JP2009186613A - Method of manufacturing wavelength conversion element - Google Patents

Method of manufacturing wavelength conversion element Download PDF

Info

Publication number
JP2009186613A
JP2009186613A JP2008024341A JP2008024341A JP2009186613A JP 2009186613 A JP2009186613 A JP 2009186613A JP 2008024341 A JP2008024341 A JP 2008024341A JP 2008024341 A JP2008024341 A JP 2008024341A JP 2009186613 A JP2009186613 A JP 2009186613A
Authority
JP
Japan
Prior art keywords
substrate
photoresist
striped pattern
wavelength conversion
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008024341A
Other languages
Japanese (ja)
Inventor
Akira Komatsu
朗 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008024341A priority Critical patent/JP2009186613A/en
Publication of JP2009186613A publication Critical patent/JP2009186613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a wavelength conversion element capable of stably manufacturing periodic polarity inversion structure at a desired pitch. <P>SOLUTION: The method of manufacturing the wavelength conversion element has a process for forming a stripe-like pattern 2 comprising an insulator having ultraviolet ray absorptivity, on one face of a substrate 1 comprising a nonlinear optical crystal, and a process for applying a voltage between liquid electrodes 6, 7 while irradiating the one face of the substrate 1 with an ultraviolet ray, under the condition where the liquid electrodes 6, 7 serving as positive and negative electrodes contact respectively with both faces of the substrate 1 formed with the stripe-like pattern 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、波長変換素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a wavelength conversion element.

近年、プロジェクタの小型化の要求が益々高まるなか、半導体レーザの高出力化、青色半導体レーザの登場に伴い、レーザ光源を使ったプロジェクタが開発されている。この種のプロジェクタは、色再現範囲を十分に広くすることが可能であり、小型化や構成部品の削減も可能であることから、次世代の表示デバイスとして大きな可能性を秘めている。光源として、赤色(R)、緑色(G)、青色(B)の3色のレーザ光源が必要である。例えば、R光用光源やB光用光源には半導体レーザで原振が存在するが、G光用光源には原振が存在しないため、赤外レーザからの赤外光を非線形光学素子に入射させた際に発生する第2次高調波(Second Harmonic Generation, 以下、SHGと略記する)を利用した波長変換によりG光を得る手法が採用される。   In recent years, as the demand for miniaturization of projectors has increased, projectors using laser light sources have been developed along with the increase in output of semiconductor lasers and the appearance of blue semiconductor lasers. This type of projector has a great potential as a next-generation display device because the color reproduction range can be sufficiently widened, and the size and the number of components can be reduced. As the light source, laser light sources of three colors of red (R), green (G), and blue (B) are necessary. For example, the source light for the R light and the light source for the B light are present in the semiconductor laser, but the source light for the G light is not present, so the infrared light from the infrared laser is incident on the nonlinear optical element. A technique is adopted in which G light is obtained by wavelength conversion using second harmonic generation (hereinafter abbreviated as SHG) generated at the time of generation.

非線形光学効果を利用した光の波長変換では、変換前の基本波と変換後の高調波との間で位相整合条件が成立する必要があり、結晶内の分極方向を周期的に反転させる擬似位相整合法が用いられる。一例として、LiNbO結晶内に微細なピッチで分極方向が周期的に反転した構造(以下、本明細書では周期分極反転構造と呼ぶ)を形成し、これを波長変換素子としている。この種の周期分極反転構造を形成する方法として、LiNbO結晶基板上にフォトレジストからなる周期的な縞状のマスクパターンを形成した後、基板の両面に液体電極をそれぞれ接触させた状態で液体電極間に電圧を印加し、結晶の分極方向を周期的に反転させる方法が提案されている(特許文献1参照)。あるいは、マスクパターンを形成していない基板を用い、液体電極間に電圧を印加するのと同時にフォトマスクを用いて紫外線を縞状に照射し、結晶の分極方向を周期的に反転させる方法も提案されている(特許文献2参照)。
特開2000−29086号公報 特開2004−279601号公報
In wavelength conversion of light using the nonlinear optical effect, a phase matching condition needs to be established between the fundamental wave before conversion and the harmonic wave after conversion, and a pseudo phase that periodically reverses the polarization direction in the crystal A matching method is used. As an example, a structure in which the polarization direction is periodically reversed at a fine pitch (hereinafter referred to as a periodic polarization reversal structure in this specification) is formed in a LiNbO 3 crystal, and this is used as a wavelength conversion element. As a method of forming this type of periodic domain-inverted structure, a periodic striped mask pattern made of a photoresist is formed on a LiNbO 3 crystal substrate, and then a liquid electrode is brought into contact with both surfaces of the substrate. A method has been proposed in which a voltage is applied between the electrodes to periodically reverse the polarization direction of the crystal (see Patent Document 1). Alternatively, a method is also proposed in which a substrate on which no mask pattern is formed is applied and a voltage is applied between the liquid electrodes, and simultaneously, a photomask is used to irradiate ultraviolet rays in a stripe pattern to periodically reverse the polarization direction of the crystal. (See Patent Document 2).
JP 2000-29086 A JP 2004-279601 A

しかしながら、特許文献1,2のいずれの方法においても、周期分極反転構造を所望のピッチで安定して製造するのは困難であった。波長変換素子は、位相整合条件を満足する波長の許容範囲が狭いため、周期分極反転構造のピッチが所望の値からずれると出力(変換効率)が低下してしまうという問題があった。   However, in either method of Patent Documents 1 and 2, it is difficult to stably manufacture the periodically poled structure at a desired pitch. Since the wavelength conversion element has a narrow allowable wavelength range that satisfies the phase matching condition, there is a problem in that the output (conversion efficiency) decreases when the pitch of the periodically poled structure deviates from a desired value.

本発明は、上記の課題を解決するためになされたものであって、周期分極反転構造を所望のピッチで安定して製造することができる波長変換素子の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a wavelength conversion element that can stably manufacture a periodically poled structure at a desired pitch. .

上記の目的を達成するために、本発明の波長変換素子の製造方法は、非線形光学結晶からなる基板の一面に、紫外線吸収性を有する絶縁物からなる縞状パターンを形成する工程と、前記基板の両面に正極、負極となる液体電極をそれぞれ接触させた状態で、前記縞状パターンを形成した前記基板の一面に紫外線を照射しつつ前記液体電極間に電圧を印加する工程と、を有することを特徴とする。   In order to achieve the above object, a method for manufacturing a wavelength conversion element according to the present invention includes a step of forming a striped pattern made of an insulator having ultraviolet absorptivity on one surface of a substrate made of a nonlinear optical crystal, and the substrate. Applying a voltage between the liquid electrodes while irradiating ultraviolet light onto one surface of the substrate on which the striped pattern is formed in a state where the liquid electrodes serving as the positive electrode and the negative electrode are in contact with both surfaces of the substrate, respectively. It is characterized by.

本発明者の考察によれば、特許文献1に記載の方法を用いた場合、レジストパターンが液体電極中で膨潤して寸法が変化したり、レジストパターンが若干導電性を帯びる等の問題が生じ、このことが所望のピッチの周期分極反転構造が安定して得られない原因となっていた。一方、特許文献2に記載の方法を用いた場合、紫外線が照射される領域と照射されない領域とで分極反転の生じやすさに多少の差異はあったとしても、電圧は液体電極が接する基板全面に印加されてしまうため、周期分極反転構造がコントラスト良く形成されないという問題があった。   According to the inventor's consideration, when the method described in Patent Document 1 is used, the resist pattern swells in the liquid electrode and changes its dimensions, or the resist pattern is slightly conductive. This is the reason why the periodically poled structure having a desired pitch cannot be obtained stably. On the other hand, when the method described in Patent Document 2 is used, even if there is a slight difference in the likelihood of polarization reversal between the region irradiated with ultraviolet rays and the region not irradiated, the voltage is applied across the entire surface of the substrate in contact with the liquid electrode. Therefore, there is a problem that the periodically poled structure cannot be formed with good contrast.

これに対して、本発明の波長変換素子の製造方法によれば、基板の一面に紫外線吸収性を有する絶縁物からなる縞状パターンを形成した後、基板の両面に液体電極をそれぞれ接触させた状態で、縞状パターンを形成した基板の一面に紫外線を照射しつつ液体電極間に電圧を印加するため、基板の一面のうち、縞状パターンが存在する領域と存在しない領域とでは紫外線強度と印加電圧の双方に差異が生じることになる。このとき、縞状パターンが存在しない領域では、縞状パターンが存在する領域に比べて実効的に高い電圧が印加されることと強い紫外線が照射されることの相乗効果によって分極反転がより促進される。したがって、本発明の方法によれば、特許文献1の方法に比べて低電圧、短時間で分極反転が生じることとなり、レジストパターンの膨潤に起因する分極反転ピッチの変動等の問題が解決できる。また、本発明の方法によれば、特許文献2の方法に比べて縞状パターンが存在する領域と存在しない領域とで紫外線強度と印加電圧の差異が明瞭になる。以上のように、本発明の波長変換素子の製造方法によれば、周期分極反転構造を所望のピッチで安定して製造することができる。   On the other hand, according to the method for manufacturing a wavelength conversion element of the present invention, after forming a striped pattern made of an insulator having ultraviolet absorptivity on one surface of the substrate, the liquid electrodes are brought into contact with both surfaces of the substrate, respectively. In this state, in order to apply a voltage between the liquid electrodes while irradiating one surface of the substrate on which the striped pattern is formed with the ultraviolet light, the region of the substrate on which the striped pattern exists and the region where the striped pattern does not exist There will be a difference in both applied voltages. At this time, in a region where the striped pattern does not exist, polarization inversion is further promoted by a synergistic effect of applying a high voltage effectively and irradiation with strong ultraviolet light compared to a region where the striped pattern exists. The Therefore, according to the method of the present invention, the polarization inversion occurs at a lower voltage and in a shorter time than the method of Patent Document 1, and the problems such as the fluctuation of the polarization inversion pitch due to the swelling of the resist pattern can be solved. Further, according to the method of the present invention, the difference between the ultraviolet intensity and the applied voltage becomes clear between the region where the striped pattern is present and the region where the striped pattern is not present, as compared with the method of Patent Document 2. As described above, according to the method for manufacturing a wavelength conversion element of the present invention, the periodically poled structure can be stably manufactured at a desired pitch.

また、縞状パターンを形成する工程において、基板の一面にフォトレジストを塗布した後、フォトレジストを露光、現像することによりフォトレジストからなる縞状パターンを形成しても良い。   Further, in the step of forming a striped pattern, a striped pattern made of a photoresist may be formed by applying a photoresist to one surface of the substrate and then exposing and developing the photoresist.

フォトレジストを用いた場合、フォトレジストを露光、現像してパターニングすることによりフォトレジストをそのまま本発明の縞状パターンとして用いることができるため、製造工程の簡略化を図ることができる。   When a photoresist is used, the photoresist can be used as it is as the striped pattern of the present invention by patterning by exposing and developing the photoresist, so that the manufacturing process can be simplified.

さらに、フォトレジストからなる縞状パターンを形成する場合、基板の一面に紫外線感光性を有するフォトレジストを塗布した後、基板の一面側に縞状のマスクパターンを有する封止部材を配置し、基板と封止部材とに囲まれた空間に現像液を充填した状態で封止部材を通して紫外線を照射してフォトレジストを露光し、露光したフォトレジストを現像液により現像することにより縞状パターンを形成し、空間内の現像液を液体電極に入れ替えた後、基板の一面に紫外線を照射しつつ液体電極間に電圧を印加する工程を行うようにしてもよい。   Further, when forming a striped pattern made of a photoresist, after applying a photoresist having ultraviolet sensitivity on one surface of the substrate, a sealing member having a striped mask pattern is arranged on the one surface side of the substrate, In a state where a developer is filled in a space surrounded by a sealing member, the photoresist is exposed by irradiating ultraviolet rays through the sealing member, and a striped pattern is formed by developing the exposed photoresist with the developer. Then, after replacing the developer in the space with the liquid electrode, a step of applying a voltage between the liquid electrodes while irradiating one surface of the substrate with ultraviolet rays may be performed.

フォトレジストからなる縞状パターンを形成する場合、紫外線照射・電圧印加工程で用いる装置とは別個の装置をパターン形成に用いても良いが、紫外線感光性を有するフォトレジストを用いれば、紫外線照射・電圧印加工程で用いる装置と共用することもできる。すなわち、基板の一面に紫外線感光性を有するフォトレジストを塗布した後、基板の一面側に縞状のマスクパターンを有する封止部材を配置し、基板と封止部材とに囲まれた空間に現像液を充填した状態で封止部材を通して紫外線を照射してフォトレジストを露光し、現像すれば、縞状パターンを形成でき、続いて、空間内の現像液を液体電極に入れ替えれば、紫外線照射・電圧印加工程を行うことができる。これにより、製造工程の簡略化、短縮化、製造装置の共用化を図ることができる。また、基板上の縞状パターンが存在する領域が、封止部材のマスクパターンとレジストパターンとで二重にマスクされるため、縞状パターンが存在する領域と存在しない領域とで紫外線強度のコントラストをより高めることができる。   When forming a striped pattern made of a photoresist, an apparatus separate from the apparatus used in the ultraviolet irradiation / voltage application process may be used for pattern formation, but if a photoresist having ultraviolet sensitivity is used, ultraviolet irradiation / It can also be shared with the device used in the voltage application step. That is, after applying an ultraviolet-sensitive photoresist on one surface of the substrate, a sealing member having a striped mask pattern is disposed on the one surface side of the substrate, and development is performed in a space surrounded by the substrate and the sealing member. Stripe pattern can be formed by exposing and developing the photoresist by irradiating ultraviolet rays through the sealing member in a state filled with the liquid, and then developing, and then replacing the developer in the space with the liquid electrode. A voltage application process can be performed. Thereby, the manufacturing process can be simplified, shortened, and the manufacturing apparatus can be shared. In addition, since the region where the striped pattern exists on the substrate is masked doubly by the mask pattern of the sealing member and the resist pattern, the contrast of the ultraviolet intensity between the region where the striped pattern exists and the region where the striped pattern does not exist Can be further enhanced.

あるいは、縞状パターンを形成する工程において、基板の一面に無機絶縁膜を形成し、無機絶縁膜上にフォトレジストを塗布し、フォトレジストを露光、現像してレジストパターンを形成した後、レジストパターンをマスクとして無機絶縁膜をエッチングすることにより無機絶縁膜からなる縞状パターンを形成することができる。   Alternatively, in the step of forming a striped pattern, an inorganic insulating film is formed on one surface of the substrate, a photoresist is coated on the inorganic insulating film, and the photoresist is exposed and developed to form a resist pattern. A striped pattern made of an inorganic insulating film can be formed by etching the inorganic insulating film using as a mask.

縞状パターンの形成材料として、フォトレジストに代えて無機絶縁膜を用いることもできる。その場合、無機絶縁膜上に一旦レジストパターンを形成し、このレジストパターンをマスクとして無機絶縁膜をエッチングする必要があるため、フォトレジストを用いる場合に比べて製造工程が複雑になる。しかしながら、無機絶縁膜はフォトレジストに比べて液体電極の浸透性が低いため、フォトレジストの膨潤に起因する分極反転ピッチの変動等の問題がより解決しやすくなる。   As the material for forming the striped pattern, an inorganic insulating film can be used instead of the photoresist. In that case, since it is necessary to once form a resist pattern on the inorganic insulating film and to etch the inorganic insulating film using this resist pattern as a mask, the manufacturing process becomes complicated compared to the case of using a photoresist. However, since the inorganic insulating film has lower permeability of the liquid electrode than the photoresist, problems such as variations in the polarization inversion pitch due to the swelling of the photoresist are more easily solved.

[第1の実施の形態]
以下、本発明の第1の実施の形態を図1を参照して説明する。
図1は、本実施形態の波長変換素子の製造方法を順を追って示す工程断面図である。
[First Embodiment]
The first embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a process cross-sectional view sequentially showing the method for manufacturing the wavelength conversion element of this embodiment.

本実施形態では、非線形光学結晶としてニオブ酸リチウム(LiNbO)からなる基板1を用いる。まず、基板1の一面にフォトレジストを塗布し、周期的な縞状パターンを備えたフォトマスクを用いてフォトレジストを露光し、現像することにより、図1(a)に示すように、フォトレジストからなる縞状パターン2を形成する。例えば1本のパターン2の幅は数μm、隣接するパターン2間の間隔も数μm程度である。ここでは、i線(波長:365nm、紫外線)に対する感光性(吸収性)を持つフォトレジストを用いる。 In the present embodiment, the substrate 1 made of lithium niobate (LiNbO 3 ) is used as the nonlinear optical crystal. First, a photoresist is applied to one surface of the substrate 1, and the photoresist is exposed and developed using a photomask provided with a periodic striped pattern, so that the photoresist as shown in FIG. A striped pattern 2 is formed. For example, the width of one pattern 2 is several μm, and the interval between adjacent patterns 2 is also about several μm. Here, a photoresist having photosensitivity (absorption) to i-line (wavelength: 365 nm, ultraviolet ray) is used.

次に、図1(b)に示すように、紫外線透過性を有する封止基板3,4(封止部材)を、縞状パターン2を形成した基板1の上面および下面に対向するように所定の間隔(例えば数μm程度)をあけてそれぞれ配置する。ここでは、縞状パターン2を形成した側の面に対向する封止基板を第1の封止基板3、縞状パターンを形成していない側の面に対向する封止基板を第2の封止基板4と称する。基板1と各封止基板3,4の周縁部にあたる位置にはそれぞれOリング5を配置し、基板1と各封止基板3,4との間の空間を密閉した空間とする。この各空間に、例えば塩化リチウム水溶液等の電解液を充填し、これを液体電極6,7とする。これにより、基板1の縞状パターン2を形成した面と縞状パターン2を形成していない側の面の双方に液体電極6,7がそれぞれ接触した状態となる。本実施形態では封止基板3,4として石英基板を用いるが、ガラス基板等、他の基板を用いることもできる。また、2枚の封止基板3,4のうち、少なくとも第1の封止基板3には紫外線透過性を有する基板を用いる必要があるが、第2の封止基板4は必ずしも紫外線透過性を有する基板でなくても良い。   Next, as shown in FIG. 1B, the sealing substrates 3 and 4 (sealing members) having ultraviolet transparency are set so as to face the upper and lower surfaces of the substrate 1 on which the striped pattern 2 is formed. Are arranged with an interval of (for example, about several μm). Here, the sealing substrate facing the surface on which the striped pattern 2 is formed is the first sealing substrate 3, and the sealing substrate facing the surface on which the striped pattern is not formed is the second sealing substrate. This is called a stop substrate 4. O-rings 5 are arranged at positions corresponding to the peripheral portions of the substrate 1 and the respective sealing substrates 3 and 4, and the space between the substrate 1 and the respective sealing substrates 3 and 4 is a sealed space. Each space is filled with an electrolytic solution such as an aqueous lithium chloride solution, which is used as liquid electrodes 6 and 7. As a result, the liquid electrodes 6 and 7 are in contact with both the surface of the substrate 1 on which the striped pattern 2 is formed and the surface on which the striped pattern 2 is not formed. In this embodiment, a quartz substrate is used as the sealing substrates 3 and 4, but other substrates such as a glass substrate can also be used. Of the two sealing substrates 3 and 4, at least the first sealing substrate 3 needs to use a substrate having ultraviolet transparency, but the second sealing substrate 4 does not necessarily have ultraviolet transparency. The substrate may not be included.

そして、第1の封止基板3の外方から基板1(の縞状パターン2を形成した面)に向けて超高圧水銀ランプ等から紫外線を照射しつつ、液体電極6,7間に電圧を印加する。本実施形態では、基板1の縞状パターン2を形成した面に接触する液体電極6を正極、縞状パターン2を形成していない面に接触する液体電極7を負極とする。また、液体電極6,7は常温で用いても良いし、加熱しても良い。これにより、基板1のうち、隣接する縞状パターン2間の液体電極6が接触した領域が元のLiNbO結晶の分極状態から反転する一方、液体電極6が接触していない領域が元のLiNbO結晶の分極状態のまま残る。このようにして、周期分極反転構造が形成される。以上の工程により、波長変換素子が製造される。なお、分極反転処理が終了した後、フォトレジストからなる縞状パターン2を除去しても良いし、除去しなくても良い。 A voltage is applied between the liquid electrodes 6 and 7 while irradiating ultraviolet rays from an ultrahigh pressure mercury lamp or the like toward the substrate 1 (the surface on which the striped pattern 2 is formed) from the outside of the first sealing substrate 3. Apply. In the present embodiment, the liquid electrode 6 that contacts the surface on which the striped pattern 2 of the substrate 1 is formed is the positive electrode, and the liquid electrode 7 that contacts the surface on which the striped pattern 2 is not formed is the negative electrode. Further, the liquid electrodes 6 and 7 may be used at room temperature or heated. As a result, the region of the substrate 1 where the liquid electrode 6 is in contact between adjacent striped patterns 2 is inverted from the polarization state of the original LiNbO 3 crystal, while the region where the liquid electrode 6 is not in contact is the original LiNbO. The polarization state of the three crystals remains. In this way, a periodically poled structure is formed. The wavelength conversion element is manufactured through the above steps. Note that the striped pattern 2 made of a photoresist may or may not be removed after the polarization inversion process is completed.

また、上では波長変換素子を単独で製造することを想定して説明したが、ウェハ状態からチップ状の波長変換素子を複数個同時に製造する場合には、ウェハ状態での縞状パターンの形成、紫外線照射・電圧印加による分極反転処理、ウェハから複数のチップの切り出し、の各工程を行えば良い。また、波長変換素子の端面にあたる光入射面および光射出面のポリッシング、光入射面および光射出面への無反射コートの各工程を追加しても良い。   In addition, the above description has been made on the assumption that the wavelength conversion element is manufactured independently. However, when a plurality of chip-shaped wavelength conversion elements are manufactured simultaneously from the wafer state, formation of a striped pattern in the wafer state, What is necessary is just to perform each process of the polarization inversion process by ultraviolet irradiation and voltage application, and cutting out several chips from a wafer. Further, each step of polishing the light incident surface and the light exit surface corresponding to the end face of the wavelength conversion element, and the non-reflective coating on the light entrance surface and the light exit surface may be added.

本実施形態の波長変換素子の製造方法によれば、縞状パターン2を形成した基板1の一面に紫外線を照射しつつ液体電極6,7間に電圧を印加するため、基板1のうち、縞状パターン2が存在する領域と存在しない領域とでは紫外線強度と印加電圧とに差異が生じることになる。このとき、縞状パターン2が存在しない領域では、縞状パターン2が存在する領域に比べて実効的に高い電圧が印加されることと強い紫外線が照射されることの相乗効果によって分極反転がより促進される。したがって、低電圧、短時間で分極反転が生じることとなり、レジストパターンの膨潤に起因する分極反転ピッチの変動等の問題が解決でき、また、縞状パターン2が存在する領域と存在しない領域とで紫外線強度と印加電圧の差異がより明瞭になる。これにより、本実施形態の波長変換素子の製造方法によれば、周期分極反転構造を所望のピッチで安定して製造することができる。   According to the method for manufacturing a wavelength conversion element of this embodiment, a voltage is applied between the liquid electrodes 6 and 7 while irradiating ultraviolet light onto one surface of the substrate 1 on which the striped pattern 2 is formed. A difference occurs in the ultraviolet intensity and the applied voltage between the region where the pattern 2 is present and the region where the pattern 2 is not present. At this time, in the region where the striped pattern 2 does not exist, the polarization inversion is more due to the synergistic effect of applying a higher voltage effectively and irradiation with strong ultraviolet light compared to the region where the striped pattern 2 exists. Promoted. Therefore, polarization reversal occurs in a short time with a low voltage, which can solve problems such as fluctuations in the polarization reversal pitch due to the swelling of the resist pattern. In addition, the region where the striped pattern 2 exists and the region where it does not exist The difference between UV intensity and applied voltage becomes clearer. Thereby, according to the manufacturing method of the wavelength conversion element of this embodiment, a periodic polarization inversion structure can be manufactured stably with a desired pitch.

また、本実施形態の場合、フォトレジストを通常のフォトリソグラフィー技術により露光、現像してパターニングすることにより、フォトレジストをそのまま縞状パターン2として利用できるため、製造工程の簡略化を図ることができる。   Further, in the case of the present embodiment, the photoresist can be used as it is as the striped pattern 2 by patterning by exposing, developing and patterning the photoresist by a normal photolithography technique, so that the manufacturing process can be simplified. .

[第2の実施の形態]
以下、本発明の第2の実施の形態を図2を参照して説明する。
図2は、本実施形態の波長変換素子の製造方法を順を追って示す工程断面図である。
本実施形態の結晶基板、フォトレジスト、液体電極等は、第1実施形態と同様のものを用いることができるため、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a process cross-sectional view illustrating the manufacturing method of the wavelength conversion element of this embodiment in order.
Since the same thing as 1st Embodiment can be used for the crystal substrate of this embodiment, a photoresist, a liquid electrode, etc., detailed description is abbreviate | omitted.

まず、図2(a)に示すように、基板1の一面にフォトレジスト9を塗布する。
ここで、本実施形態では、図2(b)に示すように、フォトレジスト9をパターニングする前に、第1の封止基板13および第2の封止基板4を、基板1の上面および下面に対向するように所定の間隔(例えば数μm程度)をあけてそれぞれ配置する。このとき、第1の封止基板13については、単なる基板ではなく、周期的な縞状のマスクパターン14を備えた封止基板13(すなわち、第1実施形態のフォトマスクに相当するもの)を用いる。そして、基板1と第1の封止基板13とに囲まれた空間に現像液15を充填した状態で第1の封止基板13を通して紫外線を照射する。すると、フォトマスクを介してフォトレジストを露光したのと同等になり、露光したフォトレジスト9は直接接触している現像液15により現像され、縞状パターン2が形成される。
First, as shown in FIG. 2A, a photoresist 9 is applied to one surface of the substrate 1.
Here, in this embodiment, as shown in FIG. 2B, before patterning the photoresist 9, the first sealing substrate 13 and the second sealing substrate 4 are placed on the upper and lower surfaces of the substrate 1, respectively. Are arranged at predetermined intervals (for example, about several μm) so as to face each other. At this time, the first sealing substrate 13 is not a mere substrate, but a sealing substrate 13 provided with a periodic striped mask pattern 14 (that is, the photomask of the first embodiment). Use. Then, ultraviolet light is irradiated through the first sealing substrate 13 in a state where the space surrounded by the substrate 1 and the first sealing substrate 13 is filled with the developer 15. Then, it becomes equivalent to exposing the photoresist through the photomask, and the exposed photoresist 9 is developed with the developer 15 in direct contact, and the striped pattern 2 is formed.

次いで、図2(c)に示すように、第1の封止基板13側の空間内の現像液15を液体電極6に入れ替え、第2の封止基板4側の空間内にも液体電極7を充填した後、第1の封止基板13の外方から基板1(の縞状パターン2を形成した面)に向けて紫外線を照射しつつ、液体電極6,7間に電圧を印加する。これにより、基板1のうち、隣接する縞状パターン2間の液体電極6が接触した領域が分極反転し、周期分極反転構造が形成される。以上の工程により、波長変換素子が製造される。   Next, as shown in FIG. 2C, the developer 15 in the space on the first sealing substrate 13 side is replaced with the liquid electrode 6, and the liquid electrode 7 is also in the space on the second sealing substrate 4 side. Then, a voltage is applied between the liquid electrodes 6 and 7 while irradiating ultraviolet rays from the outside of the first sealing substrate 13 toward the substrate 1 (the surface on which the striped pattern 2 is formed). Thereby, the area | region where the liquid electrode 6 between the adjacent striped patterns 2 contacted in the board | substrate 1 reverses a polarization, and a periodic polarization inversion structure is formed. The wavelength conversion element is manufactured through the above steps.

本実施形態においても、波長変換素子の周期分極反転構造を所望のピッチで安定して製造することができる、といった第1実施形態と同様の効果を得ることができる。さらに、本実施形態の場合、第1の封止基板13側の空間内に充填する液体を入れ替えるだけで、縞状パターン形成工程と紫外線照射・電圧印加工程を1台の装置で行うことができる。これにより、製造工程の簡略化、短縮化、製造装置の共用化を図ることができる。また、基板1上の縞状パターン2が存在する領域が、第1の封止基板13のマスクパターン14とレジストの縞状パターン2とで二重にマスクされるため、縞状パターン2が存在する領域と存在しない領域とで紫外線強度のコントラストをより高めることができる。   Also in this embodiment, it is possible to obtain the same effect as in the first embodiment that the periodic polarization inversion structure of the wavelength conversion element can be stably manufactured at a desired pitch. Furthermore, in the case of the present embodiment, the stripe pattern forming step and the ultraviolet irradiation / voltage applying step can be performed by a single device by simply replacing the liquid filled in the space on the first sealing substrate 13 side. . Thereby, the manufacturing process can be simplified, shortened, and the manufacturing apparatus can be shared. Further, since the region where the striped pattern 2 exists on the substrate 1 is double masked by the mask pattern 14 of the first sealing substrate 13 and the striped pattern 2 of the resist, the striped pattern 2 exists. The contrast of the ultraviolet intensity can be further increased between the region that does and does not exist.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば縞状パターンの形成材料として、フォトレジストに代えて無機絶縁膜を用いることもできる。無機絶縁膜としては、LiNbO基板上にスパッタ等の手法により薄膜が形成可能、パターニングが可能、絶縁性を有する、紫外線吸収性を有する、電解液が内部に浸透しない、等の条件を満たすものが好ましく、例えば窒化シリコン(SiN)、窒化ホウ素(BN)等を用いることができる。この場合、無機絶縁膜上に一旦レジストパターンを形成し、このレジストパターンをマスクとして無機絶縁膜をエッチングする必要があるものの、フォトレジストの膨潤に起因する分極反転ピッチの変動等の問題がより解決しやすくなる。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, an inorganic insulating film can be used as a material for forming the striped pattern instead of the photoresist. As an inorganic insulating film, a thin film can be formed on a LiNbO 3 substrate by a method such as sputtering, patterning is possible, it has insulating properties, UV absorption, and electrolyte does not penetrate inside. For example, silicon nitride (SiN), boron nitride (BN), or the like can be used. In this case, it is necessary to once form a resist pattern on the inorganic insulating film and then etch the inorganic insulating film using this resist pattern as a mask, but problems such as fluctuations in the polarization inversion pitch due to the swelling of the photoresist are more solved. It becomes easy to do.

その他、上記実施形態で例示した各構成要素の材料、寸法等に関する具体的な記載については適宜変更が可能である。   In addition, specific descriptions regarding materials, dimensions, and the like of the constituent elements exemplified in the above embodiment can be appropriately changed.

本発明の第1実施形態の波長変換素子の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the wavelength conversion element of 1st Embodiment of this invention. 本発明の第2実施形態の波長変換素子の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the wavelength conversion element of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…基板、2…縞状パターン、3,13…第1の封止基板、4…第2の封止基板、5…Oリング、6,7…液体電極、9…フォトレジスト、14…マスクパターン、15…現像液。   DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Striped pattern, 3, 13 ... First sealing substrate, 4 ... Second sealing substrate, 5 ... O-ring, 6, 7 ... Liquid electrode, 9 ... Photoresist, 14 ... Mask Pattern, 15 ... developer.

Claims (4)

非線形光学結晶からなる基板の一面に、紫外線吸収性を有する絶縁物からなる縞状パターンを形成する工程と、
前記縞状パターンを形成した前記基板の両面に正極、負極となる液体電極をそれぞれ接触させた状態で、前記基板の一面に紫外線を照射しつつ前記液体電極間に電圧を印加する工程と、を有することを特徴とする波長変換素子の製造方法。
Forming a striped pattern made of an insulator having ultraviolet absorptivity on one surface of a substrate made of a nonlinear optical crystal;
Applying a voltage between the liquid electrodes while irradiating one surface of the substrate with ultraviolet rays in a state where the liquid electrodes to be a positive electrode and a negative electrode are in contact with both surfaces of the substrate on which the striped pattern is formed, respectively. A method for manufacturing a wavelength conversion element, comprising:
前記縞状パターンを形成する工程において、前記基板の一面にフォトレジストを塗布した後、前記フォトレジストを露光、現像することにより前記フォトレジストからなる前記縞状パターンを形成することを特徴とする請求項1に記載の波長変換素子の製造方法。   The step of forming the striped pattern is characterized in that after the photoresist is applied to one surface of the substrate, the striped pattern made of the photoresist is formed by exposing and developing the photoresist. Item 2. A method for manufacturing a wavelength conversion element according to Item 1. 前記基板の一面に紫外線感光性を有する前記フォトレジストを塗布した後、前記基板の一面側に縞状のマスクパターンを有する封止部材を配置し、前記基板と前記封止部材とに囲まれた空間に現像液を充填した状態で前記封止部材を通して紫外線を照射して前記フォトレジストを露光し、露光した前記フォトレジストを前記現像液により現像することにより前記縞状パターンを形成し、前記空間内の現像液を液体電極に入れ替えた後、前記基板の一面に紫外線を照射しつつ前記液体電極間に電圧を印加する工程を行うことを特徴とする請求項2に記載の波長変換素子の製造方法。   After coating the photoresist having ultraviolet sensitivity on one surface of the substrate, a sealing member having a striped mask pattern is disposed on the one surface side of the substrate, and is surrounded by the substrate and the sealing member In the state where the developer is filled in the space, the photoresist is exposed by irradiating ultraviolet rays through the sealing member, and the striped pattern is formed by developing the exposed photoresist with the developer. The manufacturing method of the wavelength conversion element according to claim 2, wherein a step of applying a voltage between the liquid electrodes is performed while irradiating one surface of the substrate with ultraviolet rays after replacing the developer in the liquid electrode. Method. 前記縞状パターンを形成する工程において、前記基板の一面に無機絶縁膜を形成し、前記無機絶縁膜上にフォトレジストを塗布し、前記フォトレジストを露光、現像してレジストパターンを形成した後、前記レジストパターンをマスクとして前記無機絶縁膜をエッチングすることにより前記無機絶縁膜からなる前記縞状パターンを形成することを特徴とする請求項1に記載の波長変換素子の製造方法。   In the step of forming the striped pattern, after forming an inorganic insulating film on one surface of the substrate, applying a photoresist on the inorganic insulating film, exposing and developing the photoresist, forming a resist pattern; 2. The method of manufacturing a wavelength conversion element according to claim 1, wherein the striped pattern made of the inorganic insulating film is formed by etching the inorganic insulating film using the resist pattern as a mask.
JP2008024341A 2008-02-04 2008-02-04 Method of manufacturing wavelength conversion element Pending JP2009186613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024341A JP2009186613A (en) 2008-02-04 2008-02-04 Method of manufacturing wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024341A JP2009186613A (en) 2008-02-04 2008-02-04 Method of manufacturing wavelength conversion element

Publications (1)

Publication Number Publication Date
JP2009186613A true JP2009186613A (en) 2009-08-20

Family

ID=41069940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024341A Pending JP2009186613A (en) 2008-02-04 2008-02-04 Method of manufacturing wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2009186613A (en)

Similar Documents

Publication Publication Date Title
JP2006259728A (en) Flexible liquid crystal display device and fabrication method thereof
US9128329B2 (en) Apparatus for fabricating alignment film for improving alignment force of a liquid crystal and method for fabricating liquid crystal display panel using the same
US10288928B2 (en) Photomask and method of manufacturing color filter substrate
JP2006337980A (en) Color filter substrate for liquid crystal display device and method for manufacturing the same
JP2009009058A (en) Color filter substrate, photomask to be used for manufacturing the same, and liquid crystal display
JP2007052315A (en) Manufacturing method of optical element and projection type display device
US20130122403A1 (en) Mask for exposure and method of fabricating substrate using said mask
US8802356B2 (en) Photosensitive film pattern and method for manufacturing a photosensitive film pattern
US10670972B2 (en) Method and apparatus for exposing a structure on a substrate
JP2008542828A (en) Filter array for liquid crystal display and method for manufacturing the filter array
US7642040B2 (en) Method of fabricating periodic domain inversion structure
JP2005173384A (en) Photomask
US9638993B2 (en) Phase-shift mask
JP2003149429A (en) Method for forming color filter with protruding structure and color filter with protruding structure
JP2007052317A (en) Manufacturing method of optical element and projection type display device
JP2009186613A (en) Method of manufacturing wavelength conversion element
JP2008107594A (en) Device for manufacturing alignment layer, liquid crystal display device and method for manufacturing alignment layer
JP2007047251A (en) Method of manufacturing optical element and projection type display apparatus
JP2006210553A (en) Aligner, illuminance distribution correction filter, and process for fabricating semiconductor device
JPH0973092A (en) Spacer and optical element formed by using this spacer and its production
JP4830598B2 (en) Pattern forming method and device manufacturing method
JP2003234274A (en) Nearfield light exposure method by mask multiple exposure
JP2004309780A (en) Liquid crystal display element
JP2004177904A (en) Method for manufacturing alignment layer, alignment layer manufacturing apparatus, and method for manufacturing liquid crystal apparatus
JP2004240095A (en) Method for manufacturing pattern layer forming body