JP2009188813A - Optical receiver and visible light communication equipment - Google Patents

Optical receiver and visible light communication equipment Download PDF

Info

Publication number
JP2009188813A
JP2009188813A JP2008027659A JP2008027659A JP2009188813A JP 2009188813 A JP2009188813 A JP 2009188813A JP 2008027659 A JP2008027659 A JP 2008027659A JP 2008027659 A JP2008027659 A JP 2008027659A JP 2009188813 A JP2009188813 A JP 2009188813A
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
optical receiver
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008027659A
Other languages
Japanese (ja)
Other versions
JP5068680B2 (en
Inventor
Masashi Yamada
雅司 山田
Koryo Nakamura
公亮 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2008027659A priority Critical patent/JP5068680B2/en
Publication of JP2009188813A publication Critical patent/JP2009188813A/en
Application granted granted Critical
Publication of JP5068680B2 publication Critical patent/JP5068680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure superior transmission quality and a wide dynamic range when spatial optical transmission is performed by using a visible optical source, such as a blue photoexcitation type white LED. <P>SOLUTION: When distance between a transmitter and a receiver is short, a perimeter photoelectric conversion unit 12S receives light, which contains many optical yellow factors, from phosphor. The signal level of a signal level detector 22 comes to exceed a predetermined threshold, and a change-over switch 15 is switched to the side of an equalizer 16SY suitable characteristic for optical yellow factors. When the distance between the transmitter and the receiver is long, the perimeter photoelectric conversion unit 12S receives light, which contains optical blue factors, from LED. The signal level of a signal level detector 22 does not exceed the predetermined threshold, so the change-over switch 15 is switched to the side of an equalizer 16SB, which is suitable characteristic for optical blue factors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,可視光を用いて信号を伝送するデータ伝送システムに関し、特に、蛍光体の発光のような応答速度の異なる光を含む場合に好適な光受信機及び可視光通信装置に関する。   The present invention relates to a data transmission system that transmits a signal using visible light, and more particularly to an optical receiver and a visible light communication apparatus that are suitable when light having different response speeds such as light emission of a phosphor is included.

近年、電波や赤外線を利用した無線通信に加えて、室内の照明器具,屋外広告照明,信号機,自動車のヘッドライトなどの可視光を利用した通信が注目されている。最近は、白色LED(発光ダイオード)の開発が盛んに行われ、照明,車載用ランプ,液晶バックライト等多岐に亘る。この白色LEDは、例えば蛍光灯などの白色光源と比較して、オン/オフの切り替え応答速度が非常に速いといった特徴を持っている。そこで、データ伝送媒体としてLEDによる白色光を用い、白色LEDの照明光にデータ伝送機能を持たせる可視光通信システムが提案されている(下記特許文献1参照)。すなわち、白色LEDの発光強度を送信データに応じて変調し、受信側ではその光の強弱をPD(Photo Diode:フォトダイオード)などの光電変換器により電気信号に変換することで、データ伝送を実現する。   In recent years, in addition to wireless communication using radio waves and infrared rays, attention has been focused on communication using visible light such as indoor lighting fixtures, outdoor advertising lighting, traffic lights, and automobile headlights. Recently, white LEDs (light-emitting diodes) have been actively developed, and they are widely used for lighting, in-vehicle lamps, liquid crystal backlights, and the like. This white LED has a feature that the on / off switching response speed is very fast as compared with a white light source such as a fluorescent lamp. Thus, a visible light communication system has been proposed in which white light from an LED is used as a data transmission medium, and illumination light from the white LED has a data transmission function (see Patent Document 1 below). In other words, data transmission is realized by modulating the emission intensity of the white LED according to the transmission data, and converting the intensity of the light into an electrical signal by a photoelectric converter such as a PD (Photo Diode) on the receiving side. To do.

ところで、白色LEDは,例えば下記非特許文献1にあるように、発光方式により主に3種類に分類することができる。   By the way, white LED can be mainly classified into three types according to the light emission method as described in Non-Patent Document 1, for example.

(1)青色光励起型白色LEDは、青色LEDと、主に黄色を発光する蛍光体を組み合わせたものである。これは、青色LEDの周囲にYAG(イットリウム・アルミニウム・ガーネット)系に代表されるような蛍光体を配置し、一つのパッケージに納めた構造となっている。この方式では、中心に配置された青色LEDから出力された青色光によって周囲の蛍光体が励起され、この蛍光体から主に青色と補色関係のある光(主に黄色)が出力される。この蛍光体による黄色蛍光と、前記青色LEDによる青色光とを混色することで、擬似的に白色光を得ている。   (1) The blue light excitation type white LED is a combination of a blue LED and a phosphor that mainly emits yellow light. This is a structure in which a phosphor such as a YAG (yttrium, aluminum, garnet) system is arranged around a blue LED and is housed in one package. In this method, the surrounding phosphor is excited by the blue light output from the blue LED arranged at the center, and light (mainly yellow) mainly having a complementary color relationship with blue is output from this phosphor. A pseudo white light is obtained by mixing the yellow fluorescence by the phosphor and the blue light by the blue LED.

このような青色光励起型白色LEDの長所としては、(a)他の方式と比較してエネルギー利用効率が高く、高い照度が得易いこと,(b)構成が簡便なため安価に作製が可能であること,が挙げられる。一方、短所としては、演色性が悪いことが挙げられる。この演色性とは、照明による物体の色の見え方の特性を指し、色が自然光で見た場合に近いほど演色性がよいという。   The advantages of such blue light-excited white LEDs are: (a) high energy utilization efficiency compared to other methods, easy to obtain high illuminance, and (b) simple construction that can be manufactured at low cost. There are certain things. On the other hand, the disadvantage is that color rendering is poor. This color rendering property refers to the characteristic of the appearance of the color of an object by illumination, and the closer the color is to natural light, the better the color rendering property.

図7(A)には、青色光励起型白色LEDの一例が示されている。同図に示すように、青色LED900は、樹脂ケース902の主面上に設けられている。青色LED900の駆動電圧印加端子(図示せず)は、引出し電極904,906にそれぞれ接続されている。これら引出し電極904,906に駆動電圧を印加すると、青色LED900から青色光が出力されるが、その一部が黄色蛍光体908に入射する。これにより黄色蛍光体908が励起され、蛍光が出力される。青色LED900には、種々の波長の発光特性を持つものがあるが、例えば、ピーク波長が440〜470nmの範囲にあるものが使用される。黄色蛍光体908は、青色LED900のピーク波長より長波長側の光を発光するものが使用される。そして、青色LED900が発光する光をさえぎらないように、放射状で厚みのある透光性樹脂中に蛍光体粒子908が配置される。図7(B)には、一般的な青色光励起型白色LEDの発光スペクトル(波長スペクトル)特性が示されている。点線SAで囲んだ部分がLEDによる青色光の部分であり、点線SBで囲んだ部分が蛍光体による発光の部分である。このように蛍光体による発光は、青色LED900の発光のピーク波長より長波長側に存在する。   FIG. 7A shows an example of a blue light excitation type white LED. As shown in the figure, the blue LED 900 is provided on the main surface of the resin case 902. A drive voltage application terminal (not shown) of the blue LED 900 is connected to the extraction electrodes 904 and 906, respectively. When a drive voltage is applied to the extraction electrodes 904 and 906, blue light is output from the blue LED 900, but a part of the blue light enters the yellow phosphor 908. As a result, the yellow phosphor 908 is excited and fluorescence is output. Some blue LEDs 900 have emission characteristics of various wavelengths. For example, those having a peak wavelength in the range of 440 to 470 nm are used. As the yellow phosphor 908, one that emits light having a wavelength longer than the peak wavelength of the blue LED 900 is used. The phosphor particles 908 are arranged in a radial and thick translucent resin so as not to block the light emitted by the blue LED 900. FIG. 7B shows a light emission spectrum (wavelength spectrum) characteristic of a general blue light excitation type white LED. A portion surrounded by a dotted line SA is a blue light portion by the LED, and a portion surrounded by a dotted line SB is a light emission portion by the phosphor. As described above, light emission by the phosphor exists on the longer wavelength side than the peak wavelength of light emission of the blue LED 900.

(2)紫外光励起型白色LEDは、紫外LEDとR,G,B(赤,緑,青)の3原色を発光する蛍光体を組み合わせたものである。紫外光LEDの周囲にR,G,Bの3原色を発光する蛍光体をそれぞれ配置し、一つのパッケージに納めた構造となっている。この方式では、中心に配置された紫外光LEDから出力された紫外光によって周囲の蛍光体が励起され、これらの蛍光体からR,G,Bの3原色の光がそれぞれ出力される。これらのR,G,Bの光を混色することで白色光を得ている。   (2) An ultraviolet light excitation type white LED is a combination of an ultraviolet LED and a phosphor that emits three primary colors of R, G, and B (red, green, and blue). A phosphor that emits three primary colors of R, G, and B is arranged around an ultraviolet LED, and is housed in one package. In this method, surrounding phosphors are excited by ultraviolet light output from an ultraviolet LED arranged at the center, and light of three primary colors of R, G, and B is output from these phosphors. White light is obtained by mixing these R, G, and B lights.

紫外LEDには、種々の波長の発光特性を持つものがあるが、ピーク波長が、380〜410nmの範囲にあるものが使用される。蛍光体は、紫外LEDのピーク波長より長波長側の光を発光するものが使用される。そして、紫外LEDが発光する光を十分に吸収して励起するように、放射状で厚みのある透光性樹脂中に光の3原色を発光する多数の蛍光体粒子が配置される。   Some ultraviolet LEDs have emission characteristics of various wavelengths, but those having a peak wavelength in the range of 380 to 410 nm are used. A phosphor that emits light having a wavelength longer than the peak wavelength of the ultraviolet LED is used. A large number of phosphor particles emitting three primary colors of light are arranged in a radial and thick translucent resin so that the light emitted from the ultraviolet LED is sufficiently absorbed and excited.

このような紫外光励起型白色LEDの長所としては、上述した演色性が良好であることが挙げられる。一方、短所としては、(a)前記青色光励起型白色LEDと比較してエネルギーの利用効率が低く、高い照度が得られにくいこと,(b)紫外発光であるため、LEDの駆動電圧が高いこと,が挙げられる。   As an advantage of such an ultraviolet light excitation type white LED, the color rendering property described above is good. On the other hand, there are disadvantages: (a) low energy use efficiency compared to the blue light excitation type white LED, and high illuminance is difficult to obtain; (b) high LED driving voltage due to ultraviolet light emission. , Are mentioned.

(3)3色発光型白色LEDは、R,G,BのLEDを組み合わせたものである。赤色LED,緑色LED,青色LEDの3種類のLEDを一つのパッケージに収めた構造となっている。この方式では、3原色であるそれぞれのLEDを同時に発光させることで、白色光が得られる。このような3色発光型白色LEDの長所としては、前記紫外光励起型白色LEDと同様に演色性が良いことが挙げられる。一方、短所としては、(a)3種類のLEDを一つのパッケージに実装することになるので、他の方式と比較して高価となってしまうこと,(b)異なるLEDをそれぞれ独立に駆動することになるため、駆動回路が複雑となること,が挙げられる。   (3) The three-color light emitting white LED is a combination of R, G, and B LEDs. It has a structure in which three types of LEDs, a red LED, a green LED, and a blue LED, are housed in one package. In this method, white light can be obtained by simultaneously emitting light of the three primary colors. As an advantage of such a three-color light emitting type white LED, a color rendering property is good as in the case of the ultraviolet light excitation type white LED. On the other hand, there are disadvantages: (a) Three types of LEDs are mounted in one package, which is expensive compared to other methods, and (b) Different LEDs are driven independently. Therefore, the drive circuit becomes complicated.

現在市場に供給されている白色LEDの中で最も普及しているのは、上述した(1)の青色光励起型白色LEDであり、この青色光励起型白色LEDを用いて回路等を構成すると、コスト的に有利となって好ましい。   The most popular white LED currently on the market is the blue light-excited white LED (1) described above. If a circuit or the like is configured using the blue light-excited white LED, the cost is reduced. This is advantageous and advantageous.

図8(A)には、以上のような白色LEDを使用したデータ伝送システムの一形態が示されている。同図の例は、送受信機を1対1に対向配置したピアトゥピアのデータ伝送形態であり、その送信源となる白色LEDが1個の場合,すなわち単光源の場合を想定したものである。同図において、ノートパソコンなどのデータ端末920A,920Bは、送受信機922A,922Bにそれぞれ接続されている。送受信機922A,922Bは、送信機930A,930Bと、受信機940A,940Bをそれぞれ備えている。送信機930Aから出力された光は受信機940Bによって受光され、送信機930Bから出力された光は受信機940Aによって受光される。   FIG. 8A shows one mode of a data transmission system using the white LED as described above. The example in the figure is a peer-to-peer data transmission mode in which transceivers are arranged to face each other in one-to-one, and assumes a case where there is one white LED as a transmission source, that is, a single light source. In the figure, data terminals 920A and 920B such as notebook computers are connected to transceivers 922A and 922B, respectively. The transceivers 922A and 922B include transmitters 930A and 930B and receivers 940A and 940B, respectively. The light output from the transmitter 930A is received by the receiver 940B, and the light output from the transmitter 930B is received by the receiver 940A.

図8(B)には、送信機930A,930Bの一例が示されており、伝送対象のデータは、変調器932に入力されて所定の変調処理が行われ、変調信号が青色光励起型白色LED934に供給される。これにより、青色光励起型白色LED934の出力光が、例えばOOK(On-Off Keying)などの変調方式で変調されて点滅する。図8(C)には、受信機940A,940Bの一例が示されており、受光した光信号は、光電変換器942によって電気信号(電流)に変換される。変換後の電気信号は、増幅器944により、電圧信号への変換及び増幅が行なわれる。増幅後の信号は、等化器946により、それ以前の系の伝達関数の周波数依存性が補正され、伝送に必要充分な帯域の確保が行なわれる。変調方式が前記OOKの場合においては、主に高域を強調し、補償する処理が行なわれる。この等化器946による等化処理の後、識別再生回路(復調器)948で識別再生処理が行われる。すなわち、等化器出力に対して論理値の0/1の判定が行なわれ、送信元のデータが再生される。   FIG. 8B shows an example of the transmitters 930A and 930B. Data to be transmitted is input to the modulator 932 and subjected to predetermined modulation processing, and the modulation signal is converted into a blue light excitation type white LED 934. To be supplied. Thereby, the output light of the blue light excitation type white LED 934 is modulated by a modulation method such as OOK (On-Off Keying), and blinks. FIG. 8C illustrates an example of the receivers 940A and 940B. The received optical signal is converted into an electric signal (current) by the photoelectric converter 942. The converted electric signal is converted into a voltage signal and amplified by an amplifier 944. The amplified signal is corrected by the equalizer 946 for the frequency dependence of the transfer function of the previous system, and a band sufficient for transmission is secured. When the modulation method is OOK, processing for emphasizing and compensating mainly for the high frequency is performed. After the equalization processing by the equalizer 946, the identification reproduction circuit (demodulator) 948 performs identification reproduction processing. That is, the logical value 0/1 is determined for the equalizer output, and the transmission source data is reproduced.

ところで、青色光励起型白色LEDは、一般的に、その放射パターンにおいて青色と黄色とからなる同心円状の色ムラが生じる(下記非特許文献1参照)。図9(A)にはその様子が示されており、送信機930A,930Bの青色光励起型白色LED934から出力された光は、遠ざかるに従って放射状に広がり、位置PA,PBにおける色分布は、同図(B),(C)にそれぞれ示すようになる。これは、青色LED900の放射パターンと黄色蛍光体908の放射パターンが異なることに起因しており、市販されている青色光励起型白色LEDにおいては、中心付近で青色が強く、周辺で黄色が強い色分布になっていることが多い。従って、受信機940A,940Bの光電変換器942の受光面には、同図(B),(C)に点線で示す光が入射することになり、色分布を拡大して示すと、同図(D),(E)にそれぞれ示すように受光位置によって光の色分布が異なるようになる。詳述すると、送受信機間距離が比較的近い位置PAでは、受光面の中央が青色,周囲に黄色が分布し、黄色蛍光体908からの発光分である黄色成分を相対的に多く含む。これに対し、送受信機間距離が比較的遠い位置PBでは、受光面の全面がほぼ青色の分布となり、青色LED900からの発光分である青色成分を多く含むことになる。なお、どの程度の距離でこのような関係になるのかについては、放射角や色ムラの分布によって異なるため、一概には言えない。   By the way, the blue light excitation type white LED generally has concentric color unevenness composed of blue and yellow in the radiation pattern (see Non-Patent Document 1 below). FIG. 9 (A) shows this state, and the light output from the blue light-excited white LEDs 934 of the transmitters 930A and 930B spreads radially as the distance increases. As shown in (B) and (C), respectively. This is because the emission pattern of the blue LED 900 and the emission pattern of the yellow phosphor 908 are different. In a commercially available blue light-excited white LED, the blue color is strong near the center and the yellow color is strong at the periphery. Often distributed. Therefore, the light indicated by the dotted lines in FIGS. 7B and 7C is incident on the light receiving surfaces of the photoelectric converters 942 of the receivers 940A and 940B. As shown in (D) and (E), the light color distribution varies depending on the light receiving position. More specifically, at the position PA where the distance between the transmitter and the receiver is relatively short, the center of the light receiving surface is blue and yellow is distributed around it, and contains a relatively large amount of yellow components that are emitted from the yellow phosphor 908. On the other hand, at the position PB where the distance between the transmitter and the receiver is relatively long, the entire light receiving surface has a substantially blue distribution, and contains a large amount of blue component that is the amount of light emitted from the blue LED 900. It should be noted that the distance at which such a relationship is obtained differs depending on the radiation angle and the distribution of color unevenness, and thus cannot be generally described.

一方、駆動方法にもよるが、青色光励起型白色LEDの出力光における青色LEDによる発光分(青色成分)は、その周波数応答がおおよそ数10MHzであるのに対し、蛍光体による発光分(主に黄色)は、高々数MHzであり、LEDの光に対して蛍光体の光は応答時間が遅いことが知られている(下記非特許文献2参照)。このように、青色光励起型白色LEDから出力される光は、異なる時間応答特性を持つ光の合成となり、光源の光分布に上述したような色ムラがある。このため、その受光位置により、受信する信号波形の時間応答特性が異なる可能性があり、送受信間距離によって受信側の信号波形に変化が生じることになる。具体的には、送受信間距離が近い場合には、応答速度の遅い蛍光体からの発光分を多く含んだ光を受光するため、出力波形の応答速度が遅くなる。逆に、送受信間距離が遠い場合には、応答速度の速いLEDからの発光分を多く含んだ光を受光するため、出力波形の応答速度が速くなる。   On the other hand, although depending on the driving method, the light emission by the blue LED (blue component) in the output light of the blue light excitation type white LED has a frequency response of about several tens of MHz, whereas the light emission by the phosphor (mainly Yellow) is at most several MHz, and it is known that the response time of the phosphor light is slower than that of the LED light (see Non-Patent Document 2 below). Thus, the light output from the blue light excitation type white LED is a combination of light having different time response characteristics, and the light distribution of the light source has the color unevenness as described above. For this reason, the time response characteristic of the received signal waveform may differ depending on the light receiving position, and the signal waveform on the receiving side changes depending on the distance between transmission and reception. Specifically, when the distance between transmission and reception is short, light containing a large amount of light emitted from a phosphor with a slow response speed is received, so the response speed of the output waveform is slow. On the contrary, when the distance between transmission and reception is long, light containing a large amount of light emitted from the LED having a high response speed is received, so that the response speed of the output waveform is increased.

図10には、以上のような信号波形の一例が示されている。同図(A)は、白色LEDに入力される本来の信号波形である。これに対し、青色LEDからは同図(B)に実線で示す波形の光が出力され、蛍光体からは同図(B)に破線で示す波形の光が出力される。一方、送受信間距離が比較的遠い場合の受光波形は同図(C)に示すようになるのに対し、送受信間距離が比較的近い場合の受光波形は同図(D)に示すようになる。両者を比較すると、蛍光体からの光の影響を受ける同図(D)の場合のほうが、同図(C)の場合よりも波形が鈍って応答速度が遅くなっているのが分かる。   FIG. 10 shows an example of the signal waveform as described above. FIG. 4A shows the original signal waveform input to the white LED. On the other hand, the blue LED outputs light having a waveform indicated by a solid line in FIG. 5B, and the phosphor outputs light having a waveform indicated by a broken line in FIG. On the other hand, the received light waveform when the distance between transmission and reception is relatively long is as shown in FIG. 10C, whereas the received light waveform when the distance between transmission and reception is relatively close is as shown in FIG. . Comparing the two, it can be seen that the waveform (D), which is affected by the light from the phosphor, is duller and the response speed is slower than the case (C).

図8に示したように、一般的な受信機構成においては等化器が存在する場合が多いが、図10のような現象が発生した場合、送受信間距離によって適切な等化器の条件が異なってしまうことになる。すなわち、ある送受信間距離では適切な等化を行うことができても、他の送受信間距離では適切な等化を行うことができず、例えばビットエラーレートに代表されるような信号受信品質が悪化する可能性が出てくる。   As shown in FIG. 8, in a general receiver configuration, there are many cases where an equalizer exists, but when the phenomenon shown in FIG. 10 occurs, an appropriate equalizer condition depends on the distance between transmission and reception. It will be different. That is, even if appropriate equalization can be performed at a certain distance between transmission and reception, proper equalization cannot be performed at other distances between transmission and reception, for example, signal reception quality represented by a bit error rate is The possibility of getting worse comes out.

また、一般に、白色LEDを用いた場合に限らず、LEDのような拡散光源とPDのような受光素子の組み合わせにおいて空間光伝送を行う場合には、受光素子で受光する光量が距離の二乗に反比例する(例えば、下記非特許文献3ないし非特許文献4参照)。このため、ある程度の伝送距離範囲を確保するためには、受信機側に大きなダイナミックレンジが要求されることになる。   In general, not only when a white LED is used, but when spatial light transmission is performed in a combination of a diffused light source such as an LED and a light receiving element such as a PD, the amount of light received by the light receiving element is the square of the distance. It is inversely proportional (see, for example, Non-Patent Document 3 to Non-Patent Document 4 below). For this reason, in order to secure a certain transmission distance range, a large dynamic range is required on the receiver side.

更に、送信機側と受信機側の距離が近接しており、受光素子に入射する光量が大きい場合には、空間電荷効果(Space Charge Effect,下記非特許文献5参照)により、図7(C)に示すように、受信パルス波形の立下りに波尾が発生し、これが符号間干渉の要因となって、良好な伝送品質の確保の妨げとなる場合がある。   Furthermore, when the transmitter side and the receiver side are close to each other and the amount of light incident on the light receiving element is large, the space charge effect (see Non-Patent Document 5 below) causes the FIG. ), A wave tail occurs at the falling edge of the received pulse waveform, which may cause intersymbol interference and prevent good transmission quality from being ensured.

以上のように、青色光励起型白色LEDを使用する場合には、
a,受信機の位置による青色LEDと蛍光体の光分布の変化に起因する等化条件の変動,
b,送受信間の距離による受光光量の変動,
c,送受信間の距離が近いときにおける空間電荷効果,
が影響し、信号品質が悪化する恐れがある。
特許第3465017号公報 シーエムシー出版,「白色LED照明システム技術の応用と将来展望」 信学技報 ICD2005-44,Vol.105, No.184,25-30p,「可視光通信用LEDドライバーの試作と可視光LEDの応答性能の評価」 水曜社,「空間伝送光学」,第6章 2005年電子情報通信学会,通信ソサイエティ大会,「並列光空間伝送方式の受信特性の光学的解析」 光学図書,「光通信素子工学」,第6章
As described above, when using a blue light excitation type white LED,
a, fluctuation of equalization condition due to change in light distribution of blue LED and phosphor depending on receiver position,
b, variation in the amount of received light depending on the distance between transmission and reception,
c, space charge effect when the distance between transmission and reception is short,
May affect the signal quality.
Japanese Patent No. 3465017 CMC Publishing, “Application and Future Prospect of White LED Lighting System Technology” IEICE Technical Report ICD2005-44, Vol.105, No.184, 25-30p, "Prototype LED Driver for Visible Light Communication and Evaluation of Response Performance of Visible Light LED" Wednesday Company, “Spatial Transmission Optics”, Chapter 6 2005 IEICE, Communications Society Conference, "Optical analysis of reception characteristics of parallel optical space transmission system" Optical books, "Optical communication device engineering", Chapter 6

本発明は、以上のような点に着目したもので、可視光光源に用いて空間光伝送を行う際に、良好な伝送品質を得るとともに、広ダイナミックレンジも確保することができる光受信機及び可視光通信装置を提供することを、その目的とする。   The present invention focuses on the above points, and when performing spatial light transmission using a visible light source, an optical receiver capable of obtaining good transmission quality and ensuring a wide dynamic range, and An object is to provide a visible light communication device.

前記目的を達成するため、本発明の光受信機は、第1の波長域の光を出力する発光体と、これから出力された光により励起されて応答速度の異なる第2の波長域の光を出力する蛍光体とを備えた発光手段から出力された光信号を受光する光受信機であって、前記発光手段から出力された光信号の分布に対応して配置された複数の光電変換手段,該複数の光電変換手段のうちの少なくとも1つについて選択的に設けられており、前記光電変換手段による変換後の電気信号を、受光波長帯域の応答速度に対応して波形等化する複数の等化手段,前記発光手段を備えた光送信機と前記光受信機の距離に応じて、前記光電変換手段に入射する光の波長帯域に対応するように前記複数の等化手段を切り換える切換手段,を備えたことを特徴とする。   In order to achieve the above object, an optical receiver of the present invention includes a light emitter that outputs light in a first wavelength region, and light in a second wavelength region that is excited by the light output therefrom and has a different response speed. An optical receiver for receiving an optical signal output from a light emitting means including a phosphor to output, a plurality of photoelectric conversion means arranged corresponding to the distribution of the optical signal output from the light emitting means, A plurality of units are provided selectively for at least one of the plurality of photoelectric conversion units, and the waveform of the electrical signal converted by the photoelectric conversion unit is equalized according to the response speed of the light receiving wavelength band. Switching means for switching the plurality of equalization means so as to correspond to the wavelength band of light incident on the photoelectric conversion means according to the distance between the optical transmitter provided with the light emitting means and the optical receiver, It is provided with.

主要な形態の一つによれば、前記複数の光電変換手段は、前記発光手段の出力光のうち、中央部分の光を受光する中央光電変換部と、前記中央部分の周囲の光を受光する周辺光電変換部とを備えており、この周辺光電変換部の等化手段が、前記切換手段によって切り換えられることを特徴とする。   According to one of the main embodiments, the plurality of photoelectric conversion units receive a central photoelectric conversion unit that receives light at a central portion of the output light of the light emitting unit, and light around the central portion. A peripheral photoelectric conversion unit, and an equalization unit of the peripheral photoelectric conversion unit is switched by the switching unit.

他の形態の一つでは、前記等化手段は、前記第1の波長域の光を出力する発光体の光に対応する波形等化を行う第1の等化器と、前記第2の波長域の光を出力する蛍光体の光に対応する波形等化を行う第2の等化器とを含むことを特徴とする。   In another mode, the equalization means includes a first equalizer that performs waveform equalization corresponding to light of a light emitter that outputs light in the first wavelength range, and the second wavelength. And a second equalizer that performs waveform equalization corresponding to the light of the phosphor that outputs the light in the region.

更に他の形態の一つは、前記切換手段は、前記送信機と前記受信機とが近いときは、前記第2の等化器に切り換え、前記送信機と前記受信機とが遠いときは、前記第1の等化器に切り換えることを特徴とする。あるいは、前記切換手段は、前記送信機と前記受信機とが近接しているときは、中央光電変換部の信号出力を使用しないようにすることを特徴とする。更には、前記切換手段は、前記光受信機における識別再生前の信号レベルを検出する信号レベル検出手段,前記光受信機における識別再生前の信号波形状態を検出する信号波形状態検出手段,前記光受信機における識別再生後のエラーを検出するエラー検出手段,のいずれかであることを特徴とする。   In still another embodiment, the switching means switches to the second equalizer when the transmitter and the receiver are close to each other, and when the transmitter and the receiver are far from each other, Switching to the first equalizer is characterized. Alternatively, the switching means is configured not to use the signal output of the central photoelectric conversion unit when the transmitter and the receiver are close to each other. Further, the switching means includes signal level detection means for detecting a signal level before identification reproduction in the optical receiver, signal waveform state detection means for detecting a signal waveform state before identification reproduction in the optical receiver, and the optical It is one of error detection means for detecting an error after identification reproduction in the receiver.

更に他の形態の一つは、前記発光手段が青色光励起型白色LEDであって、前記第1の波長域の光を出力する発光体が青色LEDであることを特徴とする。   Still another embodiment is characterized in that the light emitting means is a blue light excitation type white LED, and a light emitting body that outputs light in the first wavelength band is a blue LED.

本発明の可視光通信装置は、前記いずれかに記載の光受信機と、前記発光手段を含む光送信機とを備えたことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   A visible light communication apparatus according to the present invention includes any one of the optical receivers described above and an optical transmitter including the light emitting means. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、光受信機の光電変換手段を複数の光電変換部によって構成し、その変換後の信号に対する等化処理を、光送信機と光受信機の距離に対応して切り換えることとしたので、良好な伝送品質を得ることができる。また、光送信機と光受信機が近接して入るときは、光電変換部の出力を選択することとしたので、広いダイナミックレンジを確保することができる。   According to the present invention, the photoelectric conversion means of the optical receiver is constituted by a plurality of photoelectric conversion units, and the equalization processing for the converted signal is switched according to the distance between the optical transmitter and the optical receiver; Therefore, good transmission quality can be obtained. In addition, when the optical transmitter and the optical receiver enter in close proximity, the output of the photoelectric conversion unit is selected, so that a wide dynamic range can be ensured.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1を参照しながら、本発明の実施例1について説明する。図1には、本実施例における受信機側の光電変換器10の受光面が示されており、中央に位置する円形の受光面を有する中央光電変換部12Cと、その周辺を取り囲む環状の受光面を有する周辺光電変換部12Sによって構成されている。これらのうち、中央光電変換部12Cの電気信号出力側は、増幅器14Cを介して等化器16Cの入力側に接続されている。一方、周辺光電変換部12Sの電気信号出力側は、増幅器14Sを介して切換スイッチ15の入力側に接続されている。切換スイッチ15の2つの切換出力側は、等化器16SB,16SYの入力側に接続されている。等化器16C,16SB,16SYの出力側は、加算器18の加算入力側にそれぞれ接続されている。この加算器18の加算出力側は、識別再生回路20及び信号レベル検出器22の入力側にそれぞれ接続されている。信号レベル検出器22の検出出力側は、切換スイッチ15の制御側に接続されている。   First, Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 shows a light receiving surface of a photoelectric converter 10 on the receiver side in this embodiment, and a central photoelectric conversion unit 12C having a circular light receiving surface located at the center and an annular light receiving surface surrounding the periphery thereof. The peripheral photoelectric conversion unit 12S having a surface is configured. Among these, the electrical signal output side of the central photoelectric conversion unit 12C is connected to the input side of the equalizer 16C via the amplifier 14C. On the other hand, the electrical signal output side of the peripheral photoelectric conversion unit 12S is connected to the input side of the changeover switch 15 via the amplifier 14S. The two switch output sides of the changeover switch 15 are connected to the input sides of the equalizers 16SB and 16SY. The output sides of the equalizers 16C, 16SB, and 16SY are connected to the addition input side of the adder 18, respectively. The addition output side of the adder 18 is connected to the input side of the identification reproduction circuit 20 and the signal level detector 22, respectively. The detection output side of the signal level detector 22 is connected to the control side of the changeover switch 15.

以上の各部のうち、増幅器14C,14Sは、光電変換部12C,12Sからそれぞれ供給された電流信号を電圧信号に変換して増幅するためのものである。切換スイッチ15は、増幅器14Sの出力信号を、信号レベル検出器22による検出結果に応じて等化器16SB,16SYに振り分けるためのものである。等化器16C,16SBは、青色光励起型白色LEDの出力光のうち、青色LEDの発光分を多く含んだ光の信号に対して適切な等化処理を施すことができるように特性が設定されている。一方、等化器16SYは、青色光励起型白色LEDの出力光のうち、蛍光体の発光分を多く含んだ光の信号に対して適切な等化処理を施すことができるように特性が設定されている。信号レベル検出器22は、入力信号の振幅レベルの大きさを検出し、その結果をスイッチ切換の制御信号として出力する機能を備えており、例えば、ログアンプを利用したRSSI(Received Signal Strength Indicator)やピークボトム検出器などが利用される。   Among the above units, the amplifiers 14C and 14S are for converting the current signals supplied from the photoelectric conversion units 12C and 12S into voltage signals and amplifying them. The changeover switch 15 is for distributing the output signal of the amplifier 14S to the equalizers 16SB and 16SY according to the detection result by the signal level detector 22. The equalizers 16 </ b> C and 16 </ b> SB have characteristics set so that appropriate equalization processing can be performed on a light signal including a large amount of light emitted from the blue LED in the output light of the blue light excitation type white LED. ing. On the other hand, the equalizer 16SY has a characteristic set so that an appropriate equalization process can be performed on a signal of light that includes a large amount of light emitted from the phosphor among the output light of the blue light excitation type white LED. ing. The signal level detector 22 has a function of detecting the magnitude of the amplitude level of the input signal and outputting the result as a control signal for switching, for example, RSSI (Received Signal Strength Indicator) using a log amplifier. And peak bottom detectors are used.

切換スイッチ15は、前記信号レベル検出器22の出力信号レベルの大きさが、予め設定した所定の閾値を越えたかどうかにより、以下のような切り換え動作を行なう。
a,所定の閾値を越えない場合は、入射光量が小さい、すなわち、送受信間距離が遠いことから、信号レベル検出器22の制御信号により等化器16SB側に切り換える。
b,所定の閾値を越えた場合は、入射光量が大きい、すなわち、送受信間距離が近いことから、信号レベル検出器22の制御信号により等化器16SY側に切り換える。
The changeover switch 15 performs the following changeover operation depending on whether the magnitude of the output signal level of the signal level detector 22 exceeds a predetermined threshold value set in advance.
a, If the predetermined threshold value is not exceeded, the amount of incident light is small, that is, the distance between transmission and reception is long, so switching to the equalizer 16SB side by the control signal of the signal level detector 22 is performed.
b. When the predetermined threshold value is exceeded, the amount of incident light is large, that is, the distance between transmission and reception is short, so that the signal is switched to the equalizer 16SY side by the control signal of the signal level detector 22.

次に、以上のように構成された実施例1の作用について説明する。送信機側の青色光励起型白色LED30の光分布には、上述したように、その放射パターンが影響して、青色と黄色の同心円状の色ムラが生じている。まず、図1(B)に示すように、送受信機間の距離が近い場合は、図9(B)に示したような光分布となり、周辺光電変換部12Sでは、蛍光体からの黄色の光成分を多く含んだ光を受けるようになる。なお、中央光電変換部12Cは、LEDからの青色の光成分を多く含んだ光を受ける。一方、光電変換部12C,12Sが送信機に近いため、信号レベル検出器22の検出信号レベルは所定の閾値を越えるようになる。このため、信号レベル検出器22の制御信号によって切換スイッチ15が等化器16SY側に切り換えられる。   Next, the operation of the first embodiment configured as described above will be described. As described above, the radiation pattern of the light distribution of the blue light excitation type white LED 30 on the transmitter side is influenced by concentric blue and yellow color unevenness. First, as shown in FIG. 1 (B), when the distance between the transmitter and the receiver is short, the light distribution as shown in FIG. 9 (B) is obtained, and the peripheral photoelectric conversion unit 12S has yellow light from the phosphor. Receives light containing many components. The central photoelectric conversion unit 12C receives light containing a lot of blue light components from the LED. On the other hand, since the photoelectric conversion units 12C and 12S are close to the transmitter, the detection signal level of the signal level detector 22 exceeds a predetermined threshold. For this reason, the changeover switch 15 is switched to the equalizer 16SY side by the control signal of the signal level detector 22.

従って、青色成分が多い中央光電変換部12Cの出力は、増幅器14Cによる増幅の後、等化器16Cで等化されて加算器18に供給され、黄色成分が多い周辺光電変換部12Sの出力は、増幅器14Sによる増幅の後、等化器16SYで等化されて加算器18に供給される。加算器18では、それらの入力信号が加算され、加算後の信号に基づいて識別再生回路20でデータの識別・再生処理が行なわれる。   Accordingly, the output of the central photoelectric conversion unit 12C having a large blue component is equalized by the equalizer 16C after being amplified by the amplifier 14C and supplied to the adder 18, and the output of the peripheral photoelectric conversion unit 12S having a large yellow component is After amplification by the amplifier 14S, the signal is equalized by the equalizer 16SY and supplied to the adder 18. The adder 18 adds these input signals, and the identification / reproduction circuit 20 performs data identification / reproduction processing based on the added signal.

逆に、図1(C)に示すように、送受信機間の距離が遠い場合は、図9(C)に示したような光分布となり、周辺光電変換部12Sでも、中央光電変換部12Cと同様に、LEDからの青色の光成分を多く含んだ光を受けるようになる。一方、光電変換部12C,12Sが送信機から遠いため、信号レベル検出器22の検出信号レベルは所定の閾値を越えない。このため、信号レベル検出器22の制御信号によって切換スイッチ15が等化器16SB側に切り換えられる。   On the other hand, as shown in FIG. 1C, when the distance between the transmitter and the receiver is long, the light distribution as shown in FIG. 9C is obtained, and the peripheral photoelectric conversion unit 12S also has the central photoelectric conversion unit 12C. Similarly, light containing a large amount of blue light component from the LED is received. On the other hand, since the photoelectric conversion units 12C and 12S are far from the transmitter, the detection signal level of the signal level detector 22 does not exceed a predetermined threshold. For this reason, the changeover switch 15 is switched to the equalizer 16SB side by the control signal of the signal level detector 22.

従って、青色成分が多い中央光電変換部12Cの出力は、増幅器14Cによる増幅の後、等化器16Cで等化されて加算器18に供給され、周辺光電変換部12Sの出力は、増幅器14Sによる増幅の後、等化器16SBで等化されて加算器18に供給される。加算器18では、それらの入力信号が加算され、加算後の信号に基づいて識別再生回路20でデータの識別・再生処理が行なわれる。   Therefore, the output of the central photoelectric conversion unit 12C having a large blue component is amplified by the amplifier 14C, equalized by the equalizer 16C, and supplied to the adder 18. The output of the peripheral photoelectric conversion unit 12S is output by the amplifier 14S. After amplification, the signal is equalized by the equalizer 16SB and supplied to the adder 18. The adder 18 adds these input signals, and the identification / reproduction circuit 20 performs data identification / reproduction processing based on the added signal.

このように、本実施例によれば、信号レベルに基づいて、送受信機間の距離が判定され、
a,距離が近いときは、周辺光電変換部12Sの出力に対して黄色の光成分に好適な特性の等化処理が行なわれる。
b,逆に距離が遠いときは、周辺光電変換部12Sの出力に対しても、中央光電変換部12Cと同様の等化処理が行なわれる。
Thus, according to the present embodiment, the distance between the transceivers is determined based on the signal level,
a, When the distance is short, an equalization process suitable for the yellow light component is performed on the output of the peripheral photoelectric conversion unit 12S.
b. On the contrary, when the distance is long, the same equalization processing as that of the central photoelectric conversion unit 12C is performed on the output of the peripheral photoelectric conversion unit 12S.

すなわち、送受信間距離に応じて、周辺光電変換部12Sの信号に対する等化特性を切り換えることで、受光信号に対して最適な等化状態を常に保ち、良好な伝送品質を維持することができる。また、青色光励起型白色LEDは、汎用で価格が安いので、コスト的に有利である。   That is, by switching the equalization characteristic for the signal of the peripheral photoelectric conversion unit 12S according to the distance between transmission and reception, it is possible to always maintain the optimum equalization state for the received light signal and maintain good transmission quality. In addition, the blue light excitation type white LED is advantageous in terms of cost because it is general-purpose and inexpensive.

次に、図2及び図11を参照しながら、本発明の実施例2について説明する。なお、上述した実施例1と同一ないし対応する構成要素には同一の符号を用いることとする(実施例3以降についても同様)。本実施例では、図2に示すように、前記実施例1の信号レベル検出器22の代わりに信号波形状態検出器40を接続した構成となっている。信号波形状態検出器40としては、例えば、波形鈍り検出器や、FFT(Fast Fourie Transform)により周波数応答特性を検出する回路などが使用される。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. In addition, the same code | symbol shall be used for the component which is the same as that of Example 1 mentioned above, or respond | corresponds. In the present embodiment, as shown in FIG. 2, a signal waveform state detector 40 is connected instead of the signal level detector 22 of the first embodiment. As the signal waveform state detector 40, for example, a waveform blunt detector, a circuit for detecting frequency response characteristics by FFT (Fast Fourie Transform), or the like is used.

図11(A)には、波形鈍り検出器の一例が示されており、加算器18からの加算信号は、コンパレータ42,44でそれぞれ比較電圧Vref1,Vref2(ただし、Vref1≠Vref2)と比較される。比較結果は、XOR回路46に供給されてXOR(eXclusive OR)の演算が行われ、演算結果の低周波成分がローパスフィルタ(LPF)48から波形鈍りの検出信号として出力される。   FIG. 11A shows an example of a waveform dullness detector, and the addition signals from the adder 18 are compared with the comparison voltages Vref1 and Vref2 (where Vref1 ≠ Vref2) by the comparators 42 and 44, respectively. The The comparison result is supplied to the XOR circuit 46 and XOR (eXclusive OR) calculation is performed, and the low frequency component of the calculation result is output from the low pass filter (LPF) 48 as a waveform dullness detection signal.

波形に鈍りがないときは、図11(B-1)に示すような入力信号と比較電圧Vref1,Vref2の関係となる。このため、コンパレータ42,44の出力は、同図(B-2),(B-3)にそれぞれ示すようになり、両者はほぼ一致する。従って、XOR回路46の出力は、同図(B-4)に示すようにほぼゼロとなり、LPF48の出力もほぼゼロとなる。これに対し、波形に鈍りがあるときは、図11(C-1)に示すような入力信号と比較電圧Vref1,Vref2の関係となる。このため、コンパレータ42,44の出力は、同図(C-2),(C-3)にそれぞれ示すようになり、両者は一致しなくなる。従って、XOR回路46の出力は、同図(C-4)に示すようになり、LPF48からは、波形の鈍りに応じた信号が出力されるようになる。   When there is no dullness in the waveform, the relationship between the input signal and the comparison voltages Vref1 and Vref2 is as shown in FIG. For this reason, the outputs of the comparators 42 and 44 are as shown in (B-2) and (B-3) of FIG. Therefore, the output of the XOR circuit 46 becomes almost zero as shown in FIG. 4B-4, and the output of the LPF 48 becomes almost zero. On the other hand, when the waveform is dull, the relationship between the input signal and the comparison voltages Vref1 and Vref2 is as shown in FIG. For this reason, the outputs of the comparators 42 and 44 are as shown in (C-2) and (C-3), respectively, and they do not match. Accordingly, the output of the XOR circuit 46 is as shown in FIG. 5C-4, and the LPF 48 outputs a signal corresponding to the waveform dullness.

次に、本実施例の動作を説明すると、まず、送受信機の距離が近いときは、周辺光電変換部12Sに蛍光体からの黄色成分の光が入射するようになる。このため、図7(C)に示したように、加算器18の出力信号波形に鈍りが生ずるようになる。これが信号波形状態検出器40で検出されると、図2(A)に示すように、切換スイッチ15が等化器16SY側に切り換えられ、周辺光電変換部12Sの出力に対して黄色の光成分に好適な特性の等化処理が行なわれる。   Next, the operation of the present embodiment will be described. First, when the distance between the transceivers is short, the yellow component light from the phosphor enters the peripheral photoelectric conversion unit 12S. For this reason, as shown in FIG. 7C, the output signal waveform of the adder 18 becomes dull. When this is detected by the signal waveform state detector 40, as shown in FIG. 2A, the changeover switch 15 is switched to the equalizer 16SY side, and the yellow light component with respect to the output of the peripheral photoelectric conversion unit 12S. The characteristic equalization processing is performed.

逆に、送受信機の距離が遠いときは、周辺光電変換部12Sにも中央光電変換部12Cと同様にLEDの青色成分の光が入射するようになる。このため、信号波形状態検出器40で波形鈍りが検出されず、切換スイッチ15は等化器16SB側に切り換えられ、周辺光電変換部12Sの出力に対して青色の光成分に好適な特性の等化処理が行なわれる。この実施例2によっても、実施例1と同様の効果を得ることができる。   Conversely, when the distance between the transmitter and the receiver is long, the blue component light of the LED enters the peripheral photoelectric conversion unit 12S as well as the central photoelectric conversion unit 12C. For this reason, the waveform dullness is not detected by the signal waveform state detector 40, the changeover switch 15 is switched to the equalizer 16SB side, and the characteristics suitable for the blue light component with respect to the output of the peripheral photoelectric conversion unit 12S, etc. Processing is performed. According to the second embodiment, the same effect as the first embodiment can be obtained.

次に、図3を参照しながら、本発明の実施例3について説明する。本実施例では、図3に示すように、前記実施例1の信号レベル検出器22の代わりにエラー検出器50を識別再生回路20の出力側に接続した構成となっている。エラー検出器50としては、例えば、パリティチェックによる誤り検出を行う回路,トレーニング信号を用いたエラーレートの検出を行う回路,受信側からのARQ(Automatic Repeat Request)信号を用いたエラー検出回路などが使用される。     Next, Embodiment 3 of the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 3, an error detector 50 is connected to the output side of the identification reproduction circuit 20 instead of the signal level detector 22 of the first embodiment. Examples of the error detector 50 include a circuit that performs error detection using a parity check, a circuit that detects an error rate using a training signal, and an error detection circuit that uses an ARQ (Automatic Repeat Request) signal from the receiving side. used.

本実施例の動作を説明すると、送受信機の距離が近いときは、周辺光電変換部12Sに蛍光体からの黄色成分の光が入射するようになり、出力信号波形の応答速度が遅くなる。このため、識別再生回路20の再生結果にエラーが発生するようになる。これがエラー検出器50で検出されると、切換スイッチ15が等化器16SY側に切り換えられ、周辺光電変換部12Sの出力に対して黄色の光成分に好適な特性の等化処理が行なわれる。   The operation of the present embodiment will be described. When the distance between the transmitter and the receiver is short, the yellow component light from the phosphor enters the peripheral photoelectric conversion unit 12S, and the response speed of the output signal waveform becomes slow. For this reason, an error occurs in the reproduction result of the identification reproduction circuit 20. When this is detected by the error detector 50, the changeover switch 15 is switched to the equalizer 16SY side, and an equalization process suitable for the yellow light component is performed on the output of the peripheral photoelectric conversion unit 12S.

逆に、送受信機の距離が遠いときは、周辺光電変換部12Sにも中央光電変換部12Cと同様にLEDの青色成分の光が入射するようになる。このため、エラー検出器50によるエラー検出も行われなくなり、切換スイッチ15は等化器16SB側に切り換えられ、周辺光電変換部12Sの出力に対して青色の光成分に好適な特性の等化処理が行なわれる。この実施例3によっても、実施例1と同様の効果を得ることができる。   Conversely, when the distance between the transmitter and the receiver is long, the blue component light of the LED enters the peripheral photoelectric conversion unit 12S as well as the central photoelectric conversion unit 12C. For this reason, error detection by the error detector 50 is also not performed, and the changeover switch 15 is switched to the equalizer 16SB side, and equalization processing of characteristics suitable for the blue light component with respect to the output of the peripheral photoelectric conversion unit 12S Is done. According to the third embodiment, the same effect as that of the first embodiment can be obtained.

次に、図4及び図5を参照しながら、本発明の実施例4について説明する。本実施例は、上述した実施例1において、送受信機が更に接近した状態を検出し、空間電化効果などの影響を低減する制御を行うようにしたものである。図4には、本実施例の構成が示されており、図1に示した増幅器14Cと等化器16Cとの間に開閉スイッチ60が設けられている。また、信号レベル検出器62は、加算器18の出力信号のレベルを検出し、送受信機の距離が、前記実施例1の近い場合と遠い場合のほかに、近接している場合についても検出動作を行う機能を備えている。   Next, Embodiment 4 of the present invention will be described with reference to FIGS. In this embodiment, the state in which the transmitter / receiver is further approached in the first embodiment described above is detected, and control for reducing the influence of the space electrification effect and the like is performed. FIG. 4 shows the configuration of this embodiment, and an open / close switch 60 is provided between the amplifier 14C and the equalizer 16C shown in FIG. Further, the signal level detector 62 detects the level of the output signal of the adder 18, and detects whether the transmitter / receiver distance is close to or far from the case of the first embodiment. The function to perform.

次に、図5を参照して、本実施例の動作を説明する。まず、送受信機の距離が近い場合は、図5(B)のように、切換スイッチ15が等化器16SY側に切り換えられる。また、開閉スイッチ60は閉となる。従って、上述した図1(B)と同様となる。次に、送受信機の距離が遠い場合は、図5(C)のように、切換スイッチ15が等化器16SB側に切り換えられる。また、開閉スイッチ60は閉(on)となる。従って、上述した図1(C)と同様となる。次に、送受信機の距離が近接している場合は、加算器18の出力信号レベルが、図5(B)の場合よりも更に高くなる。これが信号レベル検出器62で検出されると、切換スイッチ15については、上述した実施例1と同様に等化器16SY側に切り換えるとともに、開閉スイッチ60は開(off)となる(図5(A)参照)。以上の送受信機間の距離と、切換スイッチ15の切換え,開閉スイッチ60の開閉,の関係をまとめると、以下の表1のようになる。

Figure 2009188813
Next, the operation of this embodiment will be described with reference to FIG. First, when the distance between the transmitter and the receiver is short, the selector switch 15 is switched to the equalizer 16SY side as shown in FIG. Further, the open / close switch 60 is closed. Therefore, it becomes the same as FIG. Next, when the distance between the transceivers is long, the changeover switch 15 is switched to the equalizer 16SB side as shown in FIG. Further, the open / close switch 60 is closed (on). Therefore, it is the same as FIG. Next, when the distance between the transceivers is close, the output signal level of the adder 18 becomes higher than in the case of FIG. When this is detected by the signal level detector 62, the changeover switch 15 is switched to the equalizer 16SY side as in the first embodiment, and the open / close switch 60 is opened (FIG. 5A). )reference). Table 1 below summarizes the relationship between the distance between the transmitter and the receiver, switching of the changeover switch 15, and opening / closing of the open / close switch 60.
Figure 2009188813

次に、送受信機が近接した場合に中央光電変換部12C側の開閉スイッチ60を開とする理由は、以下のとおりである。送受信機が最も近接した状態においては、光電変換器10の受光面中心近傍への入射光量が極端に大きくなる。このため、前述の空間電荷効果,逆バイアス電圧不足による出力信号レベルの低下,帯域低下,が起こり、中央光電変換部12Cからの出力信号の伝送品質が悪化する。また一方で、周辺光電変換部12Sへの入射光量は、データを再生するに当たって十分な光量であるものの、相対的に蛍光体からの黄色成分の割合が青色成分よりも大きい。従って、送受信機が最近接した状態では、中央光電変換部12Cの出力は使用せず、周辺光電変換部12Sの出力信号に対しては、蛍光体からの発光分を多く含んだ黄色の光に対して適切な等化を施す等化器16SYを用いるようにしている。こうすることで、送受信機近接時にも伝送品質が悪化せず、なおかつ、ダイナミックレンジを拡大することができることになる。   Next, the reason why the opening / closing switch 60 on the central photoelectric conversion unit 12C side is opened when the transmitter / receiver approaches is as follows. In the state where the transceiver is closest, the amount of incident light near the center of the light receiving surface of the photoelectric converter 10 becomes extremely large. For this reason, the above-mentioned space charge effect, output signal level decrease and band decrease due to insufficient reverse bias voltage occur, and the transmission quality of the output signal from the central photoelectric conversion unit 12C deteriorates. On the other hand, the incident light amount to the peripheral photoelectric conversion unit 12S is a sufficient light amount for reproducing data, but the ratio of the yellow component from the phosphor is relatively larger than the blue component. Therefore, in the state where the transmitter / receiver is closest, the output of the central photoelectric conversion unit 12C is not used, and the output signal of the peripheral photoelectric conversion unit 12S is converted into yellow light containing a large amount of light emitted from the phosphor. On the other hand, an equalizer 16SY that performs appropriate equalization is used. By doing so, the transmission quality is not deteriorated even when the transmitter and the receiver are close to each other, and the dynamic range can be expanded.

次に、図6を参照しながら、本発明の実施例5について説明する。図6(A)の実施例は、上述した図4の実施例4に、図2の実施例2を適用したもので、信号レベル検出器62のかわりに信号波形状態検出器70を接続した構成となっている。この例では、信号波形状態検出器70で、送受信機が近接しているかどうかが判定される。図6(B)の実施例は、上述した図4の実施例4に、図3の実施例3を適用したもので、信号レベル検出器62のかわりにエラー検出器80を接続した構成となっている。この例では、エラー検出器80で、送受信機が近接しているかどうかが判定される。   Next, Embodiment 5 of the present invention will be described with reference to FIG. The embodiment of FIG. 6A is obtained by applying the embodiment 2 of FIG. 2 to the embodiment 4 of FIG. 4 described above, and has a configuration in which a signal waveform state detector 70 is connected instead of the signal level detector 62. It has become. In this example, the signal waveform state detector 70 determines whether or not the transceiver is close. The embodiment of FIG. 6B is obtained by applying the embodiment 3 of FIG. 3 to the embodiment 4 of FIG. 4 described above, and has a configuration in which an error detector 80 is connected instead of the signal level detector 62. ing. In this example, the error detector 80 determines whether the transceiver is in close proximity.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例で示した送信機や受信機の構成は一例であり、公知の回路技術を適用してよい。例えば、受信機側に、フィルタ,増幅器,3R機能(Reshaping,Regeneration,Retiming)でいうところのタイミング抽出部などの回路を追加してもよい(例えば、コロン社「光通信光学(1)」第3章参照)。
(2)前記実施例で示した青色光励起型白色LEDでは、青色LEDの光により励起された蛍光体が、補色関係にある黄色の光を発光するが、蛍光体発光成分に赤色成分を含む白色LEDもあり、それらも、本発明の「青色光励起型白色LED」に含まれる。
(3)青色光励起型白色LEDの出力光が、OOK(On-Off Keying)などの変調方式で変調されて点滅する場合を一例として示したが、PSK(Phase Shift Keying),FSK(Frequency Shift Keying),PPM(Pulse Position Modulation),QAM(Quadrature Amplitude Modulation)などの各種変調方式を適用することが可能である。
(4)前記実施例では、受信機側の光電変換器を中央光電変換部と周辺光電変換部の2つによって構成したが、更に複数の光電変換部を設けることを妨げるものではない。また、前記実施例では、青色光の周囲に略同心円状に黄色光が分布している場合を示したが、楕円形などの場合であっても、光電変換部の形状を光分布の形状に対応させることで、本発明を適用可能である。更に、前記実施例では、円形の受光面を有する中央光電変換部の周辺を取り囲むように環状の受光面を有する周辺光電変換部を設けたが、他の形状,例えば中央光電変換部及び周辺光電変換部をいずれも四角形とし、中央光電変換部の左右もしくは上下に周辺光電変換部を配置するなど、各種の形状・配置とすることを妨げるものではない。
(5)前記実施例では、信号レベル検出,信号波形状態検出,エラー検出という手法によって、光電変換器の出力に対する等化器の特性切換えを行ったが、それらも一例であり、他の方法を適用することを妨げるものではない。
(6)前記実施例は、青色光励起型白色LEDに対して本発明を適用した場合を主として説明したが、他の白色LEDを用いる場合、更にはLED以外の可視光光源を用いる場合に適用することを妨げるものではない。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The configurations of the transmitter and the receiver shown in the above embodiment are merely examples, and a known circuit technique may be applied. For example, a circuit such as a filter, an amplifier, and a timing extraction unit in terms of 3R functions (Reshaping, Regeneration, Retiming) may be added on the receiver side (for example, “Optical Communication Optics (1)” No. (See Chapter 3).
(2) In the blue light excitation type white LED shown in the above embodiment, the phosphor excited by the light of the blue LED emits yellow light having a complementary color relationship, but the white light containing the red component in the phosphor emission component There are also LEDs, which are also included in the “blue light excitation type white LED” of the present invention.
(3) The case where the output light of the blue light-excited white LED is modulated by a modulation method such as OOK (On-Off Keying) and flashes has been shown as an example. ), PPM (Pulse Position Modulation), QAM (Quadrature Amplitude Modulation), and the like.
(4) In the above-described embodiment, the photoelectric converter on the receiver side is constituted by the central photoelectric conversion unit and the peripheral photoelectric conversion unit, but this does not prevent the provision of a plurality of photoelectric conversion units. Further, in the above-described embodiment, the case where the yellow light is distributed in a substantially concentric manner around the blue light is shown. However, even in the case of an ellipse or the like, the shape of the photoelectric conversion unit is changed to the light distribution shape. By making it correspond, this invention is applicable. Further, in the above-described embodiment, the peripheral photoelectric conversion unit having the annular light receiving surface is provided so as to surround the periphery of the central photoelectric conversion unit having the circular light receiving surface. However, other shapes such as the central photoelectric conversion unit and the peripheral photoelectric conversion unit are provided. It does not preclude various shapes and arrangements, such as a rectangular conversion unit and the peripheral photoelectric conversion units arranged on the left and right or top and bottom of the central photoelectric conversion unit.
(5) In the above embodiment, the characteristics of the equalizer are switched with respect to the output of the photoelectric converter by the methods of signal level detection, signal waveform state detection, and error detection. However, these are also examples, and other methods are used. It does not prevent application.
(6) Although the said Example mainly demonstrated the case where this invention was applied with respect to blue light excitation type | mold white LED, when using other white LED, Furthermore, it applies when using visible light sources other than LED. It does not prevent it.

本発明によれば,青色光励起型白色LEDなどの可視光光源に用いて、良好な伝送品質と広ダイナミックレンジの確保の両立された光受信機や可視光通信装置を提供することができ、送受信系を1対1に対向配置した空間光伝送に好適である。 According to the present invention, it is possible to provide an optical receiver and a visible light communication device that can be used for a visible light source such as a blue light-excited white LED and that can ensure good transmission quality and a wide dynamic range. This is suitable for spatial light transmission in which the systems are arranged in a one-to-one relationship.

実施例1の光電変換器と、光伝送システムの主要構成を示す回路ブロック図である。(A)は光電変換器の受光面の構成を示す図,(B)及び(C)は実施例1の回路ブロック図である。1 is a circuit block diagram illustrating a main configuration of a photoelectric converter and an optical transmission system of Example 1. FIG. (A) is a figure which shows the structure of the light-receiving surface of a photoelectric converter, (B) and (C) are the circuit block diagrams of Example 1. FIG. 実施例2の主要構成を示す回路ブロック図である。FIG. 6 is a circuit block diagram illustrating a main configuration of a second embodiment. 実施例3の主要構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram illustrating a main configuration of Example 3. 実施例4の主要構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram illustrating a main configuration of a fourth embodiment. 実施例4の主要構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram illustrating a main configuration of a fourth embodiment. 実施例5の主要構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram illustrating a main configuration of a fifth embodiment. (A)は青色光励起型白色LEDの構成の一例を示す図,(B)はその発光スペクトル特性を示すグラフ,(C)は信号波形の空間電荷効果による信号波形の鈍りの一例を示すグラフである。(A) is a diagram showing an example of the configuration of a blue light-excited white LED, (B) is a graph showing its emission spectrum characteristics, and (C) is a graph showing an example of signal waveform dullness due to the space charge effect of the signal waveform. is there. 白色LEDを使用したデータ伝送システムの一例を示すブロック図である。It is a block diagram which shows an example of the data transmission system which uses white LED. 青色光励起型白色LEDの光分布の様子を示す図である。It is a figure which shows the mode of the light distribution of blue light excitation type | mold white LED. 送受信機の距離の遠近による受信側の信号波形の一例を示すグラフである。It is a graph which shows an example of the signal waveform of the receiving side by the distance of the distance of a transmitter / receiver. (A)は波形鈍り検出器の一例を示すブロック図,(B)は波形鈍りがないときの動作を示すタイムチャート,(C)は波形鈍りがあるときの動作を示すタイムチャートである。(A) is a block diagram showing an example of a waveform dullness detector, (B) is a time chart showing an operation when there is no waveform dullness, and (C) is a time chart showing an operation when there is a waveform dullness.

符号の説明Explanation of symbols

10:光電変換器
12C:中央光電変換部
12S:周辺光電変換部
14C,14S:増幅器
15:切換スイッチ
16C,16SB,16SY:等化器
18:加算器
20:識別再生回路
22:信号レベル検出器
30:青色光励起型白色LED
40:信号波形状態検出器
42,44:コンパレータ
46:XOR回路
48:ローパスフィルタ
50:エラー検出器
60:開閉スイッチ
62:信号レベル検出器
70:信号波形状態検出器
80:エラー検出器
900:青色LED
902:樹脂ケース
904,906:引出し電極
908:黄色蛍光体(蛍光体粒子)
920A,920B:データ端末
922A,922B:送受信機
930A,930B:送信機
932:変調器
934:青色光励起型白色LED
940A,940B:受信機
942:光電変換器
944:増幅器
946:等化器
948:識別再生回路(復調器)
10: photoelectric converter 12C: central photoelectric converter 12S: peripheral photoelectric converters 14C, 14S: amplifier 15: changeover switch 16C, 16SB, 16SY: equalizer 18: adder 20: identification reproduction circuit 22: signal level detector 30: Blue light excitation type white LED
40: Signal waveform state detector 42, 44: Comparator 46: XOR circuit 48: Low pass filter 50: Error detector 60: Open / close switch 62: Signal level detector 70: Signal waveform state detector 80: Error detector 900: Blue LED
902: Resin case 904, 906: Extraction electrode 908: Yellow phosphor (phosphor particle)
920A, 920B: Data terminals 922A, 922B: Transceivers 930A, 930B: Transmitter 932: Modulator 934: Blue light excitation type white LED
940A, 940B: receiver 942: photoelectric converter 944: amplifier 946: equalizer 948: identification reproduction circuit (demodulator)

Claims (8)

第1の波長域の光を出力する発光体と、これから出力された光により励起されて応答速度の異なる第2の波長域の光を出力する蛍光体とを備えた発光手段から出力された光信号を受光する光受信機であって、
前記発光手段から出力された光信号の分布に対応して配置された複数の光電変換手段,
該複数の光電変換手段のうちの少なくとも1つについて選択的に設けられており、前記光電変換手段による変換後の電気信号を、受光波長帯域の応答速度に対応して波形等化する複数の等化手段,
前記発光手段を備えた光送信機と前記光受信機の距離に応じて、前記光電変換手段に入射する光の波長帯域に対応するように前記複数の等化手段を切り換える切換手段,
を備えたことを特徴とする光受信機。
Light output from a light emitting means including a light emitting body that outputs light in the first wavelength region and a phosphor that is excited by the light output from the light source and outputs light in the second wavelength region having a different response speed. An optical receiver for receiving a signal,
A plurality of photoelectric conversion means arranged corresponding to the distribution of the optical signal output from the light emitting means;
A plurality of units are provided selectively for at least one of the plurality of photoelectric conversion units, and the waveform of the electrical signal converted by the photoelectric conversion unit is equalized according to the response speed of the light receiving wavelength band. Means of
Switching means for switching the plurality of equalization means so as to correspond to a wavelength band of light incident on the photoelectric conversion means according to a distance between the optical transmitter provided with the light emitting means and the optical receiver;
An optical receiver comprising:
前記複数の光電変換手段は、前記発光手段の出力光のうち、中央部分の光を受光する中央光電変換部と、前記中央部分の周囲の光を受光する周辺光電変換部とを備えており、
この周辺光電変換部の等化手段が、前記切換手段によって切り換えられることを特徴とする請求項1記載の光受信機。
The plurality of photoelectric conversion units include a central photoelectric conversion unit that receives light of a central portion of output light of the light emitting unit, and a peripheral photoelectric conversion unit that receives light around the central portion,
2. The optical receiver according to claim 1, wherein the equalizing means of the peripheral photoelectric conversion unit is switched by the switching means.
前記等化手段は、前記第1の波長域の光を出力する発光体の光に対応する波形等化を行う第1の等化器と、前記第2の波長域の光を出力する蛍光体の光に対応する波形等化を行う第2の等化器とを含むことを特徴とする請求項2記載の光受信機。   The equalization means includes a first equalizer that performs waveform equalization corresponding to light of a light emitter that outputs light in the first wavelength region, and a phosphor that outputs light in the second wavelength region. The optical receiver according to claim 2, further comprising: a second equalizer that performs waveform equalization corresponding to the light. 前記切換手段は、前記送信機と前記受信機とが近いときは、前記第2の等化器に切り換え、前記送信機と前記受信機とが遠いときは、前記第1の等化器に切り換えることを特徴とする請求項3記載の光受信機。   The switching means switches to the second equalizer when the transmitter and the receiver are close to each other, and switches to the first equalizer when the transmitter and the receiver are far from each other. The optical receiver according to claim 3. 前記切換手段は、前記送信機と前記受信機とが近接しているときは、中央光電変換部の信号出力を使用しないようにすることを特徴とする請求項2〜4のいずれかに記載の光受信機。   5. The switch according to claim 2, wherein the switching unit does not use a signal output of a central photoelectric conversion unit when the transmitter and the receiver are close to each other. 6. Optical receiver. 前記切換手段は、
前記光受信機における識別再生前の信号レベルを検出する信号レベル検出手段,
前記光受信機における識別再生前の信号波形状態を検出する信号波形状態検出手段,
前記光受信機における識別再生後のエラーを検出するエラー検出手段,
のいずれかであることを特徴とする請求項1〜5のいずれかに記載の光受信機。
The switching means is
Signal level detecting means for detecting a signal level before identification reproduction in the optical receiver;
Signal waveform state detecting means for detecting a signal waveform state before identification reproduction in the optical receiver;
Error detection means for detecting an error after identification reproduction in the optical receiver;
The optical receiver according to claim 1, wherein the optical receiver is any one of the following.
前記発光手段が青色光励起型白色LEDであって、前記第1の波長域の光を出力する発光体が青色LEDであることを特徴とする請求項1〜6のいずれかに記載の光受信機。   7. The optical receiver according to claim 1, wherein the light emitting means is a blue light excitation type white LED, and a light emitting body that outputs light in the first wavelength range is a blue LED. . 請求項1〜7のいずれかに記載の光受信機と、前記発光手段を含む光送信機とを備えたことを特徴とする可視光通信装置。   A visible light communication apparatus comprising: the optical receiver according to claim 1; and an optical transmitter including the light emitting unit.
JP2008027659A 2008-02-07 2008-02-07 Optical receiver and visible light communication device Expired - Fee Related JP5068680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027659A JP5068680B2 (en) 2008-02-07 2008-02-07 Optical receiver and visible light communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027659A JP5068680B2 (en) 2008-02-07 2008-02-07 Optical receiver and visible light communication device

Publications (2)

Publication Number Publication Date
JP2009188813A true JP2009188813A (en) 2009-08-20
JP5068680B2 JP5068680B2 (en) 2012-11-07

Family

ID=41071602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027659A Expired - Fee Related JP5068680B2 (en) 2008-02-07 2008-02-07 Optical receiver and visible light communication device

Country Status (1)

Country Link
JP (1) JP5068680B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142174A1 (en) * 2010-05-14 2011-11-17 太陽誘電株式会社 Visible light communication receiver, visible light communication system, and visible light communication method
JP2012178764A (en) * 2011-02-28 2012-09-13 Taisei Corp Communication system and transmitting device
US8526825B2 (en) 2008-09-26 2013-09-03 Taiyo Yuden Co., Ltd. Visible light communication transmitter and visible light communication system
JP2016005231A (en) * 2014-06-19 2016-01-12 ルネサスエレクトロニクス株式会社 Optical receiver
JP2018046585A (en) * 2017-12-27 2018-03-22 ルネサスエレクトロニクス株式会社 Optical receiver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333005A (en) * 2000-05-24 2001-11-30 Ntt Docomo Inc System, method and device for optical space transmission
JP2003318836A (en) * 2002-04-23 2003-11-07 Keio Gijuku Illumination light transmitter, illumination light receiver, and fluorescent material type illumination light communication system
JP2004363756A (en) * 2003-06-03 2004-12-24 Sharp Corp Lighting device equipped with optical transmission mechanism
JP2007013485A (en) * 2005-06-29 2007-01-18 Kyocera Corp Equipment and system for visible light communication and apparent brightness changing method
JP2007043592A (en) * 2005-08-05 2007-02-15 Taiyo Yuden Co Ltd Transmitter and receiver for optical communication, optical communication system, and communication device
JP2009010916A (en) * 2007-03-01 2009-01-15 Taiyo Yuden Co Ltd Optical receiver and visible light communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333005A (en) * 2000-05-24 2001-11-30 Ntt Docomo Inc System, method and device for optical space transmission
JP2003318836A (en) * 2002-04-23 2003-11-07 Keio Gijuku Illumination light transmitter, illumination light receiver, and fluorescent material type illumination light communication system
JP2004363756A (en) * 2003-06-03 2004-12-24 Sharp Corp Lighting device equipped with optical transmission mechanism
JP2007013485A (en) * 2005-06-29 2007-01-18 Kyocera Corp Equipment and system for visible light communication and apparent brightness changing method
JP2007043592A (en) * 2005-08-05 2007-02-15 Taiyo Yuden Co Ltd Transmitter and receiver for optical communication, optical communication system, and communication device
JP2009010916A (en) * 2007-03-01 2009-01-15 Taiyo Yuden Co Ltd Optical receiver and visible light communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526825B2 (en) 2008-09-26 2013-09-03 Taiyo Yuden Co., Ltd. Visible light communication transmitter and visible light communication system
WO2011142174A1 (en) * 2010-05-14 2011-11-17 太陽誘電株式会社 Visible light communication receiver, visible light communication system, and visible light communication method
JP2011244103A (en) * 2010-05-14 2011-12-01 Taiyo Yuden Co Ltd Receiver for visible light communication, visible light communication system, and visible light communication method
US8750719B2 (en) 2010-05-14 2014-06-10 Taiyo Yuden Co., Ltd. Visible light communication receiver, visible light communication system, and visible light communication method
JP2012178764A (en) * 2011-02-28 2012-09-13 Taisei Corp Communication system and transmitting device
JP2016005231A (en) * 2014-06-19 2016-01-12 ルネサスエレクトロニクス株式会社 Optical receiver
JP2018046585A (en) * 2017-12-27 2018-03-22 ルネサスエレクトロニクス株式会社 Optical receiver

Also Published As

Publication number Publication date
JP5068680B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4464888B2 (en) Optical communication transmitter, optical communication receiver, optical communication system, and communication apparatus
Karunatilaka et al. LED based indoor visible light communications: State of the art
US10128941B2 (en) Dimming control for orthogonal frequency division multiplexing-based visible light communication
US8059972B2 (en) Optical receiver and visible light communication system
US8849127B2 (en) Visible light communication transmitter and visible light communication system
JP5161176B2 (en) Visible light communication transmitter and visible light communication system
JP2010239350A (en) Visible light communication system, and transmitter and receiver of the same
JP5068680B2 (en) Optical receiver and visible light communication device
KR100944024B1 (en) Light receiving apparatus and visible light communication apparatus
Tiwari et al. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies
Choi et al. Visible light communications employing PPM and PWM formats for simultaneous data transmission and dimming
CN104079352A (en) Visible light communication device used for ships
CN104243034A (en) Visible-light communication system and visible-light communication method
CN204180082U (en) For the visible light communication device of boats and ships
Amjad et al. An IEEE 802.11 compliant SDR-based system for vehicular visible light communications
Mossaad et al. Practical OFDM signalling for visible light communications using spatial summation
Ibhaze et al. A signal amplification-based transceiver for visible light communication
JP5121503B2 (en) Communication method selection method, visible light communication method, and apparatus thereof
Khan et al. Perspective on light-fidelity and visible light communication
Mukherjee Visible light communication-A survey of potential research challenges and advancements
Ashida et al. A VLC receiving devise using audio jacks with a folding noise
Tokgoz et al. Performance evaluation of white LED-based OFDM-VLC systems with blue filters: experimental study
CN112019273A (en) Two-way wireless audio transmission system based on white light LED
Chen et al. MPPM dimming control for OFDM-based visible light communication systems
Yoo et al. Multi-coded variable PPM with level cutting for high data rate visible light communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees