the other hand, the difference between the front and rear wheel slip ratios is also generated by turning, and becomes particularly large when driving at low speeds. The effect of turning can be eliminated when determining a high value, and the road surface friction coefficient can be estimated with high accuracy.

このように本発明によれば、車体減速度と前後輪すべり率差と路面摩擦係数の関係から路面摩擦係数を推定する路面摩擦係数推定装置において、精度の良い路面摩擦係数推定値を適切に出力し、安定して適切な車両制御を行うことが可能となる。   As described above, according to the present invention, in the road surface friction coefficient estimating device that estimates the road surface friction coefficient from the relationship between the vehicle body deceleration, the front and rear wheel slip ratio difference, and the road surface friction coefficient, an accurate road surface friction coefficient estimated value is appropriately output. In addition, it is possible to perform stable and appropriate vehicle control.

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図6は本発明の実施の一形態を示し、図1は路面摩擦係数推定装置の構成を示す機能ブロック図、図2は路面摩擦係数推定プログラムのフローチャート、図3は図2から続くフローチャート、図4は車両の旋回を2輪車モデルで示す説明図、図5は前後輪すべり率差とステアリング舵角の関係を示す説明図、図6は車体減速度と前後輪すべり率差と路面摩擦係数の関係を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show an embodiment of the present invention, FIG. 1 is a functional block diagram showing the configuration of a road surface friction coefficient estimating device, FIG. 2 is a flowchart of a road surface friction coefficient estimating program, and FIG. 3 continues from FIG. FIG. 4 is an explanatory diagram showing the turning of the vehicle in a two-wheeled vehicle model, FIG. 5 is an explanatory diagram showing the relationship between the front and rear wheel slip rate difference and the steering rudder angle, and FIG. 6 is the vehicle body deceleration and the front and rear wheel slip rate difference. It is explanatory drawing which shows the relationship of a road surface friction coefficient.

まず、本実施形態にかかる路面摩擦係数推定装置のシステム構成及びシステム処理の説明に先立ち、推定の概念について説明する。この路面推定は、車輪と路面との間のグリップ状態を、すべり率差Sfrに基づいて判定する。ここで、「すべり率差Sfr」とは、以下(1)式のように「前輪のすべり率Sf」と「後輪のすべり率Sr」との差をいう。
Sfr=Sf−Sr…(1)
First, the concept of estimation will be described prior to the description of the system configuration and system processing of the road surface friction coefficient estimation apparatus according to the present embodiment. In this road surface estimation, the grip state between the wheel and the road surface is determined based on the slip rate difference Sfr. Here, the “slip rate difference Sfr” refers to a difference between the “slip rate Sf of the front wheel” and the “slip rate Sr of the rear wheel” as shown in the following equation (1).
Sfr = Sf−Sr (1)

ある車輪に関するすべり率Sは、車輪速度vと車体速度Vbとの差と、車体速度Vbとの比で表され、その値が正となるように定義される。このすべり率Sは、(2)式に示す基本式により一義的に算出される。
S=(v−Vb)/Vb(もしくは、S=(Vb−v)/Vb)…(2)
The slip ratio S related to a certain wheel is expressed as a ratio between the difference between the wheel speed v and the vehicle body speed Vb and the vehicle body speed Vb, and is defined so that the value becomes positive. This slip ratio S is uniquely calculated by the basic formula shown in the formula (2).
S = (v−Vb) / Vb (or S = (Vb−v) / Vb) (2)

左右の前輪、左右の後輪をそれぞれ一つの車輪と見なし、前輪の車輪側をvf、後輪の車輪速をvrと定義した場合、(1)式は(2)式に基づいて、以下に示す(3)式に書き換えることができる。
Sfr=(vf−vr)/Vb…(3)
When the left and right front wheels and the left and right rear wheels are regarded as one wheel, the front wheel side is defined as vf, and the rear wheel speed is defined as vr, equation (1) is based on equation (2) as follows: (3) shown can be rewritten.
Sfr = (vf−vr) / Vb (3)

図1において、符号1は車両に搭載され、路面摩擦係数を推定する路面摩擦係数推定装置を示し、この路面摩擦係数推定装置1には、制御部2に、車輪速検出手段としての4輪の車輪速センサ3、操舵角検出手段としてのハンドル角センサ4、アクセル開度センサ5、ブレーキペダルスイッチ6等のセンサ、スイッチ類が接続され、4輪車輪速ωfl(左前輪車輪速)、ωfr(右前輪車輪速)、ωrl(左後輪車輪速)、ωrr(右後輪車輪速)、ハンドル角(ステアリング舵角)θH、アクセル開度θACC、ブレーキの作動信号が入力される。   In FIG. 1, reference numeral 1 denotes a road surface friction coefficient estimation device that is mounted on a vehicle and estimates a road surface friction coefficient. The road surface friction coefficient estimation device 1 includes a control unit 2 that includes four wheels as wheel speed detection means. A wheel speed sensor 3, a steering wheel angle sensor 4 as a steering angle detecting means, an accelerator opening sensor 5, a brake pedal switch 6 and other sensors and switches are connected to each other, and the four wheel speed ωfl (front left wheel speed), ωfr ( Right front wheel speed), ωrl (left rear wheel speed), ωrr (right rear wheel speed), steering wheel angle (steering angle) θH, accelerator opening θACC, and brake operation signal are input.

また、車両には、駆動輪のスリップ状態またはスリップしそうな状態となった場合に駆動力を低減する公知のトラクションコントロール装置7、制動時における制動力を制御して車輪のロック状態の発生を防止する公知のアンチロックブレーキシステム(ABS;Anti-lock Brake System)8、車両の横すべりの挙動を防止する横滑防止装置9が搭載されており、これらの作動信号も制御部2に入力される。尚、上述の横滑防止装置9は、例えば、実際のヨーモーメントと、車両の運動方程式に基づいて求める目標ヨーモーメントとを比較して、現在の車両の運転状態がアンダーステア傾向の場合には、旋回内側後輪に所定の制動力を付加し、オーバーステア傾向の場合には、旋回外側前輪に所定の制動力を付加することにより車両の横滑りを防止するものとなっている。   In addition, the vehicle has a known traction control device 7 that reduces the driving force when the driving wheel slips or is about to slip, and controls the braking force during braking to prevent the wheel from being locked. A known anti-lock brake system (ABS) 8 and a skid prevention device 9 for preventing the behavior of a side slip of the vehicle are mounted, and these operation signals are also input to the control unit 2. The above-described skid prevention device 9 compares, for example, the actual yaw moment with the target yaw moment obtained based on the equation of motion of the vehicle, and when the current driving state of the vehicle is an understeer tendency, A predetermined braking force is applied to the turning inner rear wheel, and in the case of an oversteer tendency, a predetermined braking force is applied to the turning outer front wheel to prevent the vehicle from slipping.

そして、路面摩擦係数推定装置1の制御部2は、上述の各入力信号に基づき、後述する路面摩擦係数推定プログラムを実行し、路面摩擦係数を設定して出力する(路面摩擦係数設定値μnを出力する)。すなわち、制御部2は、図1に示すように、速度演算部2a、減速度演算部2b、前後輪すべり率差演算実行条件判定部2c、前後輪すべり率差演算部2d、路面摩擦係数瞬間値演算部2e、路面判定実行条件判定部2f、路面摩擦係数設定部2gから主要に構成されている。   Then, the control unit 2 of the road surface friction coefficient estimation device 1 executes a road surface friction coefficient estimation program, which will be described later, based on each input signal described above, and sets and outputs the road surface friction coefficient (the road surface friction coefficient setting value μn is set). Output). That is, as shown in FIG. 1, the control unit 2 includes a speed calculation unit 2a, a deceleration calculation unit 2b, a front and rear wheel slip rate difference calculation execution condition determination unit 2c, a front and rear wheel slip rate difference calculation unit 2d, and a road surface friction coefficient instantaneous It is mainly composed of a value calculation unit 2e, a road surface determination execution condition determination unit 2f, and a road surface friction coefficient setting unit 2g.

速度演算部2aは、4輪車輪速センサ3から各車輪の車輪速ωfl、ωfr、ωrl、ωrrが入力され、以下の(4)式により前輪車輪速Vf、以下の(5)式により後輪車輪速Vrを演算し、この後輪車輪速Vrを擬似車体速Vとして設定する。
Vf=(ωfl+ωfr)/2 …(4)
Vr=V=(ωrl+ωrr)/2 …(5)
The speed calculation unit 2a receives the wheel speeds ωfl, ωfr, ωrl, and ωrr of each wheel from the four-wheel wheel speed sensor 3, and the front wheel speed Vf by the following equation (4) and the rear wheel by the following equation (5). The wheel speed Vr is calculated, and the rear wheel speed Vr is set as the pseudo vehicle speed V.
Vf = (ωfl + ωfr) / 2 (4)
Vr = V = (ωrl + ωrr) / 2 (5)

そして、車体速Vは、減速度演算部2b、前後輪すべり率差演算実行条件判定部2c、前後輪すべり率差演算部2dに出力され、前輪車輪速Vfと後輪車輪速Vrは、前後輪すべり率差演算部2dに出力される。このように、速度演算部2aは、車速検出手段として設けられている。   The vehicle body speed V is output to the deceleration calculation unit 2b, the front and rear wheel slip rate difference calculation execution condition determination unit 2c, and the front and rear wheel slip rate difference calculation unit 2d. The front wheel speed Vf and the rear wheel speed Vr are It is output to the wheel slip rate difference calculation unit 2d. Thus, the speed calculation part 2a is provided as a vehicle speed detection means.

減速度演算部2bは、速度演算部2aから車体速Vが入力され、この車体速Vを微分処理することにより、車体減速度Gxを演算し、前後輪すべり率差演算実行条件判定部2c、路面摩擦係数瞬間値演算部2e、路面判定実行条件判定部2f、路面摩擦係数設定部2gに出力する。このように、減速度演算部2bは、車体減速度検出手段として設けられている。   The deceleration calculation unit 2b receives the vehicle speed V from the speed calculation unit 2a, and performs a differentiation process on the vehicle speed V to calculate the vehicle deceleration Gx, thereby calculating the front / rear wheel slip rate difference calculation execution condition determination unit 2c, The road surface friction coefficient instantaneous value calculation unit 2e, the road surface determination execution condition determination unit 2f, and the road surface friction coefficient setting unit 2g are output. Thus, the deceleration calculation part 2b is provided as a vehicle body deceleration detection means.

前後輪すべり率差演算実行条件判定部2cは、ハンドル角センサ4からステアリング舵角θHが、アクセル開度センサ5からアクセル開度θACCが、速度演算部2aから車体速Vが、減速度演算部2bから車体減速度が入力される。   The front / rear wheel slip ratio difference calculation execution condition determination unit 2c includes a steering angle θH from the steering wheel angle sensor 4, an accelerator opening θACC from the accelerator opening sensor 5, a vehicle speed V from the speed calculation unit 2a, and a deceleration calculation unit. The vehicle body deceleration is input from 2b.

そして、以下の4つの条件の1つでも満足する場合は、前後輪すべり率差演算部2dにおける前後輪すべり率差dsの演算、及び、路面摩擦係数設定部2gにおける車体減速度Gx−前後輪すべり率差ds−路面摩擦係数μの関係を用いた新たな路面摩擦係数μnの推定に適さないと判定する。この判定結果の信号は、前後輪すべり率差演算部2d、路面摩擦係数設定部2gに出力される。
・条件1…V≦Vc(例えば、20km/h)
・条件2…|θH|≧θH1(例えば、60deg)
・条件3…θACC≧θACC1(例えば、0%)
・条件4…Gx≧Gxc1(例えば、4m/s
ここで、上述の各条件について説明する。まず、条件1について説明する。
If any one of the following four conditions is satisfied, the front / rear wheel slip ratio difference calculation unit 2d calculates the front / rear wheel slip ratio difference ds, and the road surface friction coefficient setting unit 2g performs vehicle body deceleration Gx−front / rear wheels. It is determined that it is not suitable for estimation of a new road surface friction coefficient μn using the relationship of slip rate difference ds−road surface friction coefficient μ. This determination result signal is output to the front and rear wheel slip ratio difference calculation unit 2d and the road surface friction coefficient setting unit 2g.
Condition 1… V ≦ Vc (for example, 20 km / h)
Condition 2 ... | θH | ≧ θH1 (for example, 60 deg)
・ Condition 3… θACC ≧ θACC1 (for example, 0%)
Condition 4 ... Gx ≧ Gxc1 (for example, 4 m / s 2 )
Here, each of the above-described conditions will be described. First, condition 1 will be described.

本実施の形態では、路面摩擦係数瞬間値演算部2eにおいて、前後輪すべり率差dsの基準値として、前後輪すべり率差dsが、例えば0.006(0.6%)以下の時を、路面摩擦係数が0.75以上の高μ値と判断している。従って、車輪速情報は、0.006(0.6%)の前後輪すべり率差dsを検出できるだけの精度を有している必要がある。4輪車輪速センサ3により検出される車輪速の分解能が、例えば0.05とすると、次式から、路面判定が可能な最低車速(車速閾値)Vcが求められる。
Vc=0.05/0.006=8.3(km/h) …(6)
In the present embodiment, in the road surface friction coefficient instantaneous value calculation unit 2e, when the front and rear wheel slip ratio difference ds is, for example, 0.006 (0.6%) or less as the reference value of the front and rear wheel slip ratio difference ds, The road surface friction coefficient is determined to be a high μ value of 0.75 or more. Therefore, the wheel speed information needs to have an accuracy sufficient to detect the front / rear wheel slip ratio difference ds of 0.006 (0.6%). If the resolution of the wheel speed detected by the four-wheel wheel speed sensor 3 is, for example, 0.05, the minimum vehicle speed (vehicle speed threshold) Vc that can determine the road surface is obtained from the following equation.
Vc = 0.05 / 0.006 = 8.3 (km / h) (6)

また、路面摩擦係数の推定中(例えば、800msの時間がかかると推定)の車速低下や、その他の誤差等を考慮し、前後輪すべり率差dsの演算、路面摩擦係数μnの推定を行う車速閾値をVc=20km/hと設定する。   In addition, the vehicle speed at which the calculation of the front / rear wheel slip ratio difference ds and the estimation of the road surface friction coefficient μn are performed in consideration of a decrease in the vehicle speed during estimation of the road surface friction coefficient (e.g., estimated to take 800 ms) and other errors. The threshold is set as Vc = 20 km / h.

尚、上述の(6)式からも明らかなように、4輪車輪速センサ3により検出される車輪速の分解能が更に粗くなる場合や、前後輪すべり率差dsの基準値をより小さな値にする場合は、車速閾値Vcは、より大きな値に設定する必要がある。   As is clear from the above equation (6), when the resolution of the wheel speed detected by the four-wheel wheel speed sensor 3 is further roughened, or the reference value of the front-rear wheel slip ratio difference ds is set to a smaller value. In this case, the vehicle speed threshold value Vc needs to be set to a larger value.

次に、条件2について、図4を基に説明する。
前後輪の速度差は操舵を行っても発生する。操舵による前後輪速度比が最も大きくなるのは低速走行時であるから、アッカーマンジオメトリによりロジックが動作可能な舵角範囲を求める。図4において、前輪車輪速Vf=Rf・ω、後輪車輪速Vr=Rr・ωであるから、前後輪すべり率差dsは次式で求められる。
ds=(Vf−Vr)/Vr=(Rf・ω−Rr・ω)/Rr・ω
=(Rf−Rr)/Rr=Rf/Rr−1
=(1/cos(δf))−1 …(7)
ここで、δfは前輪舵角であり、δf=θH/n(nはステアリングギヤ比:例えば16.5)である。この(7)式で得られる特性を、図5に示す。
Next, Condition 2 will be described with reference to FIG.
The speed difference between the front and rear wheels occurs even when steering is performed. Since the front-rear wheel speed ratio due to steering is greatest during low-speed driving, the steering angle range in which the logic can operate is obtained by Ackermann geometry. In FIG. 4, since the front wheel speed Vf = Rf · ω and the rear wheel speed Vr = Rr · ω, the front-rear wheel slip ratio difference ds is obtained by the following equation.
ds = (Vf−Vr) / Vr = (Rf · ω−Rr · ω) / Rr · ω
= (Rf-Rr) / Rr = Rf / Rr-1
= (1 / cos (δf)) − 1 (7)
Here, δf is a front wheel steering angle, and δf = θH / n (n is a steering gear ratio: for example, 16.5). The characteristics obtained by the equation (7) are shown in FIG.

上述の(7)式において、前後輪すべり率差dsが基準値である前述の0.006(0.6%)以下となるステアリング舵角θH2を逆算すると、θH2=105(deg)となる。すなわち、105(deg)程度操舵すると、0.006(0.6%)の閾値を越えることがわかる。外乱等を考慮すると実際の操舵閾値は、更に小さな角度に設定する必要があり、本実施の形態では、ステアリング舵角の絶対値|θH|がθH1=60(deg)よりも大きい場合(前後輪すべり率差dsが0.001(0.1%)に相当する場合)は、前後輪すべり率差dsの演算、路面摩擦係数μnの推定を行わないように設定する。   In the above equation (7), when the steering angle θH2 at which the front / rear wheel slip rate difference ds is equal to or less than the above-described 0.006 (0.6%) is calculated, θH2 = 105 (deg). That is, it can be seen that when the steering is about 105 (deg), the threshold of 0.006 (0.6%) is exceeded. Considering disturbances and the like, the actual steering threshold must be set to a smaller angle. In this embodiment, the absolute value of steering angle | θH | is larger than θH1 = 60 (deg) (front and rear wheels). When the slip ratio difference ds is equivalent to 0.001 (0.1%)), it is set so that the calculation of the front and rear wheel slip ratio difference ds and the estimation of the road surface friction coefficient μn are not performed.

次に、条件3について説明する。
主ブレーキ制動中に駆動力をかけた場合、前後輪すべり率差dsが乱れ、判定不可能となる虞があるため、本実施の形態では、アクセル開度θACCがθACC1(例えば、0%)より大きいときは、前後輪すべり率差dsの演算、路面摩擦係数μnの推定を行わないように設定する。
Next, Condition 3 will be described.
If a driving force is applied during main brake braking, the front-rear wheel slip rate difference ds may be disturbed and may not be determined. In this embodiment, the accelerator opening θACC is greater than θACC1 (for example, 0%). When it is larger, the setting is made so that the calculation of the front / rear wheel slip ratio difference ds and the estimation of the road surface friction coefficient μn are not performed.

次に、条件4について説明する。
車体減速度Gxが大きくなると、車体減速度Gxと前後輪すべり率差dsの関係が非線形となる。また、車体減速度Gxが小さな領域でのみロジックを作動させようとすると、判定精度の低下が懸念される。従って、本実施の形態では、車体減速度GxがGxc1(例えば、4m/s)以上の場合に前後輪すべり率差dsの演算、路面摩擦係数μnの推定を行わないように設定する。
Next, condition 4 will be described.
When the vehicle body deceleration Gx increases, the relationship between the vehicle body deceleration Gx and the front-rear wheel slip ratio difference ds becomes nonlinear. Further, if the logic is operated only in a region where the vehicle body deceleration Gx is small, there is a concern that the determination accuracy may be lowered. Therefore, in the present embodiment, when the vehicle body deceleration Gx is Gxc1 (for example, 4 m / s 2 ) or more, it is set not to calculate the front / rear wheel slip ratio difference ds and to estimate the road surface friction coefficient μn.

このように、前後輪すべり率差演算実行条件判定部2cは、禁止手段として設けられている。   Thus, the front and rear wheel slip ratio difference calculation execution condition determination unit 2c is provided as a prohibiting unit.

前後輪すべり率差演算部2dは、速度演算部2aから車体速V、前輪車輪速Vf、後輪車輪速Vrが入力され、前後輪すべり率差演算実行条件判定部2cから前後輪すべり率差dsの演算を行うか否かの判定結果の信号が入力される。そして、前後輪すべり率差演算実行条件判定部2cから前後輪すべり率差dsの演算を行うとの判定結果の際に、(3)式を基とした以下の(8)式により前後輪すべり率差dsを演算し、路面摩擦係数瞬間値演算部2eに出力する。すなわち、前後輪すべり率差演算部2dは、前後輪すべり率差検出手段として設けられている。
ds=|Vf−Vr|/V …(8)
The front and rear wheel slip ratio difference calculation unit 2d receives the vehicle body speed V, the front wheel speed Vf, and the rear wheel speed Vr from the speed calculation unit 2a, and the front and rear wheel slip ratio difference calculation execution condition determination unit 2c receives the front and rear wheel slip ratio difference. A determination result signal indicating whether or not to calculate ds is input. Then, in the determination result that the front / rear wheel slip ratio difference calculation execution condition determination unit 2c calculates the front / rear wheel slip ratio difference ds, the front / rear wheel slip is calculated by the following expression (8) based on the expression (3). The rate difference ds is calculated and output to the road surface friction coefficient instantaneous value calculation unit 2e. That is, the front and rear wheel slip ratio difference calculation unit 2d is provided as a front and rear wheel slip ratio difference detecting means.
ds = | Vf−Vr | / V (8)

路面摩擦係数瞬間値演算部2eは、減速度演算部2bから車体減速度Gxが、前後輪すべり率差演算部2dから前後輪すべり率差dsが入力される。そして、予め記憶しておいた車体減速度Gxと前後輪すべり率差dsと路面摩擦係数μの関係を示すマップを参照し、一時的に路面摩擦係数(本実施の形態では、路面摩擦係数瞬間値と呼ぶ)μMを設定し、この路面摩擦係数瞬間値μMを路面摩擦係数設定部2gに出力する。このように、路面摩擦係数瞬間値演算部2eは記憶手段として設けられており、路面摩擦係数設定部2gと共に路面摩擦係数設定手段として設けられている。   The road surface friction coefficient instantaneous value calculation unit 2e receives the vehicle body deceleration Gx from the deceleration calculation unit 2b and the front and rear wheel slip rate difference ds from the front and rear wheel slip rate difference calculation unit 2d. Then, a preliminarily stored map showing the relationship between the vehicle body deceleration Gx, the front-rear wheel slip ratio difference ds, and the road surface friction coefficient μ is temporarily referred to, and the road surface friction coefficient (in this embodiment, the road surface friction coefficient instantaneous (Referred to as a value) μM is set, and this road surface friction coefficient instantaneous value μM is output to the road surface friction coefficient setting unit 2g. Thus, the road surface friction coefficient instantaneous value calculation unit 2e is provided as a storage unit, and is provided as a road surface friction coefficient setting unit together with the road surface friction coefficient setting unit 2g.

尚、予め記憶しておいた車体減速度Gxと前後輪すべり率差dsと路面摩擦係数μの関係を示すマップは、例えば、図6に示すように、横軸を車体減速度Gxとし、縦軸を前後輪すべり率差dsとしたマップであり、車体減速度Gxが小さくなる高μ値の側の上述の0.006(0.6%)の値に、路面摩擦係数が0.75となる直線(基準値)が予め実験等により求め設定されている。また、実験等により、路面摩擦係数が0.4となる所定の傾きを有する直線が基準として定められており、これらの基準線を基に、その中間の領域の路面摩擦係数の値が補間計算により推定されるようになっている。   Note that a map indicating the relationship between the vehicle body deceleration Gx, the front-rear wheel slip ratio difference ds, and the road surface friction coefficient μ stored in advance is, for example, as shown in FIG. This is a map with the front-rear wheel slip ratio difference ds as the axis, and the road friction coefficient is 0.75 to the above-mentioned value of 0.006 (0.6%) on the high μ value side where the vehicle body deceleration Gx becomes small. A straight line (reference value) is obtained and set in advance by experiments or the like. In addition, a straight line having a predetermined slope with a road surface friction coefficient of 0.4 has been determined as a reference through experiments and the like. Based on these reference lines, the value of the road surface friction coefficient in the middle area is interpolated. Is estimated.

路面判定実行条件判定部2fは、ブレーキペダルスイッチ6からブレーキのON−OFF信号が入力され、減速度演算部2bから車体減速度Gxが入力される。そして、ブレーキがONで、且つ、車体減速度GxがGxc2(例えば、0.5m/s)以上の状態が、一定時間(例えば、800ms)継続しているか否か判定され、一定時間継続している場合には、今回の路面摩擦係数の推定値は、安定した条件の下で推定された精度の良い値であると判定し、今回の推定値の採用を許可する信号を路面摩擦係数設定部2gに出力する。 The road surface determination execution condition determination unit 2f receives a brake ON-OFF signal from the brake pedal switch 6, and receives a vehicle body deceleration Gx from the deceleration calculation unit 2b. Then, it is determined whether or not the state where the brake is ON and the vehicle body deceleration Gx is Gxc2 (for example, 0.5 m / s 2 ) or more continues for a certain time (for example, 800 ms), and continues for a certain time. If this is the case, it is determined that the estimated value of the current road friction coefficient is a highly accurate value estimated under stable conditions, and a signal permitting the adoption of the estimated value is set as the road friction coefficient. To part 2g.

路面摩擦係数設定部2gは、トラクションコントロール装置7、ABS8、横滑防止装置9からそれぞれの作動信号が入力され、減速度演算部2bから車体減速度Gxが入力され、前後輪すべり率差演算実行条件判定部2cから判定結果の信号が入力され、路面摩擦係数瞬間値演算部2eから路面摩擦係数瞬間値μMが入力され、路面判定実行条件判定部2fから今回の推定値の採用の判定結果の信号が入力される。そして、トラクションコントロール装置7、ABS8、横滑防止装置9の何れかの装置が作動している場合には、今回の路面摩擦係数μnを低μの値(例えば、0.3)として設定して出力する。   The road surface friction coefficient setting unit 2g receives the respective operation signals from the traction control device 7, the ABS 8, and the skid prevention device 9, receives the vehicle body deceleration Gx from the deceleration calculation unit 2b, and executes the difference calculation of the front and rear wheel slip ratio. The determination result signal is input from the condition determination unit 2c, the instantaneous road surface friction coefficient value μM is input from the road surface friction coefficient instantaneous value calculation unit 2e, and the determination result of the adoption of the present estimated value is input from the road surface determination execution condition determination unit 2f. A signal is input. When any one of the traction control device 7, ABS 8, and skid prevention device 9 is operating, the current road surface friction coefficient μn is set as a low μ value (for example, 0.3). Output.

また、前後輪すべり率差演算実行条件判定部2cからの判定結果が設定を実行せず、或いは、路面判定実行条件判定部2fからの判定結果が設定を実行せずの場合には、前回の路面摩擦係数μn-1を今回の路面摩擦係数μnとして設定して出力する。   In addition, when the determination result from the front / rear wheel slip ratio difference calculation execution condition determination unit 2c does not execute the setting or the determination result from the road surface determination execution condition determination unit 2f does not execute the setting, The road surface friction coefficient μn−1 is set as the current road surface friction coefficient μn and output.

更に、トラクションコントロール装置7、ABS8、横滑防止装置9の何れも動作しておらず、前後輪すべり率差演算実行条件判定部2c及び路面判定実行条件判定部2fからの判定結果が実行許可の場合には、路面摩擦係数瞬間値μMがμMH(例えば、1.0)以上で、且つ、車体減速度GxがGXH(例えば、2.0m/s)以上の場合、或いは、路面摩擦係数瞬間値μMがμMM(例えば、0.75)以上で、且つ、車体減速度GxがGXM(例えば、1.3m/s)以上の場合、或いは、路面摩擦係数瞬間値μMがμML(例えば、0.3)以上で、且つ、車体減速度GxがGXL(例えば、0.5m/s)以上の場合は、今回の路面摩擦係数μnを路面摩擦係数瞬間値μMで更新する。μMH>μMM>μML、GXH>GXM>GXLである(図6参照)。すなわち、制動力(=車体減速度)が大きいほど、前後輪の車輪速差が大きくなり路面判定の精度が向上する。しかしながら、これを考慮して大きな制動力を判定開始の条件とすると、路面判定の頻度が低下する。本実施の形態では、応答性と精度の両立を図るため、路面摩擦係数瞬間値μM毎に応じた判定開始の減速度閾値を設定しているのである。 Furthermore, none of the traction control device 7, ABS 8, or skid prevention device 9 is operating, and the determination results from the front and rear wheel slip rate difference calculation execution condition determination unit 2c and the road surface determination execution condition determination unit 2f are permitted to execute. In some cases, the road surface friction coefficient instantaneous value μM is μMH (for example, 1.0) or more and the vehicle body deceleration Gx is GXH (for example, 2.0 m / s 2 ) or more. When the value μM is μMM (for example, 0.75) or more and the vehicle body deceleration Gx is GXM (for example, 1.3 m / s 2 ) or more, or the road surface friction coefficient instantaneous value μM is μML (for example, 0 .3) When the vehicle body deceleration Gx is GXL (for example, 0.5 m / s 2 ) or more, the current road surface friction coefficient μn is updated with the road surface friction coefficient instantaneous value μM. μMH>μMM> μML, GXH>GXM> GXL (see FIG. 6). That is, as the braking force (= vehicle deceleration) increases, the wheel speed difference between the front and rear wheels increases and the accuracy of road surface determination improves. However, if this is taken into consideration and a large braking force is used as a condition for starting the determination, the frequency of road surface determination decreases. In the present embodiment, in order to achieve both responsiveness and accuracy, a deceleration threshold value at the start of determination corresponding to each road surface friction coefficient instantaneous value μM is set.

次に、上述の路面摩擦係数推定装置1の制御部2で実行される路面摩擦係数推定プログラムを、図2、図3のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で、必要パラメータ、すなわち、4輪車輪速ωfl、ωfr、ωrl、ωrr、ステアリング舵角θH、アクセル開度θACC、ブレーキのON−OFF信号、トラクションコントロール装置7、ABS8、横滑防止装置9それぞれの作動信号を読み込む。
Next, a road surface friction coefficient estimation program executed by the control unit 2 of the above-described road surface friction coefficient estimation device 1 will be described with reference to the flowcharts of FIGS.
First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, four-wheel wheel speeds ωfl, ωfr, ωrl, ωrr, steering angle θH, accelerator opening degree θACC, brake ON-OFF signal, traction The operation signals of the control device 7, ABS 8, and skid prevention device 9 are read.

次に、S102に進み、前回の路面摩擦係数μn-1が読み込まれる。尚、前回の路面摩擦係数μn-1の初期値としては、中μの値として、例えば、0.7が読み込まれる。   Next, proceeding to S102, the previous road surface friction coefficient μn-1 is read. For example, 0.7 is read as the medium μ value as the initial value of the previous road surface friction coefficient μn−1.

次いで、S103に進み、速度演算部2aで、前述の(4)式、(5)式により、前輪車輪速Vf、後輪車輪速Vr、擬似車体速Vを演算する。   Next, the process proceeds to S103, where the speed calculation unit 2a calculates the front wheel speed Vf, the rear wheel speed Vr, and the pseudo vehicle speed V according to the above-described formulas (4) and (5).

次に、S104に進み、減速度演算部2bで、車体速Vを微分処理することにより、車体減速度Gxを演算する。   Next, proceeding to S104, the deceleration calculation unit 2b calculates the vehicle body deceleration Gx by differentiating the vehicle body speed V.

次いで、S105に進み、路面摩擦係数設定部2gは、トラクションコントロール装置7、ABS8、横滑防止装置9の何れかが作動しているか否か判定し、作動している場合には、S106に進んで、今回の路面摩擦係数μnを低μの値(例えば、0.3)として設定し(μn←0.3)、S126へと進む。   Next, the process proceeds to S105, where the road surface friction coefficient setting unit 2g determines whether any of the traction control device 7, ABS 8, or skid prevention device 9 is operating. If it is operating, the process proceeds to S106. Thus, the current road surface friction coefficient μn is set as a low μ value (for example, 0.3) (μn ← 0.3), and the process proceeds to S126.

また、何れも作動していない場合は、S107へと進む。S107〜S110の処理は、前後輪すべり率差演算実行条件判定部2cで実行される処理であり、S107では、車体速Vと車速閾値Vc(例えば、20km/h)との比較が行われ、V>Vcの場合は、S108に進む。   If none of them is operating, the process proceeds to S107. The processing of S107 to S110 is processing executed by the front / rear wheel slip rate difference calculation execution condition determination unit 2c. In S107, the vehicle speed V is compared with a vehicle speed threshold Vc (for example, 20 km / h), If V> Vc, the process proceeds to S108.

S108では、ステアリング舵角の絶対値|θH|と操舵閾値θH1(例えば、60deg)との比較が行われ、|θH|<θH1の場合は、S109に進む。   In S108, the absolute value | θH | of the steering angle is compared with a steering threshold θH1 (for example, 60 deg). If | θH | <θH1, the process proceeds to S109.

S109では、アクセル開度θACCとアクセル開度の閾値θACC1(例えば、0%)との比較が行われ、θACC<θACC1の場合は、S110に進む。   In S109, the accelerator opening θACC is compared with the accelerator opening threshold θACC1 (eg, 0%). If θACC <θACC1, the process proceeds to S110.

S110では、車体減速度Gxと車体減速度の閾値Gxc1(例えば、4m/s)との比較が行われ、Gx<Gxc1の場合は、S111に進む。 In S110, the vehicle body deceleration Gx is compared with the vehicle body deceleration threshold Gxc1 (for example, 4 m / s 2 ). If Gx <Gxc1, the process proceeds to S111.

一方、S107でV≦Vc、或いは、S108で|θH|≧θH1、或いは、S109でθACC≧θACC1、或いは、S110でGx≧Gxc1の場合は、前後輪すべり率差dsの演算、路面摩擦係数μnの推定を行わずS114に進んで、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値に設定し(μn←μn-1)、S126へと進む。   On the other hand, if V ≦ Vc in S107, or | θH | ≧ θH1 in S108, or θACC ≧ θACC1 in S109, or Gx ≧ Gxc1 in S110, the front-rear wheel slip ratio difference ds is calculated, and the road surface friction coefficient μn. The process proceeds to S114 without setting the current road friction coefficient μn to the previous road surface friction coefficient μn−1 (μn ← μn−1), and the process proceeds to S126.

上述のS110からS111に進むと、前後輪すべり率差演算部2dは、前述の(8)式により、前後輪すべり率差dsを演算する。   When the process proceeds from S110 to S111, the front / rear wheel slip ratio difference calculation unit 2d calculates the front / rear wheel slip ratio difference ds by the above-described equation (8).

次いで、S112に進み、路面摩擦係数瞬間値演算部2eは、予め記憶しておいた車体減速度Gxと前後輪すべり率差dsと路面摩擦係数μの関係を示すマップを参照し、路面摩擦係数瞬間値μMを設定する。   Next, in S112, the road surface friction coefficient instantaneous value calculation unit 2e refers to a map indicating the relationship between the vehicle body deceleration Gx, the front and rear wheel slip rate difference ds, and the road surface friction coefficient μ, which are stored in advance. Set the instantaneous value μM.

次に、S113に進み、路面判定実行条件判定部2fで、ブレーキがONで、且つ、車体減速度GxがGxc2(例えば、0.5m/s)以上の状態が、一定時間(例えば、400ms)継続しているか否か判定され、一定時間継続している場合には、今回の路面摩擦係数の推定値は、安定した条件の下で推定された精度の良い値であると判定し、S115に進み、上記条件が成立していない場合は、S114に進んで、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値に設定し(μn←μn-1)、S126へと進む。 Next, the process proceeds to S113, where the road surface determination execution condition determination unit 2f is in a state where the brake is ON and the vehicle deceleration Gx is equal to or greater than Gxc2 (for example, 0.5 m / s 2 ) for a certain time (for example, 400 ms). ) If it is determined whether or not it has continued for a certain period of time, it is determined that the current estimated value of the road friction coefficient is a highly accurate value estimated under stable conditions, and S115 If the above condition is not satisfied, the process proceeds to S114, where the current road surface friction coefficient μn is set to the previous road surface friction coefficient μn-1 (μn ← μn-1), and the process proceeds to S126. .

S113で上述の条件が成立し、S115に進むと、路面摩擦係数設定部2gで、路面摩擦係数瞬間値μMと、路面摩擦係数瞬間値の閾値μMH(例えば、1.0)とが比較される。この比較の結果、路面摩擦係数瞬間値μMがμMH以上(μM≧μMH)の場合は、S116に進み、車体減速度Gxと車体減速度の閾値GXH(例えば、2.0m/s)とを比較し、車体減速度GxがGXH以上(Gx≧GXH)の場合はS117に進み、今回の路面摩擦係数μnを路面摩擦係数瞬間値μMで更新し(μn←μM)、S126に進む。また、車体減速度GxがGXHよりも小さい(Gx<GXH)場合はS118に進み、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値に設定し(μn←μn-1)、S126へと進む。 When the above condition is satisfied in S113 and the process proceeds to S115, the road surface friction coefficient setting unit 2g compares the road surface friction coefficient instantaneous value μM with the road surface friction coefficient instantaneous value threshold μMH (for example, 1.0). . As a result of this comparison, if the road surface friction coefficient instantaneous value μM is μMH or more (μM ≧ μMH), the process proceeds to S116, and the vehicle body deceleration Gx and the vehicle body deceleration threshold GXH (for example, 2.0 m / s 2 ) are set. In comparison, if the vehicle body deceleration Gx is equal to or greater than GXH (Gx ≧ GXH), the process proceeds to S117, the current road surface friction coefficient μn is updated with the instantaneous road surface friction coefficient μM (μn ← μM), and the process proceeds to S126. If the vehicle deceleration Gx is smaller than GXH (Gx <GXH), the process proceeds to S118, where the current road surface friction coefficient μn is set to the previous road surface friction coefficient μn-1 (μn ← μn-1). Proceed to S126.

また、上述のS115の判定の結果、路面摩擦係数瞬間値μMがμMHより低い(μM<μMH)場合は、S119に進み、路面摩擦係数瞬間値μMと、路面摩擦係数瞬間値の閾値μMM(例えば、0.75)とが比較される。この比較の結果、路面摩擦係数瞬間値μMがμMM以上(μM≧μMM)の場合は、S120に進み、車体減速度Gxと車体減速度の閾値GXM(例えば、1.3m/s)とを比較し、車体減速度GxがGXM以上(Gx≧GXM)の場合はS121に進み、今回の路面摩擦係数μnを路面摩擦係数瞬間値μMで更新し(μn←μM)、S126に進む。また、車体減速度GxがGXMよりも小さい(Gx<GXM)場合はS122に進み、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値に設定し(μn←μn-1)、S126へと進む。 If the road surface friction coefficient instantaneous value μM is lower than μMH (μM <μMH) as a result of the determination in S115 described above, the process proceeds to S119, and the road surface friction coefficient instantaneous value μM and the road surface friction coefficient instantaneous value threshold μMM (for example, , 0.75). As a result of this comparison, if the road surface friction coefficient instantaneous value μM is μMM or more (μM ≧ μMM), the process proceeds to S120, and the vehicle body deceleration Gx and the vehicle body deceleration threshold GXM (for example, 1.3 m / s 2 ) are set. In comparison, if the vehicle body deceleration Gx is equal to or greater than GXM (Gx ≧ GXM), the process proceeds to S121, the current road surface friction coefficient μn is updated with the instantaneous road surface friction coefficient μM (μn ← μM), and the process proceeds to S126. If the vehicle deceleration Gx is smaller than GXM (Gx <GXM), the process proceeds to S122, where the current road surface friction coefficient μn is set to the previous road surface friction coefficient μn-1 (μn ← μn-1). Proceed to S126.

また、上述のS119の判定の結果、路面摩擦係数瞬間値μMがμMMより低い(μM<μMM)場合は、S123に進み、路面摩擦係数瞬間値μMと、路面摩擦係数瞬間値の閾値μML(例えば、0.3)とが比較される。この比較の結果、路面摩擦係数瞬間値μMがμML以上(μM≧μML)の場合は、S124に進み、車体減速度Gxと車体減速度の閾値GXL(例えば、0.5m/s)とを比較し、車体減速度GxがGXL以上(Gx≧GXL)の場合はS125に進み、今回の路面摩擦係数μnを路面摩擦係数瞬間値μMで更新し(μn←μM)、S126に進む。また、車体減速度GxがGXLよりも小さい(Gx<GXL)場合はS114に進み、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値に設定し(μn←μn-1)、S126へと進む。 If the road surface friction coefficient instantaneous value μM is lower than μMM (μM <μMM) as a result of the determination in S119 described above, the process proceeds to S123, and the road surface friction coefficient instantaneous value μM and the road surface friction coefficient instantaneous value threshold μML (for example, , 0.3). As a result of this comparison, if the road surface friction coefficient instantaneous value μM is greater than or equal to μML (μM ≧ μML), the process proceeds to S124, and the vehicle body deceleration Gx and the vehicle body deceleration threshold GXL (for example, 0.5 m / s 2 ) are set. In comparison, if the vehicle body deceleration Gx is equal to or greater than GXL (Gx ≧ GXL), the process proceeds to S125, the current road surface friction coefficient μn is updated with the instantaneous road surface friction coefficient μM (μn ← μM), and the process proceeds to S126. If the vehicle deceleration Gx is smaller than GXL (Gx <GXL), the process proceeds to S114, and the current road surface friction coefficient μn is set to the previous road surface friction coefficient μn-1 (μn ← μn-1). Proceed to S126.

上述のS106、S114、S117、S118、S121、S122、S125の何れかで今回の路面摩擦係数μnを設定し、S126に進むと、この今回の路面摩擦係数μnが出力される。   The current road friction coefficient μn is set in any one of the above-described S106, S114, S117, S118, S121, S122, and S125. When the process proceeds to S126, the current road friction coefficient μn is output.

そして、S127に進み、今回の路面摩擦係数μnを前回の路面摩擦係数μn-1の値と入れ替え(μn-1←μn)、プログラムを抜ける。   In S127, the current road friction coefficient μn is replaced with the previous road friction coefficient μn−1 (μn−1 ← μn), and the program exits.

以上のように設定される路面摩擦係数推定値μnは、例えば、図示しない外部表示装置に出力され、インストルメントパネルでの表示等によりドライバの注意を喚起するように用いられる。或いは、エンジン制御部、トランスミッション制御部、前後軸間或いは左右輪間の駆動力配分制御部、ブレーキ制御部(何れも図示せず)等に出力されて、各制御部における制御量の設定に寄与される。   The road surface friction coefficient estimated value μn set as described above is output to an external display device (not shown), for example, and used to call the driver's attention by displaying on the instrument panel or the like. Alternatively, it is output to the engine control unit, the transmission control unit, the driving force distribution control unit between the front and rear shafts or between the left and right wheels, the brake control unit (none of which are shown), and contributes to the setting of the control amount in each control unit Is done.

例えば、前軸:後軸のトルク配分が、100:0〜50:50の間でトランスファクラッチにより可変できる4輪駆動車の前後駆動力配分制御に用いる場合、燃費改善と前後駆動力配分制御とを両立させる為には、高μ路では不要な後輪伝達トルクを減らし内部循環トルクを低減させる一方、低μ路では安定性を重視して所定の後輪伝達トルクを発生させる必要がある。そのため、推定した路面摩擦係数推定値μnに応じてトランスファクラッチトルクの締結力を制御し、後輪トルク配分率を連続的に変化させるようにする。   For example, when used for front-rear driving force distribution control of a four-wheel drive vehicle in which the front shaft: rear shaft torque distribution can be varied by a transfer clutch between 100: 0 and 50:50, fuel efficiency improvement and front-rear driving force distribution control In order to achieve both, it is necessary to reduce the unnecessary rear wheel transmission torque on the high μ road and reduce the internal circulation torque, and on the low μ road, it is necessary to generate a predetermined rear wheel transmission torque with an emphasis on stability. Therefore, the fastening force of the transfer clutch torque is controlled according to the estimated road surface friction coefficient estimated value μn, and the rear wheel torque distribution ratio is continuously changed.

このように本実施の形態によれば、車体減速度Gxと前後輪すべり率差dsと路面摩擦係数μの関係から路面摩擦係数μを推定する路面摩擦係数推定装置において、車体速Vが車速閾値Vc以下の場合、ステアリング舵角の絶対値|θH|が操舵閾値θH1以上の場合、アクセル開度θACCがアクセル開度の閾値θACC1以上の場合、車体減速度Gxが車体減速度の閾値Gxc1以上の場合は、今回の路面摩擦係数の推定を行わず、前回の路面摩擦係数の値を出力するようになっている。そして特に、ステアリング舵角により路面摩擦係数の実行条件を規定していることにより、前後輪すべり率差の小さな領域で転舵により生じる誤差の影響が排除でき、精度の良い路面摩擦係数の推定を行うことができる。そして、信頼性の高い路面摩擦係数により様々な車両挙動制御装置等の制御を実行することにより、安定して適切な車両制御を行うことが可能となる。   As described above, according to the present embodiment, in the road surface friction coefficient estimation device that estimates the road surface friction coefficient μ from the relationship between the vehicle body deceleration Gx, the front and rear wheel slip ratio difference ds, and the road surface friction coefficient μ, the vehicle body speed V is the vehicle speed threshold value. When Vc or less, the absolute value | θH | of the steering angle is equal to or greater than the steering threshold θH1, or when the accelerator opening θACC is equal to or greater than the accelerator opening threshold θACC1, the vehicle deceleration Gx is equal to or greater than the vehicle deceleration threshold Gxc1. In this case, the previous road surface friction coefficient is not estimated, and the previous road surface friction coefficient value is output. And in particular, by defining the execution condition of the road surface friction coefficient by the steering angle, it is possible to eliminate the influence of errors caused by steering in a region where the difference between the front and rear wheel slip ratios is small, and to estimate the road surface friction coefficient with high accuracy. It can be carried out. And it becomes possible to perform appropriate vehicle control stably by performing control of various vehicle behavior control apparatuses etc. with a highly reliable road surface friction coefficient.

また、本実施の形態では、ブレーキがONで、且つ、車体減速度GxがGxc2(例えば、0.5m/s)以上の状態が、一定時間(例えば、800ms)継続している場合に路面摩擦係数の推定を行うようになっているので、減速度がほとんど発生しない瞬間的なブレーキの際に路面摩擦係数の推定を行うことが防止でき、安定した精度の良い路面摩擦係数を推定することが可能となっている。 In the present embodiment, the road surface is when the brake is ON and the vehicle deceleration Gx is Gxc2 (for example, 0.5 m / s 2 ) or more for a certain period of time (for example, 800 ms). Since the friction coefficient is estimated, it is possible to prevent the estimation of the road surface friction coefficient during instantaneous braking with little deceleration, and to estimate the road surface friction coefficient with stable and high accuracy. Is possible.

路面摩擦係数推定装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the road surface friction coefficient estimation device 路面摩擦係数推定プログラムのフローチャートFlowchart of road friction coefficient estimation program 図2から続くフローチャートFlowchart continuing from FIG. 車両の旋回を2輪車モデルで示す説明図Explanatory drawing showing turning of vehicle with two-wheeled vehicle model 前後輪すべり率差とステアリング舵角の関係を示す説明図Explanatory diagram showing the relationship between the difference between the front and rear wheel slip ratios and the steering angle 車体減速度と前後輪すべり率差と路面摩擦係数の関係を示す説明図Explanatory drawing showing the relationship between vehicle body deceleration, front and rear wheel slip ratio difference, and road surface friction coefficient 従来技術による車体減速度と前後輪すべり率差と路面摩擦係数の関係を示す説明図Explanatory drawing showing the relationship between vehicle body deceleration, front and rear wheel slip ratio difference and road surface friction coefficient according to the prior art

符号の説明Explanation of symbols

1 路面摩擦係数推定装置
2 制御部
2a 速度演算部(車速検出手段)
2b 減速度演算部(車体減速度検出手段)
2c 前後輪すべり率差演算実行条件判定部(禁止手段)
2d 前後輪すべり率差演算部(前後輪すべり率差検出手段)
2e 路面摩擦係数瞬間値演算部(記憶手段、路面摩擦係数設定手段)
2f 路面判定実行条件判定部
2g 路面摩擦係数設定部(路面摩擦係数設定手段)
3 4輪車輪速センサ(車輪速検出手段)
4 ハンドル角センサ(操舵角検出手段)
5 アクセル開度センサ
6 ブレーキペダルスイッチ
7 トラクションコントロール装置
8 ABS
9 横滑防止装置
DESCRIPTION OF SYMBOLS 1 Road surface friction coefficient estimation apparatus 2 Control part 2a Speed calculation part (vehicle speed detection means)
2b Deceleration calculation unit (vehicle deceleration detection means)
2c Front-rear wheel slip ratio difference calculation execution condition determining unit (prohibiting means)
2d Front and rear wheel slip ratio difference calculation unit (front and rear wheel slip ratio difference detection means)
2e Road surface friction coefficient instantaneous value calculation unit (storage means, road surface friction coefficient setting means)
2f Road surface determination execution condition determination unit 2g Road surface friction coefficient setting unit (road surface friction coefficient setting means)
3 4-wheel wheel speed sensor (wheel speed detection means)
4 Handle angle sensor (steering angle detection means)
5 Accelerator opening sensor 6 Brake pedal switch 7 Traction control device 8 ABS
9 Side slip prevention device

Claims (2)

車両が走行している路面の路面摩擦係数を設定する路面摩擦係数設定装置において、
ステアリングの操舵角を検出する操舵角検出手段と、
車両の車体減速度を検出する車体減速度検出手段と、
各車輪の車輪速を検出する車輪速検出手段と、
車両の車速を検出する車速検出手段と、
上記車輪速と上記車速を基に、前輪のすべり率と後輪のすべり率との差を前後輪すべり率差として検出する前後輪すべり率差検出手段と、
車体減速度と前後輪すべり率差と路面摩擦係数の関係を予め記憶しておく記憶手段と、
上記車体減速度検出手段で検出した車体減速度と上記前後輪すべり率差検出手段で検出した前後輪すべり率差とに基づいて上記記憶手段から路面摩擦係数を推定する路面摩擦係数設定手段と、
上記操舵角が予め設定した閾値以上の場合に上記路面摩擦係数の推定を禁止する禁止手段と、
を備えたことを特徴とする路面摩擦係数推定装置。
In the road surface friction coefficient setting device for setting the road surface friction coefficient of the road surface on which the vehicle is traveling,
Steering angle detection means for detecting the steering angle of the steering;
Vehicle body deceleration detecting means for detecting the vehicle body deceleration of the vehicle;
Wheel speed detection means for detecting the wheel speed of each wheel;
Vehicle speed detecting means for detecting the vehicle speed of the vehicle;
Based on the wheel speed and the vehicle speed, front and rear wheel slip ratio difference detecting means for detecting a difference between a front wheel slip ratio and a rear wheel slip ratio as a front and rear wheel slip ratio difference;
Storage means for storing in advance the relationship between vehicle body deceleration, front and rear wheel slip rate difference, and road surface friction coefficient;
Road surface friction coefficient setting means for estimating a road surface friction coefficient from the storage means based on the vehicle body deceleration detected by the vehicle body deceleration detection means and the front and rear wheel slip ratio difference detected by the front and rear wheel slip ratio difference detection means;
Prohibiting means for prohibiting estimation of the road surface friction coefficient when the steering angle is equal to or greater than a preset threshold;
A road surface friction coefficient estimating device comprising:
上記路面摩擦係数設定手段は、少なくとも車体減速度に応じた前後輪すべり率差基準値を有し、上記検出した車体減速度に対する上記検出した前後輪すべり率差が上記前後すべり率差基準値より小さいときに路面摩擦係数が高いことを判定し、
上記禁止手段で用いる上記予め設定した閾値は、上記前後輪すべり率差基準値が上記ステアリングの操作により発生する操舵角以下に設定されることを特徴とする請求項1記載の路面摩擦係数推定装置。
The road surface friction coefficient setting means has at least a front and rear wheel slip ratio difference reference value corresponding to the vehicle body deceleration, and the detected front and rear wheel slip ratio difference with respect to the detected vehicle body deceleration is greater than the front and rear slip ratio difference reference value. When it is small, it is judged that the road surface friction coefficient is high,
2. The road surface friction coefficient estimating apparatus according to claim 1, wherein the preset threshold value used in the prohibiting means is set to be equal to or less than a steering angle at which the front and rear wheel slip ratio difference reference value is generated by the steering operation. .
JP2008030729A 2008-02-12 2008-02-12 Road friction coefficient estimation device Expired - Fee Related JP5033009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030729A JP5033009B2 (en) 2008-02-12 2008-02-12 Road friction coefficient estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030729A JP5033009B2 (en) 2008-02-12 2008-02-12 Road friction coefficient estimation device

Publications (2)

Publication Number Publication Date
JP2009190467A true JP2009190467A (en) 2009-08-27
JP5033009B2 JP5033009B2 (en) 2012-09-26

Family

ID=41072891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030729A Expired - Fee Related JP5033009B2 (en) 2008-02-12 2008-02-12 Road friction coefficient estimation device

Country Status (1)

Country Link
JP (1) JP5033009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028244A (en) * 2011-07-28 2013-02-07 Suzuki Motor Corp Vehicular control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128221A (en) * 1993-11-09 1995-05-19 Mitsubishi Motors Corp Road surface condition detector
JP2003237558A (en) * 2002-02-12 2003-08-27 Fuji Heavy Ind Ltd Estimating device for road surface friction coefficient of vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128221A (en) * 1993-11-09 1995-05-19 Mitsubishi Motors Corp Road surface condition detector
JP2003237558A (en) * 2002-02-12 2003-08-27 Fuji Heavy Ind Ltd Estimating device for road surface friction coefficient of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028244A (en) * 2011-07-28 2013-02-07 Suzuki Motor Corp Vehicular control device

Also Published As

Publication number Publication date
JP5033009B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5038837B2 (en) Vehicle tuck-in prevention control device
KR101046457B1 (en) Driving force distribution control method and apparatus for four-wheel drive vehicle
US8700280B2 (en) Road surface frictional coefficient estimation device, driving force distribution control device and four-wheel-drive vehicle
JP3669668B2 (en) Vehicle wheel slip angle detection device
JP3946294B2 (en) Braking force control device
JPH1159216A (en) Power distributing control device for four-wheel drive vehicle
JP5816286B2 (en) Driving force control device for four-wheel drive vehicle
JP6504223B2 (en) Vehicle driving force control method
JP2008168779A (en) Breaking control device for vehicle
JP2001287561A (en) Driving force control device for four-wheel drive vehicle
JP7136548B2 (en) wheel speed estimator
JP4950052B2 (en) Method and apparatus for controlling the lock level of an electronically controllable differential lock mechanism
JP2007106338A (en) Vehicle body speed estimating device for vehicle
JP4980261B2 (en) Road friction coefficient setting device
JP5263068B2 (en) Vehicle slip determination device
JP5033008B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP6674769B2 (en) Vehicle control device and vehicle control method
JP5033009B2 (en) Road friction coefficient estimation device
JP5075660B2 (en) Road friction coefficient estimation device
JP4443582B2 (en) Understeer suppression device
JP2009184504A (en) Vehicle control device
JPH07128221A (en) Road surface condition detector
JP4937128B2 (en) Method and apparatus for controlling the lock level of an electronically controllable differential lock mechanism
JP2004231004A (en) Wheel state estimating device for vehicle
JP3612194B2 (en) Road surface friction coefficient detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees