JP2009190091A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2009190091A
JP2009190091A JP2008029915A JP2008029915A JP2009190091A JP 2009190091 A JP2009190091 A JP 2009190091A JP 2008029915 A JP2008029915 A JP 2008029915A JP 2008029915 A JP2008029915 A JP 2008029915A JP 2009190091 A JP2009190091 A JP 2009190091A
Authority
JP
Japan
Prior art keywords
layer
cutting tool
coating
thickness
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008029915A
Other languages
Japanese (ja)
Other versions
JP5121486B2 (en
Inventor
Yousen Shu
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008029915A priority Critical patent/JP5121486B2/en
Publication of JP2009190091A publication Critical patent/JP2009190091A/en
Application granted granted Critical
Publication of JP5121486B2 publication Critical patent/JP5121486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool, having high abrasion resistance and lubrication performance, and excellent chipping resistance. <P>SOLUTION: The cutting tool 1 comprises a base member 2, and a coating layer 6 coating the surface of the base member 2. The coating layer 6 comprises: a first layer 7 that comprises Ti<SB>1-a-b-c-d</SB>Al<SB>a</SB>W<SB>b</SB>Si<SB>c</SB>M<SB>d</SB>(C<SB>1-x</SB>N<SB>x</SB>) (M is at least one kind selected among Nb, Mo, Ta, Hf and Y, 0.45≤a≤0.55, 0.01≤b≤0.1, 0≤c≤0.05, 0.01≤d≤0.1, 0≤x≤1); and a second layer 8 that comprises (Al<SB>1-h</SB>M'<SB>h</SB>)<SB>v</SB>O<SB>w</SB>(M' is more than one kind selected among Ti, Cr, Zr, Nb, Mo, Ta, Hf, and Y, 0≤h≤0.65, 1≤w/v≤2.5). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基体の表面に被覆層が成膜されている切削工具に関する。   The present invention relates to a cutting tool having a coating layer formed on the surface of a substrate.

現在、切削工具や耐摩部材、摺動部材といった耐摩耗性や摺動性、耐欠損性を必要とする部材では、超硬合金やサーメット等の焼結合金、ダイヤモンドやcBN(立方晶窒化硼素)の高硬度焼結体、アルミナや窒化珪素等のセラミックスからなる基体の表面に被覆層を成膜して、耐摩耗性、摺動性、耐欠損性を向上させる手法が使われている。   At present, for members that require wear resistance, slidability, and fracture resistance, such as cutting tools, wear-resistant members, and sliding members, sintered alloys such as cemented carbide and cermet, diamond, and cBN (cubic boron nitride) A method of improving the wear resistance, slidability, and fracture resistance by forming a coating layer on the surface of a high hardness sintered body and a substrate made of a ceramic such as alumina or silicon nitride is used.

また、上記物理蒸着法としてアークイオンプレーティング法やスパッタリング法を用いてTiやAlを主成分とする窒化物層を成膜することが好適に行われており、さらに工具寿命を延命させるためのこの窒化物層の改良が検討されている。例えば、特許文献1では(TiWSi)N組成の硬質被膜について開示され、超硬合金等の基体と被覆層との密着性が高くなることが記載されている。   Further, it is preferable to form a nitride layer mainly composed of Ti or Al by using an arc ion plating method or a sputtering method as the physical vapor deposition method, and further to extend the tool life. Improvement of the nitride layer is under study. For example, Patent Document 1 discloses a hard coating having a (TiWSi) N composition, and describes that adhesion between a substrate such as a cemented carbide and a coating layer is increased.

また、かかる物理蒸着法において、最近窒素ガスと酸素ガス等の複数のガスを順にチャンバ内に導入して、窒化物層と酸化物層との積層構造とした被覆層が試みられている(例えば特許文献2〜4参照)。
特開2006−111915号公報 特開2003−127006号公報 特開2006−28600号公報 特開2005−125411号公報
In addition, in such physical vapor deposition, recently, a coating layer having a laminated structure of a nitride layer and an oxide layer by sequentially introducing a plurality of gases such as nitrogen gas and oxygen gas into the chamber has been attempted (for example, (See Patent Documents 2 to 4).
JP 2006-111915 A JP 2003-127006 A JP 2006-28600 A JP 2005-125411 A

しかしながら、特許文献1の(TiWSi)N被覆層は耐摩耗性が不十分であり、切削工具のさらなる長寿命化が求められていた。   However, the (TiWSi) N coating layer of Patent Document 1 has insufficient wear resistance, and a longer life of the cutting tool has been demanded.

また、特許文献2〜4に記載された窒化物層と酸化物層との積層体からなる被覆層でも、被覆層全体としての耐摩耗性や耐欠損性が必ずしも十分とは言えず、さらなる改善が要求されていた。   In addition, even with a coating layer made of a laminate of a nitride layer and an oxide layer described in Patent Documents 2 to 4, it cannot be said that the wear resistance and fracture resistance of the entire coating layer are necessarily sufficient, and further improvements Was requested.

本発明は前記課題を解決するためのものであり、その目的は、耐摩耗性、耐酸化性および耐チッピング性が向上する被覆層を備えた切削工具を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a cutting tool provided with a coating layer that improves wear resistance, oxidation resistance and chipping resistance.

本発明の切削工具は、基体と、この基体の表面を被覆する被覆層とからなる切削工具であって、
前記被覆層が、
Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、HfおよびYから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる第1層と、
(Al1−hM’(ただし、M’はTi、Cr、Zr、Nb、Mo、Ta、HfおよびYから選ばれる1種以上、0≦h≦0.65、1≦w/v≦2.5)からなる第2層と
からなることを特徴とする。
The cutting tool of the present invention is a cutting tool comprising a substrate and a coating layer covering the surface of the substrate,
The coating layer is
Ti 1-a-b-c -d Al a W b Si c M d (C 1-x N x) ( where M is at least one Nb, Mo, Ta, selected from Hf and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1),
(Al 1-h M ′ h ) v O w (where M ′ is one or more selected from Ti, Cr, Zr, Nb, Mo, Ta, Hf and Y, 0 ≦ h ≦ 0.65, 1 ≦ and w / v ≦ 2.5).

ここで、上記構成において、前記第1層の膜厚は1〜7μm、前記第2層の膜厚は0.5〜5μmであることが望ましい。このとき、前記第1層の平均結晶幅は0.01〜0.5μm、前記第2層の平均結晶幅は0.6〜3μmであることが望ましい。   Here, in the above configuration, it is preferable that the first layer has a thickness of 1 to 7 μm, and the second layer has a thickness of 0.5 to 5 μm. At this time, the average crystal width of the first layer is preferably 0.01 to 0.5 μm, and the average crystal width of the second layer is preferably 0.6 to 3 μm.

また、上記構成において、前記第1層中に平均結晶粒径が0.05〜1μmの分散粒子が点在することが望ましい。   In the above configuration, it is desirable that dispersed particles having an average crystal grain size of 0.05 to 1 μm are scattered in the first layer.

一方、上記構成において、前記被覆層は、前記第1層と前記第2層とが2層以上交互に積層されてなることが望ましい。このとき、前記第1層の各層の膜厚は0.02〜0.7μm、前記第2層の各層の膜厚は0.01〜0.5μmであり、前記第1層の総膜厚は1〜7μm、前記第2層の総膜厚は0.5〜5μmであることが望ましい。   On the other hand, in the above configuration, it is desirable that the coating layer is formed by alternately laminating two or more layers of the first layer and the second layer. At this time, the thickness of each layer of the first layer is 0.02 to 0.7 μm, the thickness of each layer of the second layer is 0.01 to 0.5 μm, and the total thickness of the first layer is The total thickness of the second layer is preferably 0.5 to 5 μm.

本発明の切削工具に第1層として用いられるTi1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)の第1層は硬度が高くかつ内部応力が小さいものである。一方、第2層は耐酸化性および耐溶着性に優れ、かつ第1層との密着性が良好なものである。ゆえに、本発明の切削工具に用いられる被覆層は、耐摩耗性、耐溶着性および耐欠損性に優れたものである。 Used as the first layer on the cutting tool of the present invention Ti 1-a-b-c -d Al a W b Si c M d (C 1-x N x) ( however, M is Nb, Mo, Ta, Hf , Y selected from 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1), the first layer has high hardness and low internal stress. On the other hand, the second layer is excellent in oxidation resistance and welding resistance and has good adhesion to the first layer. Therefore, the coating layer used in the cutting tool of the present invention is excellent in wear resistance, welding resistance, and fracture resistance.

また、前記第1層の膜厚は1〜7μm、前記第2層の膜厚は0.5〜5μmであることが、基体に対する第1層と第2層との剥離を抑制し、かつ耐酸化性に優れる点で望ましい。このとき、前記第1層の平均結晶幅は0.01〜0.5μm、前記第2層の平均結晶幅は0.6〜3μmであることが、被覆層の硬度を高めるとともに被覆層の表面での耐溶着性の向上の点で望ましい。   Further, the film thickness of the first layer is 1 to 7 μm, and the film thickness of the second layer is 0.5 to 5 μm, which suppresses peeling between the first layer and the second layer with respect to the substrate, and is resistant to acid. Desirable in terms of excellent chemical properties. At this time, the average crystal width of the first layer is 0.01 to 0.5 μm, and the average crystal width of the second layer is 0.6 to 3 μm, which increases the hardness of the coating layer and the surface of the coating layer. It is desirable in terms of improving the welding resistance.

また、前記第1層中に平均結晶粒径が0.05〜1μmの分散粒子が点在することが、被覆層の靭性を高めて被覆層の耐欠損性を高める点で望ましい。   Further, it is desirable that dispersed particles having an average crystal grain size of 0.05 to 1 μm are scattered in the first layer in terms of enhancing the toughness of the coating layer and increasing the fracture resistance of the coating layer.

一方、上記構成において、前記被覆層は、前記第1層と前記第2層とが2層以上交互に積層されてなる構成であってもよい。この構成によれば被覆層の硬度を向上させることができる。このとき、前記第1層各層の膜厚は0.02〜0.7μm、前記第2層の各層の膜厚は0.01〜0.5μmであり、前記第1層の総膜厚は1〜7μm、前記第2層の総膜厚は0.5〜5μmであることが、被覆層の硬度および耐酸化性の向上の点で望ましい。   On the other hand, the said structure WHEREIN: The structure by which the said 1st layer and the said 2nd layer are laminated | stacked alternately alternately may be sufficient as the said coating layer. According to this configuration, the hardness of the coating layer can be improved. At this time, the thickness of each layer of the first layer is 0.02 to 0.7 μm, the thickness of each layer of the second layer is 0.01 to 0.5 μm, and the total thickness of the first layer is 1 From the viewpoint of improving the hardness and oxidation resistance of the coating layer, it is preferable that the total film thickness of the second layer is 0.5 to 5 μm.

本発明の切削工具の一例について、好適な実施態様例である切削工具の概略斜視図である図1、本発明の第1の実施態様についての概略断面図である図2、および本発明の第2の実施態様についての概略断面図である図3を用いて説明する。   FIG. 1 is a schematic perspective view of a cutting tool which is a preferred embodiment example, FIG. 2 is a schematic cross-sectional view of the first embodiment of the present invention, and the first embodiment of the present invention. 2 will be described with reference to FIG. 3, which is a schematic sectional view of the second embodiment.

図1〜3によれば、本発明の切削工具(以下、単に工具と略す。)1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に被覆層6、9を成膜した構成となっている。   1 to 3, a cutting tool (hereinafter simply abbreviated as a tool) 1 according to the present invention includes a rake face 3 as a main surface, a flank face 4 as a side face, and an intersection of the rake face 3 and the flank face 4. The cutting edge 5 is provided on the ridge line, and the coating layers 6 and 9 are formed on the surface of the substrate 2.

被覆層6、9は、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、HfおよびYから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる第1層7と、(Al1−hM’(ただし、M’はTi、Cr、Zr、Nb、Mo、Ta、HfおよびYから選ばれる1種以上、0≦h≦0.65、1≦w/v≦2.5)からなる第2層8とからなる。この構成によって、第1層7は酸化開始温度が高くなって耐酸化性が高くかつ内在する内部応力を低減することができて耐欠損性が高い。しかも、第2層8は耐溶着性および耐酸化性にさらに優れるとともに、第1層7との密着性も高いものであるので、被覆層6、9は耐酸化性、耐溶着性および耐欠損性に優れたものとなる。 Coating layer 6 or 9 is, Ti 1-a-b- c-d Al a W b Si c M d (C 1-x N x) ( however, M is selected from Nb, Mo, Ta, Hf, and Y At least one kind, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1) The first layer 7 and (Al 1-h M ′ h ) v O w (where M ′ is one or more selected from Ti, Cr, Zr, Nb, Mo, Ta, Hf and Y, 0 ≦ h ≦ 0.65, 1 ≦ w / v ≦ 2.5). With this configuration, the first layer 7 has a high oxidation start temperature, high oxidation resistance, and can reduce internal stress, and has high fracture resistance. In addition, since the second layer 8 is further excellent in welding resistance and oxidation resistance, and has high adhesion to the first layer 7, the covering layers 6 and 9 are resistant to oxidation, welding, and defects. Excellent in properties.

すなわち、a(Al組成比)が0.45よりも少ないと被覆層6、9の耐酸化性が低下してしまい、a(Al組成比)が0.55よりも多いと被覆層6、9の結晶構造が立方晶から六方晶に変化する傾向があり硬度が低下する。aの特に望ましい範囲は0.48≦a≦0.52である。また、b(W組成比)が0.01よりも少ないと被覆層6、9の内部応力が高くて耐欠損性が低下するとともに、基体2と被覆層6、9との密着性が低下して切削中にチッピングや被覆層7の剥離が発生しやすくなり、b(W組成比)が0.1よりも多いと被覆層6、9の硬度が低下する。bの特に望ましい範囲は0.01≦b≦0.08である。さらに、c(Si組成比)が0.05よりも多いと被覆層6、9の硬度が低下する。cの特に望ましい範囲は0.01≦c≦0.04である。また、d(M組成比)が0.01よりも少ないと酸化開始温度が低くなってしまい、d(M組成比)が0.1よりも多いと金属Mの一部が立方晶とは別の低硬度相として存在して被覆層6、9の硬度が低下する。dの特に望ましい範囲は0.01≦d≦0.08である。   That is, if a (Al composition ratio) is less than 0.45, the oxidation resistance of the coating layers 6 and 9 is lowered. If a (Al composition ratio) is more than 0.55, the coating layers 6 and 9 are reduced. The crystal structure tends to change from cubic to hexagonal and the hardness decreases. A particularly desirable range of a is 0.48 ≦ a ≦ 0.52. On the other hand, when b (W composition ratio) is less than 0.01, the internal stress of the coating layers 6 and 9 is high and the fracture resistance is lowered, and the adhesion between the substrate 2 and the coating layers 6 and 9 is lowered. Thus, chipping and peeling of the coating layer 7 are likely to occur during cutting, and if b (W composition ratio) is more than 0.1, the hardness of the coating layers 6 and 9 is lowered. A particularly desirable range of b is 0.01 ≦ b ≦ 0.08. Furthermore, when c (Si composition ratio) is more than 0.05, the hardness of the coating layers 6 and 9 is lowered. A particularly desirable range for c is 0.01 ≦ c ≦ 0.04. Further, when d (M composition ratio) is less than 0.01, the oxidation start temperature becomes low, and when d (M composition ratio) is more than 0.1, a part of the metal M is different from the cubic crystal. As a low hardness phase, the hardness of the coating layers 6 and 9 decreases. A particularly desirable range of d is 0.01 ≦ d ≦ 0.08.

なお、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点があるから望ましい。   The metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable because it has the most excellent wear resistance and oxidation resistance.

また、被覆層6、9の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被覆層6、9の表面に発生するドロップレット(粗大粒子)を抑制するために、x(N組成比)の特に望ましい範囲は0.5≦x≦1である。ここで、本発明によれば、上記被覆層6、9の組成は、エネルギー分散型X線分光分析法(EDX)またはX線光電子分光分析法(XPS)にて測定できる。   Moreover, C and N which are non-metallic components of the coating layers 6 and 9 are excellent in hardness and toughness required for the cutting tool, and suppress droplets (coarse particles) generated on the surfaces of the coating layers 6 and 9. Therefore, a particularly desirable range of x (N composition ratio) is 0.5 ≦ x ≦ 1. Here, according to the present invention, the composition of the coating layers 6 and 9 can be measured by energy dispersive X-ray spectroscopy (EDX) or X-ray photoelectron spectroscopy (XPS).

また、第1層7は内部応力がさほど高くないものであるから、厚膜化しても被覆層6、9がチッピングしにくく、被覆層6、9の総膜厚が1.5〜12μmであっても被覆層6、9自身の内部応力によって剥離やチッピングすることを防止できて十分な耐摩耗性を維持することができる。被覆層6、9の総膜厚の望ましい範囲は5〜7.5μmである。なお、第1層7の膜厚は1〜7μm、第2層8の膜厚は0.5〜5μmであることが、基体2に対する第1層7と第2層8との剥離を抑制し、かつ耐摩耗性に優れる点で望ましい。   Further, since the internal stress of the first layer 7 is not so high, the covering layers 6 and 9 are difficult to chip even when the thickness is increased, and the total thickness of the covering layers 6 and 9 is 1.5 to 12 μm. However, it is possible to prevent peeling and chipping due to the internal stress of the coating layers 6 and 9 themselves, and to maintain sufficient wear resistance. A desirable range of the total film thickness of the coating layers 6 and 9 is 5 to 7.5 μm. The first layer 7 has a thickness of 1 to 7 μm, and the second layer 8 has a thickness of 0.5 to 5 μm, which suppresses the separation of the first layer 7 and the second layer 8 from the substrate 2. And desirable in terms of excellent wear resistance.

また、このとき、第1層7の平均結晶幅は0.01〜0.5μm、第2層8の平均結晶幅は0.6〜3μmであることが、被覆層6、9の硬度を高めるとともに被覆層6、9の表面での耐溶着性の向上の点で望ましい。なお、本発明において、被覆層6、9の平均結晶幅を測定するには、被覆層6、9の断面写真において、被覆層6、9の中間の厚さにあたる部分に線A(図示せず。)を引いて測定する。具体的には、被覆層6、9中の柱状結晶(図示せず。)の平均結晶幅は100nm以上の長さL(図示せず。)の線分Aを特定し、この線分Aを横切る粒界の数を数えて平均結晶幅=長さL/粒界の数によって算出する。   At this time, the average crystal width of the first layer 7 is 0.01 to 0.5 μm, and the average crystal width of the second layer 8 is 0.6 to 3 μm, thereby increasing the hardness of the coating layers 6 and 9. In addition, it is desirable in terms of improving the welding resistance on the surfaces of the coating layers 6 and 9. In the present invention, in order to measure the average crystal width of the coating layers 6 and 9, in the cross-sectional photograph of the coating layers 6 and 9, a line A (not shown) is formed in a portion corresponding to the intermediate thickness of the coating layers 6 and 9. )) To measure. Specifically, the average crystal width of the columnar crystals (not shown) in the coating layers 6 and 9 is specified as a line segment A having a length L (not shown) of 100 nm or more. The number of grain boundaries crossing is counted, and the average crystal width = length L / number of grain boundaries is calculated.

さらに、第1層7中に平均結晶粒径が0.05〜1μmの分散粒子(図示せず。)が点在することが、第1層6の靭性を高めて被覆層6、9の耐欠損性を高める点で望ましい。分散粒子の組成として、具体的には、分散粒子以外のマトリックスに対してW(タングステン)の含有量が多い窒化物粒子、例えば、被覆層6、9の全体組成がTi1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、HfおよびYから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる場合には、Ti1−a−b−cAlSi(C1−y)(ただし、MはNb、Mo、Ta、HfおよびYから選ばれる少なくとも1種であり、0≦a≦0.4、0.05≦b≦0.8、0≦c≦0.01、0≦d≦0.5、0.2≦y≦1である。)からなる分散粒子が挙げられる。 Further, the dispersion of dispersed particles (not shown) having an average crystal grain size of 0.05 to 1 μm in the first layer 7 increases the toughness of the first layer 6 and improves the resistance of the coating layers 6 and 9. It is desirable in terms of increasing deficiency. As the composition of the dispersed particles, specifically, the nitride particles having a high W (tungsten) content relative to the matrix other than the dispersed particles, for example, the total composition of the coating layers 6 and 9 is Ti 1-ab- c-d Al a W b Si c M d (C 1-x N x) ( however, M is Nb, Mo, Ta, at least one selected from Hf and Y, 0.45 ≦ a ≦ 0.55, In the case of 0.01 ≦ b ≦ 0.1, 0 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1), Ti 1−a−b−c Al a W b Si c M d (C 1-y N y) ( however, M is at least one selected from Nb, Mo, Ta, Hf, and Y, 0 ≦ a ≦ 0.4,0.05 ≦ b ≦ 0.8, 0 ≦ c ≦ 0.01, 0 ≦ d ≦ 0.5, and 0.2 ≦ y ≦ 1).

一方、被覆層の構成は上記被覆層6の構成に限定されるものではなく、例えば、図3に示す第2の実施態様に示す被覆層9の構成であってもよい。   On the other hand, the configuration of the coating layer is not limited to the configuration of the coating layer 6, and may be, for example, the configuration of the coating layer 9 shown in the second embodiment shown in FIG. 3.

すなわち、本発明の第2の実施態様を示す図3によれば、被覆層9は第1層7と第2層8との多層が2層以上交互に積層されてなる。この構成によれば、第1層7と第2層8との界面の存在によって格子歪みエネルギーが増加して硬度が向上し耐摩耗性が高くなる。また、被覆層9の表面にクラックが発生した場合には、第1層7と第2層8との界面の存在によってクラックの進展が妨げられるので被覆層9の耐欠損性が高くなる。   That is, according to FIG. 3 showing the second embodiment of the present invention, the coating layer 9 is formed by alternately laminating two or more layers of the first layer 7 and the second layer 8. According to this configuration, the presence of the interface between the first layer 7 and the second layer 8 increases the lattice strain energy, improves the hardness, and increases the wear resistance. In addition, when a crack occurs on the surface of the coating layer 9, the crack resistance is hindered by the presence of the interface between the first layer 7 and the second layer 8, so that the fracture resistance of the coating layer 9 is increased.

このとき、第1層7の各層の膜厚は0.02〜0.7μm、第2層8の各層の膜厚は0.01〜0.5μmであり、第1層7の総膜厚は1〜7μm、第2層8の総膜厚は0.5〜5μmであることが、被覆層の硬度向上および耐欠損性の向上の点で望ましい。   At this time, the film thickness of each layer of the first layer 7 is 0.02 to 0.7 μm, the film thickness of each layer of the second layer 8 is 0.01 to 0.5 μm, and the total film thickness of the first layer 7 is The total film thickness of 1 to 7 μm and the second layer 8 is preferably 0.5 to 5 μm from the viewpoint of improving the hardness of the coating layer and improving the fracture resistance.

なお、基体2としては、炭化タングステンや炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの硬質合金、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   The substrate 2 may be a cemented carbide or cermet hard alloy composed of a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel, or silicon nitride. Hard materials such as ultra-high pressure sintered bodies that fire ceramics and aluminum oxide as a main component, hard phases composed of polycrystalline diamond and cubic boron nitride and binder phases such as ceramics and iron group metals under ultra-high pressure Preferably used.

(製造方法)
次に、本発明の切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the cutting tool of this invention is demonstrated.

まず、工具形状の基体2を従来公知の方法を用いて作製する。次に、基体2の表面に被覆層6、9を成膜する。被覆層6、9の成膜方法としてはイオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   First, the tool-shaped substrate 2 is manufactured using a conventionally known method. Next, coating layers 6 and 9 are formed on the surface of the substrate 2. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as a method for forming the coating layers 6 and 9.

本発明の好適な成膜方法の一例として、例えば、アークイオンプレーティングカソードとマグネトロンスパッタリングカソードとの両方を具備する成膜装置を用いて被覆層6、9を成膜する方法が挙げられる。つまり、アークイオンプレーティング法によって第1層7の窒化物層を成膜し、かつマグネトロンスパッタリング法によって第2層8の酸化物層を成膜する方法が好適である。   As an example of a suitable film forming method of the present invention, for example, there is a method of forming the coating layers 6 and 9 using a film forming apparatus having both an arc ion plating cathode and a magnetron sputtering cathode. That is, it is preferable to form a nitride layer of the first layer 7 by an arc ion plating method and form an oxide layer of the second layer 8 by a magnetron sputtering method.

具体的には、バイアス電圧30〜200V、成膜温度400〜600℃で、アークイオンプレーティングカソードにアーク放電やグロー放電などを照射して金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスを2〜5Paのガス圧で流して反応させることにより、第1層7を成膜する。 Specifically, with a bias voltage of 30 to 200 V and a film formation temperature of 400 to 600 ° C., the arc ion plating cathode is irradiated with arc discharge or glow discharge to evaporate and ionize the metal source, and at the same time, nitrogen ( The first layer 7 is formed by reacting N 2 ) gas or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source at a gas pressure of 2 to 5 Pa.

次に、成膜温度を500〜700℃として、マグネトロンスパッタリングカソードに3kW〜7kWのパルス電力を加える。その際、繰り返し周波数を20−100kHzに、デューティサイクルを5〜80%とする。バイアス電圧としてパルスDC電圧を30〜150V、50kHz〜350kHz印加するとともに、0.3〜0.8Paのアルゴンと酸素の混合ガス(酸素ガス圧0.05〜0.2Pa)を流すことによって放電状態とし、第1層7の表面に第2層8を被覆することができる。 Next, the film forming temperature is set to 500 to 700 ° C., and pulse power of 3 kW to 7 kW is applied to the magnetron sputtering cathode. At that time, the repetition frequency is set to 20 to 100 kHz, and the duty cycle is set to 5 to 80%. As a bias voltage, a pulse DC voltage of 30 to 150 V, 50 kHz to 350 kHz is applied, and a mixed gas of oxygen and oxygen of 0.3 to 0.8 Pa (oxygen gas pressure 0.05 to 0.2 Pa) is allowed to flow to discharge state Then, the second layer 8 can be coated on the surface of the first layer 7.

なお、カソードとして、例えば、金属チタン(Ti)、金属アルミニウム(Al)、金属W、金属Si、金属M(ただし、MはTi、Wを除く周期表第4、5、6族元素、希土類元素から選ばれる1種以上)をそれぞれ独立に含有する金属カソード、これらを複合化した合金カソード、またはこれらの炭化物、窒化物、硼化物化合物粉末または焼結体からなる混合物カソードを用いることができる。   As the cathode, for example, metal titanium (Ti), metal aluminum (Al), metal W, metal Si, metal M (where M is Ti, W, periodic table group 4, 5, 6 elements, rare earth elements) A metal cathode containing one or more selected from the above, an alloy cathode obtained by compounding them, or a mixture cathode composed of a carbide, nitride, boride compound powder or sintered body thereof.

また、上記成膜装置にて上記各成膜工程を繰り返す手法によって、第1層7と第2層8とが2層以上交互に積層された構成の被覆層9を形成することができる。   In addition, the coating layer 9 having a configuration in which two or more first layers 7 and second layers 8 are alternately stacked can be formed by a method of repeating the respective film forming steps using the film forming apparatus.

平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.1質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.3質量%の割合で添加し混合して、プレス成形によりCNMG120408MS形状のスローアウェイチップ形状に成形した後、脱バインダ処理を施し、0.01Paの真空中、1450℃で1時間焼成して超硬合金を作製した。また、各試料のすくい面表面をブラスト加工、ブラシ加工等によって研磨加工した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。 Mainly composed of tungsten carbide (WC) powder having an average particle diameter of 0.8 μm, 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 μm, and vanadium carbide (VC) powder having an average particle diameter of 1.0 μm. Chromium carbide (Cr 3 C 2 ) powder of 0.1% by mass and average particle size of 1.0 μm was added and mixed at a rate of 0.3% by mass and formed into a throw-away tip shape of CNMG120408MS by press molding. Then, the binder removal process was performed, and it sintered at 1450 degreeC in the vacuum of 0.01 Pa for 1 hour, and produced the cemented carbide alloy. Further, the rake face surface of each sample was polished by blasting, brushing or the like. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.

このようにして作製した基体に対して、アークイオンプレーティングカソードとマグネトロンスパッタリングカソードとの両方を具備する成膜装置を用いて、表1に示す成膜条件によって種々の組成にて被覆層を成膜した。   A coating layer having various compositions is formed on the substrate thus prepared according to the film formation conditions shown in Table 1 using a film formation apparatus having both an arc ion plating cathode and a magnetron sputtering cathode. Filmed.

得られた試料に対して、被覆層の表面を含む断面について透過型電子顕微鏡(TEM)にて観察し、被覆層を構成する結晶の平均結晶幅を求めた。また、TEMにて観察する際に、各被覆層の任意3箇所における組成をエネルギー分散分光分析(EDS)によって測定し、これらの平均値を各被覆層の組成として算出した。さらに、被覆層中の分散粒子の有無、およびその組成を確認した。   With respect to the obtained sample, the cross section including the surface of the coating layer was observed with a transmission electron microscope (TEM), and the average crystal width of the crystals constituting the coating layer was determined. Moreover, when observing with TEM, the composition in arbitrary three places of each coating layer was measured by energy dispersive spectroscopy (EDS), and these average values were computed as a composition of each coating layer. Furthermore, the presence or absence of dispersed particles in the coating layer and the composition thereof were confirmed.

次に、得られた外径切削工具CNMG120408MS形状のスローアウェイチップを用いて以下の切削条件にて切削試験を行った。結果は表3に示した。   Next, a cutting test was performed under the following cutting conditions using the obtained outer diameter cutting tool CNMG120408MS throw-away tip. The results are shown in Table 3.

切削方法:外径旋削加工
被削材 :SUS304
切削速度:150m/分
送り :0.2mm/rev
切り込み:2.0mm
切削状態:湿式
評価方法:30分切削後の横逃げ面摩耗と先端摩耗、チッピングの有無を顕微鏡に
て測定した。

Figure 2009190091
Cutting method: Outer turning work material: SUS304
Cutting speed: 150 m / min Feed: 0.2 mm / rev
Cutting depth: 2.0mm
Cutting condition: Wet evaluation method: 30 minutes after cutting side flank wear, tip wear, and chipping
Measured.
Figure 2009190091

Figure 2009190091
Figure 2009190091

Figure 2009190091
Figure 2009190091

表1〜3に示す結果より、第2層が成膜されず第1層のみが成膜された構成からなる試料No.10では、チッピングが発生した。また、第2層が酸化物層ではなく窒化物層からなる試料No.13、14では、耐酸化性が不十分でありこのテストのように過酷な切削条件では耐摩耗性の低いものであった。さらに、第1層が金属M成分(Nb、Mo、Ta、HfおよびYから選ばれる少なくとも1種)を含有しない組成からなる試料No.11では耐摩耗性が悪く、第1層がWを含有しない組成からなる試料No.12では耐欠損性が低下した。   From the results shown in Tables 1 to 3, the sample No. 1 composed of the structure in which the second layer was not formed and only the first layer was formed. In No. 10, chipping occurred. Sample No. 2 in which the second layer is not an oxide layer but a nitride layer is used. Nos. 13 and 14 were insufficient in oxidation resistance and had low wear resistance under severe cutting conditions as in this test. Furthermore, the sample No. 1 is made of a composition in which the first layer does not contain a metal M component (at least one selected from Nb, Mo, Ta, Hf and Y). No. 11 has poor wear resistance, and the sample No. 1 in which the first layer has a composition containing no W is used. In No. 12, the fracture resistance decreased.

これに対して、本発明の範囲内である試料No.1〜10では、いずれも被覆層が耐欠損性および耐酸化性に優れて良好な切削性能を発揮した。   On the other hand, sample No. which is within the scope of the present invention. In each of Nos. 1 to 10, the coating layer was excellent in fracture resistance and oxidation resistance and exhibited good cutting performance.

実施例1の試料No.2の被覆層において、成膜温度550℃の条件で第1層0.2μm、第2層0.1μmの周期で25層積層した構成の被覆層とする以外は実施例1と同様に切削工具を作製し、同様に切削性能を評価した。その結果、チッピングの発生は見られず、摩耗幅も0.08mmと小さいものであった。   Sample No. 1 of Example 1 In the same manner as in Example 1, except that the coating layer of No. 2 was formed by laminating 25 layers with a cycle of a first layer of 0.2 μm and a second layer of 0.1 μm at a film forming temperature of 550 ° C. The cutting performance was similarly evaluated. As a result, no chipping was observed, and the wear width was as small as 0.08 mm.

本発明の切削工具の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the cutting tool of this invention. 図1の切削工具の第1の実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st embodiment of the cutting tool of FIG. 図1の切削工具の第2の実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd embodiment of the cutting tool of FIG.

符号の説明Explanation of symbols

1 切削工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6、9 被覆層
7 第1層
8 第2層
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Base | substrate 3 Rake face 4 Relief face 5 Cutting edge 6, 9 Coating layer 7 1st layer 8 2nd layer

Claims (6)

基体と、この基体の表面を被覆する被覆層とからなる切削工具であって、
前記被覆層が、
Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、HfおよびYから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる第1層と、
(Al1−hM’h(ただし、M’hはTi、Cr、Zr、Nb、Mo、Ta、HfおよびYから選ばれる1種以上、0≦h≦0.65、1≦w/v≦2.5)からなる第2層と
からなることを特徴とする切削工具。
A cutting tool comprising a base and a coating layer covering the surface of the base,
The coating layer is
Ti 1-a-b-c -d Al a W b Si c M d (C 1-x N x) ( where M is at least one Nb, Mo, Ta, selected from Hf and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1),
(Al 1-h M ′ h ) v O w (where M ′ h is one or more selected from Ti, Cr, Zr, Nb, Mo, Ta, Hf and Y, 0 ≦ h ≦ 0.65, 1 ≦ w / v ≦ 2.5). A cutting tool comprising the second layer.
前記第1層の膜厚は1〜7μm、前記第2層の膜厚は0.5〜5μmであることを特徴とする請求項1記載の切削工具。   The cutting tool according to claim 1, wherein the first layer has a thickness of 1 to 7 μm, and the second layer has a thickness of 0.5 to 5 μm. 前記第1層の平均結晶幅は0.01〜0.5μm、前記第2層の平均結晶幅は0.6〜3μmであることを特徴とする請求項1または2記載の切削工具。   The cutting tool according to claim 1 or 2, wherein the average crystal width of the first layer is 0.01 to 0.5 µm, and the average crystal width of the second layer is 0.6 to 3 µm. 前記第1層中に平均結晶粒径が0.05〜1μmの分散粒子が点在することを特徴とする請求項1乃至3のいずれか記載の切削工具。   The cutting tool according to any one of claims 1 to 3, wherein dispersed particles having an average crystal grain size of 0.05 to 1 µm are scattered in the first layer. 前記被覆層は、前記第1層と前記第2層とが2層以上交互に積層されてなることを特徴とする請求項1記載の切削工具。   The cutting tool according to claim 1, wherein the coating layer is formed by alternately laminating two or more layers of the first layer and the second layer. 前記第1層の各層の膜厚は0.02〜0.7μm、前記第2層の各層の膜厚は0.01〜0.5μmであり、前記第1層の総膜厚は1〜7μm、前記第2層の総膜厚は0.5〜5μmであることを特徴とする請求項5記載の切削工具。   The thickness of each layer of the first layer is 0.02 to 0.7 μm, the thickness of each layer of the second layer is 0.01 to 0.5 μm, and the total thickness of the first layer is 1 to 7 μm. The cutting tool according to claim 5, wherein the total film thickness of the second layer is 0.5 to 5 μm.
JP2008029915A 2008-02-12 2008-02-12 Cutting tools Active JP5121486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029915A JP5121486B2 (en) 2008-02-12 2008-02-12 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029915A JP5121486B2 (en) 2008-02-12 2008-02-12 Cutting tools

Publications (2)

Publication Number Publication Date
JP2009190091A true JP2009190091A (en) 2009-08-27
JP5121486B2 JP5121486B2 (en) 2013-01-16

Family

ID=41072589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029915A Active JP5121486B2 (en) 2008-02-12 2008-02-12 Cutting tools

Country Status (1)

Country Link
JP (1) JP5121486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334607A (en) * 1999-03-19 2000-12-05 Hitachi Tool Engineering Ltd Hard film coated tool
JP2002187008A (en) * 2000-12-22 2002-07-02 Mitsubishi Materials Corp Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP2002254228A (en) * 2001-02-27 2002-09-10 Mmc Kobelco Tool Kk Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2006150530A (en) * 2004-11-30 2006-06-15 Sumitomo Electric Ind Ltd Coating and cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334607A (en) * 1999-03-19 2000-12-05 Hitachi Tool Engineering Ltd Hard film coated tool
JP2002187008A (en) * 2000-12-22 2002-07-02 Mitsubishi Materials Corp Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP2002254228A (en) * 2001-02-27 2002-09-10 Mmc Kobelco Tool Kk Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2006150530A (en) * 2004-11-30 2006-06-15 Sumitomo Electric Ind Ltd Coating and cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool
US9725811B2 (en) 2013-03-04 2017-08-08 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
JP5121486B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP3996809B2 (en) Coated cutting tool
JP5542925B2 (en) Cutting tools
JP5052666B2 (en) Surface coating tool
JP5822997B2 (en) Cutting tools
JP4975193B2 (en) Cutting tools
JP4854359B2 (en) Surface coated cutting tool
JP2005271190A (en) Surface coated cutting tool
JPWO2010150335A1 (en) Coated cubic boron nitride sintered body tool
JP5174292B1 (en) Cutting tools
JP2008240079A (en) Coated member
JP5883161B2 (en) Cutting tools
JP6863649B1 (en) Cutting tools
WO2017073653A1 (en) Surface coated cutting tool
JP6642836B2 (en) Covered drill
JP2017154200A (en) Surface-coated cutting tool
JP2004042193A (en) Coated cutting tool
JP5003947B2 (en) Surface coated cutting tool
JP5023369B2 (en) Surface coated cutting tool
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP5070622B2 (en) Surface coated cutting tool
JP5121486B2 (en) Cutting tools
JP2021192930A (en) Cutting tool
WO2022230182A1 (en) Cutting tool
JP6092735B2 (en) Surface coating tool
JP2014144506A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150