JP2009188047A - Method of remedying dark defect of euvl mask - Google Patents

Method of remedying dark defect of euvl mask Download PDF

Info

Publication number
JP2009188047A
JP2009188047A JP2008024164A JP2008024164A JP2009188047A JP 2009188047 A JP2009188047 A JP 2009188047A JP 2008024164 A JP2008024164 A JP 2008024164A JP 2008024164 A JP2008024164 A JP 2008024164A JP 2009188047 A JP2009188047 A JP 2009188047A
Authority
JP
Japan
Prior art keywords
ion beam
normal pattern
black
focused ion
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008024164A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2008024164A priority Critical patent/JP2009188047A/en
Publication of JP2009188047A publication Critical patent/JP2009188047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of remedying a dark defect of an EUVL (Extreme-Ultraviolet Lithography) mask which causes no overhang and gives less damage to a substrate. <P>SOLUTION: A part of a dark defect area 5 that is in contact with a normal pattern 3 is subjected to slope processing by physical spatter etching using a focused ion beam 6. A dark defect 3 surviving after the slope-processing is then removed by gas-assist etching using a xenon fluoride gas. Otherwise, the part of a dark defect area 5 that is in contact with the normal pattern 3 is subjected to trenching processing by physical spatter etching using the focused ion beam 6. A dark defect surviving after the trenching processing is then removed by gas assist etching. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はEUVLマスクの黒欠陥修正方法に関するものである。   The present invention relates to a method for correcting black defects in EUVL masks.

現在ArFエキシマレーザを用いた光学式の投影露光装置がウェーハへのパターン転写に用いられている。ハーフピッチ65nmまでは従来のArFエキシマレーザを用いた縮小投影露光装置で対応可能だが、ハーフピッチ45nmに対しては更に開口数を大きくできる(開口数を1以上にできる)液浸タイプのArFエキシマレーザを用いた縮小投影露光装置が用いられようとしている。ハーフピッチ32nmに対しては液浸の溶媒を水からフッ素系の溶媒に変えて更に開口数を大きくしたArFエキシマレーザを用いた縮小投影露光装置もしくは水の液浸ArFエキシマレーザを用いた縮小投影露光装置と二重露光技術とを組合せることで対応しようとする試みが盛んである。しかしArFエキシマレーザ液浸縮小投影露光装置の延命ではハーフピッチ22nm以降は原理的に困難なため、軟X線縮小露光(Extreme Ultra Violet Lithography、EUVL)やナノインプリントリソグラフィが有望視されている。EUVLは波長約13.5nmの軟X線を反射光学系で縮小して露光する技術で、紫外線露光の短波長化の極限と見なされ、二世代以上に渡って利用できるリソグラフィー技術として精力的に開発が進められている。   Currently, an optical projection exposure apparatus using an ArF excimer laser is used for pattern transfer onto a wafer. Up to a half pitch of 65 nm can be handled by a reduction projection exposure system using a conventional ArF excimer laser, but for a half pitch of 45 nm, the numerical aperture can be further increased (the numerical aperture can be increased to 1 or more). A reduction projection exposure apparatus using a laser is about to be used. For half-pitch 32nm, a reduced projection exposure system using an ArF excimer laser with a larger numerical aperture by changing the immersion solvent from water to a fluorinated solvent, or a reduced projection using a water immersion ArF excimer laser. There are many attempts to cope with this by combining an exposure apparatus and a double exposure technique. However, since the life extension of ArF excimer laser immersion reduction projection exposure apparatus is difficult in principle after half-pitch 22 nm, soft X-ray reduction exposure (Extreme Ultra Violet Lithography, EUVL) and nanoimprint lithography are promising. EUVL is a technology that reduces and exposes soft X-rays with a wavelength of about 13.5 nm with a reflective optical system. It is considered the limit of shortening the wavelength of ultraviolet exposure, and is vigorously developed as a lithography technology that can be used for more than two generations. Is underway.

EUVLではMo/Si多層膜からなるEUV光を反射する反射層上にEUV光を吸収するTaNやTaGeNの吸収体パターンとMo/Si多層膜と吸収体パターンの間にCrやSiO2のバッファーレイヤーを形成したものが用いられている。EUVLマスクにおいてもフォトマスク同様、マスクに欠陥が存在すると、欠陥がウェーハに転写されて転写したウェハー全てにデバイス不良を作りこんでしまう原因となるので、欠陥が存在する場合にはウェーハへ転写する前に欠陥修正装置により欠陥修正処理を行わなければならない。 In EUVL, a TaN or TaGeN absorber pattern that absorbs EUV light on a reflective layer that reflects EUV light composed of a Mo / Si multilayer film, and a Cr or SiO 2 buffer layer between the Mo / Si multilayer film and the absorber pattern Is used. Even in EUVL masks, as with photomasks, if defects exist in the mask, the defects are transferred to the wafer and cause a defective device on all transferred wafers. If defects exist, transfer to the wafer. A defect correction process must be performed by a defect correction device before.

下地バッファーレイヤーへのダメージを減らすために電子ビームや集束イオンビームでフッ化キセノンを用いたガスアシストエッチングで黒欠陥修正が試みられているが(例えば非特許文献1または2)、修正個所に接する部分の正常パターンにオーバーハングが見られ反射率に影響を及ぼすためオーバーハングのない加工が求められている。
T. Abe, M. Nishiguchi, T. Amano, T. Motonaga, S. Sasaki, H. Mohri, and N. Hayashi,Proc. of SPIE 5446 832-840(2004) T. Liang, E. Frendberg, D. Bald, M. Penn, and A. Stiver, Proc. of SPIE 5567 456-466(2004)
In order to reduce damage to the underlying buffer layer, black defect correction has been attempted by gas-assisted etching using xenon fluoride with an electron beam or a focused ion beam (for example, Non-Patent Document 1 or 2), but is in contact with the corrected portion. Since an overhang is observed in the normal pattern of the portion and the reflectivity is affected, processing without an overhang is required.
T. Abe, M. Nishiguchi, T. Amano, T. Motonaga, S. Sasaki, H. Mohri, and N. Hayashi, Proc. Of SPIE 5446 832-840 (2004) T. Liang, E. Frendberg, D. Bald, M. Penn, and A. Stiver, Proc. Of SPIE 5567 456-466 (2004)

本発明は吸収体のオーバーハングがなく、下地へのダメージの少ないEUVLマスクの黒欠陥修正方法を提供すること目的とする。   An object of the present invention is to provide a method for correcting a black defect in an EUVL mask that does not cause an overhang of the absorber and causes little damage to the base.

加工中の断面から発生する二次電子がアシストエッチングガス(フッ化キセノン)にエネルギーを与え化学的な反応を促進するため黒欠陥に接する正常パターンにオーバーハング(エッチングが深くなるにつれて等方的にエッチングされるように断面の抉れが大きくなる形状のことをいう)が生じるので、正常パターンに接する部分はアシストエッチングガスを用いなくても加工できる集束イオンビームの物理スパッタエッチングを用いる。まず正常パターンに接する部分は正常パターンに接する部分が垂直断面になるように集束イオンビームの物理スパッタエッチングによるスロープ加工を行う。スロープ加工を行うことにより物理スパッタエッチングで除去したものが再付着で埋まるのを防ぐようにする。引き続きスロープ加工で出した正常パターンの断面に集束イオンビームが当たらないように(二次電子が断面から発生しないように)スロープ加工で残った黒欠陥部のみ集束イオンビームを選択照射し、フッ化キセノンのガスアシストエッチングでスロープ加工で残った黒欠陥部を除去する。   Secondary electrons generated from the cross section during processing give energy to the assist etching gas (xenon fluoride) to promote chemical reaction, and overhang the normal pattern in contact with the black defect (isotropically as the etching deepens) Therefore, the portion in contact with the normal pattern is formed by physical sputter etching of a focused ion beam that can be processed without using an assist etching gas. First, slope processing by physical sputter etching of a focused ion beam is performed so that the portion in contact with the normal pattern has a vertical cross section in the portion in contact with the normal pattern. By performing slope processing, the material removed by physical sputter etching is prevented from being buried by reattachment. In order to prevent the focused ion beam from hitting the cross-section of the normal pattern that was subsequently produced by slope processing (so that secondary electrons are not generated from the cross-section), only the black defect portion remaining in the slope processing is selectively irradiated with the focused ion beam, and fluorinated. Xenon gas-assisted etching removes black defects left by slope processing.

あるいは正常パターンに接する部分は集束イオンビームの物理スパッタエッチングで黒欠陥エッジ部を溝堀加工して側面が矩形状の溝を形成し、正常パターンの断面に集束イオンビームが当たらないように溝堀加工で残った黒欠陥のみ集束イオンビームを選択照射しガスアシストエッチング(フッ化キセノン)で除去する。溝堀加工の溝の幅は物理スパッタエッチングで除去したものが再付着で埋まらない幅にする。   Alternatively, the portion of the normal pattern in contact with the normal pattern is etched by physical sputter etching of the focused ion beam to form a groove having a rectangular side surface by groove processing so that the focused ion beam does not hit the cross section of the normal pattern. Only black defects remaining in the processing are selectively irradiated with a focused ion beam and removed by gas-assisted etching (xenon fluoride). The width of the groove for grooving is set so that the material removed by physical sputter etching is not buried by reattachment.

MEMS作製で用いられているボッシュ法のようにスロープ加工または溝堀加工で現れた正常断面に炭素系の保護膜を形成して、スロープ加工で残った黒欠陥をガスアシストエッチングで除去している間加工断面を保護する。   Like the Bosch method used in MEMS fabrication, a carbon-based protective film is formed on the normal cross section that appears in the slope processing or grooving, and the black defects remaining in the slope processing are removed by gas-assisted etching. Protects the machined cross section.

黒欠陥除去後に不要となった加工断面の炭素系の保護膜を酸素雰囲気下でRFプラズマまたはオゾン雰囲気下でのUV光照射で除去する。あるいは不要となった加工断面の炭素系の保護膜を水蒸気雰囲気で電子ビームまたは集束イオンビームで除去する。   The carbon-based protective film with a processed cross section that is no longer necessary after the removal of black defects is removed by irradiation with UV light in an RF plasma or ozone atmosphere in an oxygen atmosphere. Alternatively, the carbon-based protective film having a processed cross section that is no longer necessary is removed with an electron beam or a focused ion beam in a water vapor atmosphere.

黒欠陥領域のうち正常パターンに接する部分の加工は物理スパッタエッチングで行うので、フッ化キセノンを用いたガスアシストエッチングのように加工中の断面から発生する二次電子がフッ化キセノンと反応してオーバーハングを生じる、ということはない。電子ビームでは化学的な反応でエッチングが進むためオーバーハングを避けることは困難だが、集束イオンビームではその物理的な除去能力のためオーバーハングのない加工を行うことができる。   Since the processing of the black defect region in contact with the normal pattern is performed by physical sputter etching, secondary electrons generated from the cross-section during processing react with xenon fluoride like gas-assisted etching using xenon fluoride. It does not cause an overhang. Although it is difficult to avoid overhanging with an electron beam because etching proceeds by a chemical reaction, a focused ion beam can perform processing without overhanging due to its physical removal capability.

残った黒欠陥は下地との選択比の高いフッ化キセノンを用いたガスアシストエッチングで除去するので下地バッファーレイヤーやMo/Si多層膜へのダメージの少ない修正を行うことができる。   The remaining black defects are removed by gas-assisted etching using xenon fluoride, which has a high selection ratio with the underlying layer, so that the underlying buffer layer and the Mo / Si multilayer film can be repaired with little damage.

フッ化キセノンで黒欠陥をガスアシストエッチングで除去している間正常パターン断面をフッ化キセノンでエッチングされない炭素系の膜で覆うことでオーバーハングを防止することができる。   While a black defect is removed by gas-assisted etching with xenon fluoride, an overhang can be prevented by covering the normal pattern cross section with a carbon-based film that is not etched with xenon fluoride.

酸素雰囲気下でのRFプラズマ照射や、オゾン雰囲気下でのUV光照射は吸収体パターンは損なわず炭素系の保護膜のみを除去できる。水蒸気雰囲気で電子ビームまたは集束イオンビームエッチングも、吸収体パターンは損なわず炭素系の保護膜のみを除去できる。   RF plasma irradiation in an oxygen atmosphere and UV light irradiation in an ozone atmosphere can remove only the carbon-based protective film without damaging the absorber pattern. Even with electron beam or focused ion beam etching in a water vapor atmosphere, the absorber pattern can be removed without removing the carbon-based protective film.

以下に本発明の実施例について図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1(a)〜(c)は、本発明の特徴を最も良く表す集束イオンビームの物理スパッタエッチングで黒欠陥の正常パターンと接する部分のスロープ加工を行い、スロープ加工で残った黒欠陥をガスアシストエッチングで除去する場合を説明する概略断面図である。   FIGS. 1A to 1C show a slope process of a portion in contact with a normal pattern of black defects by physical sputter etching of a focused ion beam that best represents the characteristics of the present invention, and the black defects remaining in the slope process are gasified. It is a schematic sectional drawing explaining the case where it removes by assist etching.

黒欠陥を有するEUVLマスクを集束イオンビーム装置に導入し、欠陥検査装置で黒欠陥5が見つかった位置にXYステージを移動し、欠陥を含む領域を観察して、黒欠陥5を認識する。EUVLマスクは、ガラス基板4の上に、順にMo/Si多層膜3、バッファーレイヤー2、黒欠陥5を有する正常パターン(吸収体)1を有している。   An EUVL mask having a black defect is introduced into the focused ion beam apparatus, the XY stage is moved to a position where the black defect 5 is found by the defect inspection apparatus, the region including the defect is observed, and the black defect 5 is recognized. The EUVL mask has a normal pattern (absorber) 1 having a Mo / Si multilayer 3, a buffer layer 2, and a black defect 5 in this order on a glass substrate 4.

集束イオンビーム装置には真空排気された作業室と準備室があり、作業室には位置出しのためのXYステージ、イオン源とイオン光学系と走査系とからなる集束イオンビーム鏡筒、二次電子検出系、黒欠陥除去のためのアシストエッチングガス供給系7、白欠陥修正のためのデポジョン膜原料供給系を備えており、準備室には試料(マスク)交換のための搬送系や大気開放システムを備えている。集束イオンビーム装置は、イオン源(例えばガリウム液体金属イオン源)から引き出されたイオンをイオン光学系の静電レンズと絞りで所望の電流で集束し、走査系で、該集束したイオンビームを試料上を走査しながら、試料から発生する二次電子を検出して、照射位置に応じた二次電子強度を表示することで微小な領域を観察できる装置である。集束イオンビーム装置は又、観察したイメージから加工する領域(マスク修正の場合は黒欠陥や白欠陥)を定義すれば、定義された領域への走査系による選択的な照射により物理スパッタエッチングやアシストガス存在下でのガスアシストエッチングによる除去加工(黒欠陥修正)やデポジションガス存在下でのイオンビーム誘起化学気相成長によるデポジション膜形成(白欠陥修正)を行うことが可能な装置である。   The focused ion beam system has an evacuated working chamber and a preparation chamber. The working chamber has an XY stage for positioning, a focused ion beam column consisting of an ion source, an ion optical system, and a scanning system, a secondary Equipped with an electron detection system, an assist etching gas supply system 7 for black defect removal, and a deposition film material supply system for white defect correction. Has a system. A focused ion beam apparatus focuses ions extracted from an ion source (for example, a gallium liquid metal ion source) with a desired current using an electrostatic lens and a diaphragm of an ion optical system, and the focused ion beam is sampled in a scanning system. It is an apparatus that can observe a minute region by detecting secondary electrons generated from a sample while scanning the top and displaying the secondary electron intensity according to the irradiation position. The focused ion beam device can also be used to perform physical sputter etching and assist by selectively irradiating the defined area with a scanning system if the area to be processed (black defect or white defect in the case of mask correction) is defined from the observed image. It is a device that can perform removal processing (black defect correction) by gas-assisted etching in the presence of gas and deposition film formation (white defect correction) by ion beam induced chemical vapor deposition in the presence of deposition gas. .

認識した黒欠陥5において正常パターン1に接する部分は、アシストエッチングガスを用いなくても加工できる集束イオンビームを用いて、物理スパッタエッチングをする。まず正常パターン1に接する部分は正常パターンに接する部分が垂直断面になるように、集束イオンビーム鏡筒11からの集束イオンビーム6の物理スパッタエッチングによるスロープ加工を行う(図1(a))。ここでスロープ加工というのは、斜面加工という意味で、図1の(b)のスパッタエッチング断面の欠陥領域5が斜めになっている領域がスロープ加工された領域16である。ここでのスロープ加工は、表面が広く深さ方向にだんだん狭くなっていくように、片側(正常パターン側)が垂直、片側(黒欠陥部)が斜めになるようになされる。スロープ加工を行うことにより物理スパッタエッチングで除去したものが再付着で埋まるのを防ぐようにする。引き続きスロープ加工で出した正常パターン1の断面に集束イオンビーム6が当たらないように(二次電子が断面から発生しないように)、スロープ加工で残った黒欠陥部のみアシストエッチングガス供給系7からビーム照射点にアシストエッチングガス(例えばフッ化キセノン)を供給しながら集束イオンビーム6を選択照射し(図1(b))、ガスアシストエッチングで、スロープ加工で残った黒欠陥部5を除去する(図1(c))。   A portion of the recognized black defect 5 in contact with the normal pattern 1 is subjected to physical sputter etching using a focused ion beam that can be processed without using an assist etching gas. First, slope processing by physical sputter etching of the focused ion beam 6 from the focused ion beam column 11 is performed so that the portion in contact with the normal pattern 1 has a vertical cross section in the portion in contact with the normal pattern (FIG. 1 (a)). Here, the slope processing means slope processing, and the region 16 in which the defect region 5 in the sputter etching cross section of FIG. The slope processing here is such that one side (normal pattern side) is vertical and one side (black defect portion) is slanted so that the surface is wide and gradually narrows in the depth direction. By performing slope processing, the material removed by physical sputter etching is prevented from being buried by reattachment. In order to prevent the focused ion beam 6 from hitting the cross section of the normal pattern 1 that is subsequently produced by the slope processing (so that secondary electrons are not generated from the cross section), only the black defect portion remaining in the slope processing from the assist etching gas supply system 7 The focused ion beam 6 is selectively irradiated while supplying an assist etching gas (for example, xenon fluoride) to the beam irradiation point (FIG. 1 (b)), and the black defect portion 5 remaining in the slope processing is removed by gas assist etching. (Fig. 1 (c)).

図2(a)〜(c)は、他の実施例を表す、集束イオンビームの物理スパッタエッチングで黒欠陥の正常パターンと接する部分の短冊状の加工を行い、短冊状の加工で残った黒欠陥をガスアシストエッチングで除去する場合を説明する概略断面図である。   FIGS. 2A to 2C show other embodiments, in which a strip-shaped portion of a portion in contact with a normal pattern of black defects is processed by physical sputter etching of a focused ion beam, and the black remaining by the strip-shaped processing is shown. It is a schematic sectional drawing explaining the case where a defect is removed by gas assist etching.

本実施例においては、認識した黒欠陥5の正常パターン1に接する部分は集束イオンビーム6の物理スパッタエッチングで黒欠陥領域5のうち正常パターン1に接する部分を溝堀加工し溝17を設ける(図2(a))。引き続き正常パターンの断面に集束イオンビーム6が当たらないように溝堀加工で残った黒欠陥部5のみアシストエッチングガス供給系7からビーム照射点にアシストエッチングガス(例えばフッ化キセノン)を供給しながら集束イオンビームを選択照射し(図2(b))、ガスアシストエッチングで除去する(図2(c))。溝の幅は物理スパッタエッチングで除去したものが再付着で埋まらない幅にする。   In the present embodiment, the portion of the recognized black defect 5 in contact with the normal pattern 1 is grooved into the portion of the black defect region 5 in contact with the normal pattern 1 by physical sputter etching of the focused ion beam 6 to provide a groove 17 ( Fig. 2 (a)). Subsequently, while supplying the assist etching gas (e.g., xenon fluoride) from the assist etching gas supply system 7 to the beam irradiation point only in the black defect portion 5 remaining in the groove processing so that the focused ion beam 6 does not hit the cross section of the normal pattern. A focused ion beam is selectively irradiated (FIG. 2 (b)) and removed by gas-assisted etching (FIG. 2 (c)). The width of the groove is set so that the material removed by physical sputter etching is not buried by reattachment.

黒欠陥領域のうち正常パターンに接する部分の加工は物理スパッタエッチングで行うので、加工中の断面から発生する二次電子がフッ化キセノンと反応してオーバーハングを生じることはない。また残った黒欠陥はフッ化キセノンを用いたガスアシストエッチングで除去するので下地バッファーレイヤー2やMo/Si多層膜3へのダメージの少ない修正を行うことができる。   Since the portion of the black defect region that is in contact with the normal pattern is processed by physical sputter etching, secondary electrons generated from the cross-section being processed do not react with xenon fluoride to cause overhang. Further, the remaining black defects are removed by gas-assisted etching using xenon fluoride, so that the underlying buffer layer 2 and the Mo / Si multilayer film 3 can be corrected with little damage.

二次電子が発生しなくても、フッ化キセノンに曝しただけでも加工断面が少し削れるので、更に以下に示す保護膜形成と除去工程を導入すれば、加工断面の追加的な削れをなくすことができる。図3(a)〜(c)、図4(a)、(b)そして図5(a)、(b)にその実施例を示す。   Even if secondary electrons are not generated, the processed cross section can be cut slightly even by exposure to xenon fluoride. By introducing the following protective film formation and removal process, additional cutting of the processed cross section can be eliminated. Can do. Examples are shown in FIGS. 3A to 3C, FIGS. 4A and 4B, and FIGS. 5A and 5B.

スロープ加工や短冊状加工で現れた正常パターン断面に炭素系原料ガス供給系8から保護膜原料ガス供給系8からCF4やナフタレンやフェナントレンといった保護膜原料ガスを導入し、保護膜を形成したい領域のみイオンビーム6を照射して炭素系の保護膜9を形成する(図3(a))。スロープ加工や溝堀加工で残った黒欠陥5をガスアシストエッチングで除去している間、正常パターン加工断面を保護する(図3(b)と図3(c))。 A region where a protective film source gas such as CF 4 , naphthalene, or phenanthrene is introduced from the carbon source gas supply system 8 into the normal pattern cross section that appears in the slope processing or strip processing from the protective film source gas supply system 8 to form a protective film Only the ion beam 6 is irradiated to form a carbon-based protective film 9 (FIG. 3 (a)). While removing the black defects 5 left by the slope processing and groove processing by gas assist etching, the normal pattern processing cross section is protected (FIG. 3 (b) and FIG. 3 (c)).

黒欠陥除去後に不要になった加工断面の炭素系の保護膜9を図4(a)、(b)に示すように酸素供給系10から酸素を供給し、XEI社のEvactron anticontamination systemのような、酸素雰囲気下で、RFプラズマ11で除去する装置で炭素系保護膜9を除去する。もしくはオゾン供給系10からオゾンを供給し、オゾン雰囲気下でUV光11を照射して不要になった炭素系保護膜9を除去する。炭素は軽元素なので波長13.5nmのEUV光をあまり吸収しないので炭素保護膜9を除去しない状態でもEUVマスクとして使用可能だが、除去した方が望ましい。   As shown in FIGS. 4 (a) and 4 (b), oxygen is supplied from the oxygen supply system 10 to the carbon-based protective film 9 in the processed cross section that is no longer necessary after the black defect is removed, and is similar to the Evactron anticontamination system of XEI. Then, the carbon-based protective film 9 is removed with an apparatus for removing with RF plasma 11 in an oxygen atmosphere. Alternatively, ozone is supplied from the ozone supply system 10, and the unnecessary carbon-based protective film 9 is removed by irradiating the UV light 11 in an ozone atmosphere. Since carbon is a light element and does not absorb much EUV light with a wavelength of 13.5 nm, it can be used as an EUV mask without removing the carbon protective film 9, but it is desirable to remove it.

あるいは黒欠陥除去後に不要になった加工断面の炭素系の保護膜9を図5(a),(b)に示すように水供給系12から水蒸気を供給し、集束イオンビーム6または電子ビーム13を炭素系の保護膜9のみに照射して不要になった炭素系保護膜9を除去する。   Alternatively, as shown in FIGS. 5 (a) and 5 (b), water vapor is supplied to the carbon-based protective film 9 having a processed cross section that is no longer necessary after removing the black defects, and the focused ion beam 6 or the electron beam 13 is supplied. Is applied to only the carbon-based protective film 9 to remove the unnecessary carbon-based protective film 9.

図6(a)〜(d)は、電子ビームと集束イオンビームを複合した装置で修正する場合を説明する概略断面図である。   FIGS. 6A to 6D are schematic cross-sectional views illustrating a case where correction is performed using an apparatus that combines an electron beam and a focused ion beam.

集束イオンビームと電子ビームを複合している装置なら欠陥の位置出しと欠陥認識を電子ビーム鏡筒15からの電子ビーム13で行い(図6(a))、黒欠陥領域のうち正常パターンに接する部分のスロープ加工もしくは溝堀加工はイオンビーム6の物理スパッタエッチングで行って(図6(b))、次工程の残った黒欠陥領域の除去はフッ化キセノンの存在下で電子ビーム13を黒欠陥領域5のみ選択照射することによりガスアシストエッチングで除去することができる(図6(c)と図6(d))。この方法だと欠陥の位置出しと欠陥認識のときにイオンビームのガリウムの注入が起こらないし、残った黒欠陥領域の除去時にもイオンビームのガリウムの注入が起こらないためイオンビームのガリウム注入の影響を抑えた修正が可能である。   In the case of an apparatus that combines a focused ion beam and an electron beam, defect positioning and defect recognition are performed by the electron beam 13 from the electron beam column 15 (FIG. 6 (a)), and a normal pattern in the black defect region is touched. Slope processing or groove processing of the part is performed by physical sputter etching of the ion beam 6 (FIG. 6 (b)), and the black defect region remaining in the next process is removed by the electron beam 13 in the presence of xenon fluoride. By selectively irradiating only the defect region 5, it can be removed by gas-assisted etching (FIG. 6 (c) and FIG. 6 (d)). In this method, gallium implantation of the ion beam does not occur at the time of defect positioning and defect recognition, and gallium implantation of the ion beam does not occur at the time of removal of the remaining black defect region. It is possible to make corrections that suppress this.

(a)〜(c)は、本発明の特徴を最も良く表す集束イオンビームの物理スパッタエッチングで黒欠陥の正常パターンと接する部分のスロープ加工を行い、スロープ加工で残った黒欠陥をガスアシストエッチングで除去する場合を説明する概略断面図である。(A)-(c) perform slope processing of a portion in contact with a normal pattern of black defects by physical sputter etching of a focused ion beam that best represents the characteristics of the present invention, and gas assisted etching of black defects remaining in the slope processing It is a schematic sectional drawing explaining the case where it removes by. (a)〜(c)は、集束イオンビームの物理スパッタエッチングで黒欠陥の正常パターンと接する部分の短冊状の加工を行い、短冊状の加工で残った黒欠陥をガスアシストエッチングで除去する場合を説明する概略断面図である。(A) to (c), when strip-shaped processing of a portion in contact with the normal pattern of black defects is performed by physical sputter etching of a focused ion beam, and black defects remaining in the strip-shaped processing are removed by gas-assisted etching. It is a schematic sectional drawing explaining these. (a)〜(c)は、加工断面に炭素系の保護膜を形成して黒欠陥をガスアシストエッチングで除去している間加工断面を保護する工程を付加する場合を説明する概略断面図である。(A)-(c) is a schematic sectional drawing explaining the case where the process of protecting a process cross section is added while forming a carbon-type protective film in a process cross section, and removing a black defect by gas assist etching. is there. (a)、(b)は、更に黒欠陥除去後に炭素系の保護膜を除去する工程を付加した場合を説明する概略断面図である。(A), (b) is a schematic sectional drawing explaining the case where the process of removing a carbon-type protective film is further added after black defect removal. (a)、(b)は、黒欠陥除去後に電子ビームまたは集束イオンビームで炭素系の保護膜を除去する工程を付加した場合を説明する概略断面図である。(A), (b) is a schematic sectional drawing explaining the case where the process of removing a carbon-type protective film with an electron beam or a focused ion beam is added after black defect removal. (a)〜(d)は、電子ビームと集束イオンビームを複合した装置で修正する場合を説明する概略断面図である。(A)-(d) is a schematic sectional drawing explaining the case where it corrects with the apparatus which combined the electron beam and the focused ion beam.

符号の説明Explanation of symbols

1 正常パターン(吸収体)
2 バッファーレイヤー
3 Mo/Si多層膜
4 ガラス基板
5 黒欠陥
6 集束イオンビーム
7 アシストエッチングガス供給系
8 炭素系原料ガス供給系
9 炭素系保護膜
10 酸素導入系もしくはオゾン導入系
11 RFプラズマもしくはUV光
12 水供給系
13 電子ビーム
14 集束イオンビーム鏡筒
15 電子ビーム鏡筒
16 スロープ加工された領域
17 溝
1 Normal pattern (absorber)
2 Buffer layer 3 Mo / Si multilayer 4 Glass substrate 5 Black defect 6 Focused ion beam 7 Assisted etching gas supply system 8 Carbon-based source gas supply system 9 Carbon-based protective film 10 Oxygen introduction system or ozone introduction system 11 RF plasma or UV Light 12 Water supply system 13 Electron beam 14 Focused ion beam column 15 Electron beam column 16 Slope processed region 17 Groove

Claims (6)

集束イオンビームの物理スパッタエッチングで、黒欠陥領域のうち正常パターンと接する部分を、正常パターンと接する部分を垂直断面になるようにしてスロープ加工で除去する第一の工程と、
該スロープ加工で残った黒欠陥をガスアシストエッチングで除去する第二の工程と、
を有することを特徴とするEUVLマスクの黒欠陥修正方法。
A first step of removing a portion in contact with the normal pattern in the black defect region by a slope process so that a portion in contact with the normal pattern becomes a vertical cross section by physical sputter etching of the focused ion beam,
A second step of removing black defects left by the slope processing by gas-assisted etching;
A method for correcting black defects in an EUVL mask, comprising:
集束イオンビームの物理スパッタエッチングで、黒欠陥領域のうち正常パターンと接する部分を、側面からみて矩形状に溝堀加工する第一の工程と、
該溝堀加工で残った黒欠陥をガスアシストエッチングで除去する第二の工程と、
を有することを特徴とするEUVLマスクの黒欠陥修正方法。
A first step of grooving a portion of the black defect region in contact with the normal pattern into a rectangular shape when viewed from the side surface by physical sputter etching of the focused ion beam;
A second step of removing black defects left by the trench processing by gas-assisted etching;
A method for correcting black defects in an EUVL mask, comprising:
前記第一の工程の後に、前記第一の加工で現れた前記正常パターン断面に炭素系の保護膜を形成する工程を有する請求項1または2記載のEUVLマスクの黒欠陥修正方法。   3. The EUVL mask black defect correction method according to claim 1 or 2, further comprising a step of forming a carbon-based protective film on the normal pattern cross section appearing in the first processing after the first step. 前記第二の工程の後に前記正常パターン断面に形成された炭素系の保護膜を除去する工程を有することを特徴とする請求項3記載のEUVLマスクの黒欠陥修正方法。   4. The method for correcting a black defect in an EUVL mask according to claim 3, further comprising a step of removing a carbon-based protective film formed on the cross section of the normal pattern after the second step. 前記炭素系の保護膜の除去を酸素雰囲気下でのRFプラズマ照射またはオゾン存在下でのUV光照射で行うことを特徴とする請求項4記載のEUVLマスクの黒欠陥修正方法。   5. The EUVL mask black defect correcting method according to claim 4, wherein the carbon-based protective film is removed by RF plasma irradiation in an oxygen atmosphere or UV light irradiation in the presence of ozone. 前記炭素系の保護膜の除去を水雰囲気下の電子ビーム照射または集束イオンビームで行うことを特徴とする請求項4記載のEUVLマスクの黒欠陥修正方法。   5. The EUVL mask black defect correcting method according to claim 4, wherein the carbon-based protective film is removed by electron beam irradiation or focused ion beam in a water atmosphere.
JP2008024164A 2008-02-04 2008-02-04 Method of remedying dark defect of euvl mask Pending JP2009188047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024164A JP2009188047A (en) 2008-02-04 2008-02-04 Method of remedying dark defect of euvl mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024164A JP2009188047A (en) 2008-02-04 2008-02-04 Method of remedying dark defect of euvl mask

Publications (1)

Publication Number Publication Date
JP2009188047A true JP2009188047A (en) 2009-08-20

Family

ID=41071024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024164A Pending JP2009188047A (en) 2008-02-04 2008-02-04 Method of remedying dark defect of euvl mask

Country Status (1)

Country Link
JP (1) JP2009188047A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210805A (en) * 2008-03-04 2009-09-17 Sii Nanotechnology Inc Method for fabricating euvl mask
JP2011181894A (en) * 2010-02-02 2011-09-15 Sii Nanotechnology Inc Defect repair apparatus, and method for euv mask
JP2012063699A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Manufacturing method of transmission type photomask
JP2012248768A (en) * 2011-05-30 2012-12-13 Toshiba Corp Defect correction method and defect correction device of reflective mask
WO2014153879A1 (en) * 2013-03-25 2014-10-02 北京京东方光电科技有限公司 Uv mask and fabrication method thereof
JP2015064603A (en) * 2010-02-02 2015-04-09 株式会社日立ハイテクサイエンス Euv mask correction device
US9823567B2 (en) 2013-04-11 2017-11-21 Boe Technology Group Co., Ltd. Manufacturing method of mask plate for shielding during sealant-curing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210805A (en) * 2008-03-04 2009-09-17 Sii Nanotechnology Inc Method for fabricating euvl mask
JP2011181894A (en) * 2010-02-02 2011-09-15 Sii Nanotechnology Inc Defect repair apparatus, and method for euv mask
JP2015064603A (en) * 2010-02-02 2015-04-09 株式会社日立ハイテクサイエンス Euv mask correction device
JP2012063699A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Manufacturing method of transmission type photomask
JP2012248768A (en) * 2011-05-30 2012-12-13 Toshiba Corp Defect correction method and defect correction device of reflective mask
WO2014153879A1 (en) * 2013-03-25 2014-10-02 北京京东方光电科技有限公司 Uv mask and fabrication method thereof
US9638845B2 (en) 2013-03-25 2017-05-02 Boe Technology Group Co., Ltd. UV mask and fabrication method thereof
US9823567B2 (en) 2013-04-11 2017-11-21 Boe Technology Group Co., Ltd. Manufacturing method of mask plate for shielding during sealant-curing

Similar Documents

Publication Publication Date Title
JP5896540B2 (en) Method and apparatus for protecting a substrate during processing using a particle beam
KR101511790B1 (en) Method for fabricating euvl mask
EP1402316B1 (en) Mask repair with electron beam-induced chemical etching
JP2009188047A (en) Method of remedying dark defect of euvl mask
US11906897B2 (en) Method for extreme ultraviolet lithography mask treatment
TWI545393B (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
KR101484821B1 (en) Light pattern exposure method, photomask, and photomask blank
JP5533016B2 (en) Method for manufacturing a reflective mask
US7576340B2 (en) Focused ion beam processing method
JP4478568B2 (en) Method of using an amorphous carbon layer for the production of an improved reticle
JP5053030B2 (en) Photomask defect correcting method, manufacturing method, and defect correcting apparatus
JP5012952B2 (en) Photomask defect correction method
JP4219715B2 (en) Defect correction method for photomask
US6030731A (en) Method for removing the carbon halo caused by FIB clear defect repair of a photomask
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
US20060199082A1 (en) Mask repair
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
US9298085B2 (en) Method for repairing a mask
JP4926383B2 (en) Photomask defect correction method
JP5541128B2 (en) REFLECTIVE MASK, REFLECTIVE MASK MANUFACTURING METHOD, AND REFLECTIVE MASK DEFECT CORRECTION DEVICE
JP2004279539A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
KR100755077B1 (en) Method for repairing defects of photo mask
KR20100135099A (en) Method for correcting defect of euv mask
TWI292783B (en) Method for repair of photomasks
JP2010096995A (en) Photomask and method of manufacturing same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118