JP2009189260A - Heat-sterilized milk, and method for producing the same - Google Patents
Heat-sterilized milk, and method for producing the same Download PDFInfo
- Publication number
- JP2009189260A JP2009189260A JP2008030981A JP2008030981A JP2009189260A JP 2009189260 A JP2009189260 A JP 2009189260A JP 2008030981 A JP2008030981 A JP 2008030981A JP 2008030981 A JP2008030981 A JP 2008030981A JP 2009189260 A JP2009189260 A JP 2009189260A
- Authority
- JP
- Japan
- Prior art keywords
- milk
- mass
- heat
- solid content
- sterilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008267 milk Substances 0.000 title claims abstract description 517
- 210000004080 milk Anatomy 0.000 title claims abstract description 517
- 235000013336 milk Nutrition 0.000 title claims abstract description 516
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 239000007787 solid Substances 0.000 claims abstract description 241
- 239000011575 calcium Substances 0.000 claims abstract description 192
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 192
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 191
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 56
- 239000002994 raw material Substances 0.000 claims abstract description 30
- 235000013861 fat-free Nutrition 0.000 claims description 171
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 60
- 239000003729 cation exchange resin Substances 0.000 claims description 53
- 239000002253 acid Substances 0.000 claims description 28
- 235000020183 skimmed milk Nutrition 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 23
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 235000020185 raw untreated milk Nutrition 0.000 claims description 19
- 238000011033 desalting Methods 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 239000004310 lactic acid Substances 0.000 claims description 11
- 235000014655 lactic acid Nutrition 0.000 claims description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 235000008939 whole milk Nutrition 0.000 claims description 7
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 6
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 6
- 239000001630 malic acid Substances 0.000 claims description 6
- 235000011090 malic acid Nutrition 0.000 claims description 6
- 239000011975 tartaric acid Substances 0.000 claims description 6
- 235000002906 tartaric acid Nutrition 0.000 claims description 6
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 230000001954 sterilising effect Effects 0.000 abstract description 42
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 41
- 238000001556 precipitation Methods 0.000 abstract description 24
- 239000003456 ion exchange resin Substances 0.000 abstract description 9
- 229920003303 ion-exchange polymer Polymers 0.000 abstract description 9
- 238000005342 ion exchange Methods 0.000 description 25
- 238000001728 nano-filtration Methods 0.000 description 23
- 239000000243 solution Substances 0.000 description 23
- 239000000839 emulsion Substances 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 19
- 239000000796 flavoring agent Substances 0.000 description 18
- 235000019634 flavors Nutrition 0.000 description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 14
- 238000010979 pH adjustment Methods 0.000 description 14
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 235000020200 pasteurised milk Nutrition 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 235000020191 long-life milk Nutrition 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical group [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 235000008476 powdered milk Nutrition 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 235000019643 salty taste Nutrition 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229960004106 citric acid Drugs 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- XONPDZSGENTBNJ-UHFFFAOYSA-N molecular hydrogen;sodium Chemical compound [Na].[H][H] XONPDZSGENTBNJ-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011026 diafiltration Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000006920 protein precipitation Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 235000019600 saltiness Nutrition 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 235000019614 sour taste Nutrition 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Dairy Products (AREA)
Abstract
Description
本発明は、加熱殺菌乳及びその製造方法に関する。 The present invention relates to heat-sterilized milk and a method for producing the same.
乳類は殺菌などの高温条件下におかれることによって、色が褐色を帯びる褐変化や、蛋白質の凝集物による沈殿等の現象を起こす等、熱に対して不安定であることが知られている。しかしながら乳類を長期保存するには、低温殺菌では殺菌されない芽胞菌などを殺菌する必要があり、高温条件下での殺菌が欠かせなく、古くから乳液の熱安定性の向上が研究されてきた。 Milk is known to be unstable to heat, such as when it is subjected to high-temperature conditions such as sterilization, it causes browning that changes its color to brown and precipitation due to protein aggregates. Yes. However, in order to preserve milk for a long period of time, it is necessary to sterilize spores that cannot be sterilized by pasteurization, and sterilization under high temperature conditions is indispensable. .
乳類の熱安定性を向上させる方法としては、イオン交換樹脂と乳類を接触させることにより、カルシウムを除去する方法が知られている。
例えば、非特許文献1では、イオン交換樹脂を用いて乳類のカルシウムを除去する際、カルシウムをナトリウムに交換する方法が開示されている。しかしながら、この方法では、イオン交換後に乳類のpHが上がってしまうことが知られている。また、高温条件下で加熱殺菌をおこなった際の沈殿(例えばカード等)は軽減されるものの完全ではなく、褐変化も改善されていない。更には、乳類中のナトリウムが増加するため塩味が強くなる等の風味上の問題もあった。
そこで、特許文献1では、イオン交換樹脂を用いて乳類のカルシウムを除去する際、イオン交換後の乳類を本来中性である乳類と同じpHとする方法が開示されている。具体的には、イオン交換の際にカルシウムを、ナトリウムだけでなく水素イオンとも交換する方法である。
その他、カルシウムを除去した乳類として、特許文献2には、乳類を酸処理した後でイオン交換樹脂と接触させてカルシウムを除去した、酸性飲用原料が開示されている。
For example, Non-Patent Document 1 discloses a method of exchanging calcium for sodium when removing calcium from milk using an ion exchange resin. However, this method is known to increase the pH of milk after ion exchange. Moreover, although precipitation (for example, curd etc.) at the time of heat sterilization under high temperature conditions is reduced, it is not complete, and browning is not improved. Furthermore, there is a problem in flavor such as an increase in sodium in milk resulting in a strong salty taste.
Therefore, Patent Document 1 discloses a method in which milk after ion exchange is made to have the same pH as milk that is originally neutral when removing calcium from milk using an ion exchange resin. Specifically, in the ion exchange, calcium is exchanged not only with sodium but also with hydrogen ions.
In addition, as milk from which calcium has been removed, Patent Literature 2 discloses an acidic drinking raw material in which milk is acid-treated and then contacted with an ion exchange resin to remove calcium.
しかしながら、特許文献1に記載の方法を追試した結果(後述の例16参照)、イオン交換の際、一時的に乳類のpHが低下し、これにより蛋白質による沈殿が発生するという問題があった。蛋白質による沈殿が発生した場合、イオン交換樹脂のカラムが詰まる他、イオン交換後の樹脂の洗浄が煩雑になる。また、イオン交換後の乳類についても、高温条件下の加熱殺菌をおこなった際の沈殿を完全に防ぐことができず、更には塩味が強いという風味上の問題も解決されなかった。
また、特許文献2に記載の方法は、本来熱安定性の向上を目的としていない。しかし、追試した結果(後述の例17参照)、この方法により最終的に得られた酸性飲用原料の熱安定性は良好であることが分かった。ところが、酸処理後の乳類の安定性が非常に悪く、イオン交換処理のために加熱をすると、大量の容器への付着および、沈殿が発生してしまうため、濾過をしてからイオン交換処理をする必要があった。また、風味も酸味が強いものであり、乳原料としては使い難いという問題があった。
However, as a result of reexamining the method described in Patent Document 1 (see Example 16 to be described later), there was a problem that the pH of milk was temporarily lowered during ion exchange, thereby causing precipitation due to protein. . When protein precipitation occurs, the ion exchange resin column becomes clogged and the resin washing after ion exchange becomes complicated. In addition, the milk after ion exchange could not completely prevent precipitation upon heat sterilization under high temperature conditions, and further, the flavor problem of strong saltiness was not solved.
In addition, the method described in Patent Document 2 is not originally intended to improve thermal stability. However, as a result of additional tests (see Example 17 described later), it was found that the thermal stability of the acidic drinking raw material finally obtained by this method is good. However, the stability of milk after acid treatment is very poor, and heating for ion exchange treatment causes adhesion and precipitation to a large amount of containers. It was necessary to do. Moreover, there is a problem that the flavor is sour so that it is difficult to use as a milk material.
本発明は、上記事情を鑑みてなされたもので、熱安定性に優れた加熱殺菌乳の製造方法及び加熱殺菌乳を提供することを目的とする。より具体的には、高温条件下での殺菌でも沈殿が起きにくく、更には、褐変化を起こしにくい加熱殺菌乳の製造方法及び加熱殺菌乳を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of heat pasteurized milk excellent in heat stability, and heat pasteurized milk. More specifically, an object of the present invention is to provide a method for producing heat-sterilized milk and a heat-sterilized milk that hardly cause precipitation even when sterilized under high-temperature conditions, and that hardly cause browning.
本発明の加熱殺菌乳の製造方法は、原料乳と陽イオン交換樹脂とを接触させ、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得る第1工程と、該脱カルシウム乳のpHを5.7〜6.5に調整してpH調整乳を得る第2工程と、該pH調整乳を加熱殺菌する第3工程とを有することを特徴とする。 In the method for producing heat-sterilized milk of the present invention, raw milk and cation exchange resin are brought into contact with each other, and the calcium content (mg / 100 g) / non-fat milk solid content (mass%) is 5.2 or less. A first step for obtaining milk, a second step for obtaining pH-adjusted milk by adjusting the pH of the decalcified milk to 5.7 to 6.5, and a third step for heat-sterilizing the pH-adjusted milk It is characterized by that.
本発明の加熱殺菌乳の製造方法は、原料乳と陽イオン交換樹脂とを接触させてイオン交換乳を得、該イオン交換乳と原料乳とを混合することで、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得る第1工程と、該脱カルシウム乳のpHを5.7〜6.5に調整してpH調整乳を得る第2工程と、該pH調整乳を加熱殺菌する第3工程とを有することを特徴とする。 In the method for producing heat-sterilized milk of the present invention, raw material milk and a cation exchange resin are brought into contact to obtain ion-exchanged milk, and the ion-exchanged milk and raw material milk are mixed to obtain a calcium content (mg / 100 g ) / First step of obtaining a decalcified milk having a non-fat milk solid content (mass%) of 5.2 or less, and adjusting the pH of the decalcified milk to 5.7 to 6.5. It has the 2nd process to obtain, and the 3rd process which heat-sterilizes this pH adjustment milk, It is characterized by the above-mentioned.
本発明の加熱殺菌乳の製造方法では、前記第2工程が、脱カルシウム乳に酸を添加する工程であると好ましい。
本発明の加熱殺菌乳の製造方法では、前記酸が、塩酸、炭酸、リン酸、乳酸、硫酸、リンゴ酸、酒石酸のいずれかより選択される酸であると好ましい。
本発明の加熱殺菌乳の製造方法では、前記酸が塩酸であると好ましい。
本発明の加熱殺菌乳の製造方法では、前記第2工程と第3工程との間で、pH調整乳を脱塩濃縮処理して1価イオンを除去すると好ましい。
本発明の加熱殺菌乳の製造方法では、前記原料乳が、全脂乳、全脂濃縮乳、全脂粉乳溶解液、脱脂乳、脱脂濃縮乳、脱脂粉乳溶解液のいずれかであると好ましい。
本発明の加熱殺菌乳は、上記いずれかの製造方法で得られることを特徴とする。
In the method for producing heat-sterilized milk of the present invention, the second step is preferably a step of adding an acid to decalcified milk.
In the method for producing heat-sterilized milk of the present invention, the acid is preferably an acid selected from hydrochloric acid, carbonic acid, phosphoric acid, lactic acid, sulfuric acid, malic acid, and tartaric acid.
In the method for producing heat-sterilized milk of the present invention, the acid is preferably hydrochloric acid.
In the method for producing heat-sterilized milk of the present invention, it is preferable that the pH-adjusted milk is desalted and concentrated to remove monovalent ions between the second step and the third step.
In the method for producing heat-sterilized milk of the present invention, it is preferable that the raw material milk is any of full-fat milk, full-fat concentrated milk, full-fat powdered milk solution, skim milk, skim-fat concentrated milk, and skim milk powder solution.
The heat-sterilized milk of the present invention is obtained by any one of the above production methods.
本発明の製造方法によれば、熱安定性に優れた、風味の良い加熱殺菌乳を提供できる。より具体的には、高温条件下での殺菌でも沈殿が起きにくく、更には、褐変化を起こしにくい加熱殺菌乳が提供できる。更に、製造工程においてカードの発生等がない製造方法を提供できる。 According to the production method of the present invention, it is possible to provide a heat-sterilized milk excellent in thermal stability and having a good flavor. More specifically, it is possible to provide heat-sterilized milk that does not easily precipitate even when sterilized under high-temperature conditions, and that hardly undergoes browning. Furthermore, it is possible to provide a manufacturing method in which no card is generated in the manufacturing process.
以下、本発明の加熱殺菌乳の製造方法及び加熱殺菌乳について詳細に説明する。 Hereinafter, the manufacturing method and heat pasteurized milk of the heat-sterilized milk of this invention are demonstrated in detail.
〔加熱殺菌乳の製造方法〕
本発明の加熱殺菌乳の製造方法は、原料乳と陽イオン交換樹脂とを接触させ、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得る第1工程と、該脱カルシウム乳のpHを5.7〜6.5に調整してpH調整乳を得る第2工程と、該pH調整乳を加熱殺菌する第3工程とを有することを特徴とする(第1の態様)。
なお、第1工程は、原料乳と陽イオン交換樹脂とを接触させてイオン交換乳を得、該イオン交換乳と原料乳とを混合することで、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得ることを特徴としてもよい(第2の態様)。
[Production method of heat pasteurized milk]
The method for producing heat-sterilized milk of the present invention comprises decalcification in which raw milk is brought into contact with a cation exchange resin and the calcium content (mg / 100 g) / non-fat milk solid content (mass%) is 5.2 or less. A first step for obtaining milk; a second step for obtaining pH-adjusted milk by adjusting the pH of the decalcified milk to 5.7 to 6.5; and a third step for heat-sterilizing the pH-adjusted milk. (First aspect).
In the first step, raw material milk and a cation exchange resin are brought into contact to obtain ion-exchanged milk, and the ion-exchanged milk and raw material milk are mixed to obtain a calcium content (mg / 100 g) / non-fat. A decalcified milk having a milk solid content (mass%) of 5.2 or less may be obtained (second embodiment).
本発明において、固形分とは、水分を除いた成分を意味する。更に、無脂乳固形分とは、固形分より脂質を除いた成分を意味する。
本発明において、カルシウム含有量とは、原料乳、イオン交換乳、脱カルシウム乳、加熱殺菌乳等が含有する100gあたりのカルシウム量を示している。
また、本発明における無脂乳固形分あたりのカルシウム含有量とは、乳中のカルシウム含有量を無脂乳固形分で割った値(カルシウム含有量(mg/100g)/無脂乳固形分(質量%))を意味する。
In the present invention, the solid content means a component excluding moisture. Furthermore, non-fat milk solid content means the component remove | excluding lipid from solid content.
In the present invention, the calcium content indicates the amount of calcium per 100 g contained in raw milk, ion-exchange milk, decalcified milk, heat-sterilized milk, and the like.
The calcium content per non-fat milk solid content in the present invention is the value obtained by dividing the calcium content in milk by the non-fat milk solid content (calcium content (mg / 100 g) / non-fat milk solid content ( Mass%)).
(第1工程)
まず、原料乳と陽イオン交換樹脂とを接触させて、イオン交換乳を得る。
本発明の加熱殺菌乳を得るにあたり、原料乳としては、生乳(全脂乳)あるいは、生乳を常法によりクリームセパレータで脂肪分を分離除去することにより調製された脱脂乳を使用することができる。簡便には、市販の牛乳、脱脂乳を使用することもできる。また、これらを適切な濃度の溶液として調製し使用することもできる。その他、全脂濃縮乳、脱脂濃縮乳、全脂粉、脱脂乳、脱脂粉乳を適切な濃度の溶液として調整し使用することもできる。更には、乳類に限外濾過、マイクロフィルトレーション等の膜処理を施したもの等、乳蛋白を含有する乳類を使用することもできる。
(First step)
First, raw material milk and a cation exchange resin are contacted to obtain ion exchange milk.
In obtaining the heat-sterilized milk of the present invention, raw milk (whole milk) or skim milk prepared by separating and removing fat from a raw milk with a cream separator can be used as raw material milk. . For convenience, commercially available milk and skim milk can also be used. Moreover, these can also be prepared and used as a solution of a suitable density | concentration. In addition, full-fat concentrated milk, non-fat concentrated milk, full-fat powder, non-fat milk, and non-fat dry milk can be prepared and used as a solution having an appropriate concentration. Furthermore, milk containing milk protein, such as those obtained by subjecting milk to membrane treatment such as ultrafiltration and microfiltration, can also be used.
なお、第1工程にてカルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得るには、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が10〜15.6である原料乳を用いることが好ましい。
例えば、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が10である原料乳を用いると、カルシウムを無脂乳固形分基準で48.0%以上除去すれば、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)を5.2以下とすることができる。
本発明においてカルシウム除去率は無脂乳固形分基準で求める。具体的な算出方法は、後述の実施例において説明する。
In addition, in order to obtain decalcified milk whose calcium content (mg / 100 g) / non-fat milk solid content (mass%) is 5.2 or less in the first step, calcium content (mg / 100 g) / none It is preferable to use raw material milk whose fat milk solid content (mass%) is 10 to 15.6.
For example, when raw material milk having a calcium content (mg / 100 g) / non-fat milk solid content (mass%) of 10 is used, if calcium is removed by 48.0% or more based on the non-fat milk solid content, the calcium content The amount (mg / 100 g) / non-fat milk solid content (mass%) can be made 5.2 or less.
In this invention, a calcium removal rate is calculated | required on the basis of non-fat milk solid content. A specific calculation method will be described in an example described later.
本発明で使用する陽イオン交換樹脂としては、カルシウムを交換除去する性質を持つ陽イオン交換樹脂を使用することができる。具体的には、陽イオン交換樹脂として、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、金属キレート樹脂等を使用することができる。 As the cation exchange resin used in the present invention, a cation exchange resin having a property of exchanging and removing calcium can be used. Specifically, a strong acid cation exchange resin, a weak acid cation exchange resin, a metal chelate resin, or the like can be used as the cation exchange resin.
陽イオン交換樹脂の交換基としては、ナトリウム形、カリウム形、水素イオン形などを使用することができ、これらを組み合わせたものであってもよい。
原料乳中のカルシウムを、陽イオン交換樹脂を用いて除去する際、原料乳のpHが下がると蛋白質による沈殿が発生しやすくなるので、一時的でもpHが下がりすぎないようにすることが必要である。pHを下げないためには、ナトリウム形やカリウム形、またはこれらを組み合わせて使用することが好ましい。しかし、交換基がナトリウム形のみであると塩味が強く、カリウム形のみであると苦味が強くなるので、ナトリウム形とカリウム形の交換基を組み合わせたナトリウム‐カリウム混合形を使用するとより好ましい。
ナトリウム‐カリウム混合形の陽イオン交換樹脂を得る方法としては、ナトリウム形交換基、カリウム形交換基をそれぞれ有する陽イオン交換樹脂を任意の割合で混合する方法が挙げられる。また、陽イオン交換樹脂を再生させる際の再生液を塩化ナトリウムと塩化カリウムの混合溶液として、一度の再生でナトリウム形とカリウム形の交換基を混在させた陽イオン交換樹脂を調製してもよい。特に、再生の容易さや設備の簡便さ、実製造での作業適合性から、後者のナトリウム形とカリウム形の交換基を混在させた陽イオン交換樹脂を調製する方法が好ましい。
As an exchange group of the cation exchange resin, a sodium form, a potassium form, a hydrogen ion form, or the like can be used, or a combination thereof may be used.
When removing calcium from raw milk using a cation exchange resin, protein precipitation tends to occur when the pH of the raw milk drops, so it is necessary to prevent the pH from dropping too low even temporarily. is there. In order not to lower the pH, it is preferable to use sodium form, potassium form, or a combination thereof. However, since the salty taste is strong when the exchange group is only in the sodium form, and the bitter taste is strong when the exchange form is only the potassium form, it is more preferable to use a sodium-potassium mixed form in which sodium and potassium form exchange groups are combined.
Examples of a method for obtaining a sodium-potassium mixed cation exchange resin include a method of mixing cation exchange resins each having a sodium-type exchange group and a potassium-type exchange group at an arbitrary ratio. Alternatively, a regeneration solution for regenerating the cation exchange resin may be prepared as a mixed solution of sodium chloride and potassium chloride to prepare a cation exchange resin in which sodium-type and potassium-type exchange groups are mixed in a single regeneration. . In particular, the latter method of preparing a cation exchange resin in which sodium-type and potassium-type exchange groups are mixed is preferable from the viewpoint of ease of regeneration, ease of equipment, and workability in actual production.
陽イオン交換樹脂を用いて、原料乳中のカルシウムを除去する際、原料乳の温度は、5℃前後の低温から60℃以上の高温まで選択されうる。
しかしながら、原料乳の温度が低いとイオン交換の反応性が悪い。そのため、陽イオン交換樹脂を充填したカラムに原料乳を通液させる際、熱安定性が得られるカルシウム除去率を維持するために、通液速度を下げる必要がある。通液効率が悪いと、カルシウムの除去に長時間を要し、非効率的で工業的に実施することは困難である。逆に温度が高いほどイオン交換の反応性が良いため、カルシウムの除去効率が良く、カラムにおける通液効率が高く、好ましい。
具体的には原料乳を陽イオン交換樹脂に接触させる際の原料乳の温度は、40℃以上が好ましく、55℃以上がより好ましい。
但し高温すぎると、乳成分の熱変化の問題が生じるので、75℃以下が好ましい。
When removing calcium from raw milk using a cation exchange resin, the temperature of the raw milk can be selected from a low temperature around 5 ° C. to a high temperature above 60 ° C.
However, if the temperature of the raw milk is low, the ion exchange reactivity is poor. For this reason, when the raw material milk is passed through a column filled with a cation exchange resin, it is necessary to lower the liquid passing speed in order to maintain a calcium removal rate that provides thermal stability. If the liquid passing efficiency is poor, it takes a long time to remove calcium, which is inefficient and difficult to implement industrially. Conversely, the higher the temperature, the better the ion exchange reactivity, so the calcium removal efficiency is better, and the liquid flow efficiency in the column is higher, which is preferable.
Specifically, the temperature of the raw material milk when the raw material milk is brought into contact with the cation exchange resin is preferably 40 ° C. or higher, and more preferably 55 ° C. or higher.
However, if the temperature is too high, the problem of heat change of milk components occurs, so 75 ° C. or lower is preferable.
原料乳と陽イオン交換樹脂とを接触させる方法としては、原料乳中に陽イオン交換樹脂を直接投入して攪拌、接触させるバッチ方式と、陽イオン交換樹脂を充填したカラムに原料乳を通液する方式が知られている。中でも,イオン交換乳のカルシウム除去率が高く、連続的に処理が可能で製造効率が良いことから、カラムを用いる方法が好ましい。
なお、樹脂を充填したカラムに液を通液する際によく用いられる単位にSVがある。SVはSpace Velocity(空間速度)の略で、1時間当たり樹脂量の何倍量の液を通過させるかを表した値である。例えば、1時間当たり樹脂量の2倍量の液を通過させる速度をSV2と表現する。
本発明では、SVが3〜5程度であると、乳中からカルシウムを効率的に除去できるので好ましい。
The raw milk and the cation exchange resin are brought into contact with each other as a batch system in which the cation exchange resin is directly put into the raw milk and stirred and contacted, and the raw milk is passed through a column filled with the cation exchange resin. A method for doing this is known. Among them, the method using a column is preferable because the calcium removal rate of ion-exchanged milk is high, it can be continuously processed, and the production efficiency is good.
Note that SV is a unit often used when liquid is passed through a column filled with resin. SV is an abbreviation for Space Velocity (space velocity) and is a value representing how many times the amount of resin per hour is allowed to pass through. For example, a speed at which a liquid twice the amount of resin per hour is passed is expressed as SV2.
In the present invention, an SV of about 3 to 5 is preferable because calcium can be efficiently removed from milk.
第1工程では、上記の原料乳と陽イオン交換樹脂とを接触させて、得られたイオン交換乳より本発明の脱カルシウム乳を得ると好ましい。
本発明の脱カルシウム乳は、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下であり、3.8以下であると更に好ましい。
カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下であれば沈殿が生じ難くなり、高い熱安定性を得ることができる。なお、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2を超えると、沈殿が生じやすくなり、望ましい熱安定性が得られない。
In the first step, it is preferable to obtain the decalcified milk of the present invention from the obtained ion exchange milk by bringing the raw material milk into contact with the cation exchange resin.
The decalcified milk of the present invention has a calcium content (mg / 100 g) / non-fat milk solid content (mass%) of 5.2 or less, and more preferably 3.8 or less.
If the calcium content (mg / 100 g) / non-fat milk solid content (mass%) is 5.2 or less, precipitation hardly occurs and high thermal stability can be obtained. In addition, when calcium content (mg / 100g) / non-fat milk solid content (mass%) exceeds 5.2, precipitation will occur easily and desired thermal stability cannot be obtained.
本発明の第1の態様では、イオン交換乳を、そのまま脱カルシウム乳とする。第1の態様は、高いカルシウム除去率が得られるので、より高い熱安定性が要求される製品の製造の際に用いると好ましい。
また、本発明の第2の態様では、原料乳と陽イオン交換樹脂とを接触させて得るイオン交換乳と、原料乳とを混合して、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下である脱カルシウム乳を得る。第2の態様は、製品のカルシウム除去率を一定に保つことで、均一な品質の製品を製造することができ、製品品質の管理上好ましい。
In the first aspect of the present invention, the ion-exchange milk is directly used as decalcified milk. Since the high calcium removal rate is obtained in the first aspect, it is preferable to use it in the manufacture of a product that requires higher thermal stability.
In the second aspect of the present invention, the ion-exchanged milk obtained by bringing the raw material milk and the cation exchange resin into contact with the raw material milk is mixed to obtain a calcium content (mg / 100 g) / non-fat milk solid. A decalcified milk having a minute (mass%) of 5.2 or less is obtained. A 2nd aspect can manufacture a product of uniform quality by keeping the calcium removal rate of a product constant, and is preferable on the management of product quality.
(第2工程)
第1工程で得られた脱カルシウム乳のpHを調整し、pH調整乳を得る。
(Second step)
The pH of the decalcified milk obtained in the first step is adjusted to obtain pH adjusted milk.
pHの調整方法としては、酸を添加して調整する方法、水素イオン形の交換基を若干含む陽イオン交換樹脂を接触させて調整する方法等が挙げられる。中でも、酸を添加することによりpHを調整する方法は、pH調整の作業性が簡便であることからより好ましい方法である。 Examples of the pH adjusting method include a method of adjusting by adding an acid, a method of adjusting by contacting a cation exchange resin containing some hydrogen ion-type exchange groups, and the like. Especially, the method of adjusting pH by adding an acid is a more preferable method from the workability of pH adjustment being simple.
通常の乳液は、pHを低下させると凝固し、加熱時に付着が生じる要因となる。従って本発明の製造方法では、原料乳中のカルシウムを、陽イオン交換樹脂を用いて除去した後に酸を添加する。
使用する酸は強酸、弱酸いずれでも食品に用いられる酸は使用することができる。具体的には塩酸、炭酸(炭酸ガス)、リン酸、クエン酸、乳酸、硫酸、リンゴ酸、酒石酸、コハク酸、酢酸等が挙げられる。中でも、風味の面から塩酸、炭酸、乳酸、硫酸、リン酸、リンゴ酸、または酒石酸を用いることが好ましく、更に、乳風味の良好さから塩酸、炭酸、または乳酸を用いることがより好ましい。特に好ましくは、物性及び安定性の面で使用しやすく、ナノ濾過処理の脱塩効率が向上する塩酸を用いることが好ましい。なお、炭酸を用いた場合、殺菌の条件により第3工程中に炭酸成分が失われ、pHが上昇し褐変化を起こすことがあるので、殺菌条件を考慮することが好ましい。
また、これらのpH調整方法は組み合わせて使用することもできる。
Ordinary emulsions coagulate when the pH is lowered and become a cause of adhesion during heating. Therefore, in the production method of the present invention, the calcium in the raw milk is removed using a cation exchange resin, and then the acid is added.
The acid used can be either a strong acid or a weak acid. Specific examples include hydrochloric acid, carbonic acid (carbon dioxide gas), phosphoric acid, citric acid, lactic acid, sulfuric acid, malic acid, tartaric acid, succinic acid, acetic acid, and the like. Among these, hydrochloric acid, carbonic acid, lactic acid, sulfuric acid, phosphoric acid, malic acid, or tartaric acid is preferably used from the aspect of flavor, and hydrochloric acid, carbonic acid, or lactic acid is more preferably used from the viewpoint of milk flavor. It is particularly preferable to use hydrochloric acid that is easy to use in terms of physical properties and stability and improves the desalting efficiency of the nanofiltration treatment. In addition, when carbonic acid is used, it is preferable to consider the sterilization conditions because the carbonic acid component may be lost during the third step due to the sterilization conditions, and the pH may increase and browning may occur.
Moreover, these pH adjustment methods can also be used in combination.
第2工程では、以上のpH調整方法にて、脱カルシウム乳のpHを5.7〜6.5に調整し、pH調整乳を得る。pHが6.5以下であれば高温条件下の加熱殺菌において沈殿や褐変化が生じ難くなり、熱安定性を得ることができる。しかしながら、pHが低ければ低いほど良いというものでもなく、pHが5.7未満であると、再び沈殿が生じ易い状態となり、熱安定性を得られなくなる。 In the second step, the pH of the decalcified milk is adjusted to 5.7 to 6.5 by the above pH adjustment method to obtain pH adjusted milk. If pH is 6.5 or less, precipitation and browning change hardly occur in heat sterilization under high temperature conditions, and thermal stability can be obtained. However, the lower the pH, the better. If the pH is less than 5.7, precipitation tends to occur again, and thermal stability cannot be obtained.
(脱塩濃縮処理)
以上の方法により得られたpH調整乳は、第3工程前に、脱塩濃縮処理を施すと好ましい。
乳類に、脱塩濃縮処理を施すと、ナトリウム、カリウム、塩素等の1価イオンの含有量を減少させ、より風味良好な乳類を得ることができる。脱塩濃縮処理方法としては、ナノ濾過、電気透析等が挙げられる。中でも、ナノ濾過は装置が簡便で、製造が容易であるので好ましい。
ナノ濾過では、細孔径が1〜10nmの範囲にあり、主として1価のイオンと水を透過するナノ濾過膜を用いて濾過を行う。
ナノ濾過においては、適切な風味になるまで脱塩濃縮することができ、さらに必要ならば加水して再度脱塩濃縮するダイアフィルトレーションの処理を行っても良い。なお、以下の説明においては、このpH調整乳を脱塩濃縮したものを、脱塩濃縮pH調整乳と称する。
また、脱カルシウム乳のpH調整に塩酸を用いた場合、ナノ濾過による脱塩効率が著しく上がる傾向にあることがわかった。従って、塩酸を用いてpHの調整を行った後、ナノ濾過処理を行うと、風味改善効果が大きいため好ましい。
(Desalination and concentration treatment)
The pH-adjusted milk obtained by the above method is preferably subjected to a desalting and concentration treatment before the third step.
When a desalting and concentration treatment is performed on milk, the content of monovalent ions such as sodium, potassium, and chlorine can be reduced, and milk with better flavor can be obtained. Examples of the desalting concentration treatment method include nanofiltration and electrodialysis. Among these, nanofiltration is preferable because the apparatus is simple and easy to manufacture.
In nanofiltration, filtration is performed using a nanofiltration membrane having a pore diameter in the range of 1 to 10 nm and mainly permeable to monovalent ions and water.
In the nanofiltration, desalting and concentration can be performed until an appropriate flavor is obtained, and if necessary, diafiltration may be performed by adding water and desalting and concentrating again. In the following description, the desalted and concentrated pH-adjusted milk is referred to as desalted and concentrated pH-adjusted milk.
Moreover, when hydrochloric acid was used for pH adjustment of decalcified milk, it turned out that the desalting efficiency by nanofiltration tends to increase remarkably. Therefore, it is preferable to adjust the pH using hydrochloric acid and then perform nanofiltration treatment because the flavor improving effect is large.
(第3工程)
第3工程では、第2工程で得られたpH調整乳(又は脱塩濃縮pH調整乳)を加熱殺菌して、本発明の加熱殺菌乳を得る。
加熱殺菌の方法としては直接加熱法、間接加熱法等が挙げられる。
直接加熱法としては、インフュージョン式及びインジェクション式等がある。
間接加熱法としては、プレート式、チューブラ式、掻き取り式等がある。
加熱殺菌にあたり、加熱殺菌温度は63℃であると好ましく、125℃以上であると更に好ましい。加熱殺菌温度が125℃以上であれば、十分な殺菌効果が得られる。
加熱殺菌温度と加熱殺菌時間の組み合わせとしては、加熱殺菌温度を63℃として加熱殺菌時間を30分とするもの、加熱殺菌温度を125℃として加熱殺菌時間を2〜30秒とするもの、加熱殺菌温度を135℃として加熱殺菌時間を2〜30秒とするものなどが挙げられる。
本発明の加熱殺菌乳は、例えば、加熱殺菌温度が121℃、加熱殺菌時間が10分のような高温度、長時間の加熱殺菌にも耐えうるものである。
(Third step)
In the third step, the pH-adjusted milk (or desalted and concentrated pH-adjusted milk) obtained in the second step is heat sterilized to obtain the heat sterilized milk of the present invention.
Examples of the heat sterilization method include a direct heating method and an indirect heating method.
Examples of the direct heating method include an infusion method and an injection method.
Examples of the indirect heating method include a plate type, a tubular type, and a scraping type.
In heat sterilization, the heat sterilization temperature is preferably 63 ° C, and more preferably 125 ° C or higher. If the heat sterilization temperature is 125 ° C. or higher, a sufficient sterilization effect can be obtained.
As the combination of the heat sterilization temperature and the heat sterilization time, the heat sterilization temperature is 63 ° C. and the heat sterilization time is 30 minutes, the heat sterilization temperature is 125 ° C. and the heat sterilization time is 2 to 30 seconds, Examples include a temperature of 135 ° C. and a heat sterilization time of 2 to 30 seconds.
The heat sterilized milk of the present invention can withstand heat sterilization at a high temperature such as a heat sterilization temperature of 121 ° C. and a heat sterilization time of 10 minutes, for example.
本発明の製造方法は、以上の3工程より構成されるため、製造中にカード等の凝集物が途中で発生することなく、効率的に熱安定性の優れた加熱殺菌乳を得ることが可能である。
なお、得られた加熱殺菌乳を、濃縮して熱安定性の優れた加熱殺菌濃縮乳を得てもよい。更に、得られた加熱殺菌乳を、濃縮、乾燥して熱安定性の優れた加熱殺菌粉乳を得ることもできる。
Since the production method of the present invention is composed of the above three steps, it is possible to efficiently obtain heat-sterilized milk having excellent thermal stability without producing aggregates such as cards during production. It is.
In addition, you may concentrate the obtained heat pasteurized milk and obtain the heat pasteurized concentrated milk excellent in heat stability. Furthermore, the heat-sterilized milk powder obtained can be concentrated and dried to obtain heat-sterilized milk powder having excellent heat stability.
〔加熱殺菌乳〕
本発明の加熱殺菌乳は、上記製造方法で得られることを特徴とする。
上記方法にて得られた加熱殺菌乳は、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)が5.2以下かつ、pHが5.7〜6.5の範囲のものであり、熱安定性が良く、再度殺菌、滅菌処理をしても耐えうるものであり、高温条件下における滅菌処理を長時間施しても褐変化、沈殿(カード生成等)が抑えられる。
更に、本発明の加熱殺菌乳より得られた、乳類(例えば、加熱殺菌濃縮乳、加熱殺菌粉乳および該粉乳の溶解液など)は、いずれの形態でも熱安定性が良く、再度殺菌、滅菌処理をしても耐えうるものであり、高温条件下における滅菌処理を長時間施しても褐変化、沈殿(カード生成等)が抑えられる。
[Heat pasteurized milk]
The heat-sterilized milk of the present invention is obtained by the above production method.
The heat-sterilized milk obtained by the above method has a calcium content (mg / 100 g) / non-fat milk solid content (mass%) of 5.2 or less and a pH in the range of 5.7 to 6.5. It has good thermal stability and can withstand sterilization and sterilization again, and browning and precipitation (curd formation, etc.) can be suppressed even after sterilization under high temperature conditions for a long time.
Furthermore, milk obtained from the heat-sterilized milk of the present invention (for example, heat-sterilized concentrated milk, heat-sterilized powdered milk, and a solution of the milk powder) has good heat stability in any form, and is sterilized and sterilized again. Even if it is treated, it can be tolerated, and browning and precipitation (curd formation etc.) can be suppressed even if sterilization treatment is performed for a long time under high temperature conditions.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
また、各例における各物性は以下の方法で測定した。
なお、以下の各例において途中段階におけるカルシウム含有量などの測定は適宜省略しているが、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が、pH調整、加熱殺菌、濃縮、又は乾燥工程によって実質的に変化することはないと考えられる。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
Each physical property in each example was measured by the following method.
In the following examples, measurement of calcium content and the like in the middle stage is omitted as appropriate, but calcium content (mg / 100 g) per non-fat milk solid content (mass%) is adjusted to pH, heat sterilization It is believed that there is no substantial change due to the concentration, or drying process.
〔カルシウム含有量〕
カルシウム測定装置である平沼産業社製のCM−212 CA/MG COUNTERを用い、乳液中のカルシウム含有量を測定した。
[Calcium content]
The calcium content in the emulsion was measured using CM-212 CA / MG COUNTER manufactured by Hiranuma Sangyo Co., Ltd., which is a calcium measuring device.
〔固形分〕
水分測定装置であるCEM社製のSMARTSystem5を用い、乳液の固形分を測定した。
[Solid content]
The solid content of the emulsion was measured using a SMART System 5 manufactured by CEM, which is a moisture measuring device.
〔無脂乳固形分〕
一般的な手法にて脂肪分を測定し、固形分から脂肪分を引いた値を無脂乳固形分とした。
[Fat-free milk solids]
The fat content was measured by a general method, and the value obtained by subtracting the fat content from the solid content was defined as the non-fat milk solid content.
〔カルシウムの無脂乳固形分基準の除去率〕
下式に従って、無脂乳固形分基準のカルシウム除去率を求めた。
なお、下式において、A:原料乳のカルシウム含有量(mg/100g)、B:カルシウムを除去した乳のカルシウム含有量(mg/100g)、C:原料乳における無脂乳固形分(質量%)、D:カルシウムを除去した乳における無脂乳固形分(質量%)とする。
[Removal rate of calcium based non-fat milk solid content]
According to the following formula, the calcium removal rate based on the non-fat milk solid content was determined.
In the following formula, A: calcium content of raw milk (mg / 100 g), B: calcium content of milk from which calcium has been removed (mg / 100 g), C: non-fat milk solid content (mass%) in raw milk ), D: Non-fat milk solid content (mass%) in milk from which calcium has been removed.
〔pH測定〕
pH測定装置である、堀場製作所製のカスタニーLABpHメーターF−22を用い、pHを測定した。
[PH measurement]
The pH was measured using a castani LAB pH meter F-22 manufactured by Horiba, which is a pH measuring device.
下記例1〜19の方法にて、各乳液(加熱殺菌乳など)を得た。
なお、例1〜11は実施例、例12〜19は比較例である。
Each emulsion (heat pasteurized milk etc.) was obtained by the method of the following Examples 1-19.
Examples 1 to 11 are examples, and examples 12 to 19 are comparative examples.
〔例1〕
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)51kgを用いた。
この脱脂乳を60℃にして、ナトリウム形陽イオン交換樹脂(三菱化学社製ダイヤイオンSK−1B)2リットルが充填されたカラム3本を並列にして、各17kgずつSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である脱カルシウム乳(イオン交換乳)(pH7.6、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量8.6mg/100g、カルシウムの無脂乳固形分基準の除去率92.4%)51kgを得た。
得られた脱カルシウム乳のうち17kgに1質量%塩酸(和光純薬社製、20質量%塩酸希釈液より調整)を1リットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳をプレート殺菌機にて85℃5分の予備殺菌後、インフュージョン式直接加熱法を用いて135℃で30秒間殺菌して、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である加熱殺菌乳(pH6.4、固形分8.2質量%、無脂乳固形分8.1質量%、カルシウム含有量7.9mg/100g)17.5kgを得た。
さらに得られた加熱殺菌乳のうち10kgを、遠心薄膜蒸発装置を用いて約2.5倍まで濃縮し、加熱殺菌濃縮乳(pH6.3、固形分21.0質量%)3.9kgを得た。
さらに、上記と同様の濃縮方法にて得られた加熱殺菌濃縮乳3.9kgを、粉乳用ドライヤーで噴霧乾燥して加熱殺菌粉乳600gを得た。
[Example 1]
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solids (mass%) ) 12.9) 51 kg of calcium content per mg) was used.
The skim milk was brought to 60 ° C., 3 columns filled with 2 liters of sodium cation exchange resin (Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) were placed in parallel, and 17 kg each was passed through SV5.0. Calcium-free milk (ion-exchange milk) having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 1.0 (pH 7.6, solid content 8.9 mass%, non-fat milk The solid content was 8.8% by mass, the calcium content was 8.6 mg / 100 g, and the calcium non-fat milk solid content removal rate was 92.4%.
One liter of 1% by mass hydrochloric acid (manufactured by Wako Pure Chemical Industries, adjusted from a 20% by mass hydrochloric acid diluent) was added to 17 kg of the obtained calcium-free milk, and the pH was adjusted to 6.3 to obtain pH-adjusted milk. .
This pH-adjusted milk is pre-sterilized with a plate sterilizer at 85 ° C. for 5 minutes, then sterilized at 135 ° C. for 30 seconds using an infusion type direct heating method, and contains calcium per non-fat milk solid content (mass%) Heat-sterilized milk having an amount (mg / 100 g) of 1.0 (pH 6.4, solid content 8.2% by mass, nonfat milk solid content 8.1% by mass, calcium content 7.9 mg / 100 g) 5 kg was obtained.
Further, 10 kg of the heat-sterilized milk obtained was concentrated to about 2.5 times using a centrifugal thin film evaporator to obtain 3.9 kg of heat-sterilized concentrated milk (pH 6.3, solid content 21.0% by mass). It was.
Furthermore, 3.9 kg of heat-sterilized concentrated milk obtained by the same concentration method as described above was spray-dried with a milk powder dryer to obtain 600 g of heat-sterilized milk powder.
〔例2〕
原料乳として脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)を用いた。
表1の配合で、この脱脂乳と、例1で得られた脱カルシウム乳(イオン交換乳)(pH7.6、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量8.6mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)1.0)とを混合し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が3.8である脱カルシウム乳(pH7.5、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量33.9mg/100g、カルシウムの無脂乳固形分基準の除去率70.5%)17kgとした。
得られた脱カルシウム乳17kgに1質量%塩酸を1リットル添加し、pHを約6.3に調整しpH調整乳を得た。
このpH調整乳を例1と同様の方法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が3.8である加熱殺菌乳(pH6.4、固形分8.3質量%、無脂乳固形分8.2質量%、カルシウム含有量31.2mg/100g)17kgを得た。
[Example 2]
Nonfat milk as raw material milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solid content (% by mass) Per calcium content (mg / 100 g) 12.9) was used.
In the composition shown in Table 1, this skim milk and the decalcified milk (ion-exchange milk) obtained in Example 1 (pH 7.6, solid content 8.9% by mass, nonfat milk solid content 8.8% by mass, calcium Content 8.6 mg / 100 g, calcium content per non-fat milk solid content (mass%) 1.0), and calcium content per non-fat milk solid content (mass%) Decalcified milk (pH 7.5, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 33.9 mg / 100 g, no calcium) (mg / 100 g) is 3.8 The removal rate (70.5% based on fat milk solid content) was 17 kg.
1 liter of 1% by mass hydrochloric acid was added to 17 kg of the obtained decalcified milk to adjust the pH to about 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk was sterilized in the same manner as in Example 1, and heat-sterilized milk (pH 6.4, solid content) having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 3.8. (17 mass%, non-fat milk solid content 8.2 mass%, calcium content 31.2 mg / 100 g) was obtained.
〔例3〕
原料乳として脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)を用いた。
表1の配合で、この脱脂乳と、例1で得られた脱カルシウム乳(イオン交換乳)(pH7.6、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量8.6mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)1.0)とを混合し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2である脱カルシウム乳(pH7.4、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量45.9mg/100g、カルシウムの無脂乳固形分基準の除去率60.0%)17kgとした。
得られた脱カルシウム乳17kgに例1と同様の1質量%塩酸を1リットル添加し、pHを約6.3に調整しpH調整乳を得た。
このpH調整乳を例1と同様の方法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2である加熱殺菌乳(pH6.4、固形分8.3質量%、無脂乳固形分8.2質量%、カルシウム含有量42.3mg/100g)17kgを得た。
[Example 3]
Nonfat milk as raw material milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solid content (% by mass) Per calcium content (mg / 100 g) 12.9) was used.
In the composition shown in Table 1, this skim milk and the decalcified milk (ion-exchange milk) obtained in Example 1 (pH 7.6, solid content 8.9% by mass, nonfat milk solid content 8.8% by mass, calcium Content 8.6 mg / 100 g, calcium content per non-fat milk solid content (mass%) 1.0), and calcium content per non-fat milk solid content (mass%) Decalcified milk (pH 7.4, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 45.9 mg / 100 g, no calcium) (mg / 100 g) is 5.2 The removal rate based on the solid content of fat milk was 60.0%) and 17 kg.
One liter of 1% by mass hydrochloric acid as in Example 1 was added to 17 kg of the obtained decalcified milk to adjust the pH to about 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk was sterilized in the same manner as in Example 1, and heat-sterilized milk (pH 6.4, solid content) having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 5.2. (17 mass%, non-fat milk solid content 8.2 mass%, calcium content 42.3 mg / 100 g) was obtained.
〔例4〕
原料乳として、脱脂乳(森永乳業社製、pH7.0、固形分9.2質量%、無脂乳固形分9.1質量%、カルシウム含有量118mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)13.0)54kgを用いた。
この脱脂乳を60℃にして、例1と同様のカラム2本を並列にして、各27kgずつSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.3である脱カルシウム乳(pH7.7、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量21.0mg/100g、カルシウムの無脂乳固形分基準の除去率82.0%)50kgを得た。
得られた脱カルシウム乳全量に0.5質量%塩酸を7リットル添加し、pHを6.4に調整しpH調整乳を得た。
このpH調整乳にスパイラル式ナノ濾過装置(日東電工社製、RUW−5A)、膜モジュール(日東電工社製、NTR−7450HG)を用いてナノ濾過処理を行い、2倍濃縮を行った。その後、濃縮液と同量の水を添加し、再び2倍濃縮を行うダイアフィルトレーション処理を3回行い、計4回の濃縮処理によって、1価イオンが一部除去された脱塩濃縮pH調整乳(pH6.4、固形分15.3質量%)28kgを得た。
この脱塩濃縮pH調整乳を例1と同条件で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.3である加熱殺菌乳(pH6.4、固形分13.2質量%、無脂乳固形分13.1質量%、カルシウム含有量30.5mg/100g)28kgを得た。更に、この加熱殺菌乳28kgから、例1と同様にして加熱殺菌粉乳3.1kgを得た。
[Example 4]
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 7.0, solid content 9.2% by mass, nonfat milk solid content 9.1% by mass, calcium content 118 mg / 100 g, nonfat milk solid content (% by mass) ) Per calcium content (mg / 100 g) 13.0) 54 kg.
The skim milk was brought to 60 ° C., two columns as in Example 1 were juxtaposed, and 27 kg each was passed through SV5.0, and the calcium content per non-fat milk solid content (mass%) (mg / 100 g) decalcified milk (pH 7.7, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 21.0 mg / 100 g, calcium nonfat milk solid 50%) was obtained.
Seven liters of 0.5 mass% hydrochloric acid was added to the total amount of the decalcified milk obtained to adjust the pH to 6.4 to obtain pH adjusted milk.
The pH-adjusted milk was subjected to nanofiltration treatment using a spiral nanofiltration device (manufactured by Nitto Denko Corporation, RUW-5A) and a membrane module (manufactured by Nitto Denko Corporation, NTR-7450HG), and concentrated twice. Thereafter, the same amount of water as the concentrated solution is added, and diafiltration treatment is performed three times again, and desalted and concentrated pH from which monovalent ions are partially removed by four times of concentration treatment. 28 kg of prepared milk (pH 6.4, solid content 15.3% by mass) was obtained.
This desalted and concentrated pH-adjusted milk is sterilized under the same conditions as in Example 1, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 2.3 (pH 6.4, 28 kg of solid content 13.2 mass%, non-fat milk solid content 13.1 mass%, calcium content 30.5 mg / 100 g) was obtained. Further, 3.1 kg of heat sterilized milk powder was obtained from 28 kg of the heat sterilized milk in the same manner as in Example 1.
〔例5〕
ナトリウム形陽イオン交換樹脂(ダイヤイオンSK−1B)を、食塩(塩事業センター製)が最終濃度で6質量%、塩化カリウム(富田製薬社製)が最終濃度で4質量%にそれぞれなるように調整した混合水溶液で再生し、ナトリウム‐カリウム混合形陽イオン交換樹脂を調製した。
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量106.0mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)11.8)51kgを用いた。
この脱脂乳を40℃にして、前記ナトリウム‐カリウム混合形陽イオン交換樹脂2リットルが充填されたカラム2本を並列にして、各25.5kgずつSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.2である脱カルシウム乳(pH7.7、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量20.0mg/100g、カルシウムの無脂乳固形分基準の除去率81.1%)50kgを得た。
得られた脱カルシウム乳全量に2質量%塩酸を2リットル添加し、pHを6.3に調整しpH調整乳を得た。このpH調整乳にスパイラル式ナノ濾過装置を用いてナノ濾過処理を行い、2倍濃縮して1価のミネラルが一部除去された脱塩濃縮pH調整乳(pH6.2、固形分16.1質量%)26kgを得た。
この脱塩濃縮pH調整乳を例1と同条件で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.2である加熱殺菌乳(pH6.2、固形分15.3質量%、無脂乳固形分15.2質量%、カルシウム含有量33.6mg/100g)25kgを得た。更に、この加熱殺菌乳25kgから、例1と同様にして加熱殺菌粉乳2.7kgを得た。
[Example 5]
Sodium-type cation exchange resin (Diaion SK-1B), so that the final concentration of sodium chloride (manufactured by Salt Business Center) is 6% by mass and the final concentration of potassium chloride (manufactured by Tomita Pharmaceutical) is 4% by mass. The mixture was regenerated with a mixed aqueous solution to prepare a sodium-potassium mixed cation exchange resin.
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 106.0 mg / 100 g, nonfat milk solids ( 11.8) 51 kg of calcium content (mg / 100 g) per mass%) was used.
The skim milk was brought to 40 ° C., two columns filled with 2 liters of the sodium-potassium mixed cation exchange resin were juxtaposed, and 25.5 kg each was passed through SV5.0, and the nonfat milk solid Decalcified milk having a calcium content (mg / 100 g) per minute (mass%) of 2.2 (pH 7.7, solid content 9.1 mass%, nonfat milk solid content 9.0 mass%, calcium content An amount of 20.0 mg / 100 g and a calcium non-fat milk solid content removal rate of 81.1%) 50 kg were obtained.
Two liters of 2% by mass hydrochloric acid was added to the total amount of the decalcified milk obtained to adjust the pH to 6.3 to obtain pH-adjusted milk. This pH-adjusted milk is subjected to nanofiltration treatment using a spiral nanofiltration device, and is concentrated twice to remove desalted and concentrated pH-adjusted milk (pH 6.2, solid content 16.1). 26% by mass) was obtained.
This desalted and concentrated pH-adjusted milk is sterilized under the same conditions as in Example 1, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 2.2 (pH 6.2, 25 kg of solid content 15.3% by mass, non-fat milk solid content 15.2% by mass, calcium content 33.6 mg / 100 g). Further, 2.7 kg of heat sterilized milk powder was obtained from 25 kg of the heat sterilized milk in the same manner as in Example 1.
〔例6〕
例5と同様の方法にてナトリウム‐カリウム混合形陽イオン交換樹脂を調製した。
原料乳として、脱脂粉乳(森永乳業社製)4.8kgを水で12質量%に溶解した溶解乳(pH6.7、固形分11.6質量%、無脂乳固形分11.5質量%、カルシウム含有量145mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.6)40kgを用いた。
この溶解乳を45℃に加温し、このナトリウム‐カリウム混合形陽イオン交換樹脂2リットルの入ったカラムを3本並列に用いて、13.3kgずつSV3.3で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2,6である脱カルシウム乳(pH7.7、固形分11.3質量%、無脂乳固形分11.2質量%、カルシウム含有量29.3mg/100g、カルシウムの無脂乳固形分基準の除去率79.3%)40kgを得た。
得られた脱カルシウム乳全量に1質量%塩酸を3.5リットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳を例5と同様にスパイラル式ナノ濾過装置を用いてナノ濾過処理を行い、2倍濃縮して1価のミネラルが一部除去された脱塩濃縮pH調整乳(pH6.3、固形分18.3質量%)21kgを得た。
この脱塩濃縮pH調整乳を例1と同条件で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2,6である加熱殺菌乳(pH6.3、固形分16.4質量%、無脂乳固形分16.2質量%、カルシウム含有量42.4mg/100g)20kgを得た。更に、この加熱殺菌乳20kgから、例1と同様にして加熱殺菌粉乳2.7kgを得た。
[Example 6]
A sodium-potassium mixed cation exchange resin was prepared in the same manner as in Example 5.
As raw material milk, dissolved milk (pH 6.7, solid content 11.6% by mass, non-fat milk solid content 11.5% by mass) obtained by dissolving 4.8 kg of skim milk powder (manufactured by Morinaga Milk Industry Co., Ltd.) with water to 12% by mass, A calcium content (mg / 100 g) 12.6) 40 kg per calcium content 145 mg / 100 g and non-fat milk solids (mass%) was used.
This dissolved milk was heated to 45 ° C., and 3 columns each containing 2 liters of sodium-potassium mixed cation exchange resin were used in parallel, and 13.3 kg was passed through SV3.3. Decalcified milk having a calcium content (mg / 100 g) per solid content (mass%) of 2,6 (pH 7.7, solid content 11.3 mass%, nonfat milk solid content 11.2 mass%, calcium A content of 29.3 mg / 100 g and a calcium non-fat milk solid content removal rate of 79.3% was obtained.
3.5 liters of 1% by mass hydrochloric acid was added to the total amount of the decalcified milk obtained to adjust the pH to 6.3 to obtain pH adjusted milk.
This pH-adjusted milk was subjected to nanofiltration treatment using a spiral nanofiltration apparatus in the same manner as in Example 5, concentrated twice, and desalted and concentrated pH-adjusted milk (pH 6.3, from which some monovalent minerals were removed) 21 kg of solid content 18.3% by mass was obtained.
This desalted and concentrated pH-adjusted milk is sterilized under the same conditions as in Example 1, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 2, 6 (pH 6.3, 20 kg of solid content 16.4 mass%, non-fat milk solid content 16.2 mass%, calcium content 42.4 mg / 100g) was obtained. Further, 2.7 kg of heat sterilized milk powder was obtained from 20 kg of the heat sterilized milk in the same manner as in Example 1.
〔例7〕
原料乳として、例6と同様の脱脂粉乳18.8gを水で9.4質量%に溶解した溶解乳(pH6.8、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量118mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)13.3)200gを用いた。
この溶解乳を60℃にして、ナトリウム形陽イオン交換樹脂(ダイヤイオンSK−1B)50ミリリットルを投入し、30分攪拌しながらバッチ式でイオン交換処理を行った。イオン交換樹脂を400メッシュの篩(東京スクリーン社製)で除去後、再度同様の陽イオン交換樹脂50ミリリットルを投入し同様のイオン交換処理を行い、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が0.3である脱カルシウム乳(pH7.7、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量2.5mg/100g、カルシウムの無脂乳固形分基準の除去率97.9%)200gを得た。
この脱カルシウム乳100gに1質量%塩酸を6ミリリットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳を90℃10分間の間接加熱法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が0.3である加熱殺菌乳(pH6.3、固形分8.5質量%、無脂乳固形分8.4質量%、カルシウム含有量2.4mg/100g)100gを得た。
[Example 7]
Dissolved milk (pH 6.8, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%) obtained by dissolving 18.8 g of skim milk powder similar to Example 6 in water to 9.4 mass% as raw material milk , Calcium content 118 mg / 100 g, calcium content per non-fat milk solid content (mass%) (mg / 100 g) 13.3) 200 g were used.
The dissolved milk was brought to 60 ° C., 50 ml of sodium cation exchange resin (Diaion SK-1B) was added, and ion exchange treatment was performed in a batch manner while stirring for 30 minutes. After removing the ion exchange resin with a 400 mesh sieve (manufactured by Tokyo Screen Co., Ltd.), 50 ml of the same cation exchange resin is added again to perform the same ion exchange treatment, and calcium per non-fat milk solid content (mass%) Decalcified milk having a content (mg / 100 g) of 0.3 (pH 7.7, solid content 8.9% by mass, nonfat milk solid content 8.8% by mass, calcium content 2.5 mg / 100 g, calcium Of non-fat milk solids based on 97.9%).
To 100 g of this decalcified milk, 6 ml of 1% by mass hydrochloric acid was added to adjust the pH to 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk is sterilized by an indirect heating method at 90 ° C. for 10 minutes, and heat-sterilized milk (pH 6.3, with a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 0.3, The solid content was 8.5% by mass, the non-fat milk solid content was 8.4% by mass, and the calcium content was 2.4 mg / 100 g.
〔例8〕
例5と同様の方法にてナトリウム‐カリウム混合形陽イオン交換樹脂を調製した。
原料乳として、脱脂乳(森永乳業社製、pH6.9、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量112mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.4)55kgを用いた。
この脱脂乳を60℃にして、前記ナトリウム‐カリウム混合形陽イオン交換樹脂2リットルが充填されたカラム2本を並列にして、各27.5kgずつSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.2である脱カルシウム乳(pH7.5、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量10.4mg/100g、カルシウムの無脂乳固形分基準の除去率90.6%)52kgを得た。
得られた脱カルシウム乳全量にスパイラル式ナノ濾過装置を用いてナノ濾過処理を行い、2倍濃縮して1価のミネラルが一部除去された脱塩濃縮脱カルシウム乳(pH7.6、固形分15.5質量%)26.5kgを得た。得られた脱塩濃縮脱カルシウム乳を冷却しながら炭酸ガス(高圧ガス工業社製、液化炭酸ガス由来)を吹き込み、pHを6.2に調整し脱塩濃縮pH調整乳を得た。
この脱塩濃縮pH調整乳を例1と同条件で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.2である加熱殺菌乳(pH7.2、固形分13.6質量%、無脂乳固形分13.5質量%、カルシウム含有量15.8mg/100g)24kgを得た。更に、この加熱殺菌乳24kgから、例1と同様にして加熱殺菌粉乳2.4kgを得た。
[Example 8]
A sodium-potassium mixed cation exchange resin was prepared in the same manner as in Example 5.
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.9, solid content 9.1% by mass, non-fat milk solid content 9.0% by mass, calcium content 112 mg / 100 g, non-fat milk solid content (% by mass) ) Per calcium content (mg / 100 g) 12.4) 55 kg.
This skim milk was brought to 60 ° C., 2 columns filled with 2 liters of the sodium-potassium mixed cation exchange resin were placed in parallel, and 27.5 kg each was passed through SV5.0, and the non-fat milk solid Decalcified milk having a calcium content (mg / 100 g) per minute (mass%) of 1.2 (pH 7.5, solid content 9.0 mass%, nonfat milk solid content 8.9 mass%, calcium content An amount of 10.4 mg / 100 g, a removal rate of 90.6% on the basis of solid content of non-fat milk of calcium) 52 kg was obtained.
The total amount of the decalcified milk obtained is subjected to nanofiltration using a spiral nanofiltration device, and concentrated twice to obtain a desalted and concentrated decalcified milk from which a part of monovalent mineral has been removed (pH 7.6, solid content) 15.5 mass%) 26.5 kg was obtained. Carbon dioxide gas (manufactured by High Pressure Gas Industry Co., Ltd., derived from liquefied carbon dioxide gas) was blown in while cooling the obtained desalted and concentrated decalcified milk to adjust pH to 6.2 to obtain desalted and concentrated pH-adjusted milk.
This desalted and concentrated pH-adjusted milk is sterilized under the same conditions as in Example 1, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 1.2 (pH 7.2, 24 kg of solid content 13.6 mass%, non-fat milk solid content 13.5 mass%, calcium content 15.8 mg / 100 g). Further, 2.4 kg of heat-sterilized powdered milk was obtained from 24 kg of the heat-sterilized milk in the same manner as in Example 1.
〔例9〕
ナトリウム形陽イオン交換樹脂(ダイヤイオンSK−1B)50ミリリットルの投入を1回とした他は、例7と同様にして、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である脱カルシウム乳(pH7.7、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量8.9mg/100g、カルシウムの無脂乳固形分基準の除去率92.5%)200gを得た。
この脱カルシウム乳100gに10質量%リン酸(和光純薬社製、85質量%リン酸希釈液より調整)を3ミリリットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳を90℃10分間の間接加熱法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である加熱殺菌乳(pH6.3、固形分8.7質量%、無脂乳固形分8.6質量%、カルシウム含有量8.6mg/100g)100gを得た。
[Example 9]
Calcium content (mg / 100 g per non-fat milk solid content (mass%) in the same manner as in Example 7 except that 50 ml of sodium cation exchange resin (Diaion SK-1B) was charged once. ) Is 1.0 (pH 7.7, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 8.9 mg / 100 g, calcium non-fat milk solid content 200 g of a standard removal rate of 92.5%) was obtained.
Three milliliters of 10% by mass phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., adjusted from 85% by mass phosphoric acid dilution) was added to 100 g of this calcium-free milk, and the pH was adjusted to 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk is sterilized by an indirect heating method at 90 ° C. for 10 minutes, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 1.0 (pH 6.3, 100 g of solid content 8.7 mass%, non-fat milk solid content 8.6 mass%, calcium content 8.6 mg / 100g) was obtained.
〔例10〕
例9と同様にして、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である脱カルシウム乳(pH7.7、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量8.9mg/100g、カルシウムの無脂乳固形分基準の除去率92.5%)200gを得た。
この脱カルシウム乳100gに10質量%乳酸(第一製薬社製、90質量%乳酸希釈液より調整)を5ミリリットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳を90℃10分間の間接加熱法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である加熱殺菌乳(pH6.3、固形分8.6質量%、無脂乳固形分8.5質量%、カルシウム含有量8.5mg/100g)100gを得た。
[Example 10]
In the same manner as in Example 9, decalcified milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 1.0 (pH 7.7, solid content 9.0 mass%, non-fat A milk solid content of 8.9% by mass, a calcium content of 8.9 mg / 100 g, and a calcium non-fat milk solid content removal rate of 92.5%) 200 g were obtained.
Five milliliters of 10% by mass lactic acid (manufactured by Daiichi Pharmaceutical Co., Ltd., adjusted from a 90% by mass lactic acid dilution) was added to 100 g of this calcium-free milk, and the pH was adjusted to 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk is sterilized by an indirect heating method at 90 ° C. for 10 minutes, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 1.0 (pH 6.3, 100 g of solid content 8.6 mass%, non-fat milk solid content 8.5 mass%, calcium content 8.5 mg / 100g) was obtained.
〔例11〕
原料乳として、全脂粉乳(森永乳業社製)18.8gを水で9.4質量%に溶解した溶解乳(pH6.8、固形分9.0質量%、無脂乳固形分6.3質量%、カルシウム含有量90mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)14.3)200gを用いた。
この溶解乳を60℃に加温し、ナトリウム形陽イオン交換樹脂(ダイヤイオンSK−1B)50ミリリットルを投入し、攪拌しながらバッチ式でイオン交換処理を行い、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が4.0である脱カルシウム乳(pH7.7、固形分9.0質量%、無脂乳固形分6.3質量%、カルシウム含有量24.9mg/100g、カルシウムの無脂乳固形分基準の除去率72.3%)200gを得た。
この脱カルシウム乳100gに1質量%塩酸を5ミリリットル添加し、pHを6.3に調整しpH調整乳を得た。
このpH調整乳を90℃10分間の間接加熱法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が4.0である加熱殺菌乳(pH6.3、固形分8.6質量%、無脂乳固形分6.0質量%、カルシウム含有量23.8mg/100g)100gを得た。
[Example 11]
Dissolved milk (pH 6.8, solid content 9.0 mass%, non-fat milk solid content 6.3) obtained by dissolving 18.8 g of whole milk powder (manufactured by Morinaga Milk Industry Co., Ltd.) with water to 9.4 mass% as raw material milk Mass%, calcium content 90 mg / 100 g, calcium content (mg / 100 g) 14.3) 200 g per non-fat milk solid content (mass%) were used.
This dissolved milk is heated to 60 ° C., 50 ml of sodium-type cation exchange resin (Diaion SK-1B) is added, and ion exchange treatment is performed in a batch system while stirring to obtain a solid content of non-fat milk (mass% ) Decalcified milk having a calcium content (mg / 100 g) of 4.0 (pH 7.7, solid content 9.0% by mass, nonfat milk solid content 6.3% by mass, calcium content 24.9 mg) / 100 g, calcium nonfat milk solid content removal rate 72.3%) 200 g was obtained.
To 100 g of this calcium-free milk, 5 ml of 1% by mass hydrochloric acid was added to adjust the pH to 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk is sterilized by an indirect heating method at 90 ° C. for 10 minutes, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 4.0 (pH 6.3, 100 g of solid content 8.6 mass%, non-fat milk solid content 6.0 mass%, calcium content 23.8 mg / 100g) was obtained.
〔例12〕
原料乳として脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量117mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)13.0)17kgを用いた。
この脱脂乳を60℃にして、例1と同様のカラム1本にSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である脱カルシウム乳(pH7.6、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量8.7mg/100g、カルシウムの無脂乳固形分基準の除去率92.4%)17kgを得た。
得られた脱カルシウム乳のうち16kgをpH調整せず、そのままのpHにて例1と同様にして加熱殺菌を行い、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が1.0である加熱殺菌乳(pH7.5、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量8.7mg/100g)16kgを得た。
この加熱殺菌乳15kgを例1と同様にして、濃縮、噴霧乾燥して加熱殺菌粉乳1.0kgを得た。
[Example 12]
Nonfat milk as raw material milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 117 mg / 100 g, nonfat milk solid content (% by mass) Per calcium content (mg / 100 g) 13.0) 17 kg was used.
The skim milk was brought to 60 ° C. and passed through one column similar to Example 1 at SV 5.0, and the calcium content (mg / 100 g) per nonfat milk solids (mass%) was 1.0. A certain decalcified milk (pH 7.6, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 8.7 mg / 100 g, removal rate of calcium based on non-fat milk solid content 92. 4%) 17 kg was obtained.
Of the obtained decalcified milk, 16 kg was not pH-adjusted and heat sterilized at the same pH as in Example 1 to obtain a calcium content (mg / 100 g) per non-fat milk solid content (mass%). 16 kg of heat pasteurized milk (pH 7.5, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 8.7 mg / 100 g) is obtained.
15 kg of this heat-sterilized milk was concentrated and spray-dried in the same manner as in Example 1 to obtain 1.0 kg of heat-sterilized milk powder.
〔例13〕
原料乳として脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)を用いた。
表1の配合で、この脱脂乳と、例1で得られた脱カルシウム乳(イオン交換乳)(pH7.6、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量8.6mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)1.0)とを混合し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が6.5である脱カルシウム乳(pH7.6、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量57.2mg/100g、カルシウムの無脂乳固形分基準の除去率49.5%)17kgを得た。
得られた脱カルシウム乳17kgに例1と同様の1質量%塩酸を1リットル添加し、pHを約6.3に調整しpH調製乳を得た。
このpH調製乳を例1と同様の方法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が6.5である加熱殺菌乳(pH6.3、固形分8.4質量%、無脂乳固形分8.3質量%、カルシウム含有量54.0mg/100g)16.5kgを得た。
[Example 13]
Nonfat milk as raw material milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solid content (% by mass) Per calcium content (mg / 100 g) 12.9) was used.
In the composition shown in Table 1, this skim milk and the decalcified milk (ion-exchange milk) obtained in Example 1 (pH 7.6, solid content 8.9% by mass, nonfat milk solid content 8.8% by mass, calcium Content 8.6 mg / 100 g, calcium content per non-fat milk solid content (mass%) 1.0), and calcium content per non-fat milk solid content (mass%) Decalcified milk (pH 7.6, solid content 8.9% by mass, non-fat milk solid content 8.8% by mass, calcium content 57.2 mg / 100 g, no calcium) (mg / 100 g) is 6.5 17 kg) was obtained.
One liter of 1% by mass hydrochloric acid as in Example 1 was added to 17 kg of the obtained decalcified milk to adjust the pH to about 6.3 to obtain pH-adjusted milk.
This pH-adjusted milk was sterilized in the same manner as in Example 1, and heat-sterilized milk (pH 6.3, solid content) having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 6.5. 18.4 kg of 8.4 mass%, non-fat milk solid content 8.3 mass%, calcium content 54.0 mg / 100g) was obtained.
〔例14〕
例11と同様にして、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が4.0である脱カルシウム乳(pH7.7、固形分9.0質量%、無脂乳固形分6.3質量%、カルシウム含有量24.9mg/100g、カルシウムの無脂乳固形分基準の除去率72.3%)200gを得た。
この脱カルシウム乳100gをpH調整せずに、90℃10分間の間接加熱法で殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が4.0である加熱殺菌乳(pH7.7、固形分9.0質量%、無脂乳固形分6.3質量%、カルシウム含有量24.9mg/100g)100gを得た。
[Example 14]
In the same manner as in Example 11, decalcified milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 4.0 (pH 7.7, solid content 9.0 mass%, non-fat Milk solid content 6.3% by mass, calcium content 24.9 mg / 100 g, calcium non-fat milk solid content removal rate 72.3%) 200 g was obtained.
This calcium free milk 100 g is sterilized by indirect heating method at 90 ° C. for 10 minutes without adjusting pH, and the calcium content (mg / 100 g) per non-fat milk solid content (mass%) is 4.0. 100 g of pasteurized milk (pH 7.7, solid content 9.0 mass%, non-fat milk solid content 6.3 mass%, calcium content 24.9 mg / 100 g) was obtained.
〔例15〕
ナトリウム形陽イオン交換樹脂(ダイヤイオンSK−1B)を、10質量%塩化ナトリウム水溶液に、20質量%塩酸を4質量%配合した再生液(塩酸濃度0.8質量%)で再生し、ナトリウム‐水素イオン混合形陽イオン交換樹脂を調製した。
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)17kgを用いた。
この脱脂乳を60℃にして、前記ナトリウム‐水素イオン混合形陽イオン交換樹脂2リットルを投入し、攪拌しながらバッチ式でイオン交換処理を行い、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.0である脱カルシウム乳(pH6.3、固形分8.6質量%、無脂乳固形分8.5質量%、カルシウム含有量16.7mg/100g、カルシウムの無脂乳固形分基準の除去率84.8%)17kgを得た。
このpHが6.3となった脱カルシウム乳を例1と同様にして加熱殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.0である加熱殺菌乳(pH6.2、固形分7.6質量%、無脂乳固形分7.5質量%、カルシウム含有量14.8mg/100g)18kgを得た。
[Example 15]
Sodium-type cation exchange resin (Diaion SK-1B) was regenerated with a regenerating solution (hydrochloric acid concentration 0.8% by mass) containing 10% by mass sodium chloride aqueous solution and 4% by mass of 20% by mass hydrochloric acid. A hydrogen ion mixed cation exchange resin was prepared.
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solids (mass%) ) 12.9) 17 kg of calcium content per mg).
This skim milk is brought to 60 ° C., 2 liters of the sodium-hydrogen ion mixed cation exchange resin is added, and batch-type ion exchange treatment is carried out with stirring to obtain calcium per non-fat milk solid content (mass%). Decalcified milk having a content (mg / 100 g) of 2.0 (pH 6.3, solid content 8.6% by mass, nonfat milk solid content 8.5% by mass, calcium content 16.7 mg / 100 g, calcium The non-fat milk solid content removal rate of 84.8%) was 17 kg.
The decalcified milk having a pH of 6.3 is heat-sterilized in the same manner as in Example 1, and the heat-sterilized milk content (mg / 100 g) per non-fat milk solid content (mass%) is 2.0. 18 kg of milk (pH 6.2, solid content 7.6% by mass, nonfat milk solid content 7.5% by mass, calcium content 14.8 mg / 100 g) was obtained.
〔例16〕
ナトリウム形と水素イオン形の陽イオン交換樹脂を93:7の割合で混合する方法(特公平07−012276公報参照)でナトリウム‐水素イオン混合形陽イオン交換樹脂を調製した。
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量117mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)13.0)17kgを用いた。
この脱脂乳を60℃にして、前記ナトリウム‐水素イオン混合形陽イオン交換樹脂2リットルが充填されたカラム1本にSV5.0で通液しようとした。しかしながら、通液中にカラムの内部で発生した沈殿(カード)がカラム下部で詰まり、通液が不可能となり、脱カルシウム乳を得ることができなかった。
そこで、陽イオン交換樹脂としてこのナトリウム‐水素混合形陽イオン交換樹脂を用いた以外は、例15と同様にしてバッチ式でイオン交換処理行い、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.3である脱カルシウム乳(pH7.1、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量20.2mg/100g、カルシウムの無脂乳固形分基準の除去率82.5%)17kgを得た。
この脱カルシウム乳を例1と同様にして加熱殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が2.3である加熱殺菌乳(pH7.0、固形分9.0質量%、無脂乳固形分8.9質量%、カルシウム含有量20.2mg/100g)15kgを得た。
[Example 16]
A sodium-hydrogen ion mixed cation exchange resin was prepared by a method of mixing a sodium-type and hydrogen ion-type cation exchange resin in a ratio of 93: 7 (see Japanese Patent Publication No. 07-012276).
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 117 mg / 100 g, nonfat milk solids (mass%) ) Per calcium content (mg / 100 g) 13.0) 17 kg.
This skim milk was brought to 60 ° C., and an attempt was made to pass it through SV5.0 through one column packed with 2 liters of the sodium-hydrogen ion mixed cation exchange resin. However, the precipitate (curd) generated inside the column during the passage was clogged at the lower part of the column, making the passage impossible, and decalcified milk could not be obtained.
Therefore, except that this sodium-hydrogen mixed cation exchange resin was used as the cation exchange resin, the batch-type ion exchange treatment was carried out in the same manner as in Example 15, and calcium content per non-fat milk solid content (mass%) was obtained. Decalcified milk (pH 7.1, solid content 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 20.2 mg / 100 g, calcium content 2 mg / 100 g) 17 kg of non-fat milk solid content removal rate 82.5%) was obtained.
This decalcified milk was heat-sterilized in the same manner as in Example 1, and heat-sterilized milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 2.3 (pH 7.0, solid content) 9.0 mass%, non-fat milk solid content 8.9 mass%, calcium content 20.2 mg / 100 g) 15 kg was obtained.
〔例17〕
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)17kgを用いた。この原料乳に、3.3質量%クエン酸溶液(DSM Citric Acid社製、無水クエン酸より調整)0.8kgを添加し、pH5.8のpH調整乳17.8kgを得た(特表2003−515353号公報参照)。
このpH調整乳を60℃に加温したが、溶液の熱安定性が悪く、加熱容器に薄膜状のカードが大量に付着した。そこで、400メッシュの篩にて加熱後のpH調整乳を濾過した。
その後カードを除去したpH5.8のpH調整乳(固形分8.8質量%)17kgをそのまま、例1で用いたナトリウム形イオン交換樹脂2リットルが充填されたカラムにSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が0.6である脱カルシウム乳(pH6.3、固形分8.8質量%、無脂乳固形分8.7質量%、カルシウム含有量4.9mg/100g、カルシウムの無脂乳固形分基準の除去率95.6%)17kgを得た。
この脱カルシウム乳を例1と同様にして加熱殺菌し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が0.6である加熱殺菌乳(pH6.3、固形分8.2質量%、無脂乳固形分8.1質量%、カルシウム含有量4.6mg/100g)16kgを得た。
[Example 17]
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solids (mass%) ) 12.9) 17 kg of calcium content per mg). To this raw milk, 0.8 kg of a 3.3% by mass citric acid solution (manufactured by DSM Citric Acid, prepared from anhydrous citric acid) was added to obtain 17.8 kg of pH-adjusted milk having a pH of 5.8 (Special Table 2003). No. 515353).
Although this pH-adjusted milk was heated to 60 ° C., the thermal stability of the solution was poor, and a large amount of thin-film card adhered to the heating container. Therefore, the pH-adjusted milk after heating was filtered with a 400 mesh sieve.
After that, 17 kg of pH-adjusted milk (solid content: 8.8% by mass) having a pH of 5.8, from which the curd was removed, was passed through the column filled with 2 liters of the sodium ion exchange resin used in Example 1 at SV 5.0. , Decalcified milk having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 0.6 (pH 6.3, solid content 8.8 mass%, non-fat milk solid content 8.7 17% of mass%, calcium content 4.9 mg / 100 g, removal rate of calcium based on non-fat milk solid content 95.6%).
This decalcified milk was heat-sterilized in the same manner as in Example 1, and heat-sterilized milk (pH 6.3, solid content) having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 0.6. 8.2 mass%, non-fat milk solid content 8.1 mass%, calcium content 4.6 mg / 100 g) was obtained 16 kg.
〔例18〕
原料乳として、脱脂乳(森永乳業社製、pH6.8、固形分9.1質量%、無脂乳固形分9.0質量%、カルシウム含有量116mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.9)100gを用いた。この脱脂乳に1質量%塩酸溶液を適宜添加し、pH6.3のpH調整乳を得た。
このpH調整乳をオートクレーブ装置にて121℃で10分間加熱殺菌したところ、プリン状になり、完全にゲル化してしまった。また、殺菌前の液を5℃にて約8時間保存したところ、こちらも完全にゲル化し、非常に安定性が悪い乳液となっていることがわかった。
[Example 18]
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.8, solid content 9.1% by mass, nonfat milk solid content 9.0% by mass, calcium content 116 mg / 100 g, nonfat milk solids (mass%) ) Calcium content per mg (mg / 100 g) 12.9) 100 g was used. A 1% by mass hydrochloric acid solution was appropriately added to the skimmed milk to obtain pH-adjusted milk having a pH of 6.3.
When this pH-adjusted milk was sterilized by heating at 121 ° C. for 10 minutes in an autoclave apparatus, it became a pudding and completely gelled. Moreover, when the liquid before sterilization was preserve | saved at 5 degreeC for about 8 hours, it turned out that this also gelatinized completely and became a very bad emulsion.
〔例19〕
原料乳として、脱脂乳(森永乳業社製、pH6.9、固形分9.2質量%、無脂乳固形分9.1質量%、カルシウム含有量112.0mg/100g、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)12.3)22kgを用いた。
この原料乳を60℃にして、例1と同様のイオン交換樹脂2リットルが充填されたカラム1本にSV5.0で通液し、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が0.8である脱カルシウム乳(pH7.8、固形分8.9質量%、無脂乳固形分8.8質量%、カルシウム含有量6.8mg/100g、カルシウムの無脂乳固形分基準の除去率93.7%)20kgを得た。
得られた脱カルシウム乳全量をpH調整せず、そのままのpHにて、例5と同様のナノ濾過処理を行い、2倍濃縮して1価のミネラルを除去した後、濃縮液と同量の水を添加して固形分を調整した脱塩pH調整乳(pH7.8、固形分8.4質量%)20kgを得た。
Example 19
Non-fat milk (manufactured by Morinaga Milk Industry Co., Ltd., pH 6.9, solid content 9.2% by mass, nonfat milk solid content 9.1% by mass, calcium content 112.0 mg / 100 g, nonfat milk solids ( The calcium content (mg / 100 g) per mass%) (12.3) 22 kg was used.
The raw material milk was brought to 60 ° C., and passed through one column packed with 2 liters of the same ion exchange resin as in Example 1 at SV 5.0, and the calcium content per non-fat milk solid content (mass%) ( decalcified milk (pH 7.8, solid content 8.9% by mass, nonfat milk solid content 8.8% by mass, calcium content 6.8 mg / 100 g, calcium nonfat) (Removal rate based on milk solid content 93.7%) 20 kg was obtained.
The total amount of the decalcified milk thus obtained was subjected to the same nanofiltration treatment as in Example 5 at the same pH and concentrated twice to remove monovalent minerals, and then the same amount as the concentrated solution. 20 kg of desalted pH-adjusted milk (pH 7.8, solid content 8.4% by mass) whose solid content was adjusted by adding water was obtained.
以上、例1〜19で得られた各乳液、濃縮乳、粉乳の成分組成を一般的な手法にて分析したところ、固形分あたりの組成が、通常の脱脂乳や全脂乳とほぼ同じ脂肪、蛋白質、炭水化物、灰分を持ち、ミネラル組成や有機酸組成のみが変化した乳類であった。
実施例である例1〜11では、製造中にカード等の凝集物が途中で発生することなく、効率的に加熱殺菌乳が得られた。
一方、比較例である例12は、pH調整を行っていない点が本発明と異なる。
例13で得られた加熱殺菌乳は、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2以上であり、本発明の加熱殺菌乳とは異なる。
例14は、pH調整を行っていない点が本発明と異なる。
例15は、カルシウムの交換除去とpH調整を同時に行う点が、本発明の加熱殺菌乳の製造方法とは異なる。例15の方法は、イオン交換処理をバッチ式でしか行うことができず、実用的ではなかった。
例16は、pH調整を行っていない点が本発明と異なる。例16の方法は、イオン交換処理をバッチ方式でしか行うことができず、実用的ではなかった。
例17は、pH調整をしてからカルシウム除去を行っている点が、本発明の加熱殺菌乳の製造方法と異なる。この方法はpH調整後加温し60℃とした際にカードが発生し、実用的な方法ではなかった。
例18ではカルシウムを交換除去せずにpH調整のみ行った後、121℃で10分間の加熱殺菌をしており、加熱殺菌時にpH調製乳がゲル化してしまった。
例19ではpH調整も加熱殺菌も行っていない。
尚、例1〜17における加熱殺菌(「85℃で5分間の予備殺菌後、135℃で30秒間殺菌する」又は「90℃で10分間殺菌する」)は、低温又は短時間であるので、いずれの例においても加熱殺菌時には、カードの発生や褐変化等が起きなかった。
以上の、各例で得られた各乳液、濃縮乳、又は粉乳について以下の試験によって評価を行った。
As mentioned above, when the component composition of each emulsion obtained by Examples 1-19, concentrated milk, and powdered milk was analyzed by the general method, the composition per solid content is the fat almost the same as normal skim milk or whole fat milk. It was milk that had protein, carbohydrates, and ash, and only changed mineral and organic acid composition.
In Examples 1 to 11, which are examples, heat-sterilized milk was efficiently obtained without agglomerates such as curds being produced during the production.
On the other hand, Example 12, which is a comparative example, differs from the present invention in that pH adjustment is not performed.
The heat-sterilized milk obtained in Example 13 has a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 5.2 or more, which is different from the heat-sterilized milk of the present invention.
Example 14 differs from the present invention in that pH adjustment is not performed.
Example 15 is different from the method for producing heat-sterilized milk of the present invention in that calcium exchange and pH adjustment are performed simultaneously. The method of Example 15 was not practical because the ion exchange treatment could only be performed in batch mode.
Example 16 differs from the present invention in that pH adjustment is not performed. The method of Example 16 was not practical because the ion exchange treatment could only be performed in a batch mode.
Example 17 differs from the method for producing heat-sterilized milk of the present invention in that calcium is removed after pH adjustment. This method was not practical because a curd was generated when the temperature was adjusted to 60 ° C. after adjusting the pH.
In Example 18, only pH adjustment was performed without exchanging and removing calcium, and then heat sterilization was performed at 121 ° C. for 10 minutes, and the pH-adjusted milk gelled at the time of heat sterilization.
In Example 19, neither pH adjustment nor heat sterilization was performed.
In addition, since the heat sterilization in Examples 1 to 17 ("sterilize at 135 ° C for 30 seconds after preliminary sterilization at 85 ° C for 5 minutes" or "sterilize at 90 ° C for 10 minutes") is low temperature or short time, In any of the examples, no curd or browning occurred during the heat sterilization.
Each emulsion, concentrated milk, or powdered milk obtained in each example was evaluated by the following test.
〔試験例1〕
この試験の目的は、各例で得られた各乳液の熱安定性を検証することであり、表2に示すように17種類の試料について検討した。
1.試験試料
表2に示すとおり、各例で調製した各乳液および、粉乳溶解液を調整し、熱安定性試験試料とした。
具体的には、試料(1)としては例1で調製した加熱殺菌乳を用いた。試料(2)としては、例12で調製した加熱殺菌乳を用いた。試料(3)としては、例11で調製した加熱殺菌乳を用いた。試料(4)としては、例14で調製した加熱殺菌乳を用いた。試料(5)としては、例7で調製した加熱殺菌乳を用いた。試料(6)としては、例2で調製した加熱殺菌乳を用いた。試料(7)としては、例3で調製した加熱殺菌乳を用いた。試料(8)としては、例13で調製した加熱殺菌乳を用いた。試料(9)としては、例15で調製した加熱殺菌乳を用いた。試料(10)としては、例16で調製した乳液を用いた。試料(11)としては、例4で調製した加熱殺菌粉乳(固形分96質量%)を50℃の水に9.4質量%(固形分9.0質量%)で溶解した溶解液を用いた。試料(12)としては、例5で調製した加熱殺菌粉乳(固形分96質量%)を50℃の水に9.4質量%(固形分9.0質量%)で溶解した溶解液を用いた。試料(13)としては、例6で調製した加熱殺菌粉乳(固形分96質量%)を50℃の水に9.4質量%(固形分9.0質量%)で溶解した溶解液を用いた。試料(14)としては、例17で調製した加熱殺菌乳を用いた。試料(15)としては、例8で調製した加熱殺菌粉乳(固形分96質量%)を50℃の水に9.4質量%(固形分9.0質量%)で溶解した溶解液を用いた。試料(16)としては、例9で調製した加熱殺菌乳を用いた。試料(17)としては、例10で調製した加熱殺菌乳を用いた。
表2には、各試料の殺菌前pH、カルシウム含有量(mg/100g)、無脂乳固形分(質量%)、カルシウム含有量(mg/100g)/無脂乳固形分(質量%)を示した。
[Test Example 1]
The purpose of this test was to verify the thermal stability of each emulsion obtained in each example, and 17 types of samples were examined as shown in Table 2.
1. Test sample As shown in Table 2, each emulsion prepared in each example and a powdered milk solution were prepared and used as a thermal stability test sample.
Specifically, the heat-sterilized milk prepared in Example 1 was used as the sample (1). As sample (2), the heat-sterilized milk prepared in Example 12 was used. As sample (3), the heat-sterilized milk prepared in Example 11 was used. As sample (4), the heat-sterilized milk prepared in Example 14 was used. As sample (5), the heat-sterilized milk prepared in Example 7 was used. As the sample (6), the heat-sterilized milk prepared in Example 2 was used. As sample (7), the heat-sterilized milk prepared in Example 3 was used. As sample (8), the heat-sterilized milk prepared in Example 13 was used. As sample (9), the heat-sterilized milk prepared in Example 15 was used. As the sample (10), the emulsion prepared in Example 16 was used. As the sample (11), a solution obtained by dissolving the heat-sterilized milk powder prepared in Example 4 (solid content: 96% by mass) in water at 50 ° C. at 9.4% by mass (solid content: 9.0% by mass) was used. . As the sample (12), a solution obtained by dissolving the heat-sterilized milk powder (solid content: 96% by mass) prepared in Example 5 in water at 50 ° C. at 9.4% by mass (solid content: 9.0% by mass) was used. . As the sample (13), a solution obtained by dissolving the heat-sterilized milk powder (solid content: 96% by mass) prepared in Example 6 in water at 50 ° C. at 9.4% by mass (solid content: 9.0% by mass) was used. . As sample (14), the heat-sterilized milk prepared in Example 17 was used. As the sample (15), a solution obtained by dissolving the heat-sterilized milk powder (solid content: 96% by mass) prepared in Example 8 in water at 50 ° C. at 9.4% by mass (solid content: 9.0% by mass) was used. . As sample (16), the heat-sterilized milk prepared in Example 9 was used. As the sample (17), the heat-sterilized milk prepared in Example 10 was used.
Table 2 shows the pre-sterilization pH, calcium content (mg / 100 g), non-fat milk solid content (mass%), calcium content (mg / 100 g) / non-fat milk solid content (mass%) of each sample. Indicated.
2.試験方法
熱安定性を検討するために、各試料50gをビーカーに入れ、一般的な滅菌装置であるオートクレーブ装置(トミー精工社製、KS−323)を用い、121℃10分の条件で加熱滅菌した。
加熱による沈殿(カード)生成の評価方法は、50ミリリットル用の粉乳用遠沈管(中村医科理科社製)に全量を移し、国産遠心器社製のH−103N遠心器にて1500gの遠心力で5分遠心して遠沈管の底に集められた沈殿量を測定した。結果を表3に示す。
褐変度合いの測定方法は一般的な色彩の評価方法のひとつである、ハンター式色差計を用いて評価した。具体的にはミノルタ社製のCOLOR READER CR−13測色計を用い、得られた乳液又は殺菌液3ミリリットルについて色差値を5回計測し、その平均値を溶液の色差値とした。色差値より、一般的な色の差の評価方法である色差ΔEの値を求め、加熱の有無による溶液の色の変化を評価した。結果を表3に示す。
なお、ΔEの値は以下の式によりハンター表色系の値を用いて求められる(加熱前の試料の色差を(L1、a1、b1)とし、加熱後の試料の色差を(L2、a2、b2)と表記したとき、ΔL=L1−L2、Δa=a1−a2、Δb=b1−b2)。
2. Test method In order to examine thermal stability, 50 g of each sample was put into a beaker, and heat sterilization was performed at 121 ° C. for 10 minutes using an autoclave apparatus (KS-323, manufactured by Tommy Seiko Co., Ltd.) which is a general sterilization apparatus. did.
The method for evaluating the precipitation (curd) formation by heating is to transfer the entire amount to a 50 ml centrifuge tube for milk powder (manufactured by Nakamura Medical Science Co., Ltd.), and at a centrifugal force of 1500 g using an H-103N centrifuge manufactured by a domestic centrifuge. After centrifuging for 5 minutes, the amount of sediment collected at the bottom of the centrifuge tube was measured. The results are shown in Table 3.
The measuring method of the degree of browning was evaluated using a hunter type color difference meter, which is one of general color evaluation methods. Specifically, using a COLOR READER CR-13 colorimeter manufactured by Minolta Co., Ltd., the color difference value was measured 5 times for 3 ml of the obtained emulsion or sterilizing solution, and the average value was taken as the color difference value of the solution. From the color difference value, the value of color difference ΔE, which is a general color difference evaluation method, was obtained, and the change in the color of the solution due to the presence or absence of heating was evaluated. The results are shown in Table 3.
The value of ΔE is obtained using the Hunter color system value according to the following formula (the color difference of the sample before heating is (L1, a1, b1), and the color difference of the sample after heating is (L2, a2, When expressed as b2), ΔL = L1-L2, Δa = a1-a2, Δb = b1-b2).
3.試験結果
試料(1)、(2)はそれぞれ脱脂乳を原料乳としており、試料(1)がpH調整を行った弱酸性の加熱殺菌乳、試料(2)がpH調整をせず中性付近の加熱殺菌乳である。試料(3)、(4)はそれぞれ全脂粉乳溶解液を原料乳としており、同じように試料(3)が弱酸性の加熱殺菌乳、試料(4)が中性付近の加熱殺菌乳である。これらによれば、弱酸性にすることにより、沈殿、褐変化とも抑制された非常に高い熱安定性を持つ乳液や乳濃縮液を得ることができるといえる。
試料(5)〜(8)における無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)は順番に、0.3、3.8、5.2、6.5である。これによれば、沈殿、褐変化等を抑制するには、無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2以下であると効果的であり、3.8以下であると特に効果が大きいといえる。
試料(9)は、熱安定性の高い乳液ではあるが、前述のように試料(9)に用いた例15の加熱殺菌乳の製造方法はバッチ法のみであり、実用的なものではなかった。試料(10)は、pHが7.0であり、褐変化を抑えることができなかった。
試料(11)、(12)及び(13)では、脱塩のためにpH調整乳をナノ濾過処理に付しても、沈殿や褐変化を抑制でき、熱安定性の高さは変わらないことが示された。更に試料(12)及び(13)より、陽イオン交換樹脂として、ナトリウム‐カリウム混合形樹脂を用いても同様の熱安定性が得られることが示された。
試料(14)は、熱安定性の高い乳液ではあるが、前述のように試料(14)に用いた例17は、製造時、酸添加後にカード生成、ゲル化といった現象が起き、不安定さを考慮すると実用的ではない。
試料(15)〜(17)では、添加する酸として、炭酸ガス、リン酸、乳酸を使用した。炭酸ではオートクレーブでの長時間殺菌により、殺菌中に炭酸ガスが気化してpHが上がり褐変化が生じたが、沈殿は全く生じず、pH調整をしない従来のカルシウム除去乳よりも熱安定性が向上していることが示された。また、リン酸、乳酸では褐変化も沈殿も問題なかった。これによって、食品として使用する酸によってpH調整を行っても、沈殿や褐変化を防ぐことができ、熱安定性を高められることが示された。
3. Test results Samples (1) and (2) are each made from skim milk, and sample (1) is a weakly acidic heat-sterilized milk whose pH is adjusted, and sample (2) is near neutral without pH adjustment. This is heat pasteurized milk. Samples (3) and (4) each have a whole milk powder solution as raw material milk. Similarly, sample (3) is a weakly acidic heat-sterilized milk and sample (4) is a heat-sterilized milk near neutrality. . According to these, it can be said that by making it weakly acidic, it is possible to obtain a milk or a milk concentrate having very high thermal stability in which both precipitation and browning are suppressed.
The calcium content (mg / 100 g) per non-fat milk solid content (mass%) in the samples (5) to (8) is 0.3, 3.8, 5.2, and 6.5 in order. According to this, in order to suppress precipitation, browning, etc., it is effective when the calcium content (mg / 100 g) per non-fat milk solid content (mass%) is 5.2 or less. It can be said that the effect is particularly great when it is 8 or less.
Although the sample (9) is an emulsion having high heat stability, as described above, the method for producing the heat-sterilized milk of Example 15 used for the sample (9) is only a batch method and is not practical. . Sample (10) had a pH of 7.0 and could not suppress browning.
In samples (11), (12), and (13), even if the pH-adjusted milk is subjected to nanofiltration treatment for desalting, precipitation and browning can be suppressed, and the high thermal stability does not change. It has been shown. Further, samples (12) and (13) showed that the same thermal stability can be obtained even when a sodium-potassium mixed resin is used as the cation exchange resin.
Sample (14) is an emulsion with high heat stability, but as described above, in Example 17 used for sample (14), a phenomenon such as card formation or gelation occurs after the addition of acid during production, resulting in instability. Is not practical.
In samples (15) to (17), carbon dioxide, phosphoric acid, and lactic acid were used as the acid to be added. With carbonic acid, sterilization for a long time in an autoclave caused carbon dioxide to vaporize during sterilization, resulting in a pH increase and browning, but precipitation did not occur at all, and heat stability was higher than conventional calcium-free milk without pH adjustment. It was shown that it was improving. In addition, phosphoric acid and lactic acid had no problem with browning or precipitation. Thus, it was shown that precipitation and browning can be prevented and the thermal stability can be improved even if the pH is adjusted with an acid used as a food.
〔試験例2〕
この試験の目的は、ナノ濾過処理する際の脱塩効率を検証することである。
表4に示すように例4、例5、例19で得られた脱カルシウム乳、及び2倍濃縮後の乳液について、ナトリウム含有量をICP法によって測定し、固形分100gあたりのナトリウム含有量Xを次式、X=ナトリウム含有量(mg/100g)÷固形分(質量%)×100、より算出し、評価を行った。結果を表4に示す。
[Test Example 2]
The purpose of this test is to verify the desalting efficiency during the nanofiltration process.
As shown in Table 4, for the decalcified milk obtained in Examples 4, 5, and 19, and the emulsion after double concentration, the sodium content was measured by the ICP method, and the sodium content X per 100 g of solid content X Was calculated from the following formula, X = sodium content (mg / 100 g) ÷ solid content (mass%) × 100, and evaluated. The results are shown in Table 4.
ナノ濾過処理による2倍濃縮時の脱塩効率を例4と例19で比較する。表4より、塩酸を添加してからナノ濾過処理により脱塩する(例4)ことにより、塩酸を添加しないでナノ濾過処理を行う(例19)よりも、約2倍脱塩効率が上がることが確認された。つまり、塩酸を添加してからナノ濾過処理により脱塩することによって、イオン交換によって増長された塩味を抑制し、風味良好で熱安定性に優れた乳類を製造できることが示された。
さらに、例4と5の比較から、ナトリウム形陽イオン交換樹脂を用いた場合と、ナトリウム‐カリウム混合形陽イオン交換樹脂を用いた場合では、カルシウム除去にナトリウム‐カリウム混合形陽イオン交換樹脂を用いた方がよりナトリウム量が軽減され、熱安定性が良く、風味が非常に優れた乳類を製造できることが示された。
Example 4 and Example 19 compare the desalting efficiency at the time of double concentration by nanofiltration treatment. Table 4 shows that desalting by adding nanohydrochloric acid after adding hydrochloric acid (Example 4) increases the desalting efficiency about twice as much as performing nanofiltration without adding hydrochloric acid (Example 19). Was confirmed. In other words, it was shown that by adding hydrochloric acid and then desalting by nanofiltration treatment, the salty taste increased by ion exchange can be suppressed, and milk having good flavor and excellent thermal stability can be produced.
Further, from the comparison between Examples 4 and 5, it was found that sodium-potassium mixed cation exchange resin was used for calcium removal when sodium cation exchange resin was used and when sodium-potassium mixed cation exchange resin was used. It was shown that the amount of sodium can be reduced, the heat stability is good, and the milk with excellent flavor can be produced.
〔試験例3〕
この試験の目的は、各例で得られた代表的な乳液の風味を検証することである。
例12、例1、例4、及び例5で得られた乳液又は粉乳を、表6に示したように調整し、訓練された風味パネラー20名により評価した。
具体的には、試料(1)としては、例1で調製した加熱殺菌乳を用いた。試料(2)としては、例4で得た加熱殺菌乳を固形分9質量%となるよう希釈した希釈液を用いた。試料(3)としては、例5で得た加熱殺菌乳を固形分9質量%となるよう希釈した希釈液を用いた。
評価方法は、脱脂乳中のカルシウムをナトリウム形イオン樹脂で除去して殺菌した例12の加熱殺菌乳をコントロールとして用い、この加熱殺菌乳に比べて塩味および酸味について表5の基準にて1〜5点の5段階で評価した。その結果を統計学的に処理したものを表6に示す。
[Test Example 3]
The purpose of this test is to verify the flavor of the typical emulsion obtained in each example.
The emulsions or milk powders obtained in Example 12, Example 1, Example 4 and Example 5 were prepared as shown in Table 6 and evaluated by 20 trained flavor panelists.
Specifically, the heat-sterilized milk prepared in Example 1 was used as the sample (1). As the sample (2), a diluted solution obtained by diluting the heat-sterilized milk obtained in Example 4 to a solid content of 9% by mass was used. As the sample (3), a diluted solution obtained by diluting the heat-sterilized milk obtained in Example 5 to a solid content of 9% by mass was used.
The evaluation method uses the heat-sterilized milk of Example 12 that has been sterilized by removing calcium in skim milk with a sodium ion resin as a control. Evaluation was made on a 5-point scale. Table 6 shows the results of statistical processing.
表6の結果より、カルシウムとナトリウムをイオン交換しただけのコントロールと比較して、塩酸を添加した試料(1)では塩味と酸味が有意に強く感じられた。しかし、試料(2)、(3)によれば、ナノ濾過処理を行うことでコントロールよりも塩味が有意に減少され(有意水準1%)、酸味も増加せずに風味良好で高熱安定性の乳液が得られていることが示された。
つまり、塩味を減少させかつ酸味を増加させずに熱安定性の良い乳液を得るには、加熱殺菌乳の製造工程において、脱塩濃縮処理を行うと好ましいといえる。
From the results in Table 6, the salty and sour tastes were significantly stronger in the sample (1) to which hydrochloric acid was added than in the control in which calcium and sodium were ion-exchanged. However, according to the samples (2) and (3), the saltiness was significantly reduced by the nanofiltration treatment (significant level 1%), the taste was good and the heat stability was high without increasing the acidity. It was shown that an emulsion was obtained.
That is, it can be said that it is preferable to carry out desalting and concentration treatment in the production process of heat-sterilized milk in order to obtain an emulsion having good heat stability without reducing salty taste and increasing sourness.
〔試験例4〕
この試験の目的は、どのpHで乳類の熱安定性が優れているかを検証することであり、表7に示すように18種類の試料を作成し、検討した。
1.試験試料
表7に示すとおり、試料(1)として、例12で調製したpH7.5の加熱殺菌乳を用いた。試料(2)〜試料(18)としては、例12で調製したpH7.5の加熱殺菌乳に1質量%塩酸を適宜添加してpHを5.4〜7.0に調整したものを用いた。
[Test Example 4]
The purpose of this test was to verify at which pH the heat stability of the milk was excellent. As shown in Table 7, 18 types of samples were prepared and examined.
1. Test sample As shown in Table 7, the heat-sterilized milk of pH 7.5 prepared in Example 12 was used as the sample (1). Samples (2) to (18) were prepared by appropriately adding 1% by mass hydrochloric acid to the heat-sterilized milk of pH 7.5 prepared in Example 12 to adjust the pH to 5.4 to 7.0. .
2.試験方法
試験例1と同様の方法にてオートクレーブ装置で121℃10分間の条件で加熱殺菌した各試料の熱安定性を、沈殿量と色差ΔEで評価した。結果を表7に示す。
2. Test Method The thermal stability of each sample heat-sterilized in an autoclave apparatus at 121 ° C. for 10 minutes in the same manner as in Test Example 1 was evaluated by the precipitation amount and the color difference ΔE. The results are shown in Table 7.
3.試験結果
表7より、カルシウムが交換除去され無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2以下の乳液を用いた場合、pHを弱酸性の6.5以下にすることで、沈殿、褐変化とも抑制された熱安定性の高い乳類を得ることができ、それはpHが低いほど効果的であることが示された。しかしながら、pHが低ければ低いほどよいというものでもなく、pHが5.6以下では逆に熱安定性が悪くなる。従って、熱安定性の高い乳類を得るには、pHを5.7〜6.5に調整するのが良いことが示された。
3. Test result From Table 7, when calcium was exchanged and removed and an emulsion having a calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 5.2 or less was used, the pH was 6.5 which was weakly acidic. By making it below, it is possible to obtain milk with high heat stability in which both precipitation and browning are suppressed, and it was shown that the lower the pH, the more effective. However, the lower the pH, the better. The lower the pH, the lower the thermal stability. Therefore, it was shown that the pH should be adjusted to 5.7 to 6.5 in order to obtain milk having high heat stability.
〔試験例5〕
この試験の目的は、どの酸が高い熱安定性を持つ加熱殺菌乳の製造に用いることができるか検証することであり、表8に示すように9種類の試料を作成し、検討した。
1.試験試料
表8に示すとおり、試料(1)として、例12で調製した加熱殺菌乳に2質量%塩酸を添加してpHを6.1に調整したものを用いた。試料(2)として、例12で調製した加熱殺菌乳に炭酸ガスを吹き込んでpHを6.1に調整したものを用いた。試料(3)として、例12で調製した加熱殺菌乳に8.5質量%リン酸を添加してpHを6.1に調整したものを用いた。試料(4)として、例12で調製した加熱殺菌乳に9質量%乳酸を添加してpHを6.1に調整したものを用いた。試料(5)として、例12で調製した加熱殺菌乳に10質量%リンゴ酸を添加してpHを6.1に調整したものを用いた。試料(6)として、例12で調製した加熱殺菌乳に10質量%酒石酸を添加してpHを6.1に調整したものを用いた。試料(7)として、例12で調製した加熱殺菌乳に10質量%コハク酸を添加してpHを6.1に調整したものを用いた。試料(8)として、例12で調製した加熱殺菌乳に10質量%酢酸を添加してpHを6.1に調整したものを用いた。試料(9)として、例12で調製した加熱殺菌乳に10質量%クエン酸を添加してpHを6.1に調整したものを用いた。試料(10)として、例12で調製した加熱殺菌乳に2質量%硫酸を添加してpHを6.1に調整したものを用いた。
[Test Example 5]
The purpose of this test was to verify which acid can be used for the production of heat-sterilized milk having high thermal stability. As shown in Table 8, nine types of samples were prepared and examined.
1. Test sample As shown in Table 8, the sample (1) was prepared by adding 2 mass% hydrochloric acid to the heat-sterilized milk prepared in Example 12 and adjusting the pH to 6.1. As sample (2), the heat-sterilized milk prepared in Example 12 was blown with carbon dioxide to adjust the pH to 6.1. As the sample (3), 8.5% by mass phosphoric acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As sample (4), 9 mass% lactic acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As the sample (5), 10% by mass malic acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As the sample (6), 10% by mass tartaric acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As the sample (7), 10% by mass of succinic acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As sample (8), 10 mass% acetic acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As the sample (9), 10% by mass citric acid was added to the heat-sterilized milk prepared in Example 12 to adjust the pH to 6.1. As the sample (10), the heat-sterilized milk prepared in Example 12 was added with 2% by mass sulfuric acid to adjust the pH to 6.1.
2.試験方法
試験例1と同様の方法にてオートクレーブ装置で121℃10分間の条件で加熱殺菌した試料の熱安定性を、沈殿量で評価した。さらに、訓練された風味パネラー6名により、酸で調整した乳液の風味評価を行い、風味傾向および使用可能性について検討した。結果を表8に示す。
2. Test method The thermal stability of the sample heat-sterilized on the conditions of 121 degreeC for 10 minutes with the autoclave apparatus by the method similar to Test Example 1 was evaluated by the amount of precipitation. Furthermore, the flavor evaluation of the emulsion adjusted with the acid was evaluated by six trained flavor panelists, and the flavor tendency and availability were examined. The results are shown in Table 8.
3.試験結果
表8より、カルシウムが交換除去され無脂乳固形分(質量%)あたりのカルシウム含有量(mg/100g)が5.2以下の乳液を用いた場合、pH調整を行う酸が、有機酸、無機酸、強酸、弱酸とどの種類の酸であっても、高温条件下における長時間の滅菌処理によって、褐変化や沈殿が生じることはなく望む熱安定性が得られることが示された。
ただし、酸によっては非常に風味が悪くなるため、風味にほとんど影響を与えない酸である塩酸、炭酸、またはヨーグルト風味である乳酸が望ましく、ミルク感は薄いが酸味が弱く癖のない風味を持つ硫酸、酸味が感じられるが、癖のない風味を持つリン酸、リンゴ酸、酒石酸も原料としては可能性があることが示された。
3. Test results From Table 8, when an emulsion having calcium content (mg / 100 g) per non-fat milk solid content (mass%) of 5.2 or less was used, the acid for adjusting the pH was organic. It was shown that any kind of acid, inorganic acid, strong acid, weak acid and long-term sterilization treatment under high temperature conditions can achieve the desired thermal stability without browning or precipitation. .
However, depending on the acid, the flavor may be very bad, so hydrochloric acid, carbonic acid, or lactic acid that is yogurt-flavored, which has little effect on the flavor, is desirable. It was shown that phosphoric acid, malic acid and tartaric acid, which have sulfuric acid and sour taste, but have no wrinkle, may be used as raw materials.
Claims (8)
該脱カルシウム乳のpHを5.7〜6.5に調整してpH調整乳を得る第2工程と、
該pH調整乳を加熱殺菌する第3工程とを有することを特徴とする、加熱殺菌乳の製造方法。 A first step of bringing raw milk into contact with a cation exchange resin to obtain decalcified milk having a calcium content (mg / 100 g) / non-fat milk solid content (mass%) of 5.2 or less;
A second step of adjusting the pH of the decalcified milk to 5.7-6.5 to obtain a pH-adjusted milk;
A method for producing heat-sterilized milk, comprising a third step of heat-sterilizing the pH-adjusted milk.
該脱カルシウム乳のpHを5.7〜6.5に調整してpH調整乳を得る第2工程と、
該pH調整乳を加熱殺菌する第3工程とを有することを特徴とする、加熱殺菌乳の製造方法。 Raw material milk and cation exchange resin are contacted to obtain ion-exchanged milk, and the ion-exchanged milk and raw material milk are mixed to obtain a calcium content (mg / 100 g) / non-fat milk solid content (mass%). A first step of obtaining a decalcified milk having a pH of 5.2 or less;
A second step of adjusting the pH of the decalcified milk to 5.7-6.5 to obtain a pH-adjusted milk;
A method for producing heat-sterilized milk, comprising a third step of heat-sterilizing the pH-adjusted milk.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008030981A JP4764893B2 (en) | 2008-02-12 | 2008-02-12 | Heat-sterilized milk and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008030981A JP4764893B2 (en) | 2008-02-12 | 2008-02-12 | Heat-sterilized milk and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009189260A true JP2009189260A (en) | 2009-08-27 |
JP4764893B2 JP4764893B2 (en) | 2011-09-07 |
Family
ID=41071920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008030981A Active JP4764893B2 (en) | 2008-02-12 | 2008-02-12 | Heat-sterilized milk and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4764893B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045031A (en) * | 2015-08-28 | 2017-03-02 | 住華科技股▲フン▼有限公司Sumika Technology Co.,Ltd | Method of manufacturing polarizing film |
JP2018038361A (en) * | 2016-09-09 | 2018-03-15 | 株式会社明治 | Milk concentrate and method for producing the same |
JP2018038360A (en) * | 2016-09-09 | 2018-03-15 | 株式会社明治 | Milk concentrate and method for producing the same |
CN116941673A (en) * | 2023-09-19 | 2023-10-27 | 中国农业科学院农产品加工研究所 | Normal-temperature liquid goat milk and preparation method thereof |
WO2024166847A1 (en) * | 2023-02-06 | 2024-08-15 | サントリーホールディングス株式会社 | Thermally sterilized milk-containing coffee beverage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10248495A (en) * | 1997-03-12 | 1998-09-22 | Morinaga Milk Ind Co Ltd | Whole milk proteolysis product and manufacture therefor |
JP2003515353A (en) * | 1999-12-09 | 2003-05-07 | ニュージーランド デアリー ボード | Dairy products and formulas |
JP2004520067A (en) * | 2001-04-12 | 2004-07-08 | ニュージーランド デアリー ボード | Modified milk protein concentrates and their use in the preparation of gels and dairy products |
-
2008
- 2008-02-12 JP JP2008030981A patent/JP4764893B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10248495A (en) * | 1997-03-12 | 1998-09-22 | Morinaga Milk Ind Co Ltd | Whole milk proteolysis product and manufacture therefor |
JP2003515353A (en) * | 1999-12-09 | 2003-05-07 | ニュージーランド デアリー ボード | Dairy products and formulas |
JP2004520067A (en) * | 2001-04-12 | 2004-07-08 | ニュージーランド デアリー ボード | Modified milk protein concentrates and their use in the preparation of gels and dairy products |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045031A (en) * | 2015-08-28 | 2017-03-02 | 住華科技股▲フン▼有限公司Sumika Technology Co.,Ltd | Method of manufacturing polarizing film |
JP2018038361A (en) * | 2016-09-09 | 2018-03-15 | 株式会社明治 | Milk concentrate and method for producing the same |
JP2018038360A (en) * | 2016-09-09 | 2018-03-15 | 株式会社明治 | Milk concentrate and method for producing the same |
JP2022031425A (en) * | 2016-09-09 | 2022-02-18 | 株式会社明治 | Milk protein concentrate and milk product |
JP2022031424A (en) * | 2016-09-09 | 2022-02-18 | 株式会社明治 | Milk protein concentrate and milk product |
JP7036534B2 (en) | 2016-09-09 | 2022-03-15 | 株式会社明治 | Method for producing milk protein concentrate |
JP7038470B2 (en) | 2016-09-09 | 2022-03-18 | 株式会社明治 | Method for producing milk protein concentrate |
WO2024166847A1 (en) * | 2023-02-06 | 2024-08-15 | サントリーホールディングス株式会社 | Thermally sterilized milk-containing coffee beverage |
CN116941673A (en) * | 2023-09-19 | 2023-10-27 | 中国农业科学院农产品加工研究所 | Normal-temperature liquid goat milk and preparation method thereof |
CN116941673B (en) * | 2023-09-19 | 2023-12-22 | 中国农业科学院农产品加工研究所 | Normal-temperature liquid goat milk and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4764893B2 (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4734476B2 (en) | Method for producing desalted milk, desalted milk | |
EP1958514B1 (en) | Process for producing modified whey powder | |
JPH06217689A (en) | Milk composition and its preparation | |
JP4764893B2 (en) | Heat-sterilized milk and method for producing the same | |
JP4701472B2 (en) | Method for producing milk calcium composition | |
WO2011037155A1 (en) | Method for manufacturing low-phosphorus whey | |
JPH034742A (en) | Preparation of desalted milk | |
US11406111B2 (en) | Method for the demineralisation of whey and whey thus obtained | |
EP2317877A1 (en) | Method for filtering milk | |
JP6060075B2 (en) | A fresh cream having a strong body and a method for producing the same. | |
CN108522654A (en) | A method of producing lactose-free milk product | |
JP4876137B2 (en) | Method for producing calcium-containing milk composition | |
CN104378994B (en) | The manufacture method of modified whey compositions, modified whey compositions, the manufacture method of the modified whey compositions of calcium enhancing | |
JPS59205937A (en) | Production of longterm preservable aromatic beverage based on acid milk serum | |
Rinaldoni et al. | Fractionation of skim milk by an integrated membrane process for yoghurt elaboration and lactose recuperation | |
EP3777567A1 (en) | METHOD FOR PRODUCING COMPOSITION CONTAINING k-CASEIN GLYCOMACROPEPTIDE | |
JP4966984B2 (en) | Modified whey product having excellent thermal stability and method for producing the same | |
JPH0823880A (en) | Production of milk calcium dispersion and food product including the same | |
JP2024511136A (en) | Method of processing milk protein compositions to produce lactose-enriched liquid compositions | |
JP2011067148A (en) | Method for producing calcium-enriched whey-containing composition | |
JP2016086671A (en) | Component formulated milk and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4764893 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |