JP2009185367A - On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus - Google Patents

On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus Download PDF

Info

Publication number
JP2009185367A
JP2009185367A JP2008029156A JP2008029156A JP2009185367A JP 2009185367 A JP2009185367 A JP 2009185367A JP 2008029156 A JP2008029156 A JP 2008029156A JP 2008029156 A JP2008029156 A JP 2008029156A JP 2009185367 A JP2009185367 A JP 2009185367A
Authority
JP
Japan
Prior art keywords
dimensional
dimensional shape
electrode
processed
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008029156A
Other languages
Japanese (ja)
Other versions
JP2009185367A5 (en
Inventor
Akihiro Goto
昭弘 後藤
Masahiro Okane
正裕 岡根
Kazuji Nakamura
和司 中村
Hiroyuki Teramoto
浩行 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008029156A priority Critical patent/JP2009185367A/en
Publication of JP2009185367A publication Critical patent/JP2009185367A/en
Publication of JP2009185367A5 publication Critical patent/JP2009185367A5/ja
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-surface three-dimensional shape forming method for forming an on-surface three-dimensional shape having three-dimensional ruggedness on the surface of a material to be processed, to provide an on-surface three-dimensional shaped article formed by the method, and to provide an on-surface three-dimensional shape forming apparatus for use in fabricating the on-surface three-dimensional shaped article by the method. <P>SOLUTION: The on-surface three-dimensional shape forming apparatus includes: a metal foam (11) which is composed of a fine metal wire and constitutes an electrode; and a power source device which generates pulsed electric discharge by applying a voltage between the metal foam (11) and a workpiece (3). The voltage is applied between the metal foam (11) of a nominal hole diameter ≥200 μm to ≤1,000 μm and the workpiece (3) to cause the pulsed electric discharge having a pulse width ≥30 μm to ≤500 μm to be generated between both, whereby a three-dimensional network structure is formed on the surface of the workpiece (3). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加工液中或いは気中において電極と被処理材の間にパルス状の放電を発生させ、そのエネルギーにより、被処理材表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   The present invention comprises a substance in which a pulsed discharge is generated between an electrode and a material to be processed in the working fluid or in the air, and the electrode material or the electrode material reacts with the discharge energy on the surface of the material to be processed. The present invention relates to a discharge surface treatment for forming a film.

パルス状の放電により被処理材表面に被膜を形成する従来の方法について、例えば特許文献1「放電加工による表面層の形成方法」に、金属Siを電極とすることで被処理材のの表面に耐食性のある被膜を形成する技術が開示されている。   Regarding the conventional method of forming a film on the surface of the material to be processed by pulsed discharge, for example, in Patent Document 1 “Method of forming a surface layer by electric discharge machining”, metal Si is used as an electrode on the surface of the material to be processed. A technique for forming a corrosion-resistant coating is disclosed.

また、従来、金属やセラミックスの粉末を成形した圧粉体を電極として使用することで、被処理材表面に硬質セラミックス被膜を形成する方法が、例えば特許文献2に開示されている。   Conventionally, for example, Patent Document 2 discloses a method of forming a hard ceramic film on a surface of a material to be processed by using a green compact obtained by molding a metal or ceramic powder as an electrode.

さらに、被処理材表面に金属被膜を形成する方法について、例えば特許文献3に開示されている。この特許文献3に開示された方法によれば、炭化しにくい材料を電極成分とすることで、被膜中に金属成分が残り、厚膜の形成も可能になる旨記載されている。   Furthermore, for example, Patent Document 3 discloses a method for forming a metal film on the surface of a material to be processed. According to the method disclosed in Patent Document 3, it is described that, by using a material that is not easily carbonized as an electrode component, a metal component remains in the coating, and a thick film can be formed.

一方、金属固体や粉末以外の金属を電極として被膜を形成する方法について開示した例として、特許文献4に、発泡金属を電極として被処理材表面に金属被膜を形成する技術が開示されている。この特許文献4には、「電流値12A、オンタイム512μs、ディーティーファクター50%(すなわち、休止時間512μs)の条件でNi−Al合金の発泡金属を用い、アルミニウム合金の表面に被膜を形成した」旨記載されている。また、この方法では、緻密な被膜ではなく被膜中に空隙を有する膜である旨記載されている。   On the other hand, as an example of disclosing a method for forming a film using a metal other than metal solid or powder as an electrode, Patent Document 4 discloses a technique for forming a metal film on the surface of a material to be treated using a foam metal as an electrode. This patent document 4 states that “a foamed metal of Ni—Al alloy was used on a surface of an aluminum alloy using a current value of 12 A, an on time of 512 μs, and a duty factor of 50% (that is, a downtime of 512 μs). "Is written. In addition, this method describes that the film is not a dense film but a film having voids in the film.

特開平5−13765号公報JP-A-5-13765 特許第3227454号明細書Japanese Patent No. 3227454 国際公開第04/011696号パンフレットInternational Publication No. 04/011696 Pamphlet 特開2004−255517号公報JP 2004-255517 A

しかしながら、従来、被処理材の表面を、他の物質をその上に載せた場合の強いアンカー効果を発揮したり、他の物質と接するときに強い摩擦力を発生させるような表面にしたいという要求があった。   However, conventionally, there has been a demand for the surface of the material to be treated to have a strong anchoring effect when other substances are placed on it or to generate a strong frictional force when in contact with other substances. was there.

本発明は、上記に鑑みてなされたものであって、従来より形成されていたいわゆる被膜ではなく、被処理材の表面に、三次元的に網目を持った構造物ともいえる表面形状を形成するするものであり、被処理材の表面に三次元網目状の構造物を形成する表面三次元形状形成方法、この方法により作製された表面三次元形状物、及び、この方法により表面三次元形状物を作製する際に用いる表面三次元形状形成装置を得ることを目的とする。   The present invention has been made in view of the above, and forms a surface shape that can be said to be a three-dimensional mesh structure on the surface of a material to be treated, not a so-called coating film that has been conventionally formed. A surface three-dimensional shape forming method for forming a three-dimensional network structure on the surface of a material to be treated, a surface three-dimensional shape object produced by this method, and a surface three-dimensional shape object obtained by this method An object of the present invention is to obtain a surface three-dimensional shape forming apparatus for use in manufacturing.

上述した課題を解決し、目的を達成するために、本発明の表面三次元形状形成方法は、金属細線より構成された電極と被処理材との間に電圧を印加することによりパルス状の放電を発生させて、被処理材の表面に三次元網目状の構造物を形成することを特徴とする。   In order to solve the above-described problems and achieve the object, the surface three-dimensional shape forming method of the present invention is a pulsed discharge by applying a voltage between an electrode made of a fine metal wire and a material to be processed. And a three-dimensional network structure is formed on the surface of the material to be processed.

また、本発明の表面三次元形状物は、金属細線より構成された電極との間に電圧を印加され、電極との間にパルス状の放電を発生されて、表面に三次元網目状の構造物が形成されていることを特徴とする。   In addition, the surface three-dimensional object of the present invention is applied with a voltage between an electrode composed of fine metal wires, and a pulsed discharge is generated between the electrode and a three-dimensional network structure on the surface. An object is formed.

さらに、本発明の表面三次元形状形成装置は、金属細線より構成された電極と、電極と被処理材との間に電圧を印加することによりパルス状の放電を発生させて、被処理材の表面に三次元網目状の構造物を形成する電源装置とを有することを特徴とする。   Furthermore, the surface three-dimensional shape forming apparatus of the present invention generates a pulsed discharge by applying a voltage between an electrode composed of a thin metal wire and the electrode and the material to be processed, And a power supply device that forms a three-dimensional network structure on the surface.

本発明によれば、被処理材の表面に三次元網目状の構造物が形成された表面三次元形状物を作製することができ、この表面三次元形状物は、三次元網目状の表面を有するので、他の物質を載せた場合に強いアンカー効果が期待できたり、他の物質と接するときに強い摩擦力を発揮するなどの効果が期待できるという効果を奏する。   According to the present invention, it is possible to produce a surface three-dimensional shape object in which a three-dimensional network structure is formed on the surface of a material to be processed. Therefore, there is an effect that a strong anchor effect can be expected when other substances are placed, or an effect such as exerting a strong frictional force when contacting with other substances can be expected.

以下に、本発明にかかる表面三次元形状形成方法、表面三次元形状物及び表面三次元形状形成装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a surface three-dimensional shape forming method, a surface three-dimensional shape object, and a surface three-dimensional shape forming apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態
図1は本発明の表面三次元形状形成装置の実施の形態の要部の模式図である。図1において、表面三次元形状形成装置100は、電極を構成する金極細線で作製された発泡金属11と、図示しない固定具により被処理材3を内部に固定する加工タンク13と、加工タンク13に満たされた加工液15と、発泡金属11と被処理材3に電圧を印加して両者間にアーク5を発生させる電源装置17とを有している。表面三次元形状形成装置100は、被処理材3の表面を加工して、表面三次元形状物(被処理材3の表面に網目状の三次元構造物が形成されたもの)を作製する。
Embodiment FIG. 1 is a schematic view of a main part of an embodiment of a surface three-dimensional shape forming apparatus of the present invention. In FIG. 1, a surface three-dimensional shape forming apparatus 100 includes a foam metal 11 made of fine gold wires constituting an electrode, a processing tank 13 for fixing a material 3 to be processed inside by a fixture (not shown), and a processing tank. 13 and a power supply device 17 that applies a voltage to the foam metal 11 and the material to be treated 3 to generate an arc 5 therebetween. The surface three-dimensional shape forming apparatus 100 processes the surface of the material to be processed 3 to produce a surface three-dimensional shape (one having a mesh-like three-dimensional structure formed on the surface of the material to be processed 3).

次に、表面三次元形状物の作製方法の詳細を説明する。図2は本実施の形態で電極として使用した材質と同じ材質の発泡金属の表面の様子を示す図である。材質はステンレス鋼であり、発泡金属を構成する金極細線の径は50μm程度である。金属繊維によりできる空間の大きさは「呼び孔径」と呼ばれ、図2に示した発泡金属では300μm程度である。本実施の形態の方法では、使用する発泡金属の呼び孔径が、細線の径、放電の条件と並び極めて重要なパラメータである。呼び孔径は200μmから1000μm程度が適切であり、より望ましくは300μmから500μm程度が望ましい。   Next, details of a method for producing a surface three-dimensional shape will be described. FIG. 2 is a view showing the surface of a foam metal made of the same material as that used as an electrode in the present embodiment. The material is stainless steel, and the diameter of the gold fine wire constituting the foam metal is about 50 μm. The size of the space formed by the metal fiber is called “nominal hole diameter”, which is about 300 μm for the foam metal shown in FIG. In the method of the present embodiment, the nominal hole diameter of the foam metal used is an extremely important parameter along with the diameter of the thin wire and the discharge conditions. The nominal hole diameter is suitably about 200 μm to 1000 μm, more preferably about 300 μm to 500 μm.

そして、呼び孔径がこの範囲より小さい場合には、発泡金属の材料が被処理材に移行はするが、図3に示すように表面全体に凸形状ができるのみで三次元的な網目構造にはならない。この理由は、電極である発泡金属11が、材料が密な状態であるため、図4に示すように放電が密に発生することとなり、凸形状が被膜処理材に形成され、凸と凸をつなぐ橋絡ができない状態となるためであると考えられる。一旦、凸形状が被処理材3の表面に形成されると、その後は凸の頂上付近に放電が発生しやすくなるため、凸がますます成長するようになる。逆に呼び孔径がこの範囲よりも大きい場合には、放電の発生がまばらとなり、被膜にできる凸と凸が離れてしまい、離れた凸をつなぐ橋絡ができない状態になっていると考えられる。   If the nominal hole diameter is smaller than this range, the foam metal material moves to the material to be treated, but only a convex shape can be formed on the entire surface as shown in FIG. Don't be. The reason for this is that the metal foam 11 that is an electrode is in a dense state, and as a result, discharge occurs densely as shown in FIG. This is thought to be because the bridge cannot be connected. Once the convex shape is formed on the surface of the material 3 to be processed, discharge tends to occur near the top of the convex, and the convex grows more and more. On the other hand, when the nominal hole diameter is larger than this range, the occurrence of discharge becomes sparse, and the protrusions that can be formed on the film are separated from the protrusions, and it is considered that the bridge that connects the distant protrusions cannot be formed.

一方、呼び孔径を適切な範囲とし、適切な放電の条件を適用した場合には、放電により被処理材3の表面の凸形状の上に橋絡ができ、その上にさらにも凸形状が形成されて、これが連続して三次元網目形状に成長していく。   On the other hand, when the nominal hole diameter is in an appropriate range and appropriate discharge conditions are applied, the discharge forms a bridge on the convex shape on the surface of the material 3 to be processed, and a convex shape is further formed thereon. This continuously grows into a three-dimensional network shape.

以上、発泡金属11の呼び孔径について説明したが、呼び孔径同様、放電のパルス状件も、被処理材3の表面に三次元構造物を形成する上で重要なパラメータである。本実施の形態では、数10〜数100μmの空間を持った三次元構造物の形成を目的としているが、試験を重ねたところ、このサイズの三次元構造物を形成するためには、電極すなわち、発泡金属11を構成する金属細線の径は、20〜200μm程度であることが適当であることがわかった。金属細線の径が、これより小さい場合には、放電により細線が溶融しても安定して被処理材側に移行されにくく、逆に大きい場合には、放電のエネルギーにより細線が安定して溶融されず、発泡金属と被処理材が短絡し続け、処理が安定して継続しないという問題が発生するからである。   As described above, the nominal hole diameter of the foam metal 11 has been described. Like the nominal hole diameter, the discharge pulse shape is also an important parameter for forming a three-dimensional structure on the surface of the material 3 to be processed. In the present embodiment, the purpose is to form a three-dimensional structure having a space of several tens to several hundreds of μm. However, as a result of repeated tests, in order to form a three-dimensional structure of this size, an electrode, It has been found that the diameter of the fine metal wire constituting the foam metal 11 is suitably about 20 to 200 μm. If the diameter of the fine metal wire is smaller than this, even if the fine wire is melted by discharge, it is difficult to be stably transferred to the material side. Conversely, if it is larger, the fine wire is stably melted by the energy of the discharge. This is because the foam metal and the material to be treated continue to short-circuit, and the problem that the treatment does not continue stably occurs.

上記の適値の径の細線を成形して作製した発泡金属を使用して、適切な放電条件を適用すると良好な三次元構造物が形成できた。形成した三次元構造物の例を図5に示す。図5は、電子顕微鏡により、表面から撮影したものである。図5の左側は被処理材3の母材の面(未処理部分)、右側が三次元構造物を形成した部分(処理済部分)である。被処理材に形成された凸の部分を橋絡して網目状に構造物が形成できていることがわかる。網目の空間は50から200μm程度となっており、他の物質と接合する場合などに接合する相手側材料が、隙間に入り込みやすく、強固な接合を実現することが期待できる。   When an appropriate discharge condition was applied using a foam metal produced by forming a thin wire having an appropriate diameter as described above, a good three-dimensional structure could be formed. An example of the formed three-dimensional structure is shown in FIG. FIG. 5 was taken from the surface with an electron microscope. The left side of FIG. 5 is the base material surface (unprocessed part) of the material 3 to be processed, and the right side is the part (processed part) where the three-dimensional structure is formed. It can be seen that a structure can be formed in a network by bridging the convex portions formed on the material to be processed. The space of the mesh is about 50 to 200 μm, and it can be expected that the mating material to be joined when joining with other substances easily enters the gap and realizes strong joining.

図5から明らかなように、形成した三次元構造物の網目を構成する金属の径は、元の材料よりかなり太くなっている。これは、発泡金属の細線を一旦放電のエネルギーにより溶融させるためであり、このように適切に発泡金属の細線を溶融させることができるか否かで、三次元構造物の形成が左右する。小さなエネルギーでは、細線を溶融させることができず、発泡金属材料を十分に被処理材側に移行させることができない。一方、逆にエネルギーが大きすぎると、発泡金属材料、および、被処理材料に形成された膜を過大に溶融させてしまい、三次元網目状に形成できなくなる。   As is apparent from FIG. 5, the diameter of the metal constituting the mesh of the formed three-dimensional structure is considerably thicker than the original material. This is because the fine metal foam wire is once melted by the energy of discharge, and the formation of the three-dimensional structure depends on whether or not the fine metal metal wire can be appropriately melted. With small energy, the fine wire cannot be melted, and the foam metal material cannot be sufficiently transferred to the material to be treated. On the other hand, if the energy is too large, the foam metal material and the film formed on the material to be processed are excessively melted and cannot be formed into a three-dimensional network.

試験の結果から、パルス幅30〜500μs程度の範囲では、三次元構造物を形成することができたが、より望ましくは、50〜200μs程度がよいことがわかった。図6は三次元構造物を形成する場合の放電電流電圧波形の例を示す図である。また、図7は他の例を示す図である。図6及び図7において、上段は、発泡金属11と被処理材3との間に印加される極間電圧の電圧波形を示し、下段はその際に極間をながれる放電電流の電流波形を示している。図6に示す図5の三次元構造物を形成した条件は25A程度の条件であるが、それに限らず10〜60A程度の他の条件でも可である。また、図7のように電流の先頭に高いピーク値を持つ放電パルスでもよく、放電の際にしばしば発生する発泡金属11と、被処理材3あるいは形成途中の構造物との間の短絡を解消するのに効果があった。   From the test results, it was found that a three-dimensional structure could be formed in the range of the pulse width of about 30 to 500 μs, but more preferably about 50 to 200 μs. FIG. 6 is a diagram illustrating an example of a discharge current voltage waveform when a three-dimensional structure is formed. FIG. 7 is a diagram showing another example. 6 and 7, the upper part shows the voltage waveform of the interelectrode voltage applied between the foam metal 11 and the material 3 to be processed, and the lower part shows the current waveform of the discharge current flowing between the electrodes at that time. ing. The condition for forming the three-dimensional structure of FIG. 5 shown in FIG. 6 is a condition of about 25 A, but is not limited to this, and other conditions of about 10 to 60 A are possible. Further, a discharge pulse having a high peak value at the beginning of the current as shown in FIG. 7 may be used, and a short circuit between the foam metal 11 often generated during discharge and the material 3 to be processed or a structure being formed is eliminated. It was effective to do.

三次元構造物の形成の際には放電だけではなく、金属細線と被処理材が短絡する現象が発生する。短絡が発生した場合には、短絡電流が金属細線を通して流れ、被処理材との接触部分の金属細線が溶融され短絡が復帰しながら放電が再開し、三次元構造物の形成が進んで行く。しかし、放電のパルスとパルスの間の発生間隔を決めるパルス休止時間を長く設定すると、短絡した場合に金属細線を溶融させて短絡を復帰することが困難になる傾向があり、三次元構造物の形成が不安定になる。試験の結果からは、使用したパルス幅の2倍以下程度の休止時間の設定が望ましいという結果が得られている。なお、実際の放電パルスと放電パルスの間隔は、パルス休止時間に電圧が発生するまでの放電遅れ時間が加えられた時間になる。パルス休止時間が放電のパルス幅の2倍を超えると短絡が発生したときの短絡解消に時間がかかるようになり放電の発生が不安定になる。さらにパルス休止時間を延ばすと三次元構造物が形成されない。   When a three-dimensional structure is formed, not only electric discharge but also a phenomenon that a metal thin wire and a material to be processed are short-circuited occurs. When a short circuit occurs, a short circuit current flows through the fine metal wires, the fine metal wires in contact with the material to be processed are melted, and the discharge is resumed while the short circuit is restored, and the formation of the three-dimensional structure proceeds. However, if the pulse pause time that determines the generation interval between discharge pulses is set to be long, it tends to be difficult to restore the short circuit by melting the fine metal wires in the event of a short circuit. Formation becomes unstable. The test results show that it is desirable to set a pause time that is about twice or less the pulse width used. Note that the interval between the actual discharge pulse and the discharge pulse is a time obtained by adding the discharge delay time until the voltage is generated during the pulse pause time. When the pulse pause time exceeds twice the pulse width of the discharge, it takes time to eliminate the short circuit when the short circuit occurs, and the generation of the discharge becomes unstable. Further, if the pulse pause time is extended, a three-dimensional structure is not formed.

図2の発泡金属の写真と、図5のその発泡金属を用いて形成された三次元構造物の写真を比較するとわかるように、形成できた三次元構造物の網目の大きさは、元の材料である発泡金属11の網目の大きさとよく似ている。これについては、以下のように考察している。図8に発泡金属11により被処理材3の表面に三次元構造物を形成する場合の模式図を示す。発泡金属11は三次元の網目状になっているので、縦方向の軸に当たる部分が被処理材3上に凸形状を形成する。この凸形状は必ずしも網目1つ分の細線からできている必要は無く、発泡金属11の網目複数分の材料から構成されればよいと考えられる。   As can be seen by comparing the photograph of the foam metal in FIG. 2 with the photograph of the three-dimensional structure formed using the foam metal in FIG. 5, the size of the mesh of the three-dimensional structure thus formed is It is very similar to the mesh size of the metal foam 11 that is the material. This is considered as follows. FIG. 8 shows a schematic diagram when a three-dimensional structure is formed on the surface of the material 3 to be processed by the foam metal 11. Since the foam metal 11 has a three-dimensional mesh shape, a portion corresponding to the longitudinal axis forms a convex shape on the workpiece 3. This convex shape does not necessarily have to be made of a fine line for one mesh, and it is considered that it may be made of a material for a plurality of meshes of the foam metal 11.

このように形成された凸形状を網目の水平部分の材料がつなぐことで網目を構成すると考えられる。凸をつなぐ部分の材料も水平の1つ分の材料から構成されている必要は無く、複数分の材料が積み重なって1つの橋絡を形成してもよいと考えられる。もちろん、発泡金属11は垂直・水平の細線から構成されているわけではないので、形成される三次元構造物が正確に発泡金属11の網目のサイズと同じになるわけではないが、おおよそ以上のような考え方で、形成される網目のサイズが発泡金属の網目のサイズと似ていることが説明できると考えられる。   It is considered that the mesh is formed by connecting the convex portions formed in this way with the material of the horizontal portion of the mesh. The material of the portion connecting the projections need not be composed of one horizontal material, and it is considered that a plurality of materials may be stacked to form one bridge. Of course, since the foam metal 11 is not composed of vertical and horizontal fine lines, the formed three-dimensional structure is not exactly the same as the mesh size of the foam metal 11, but it is more than about With this concept, it can be explained that the size of the formed mesh is similar to the size of the foam metal mesh.

逆にいうと、三次元構造物を形成できる条件として、発泡金属11の呼び孔径について論じたが、発泡金属11の呼び孔径により形成される三次元構造物の凸の部分の間隔が決まり、凸の部分が詰まり過ぎていないか、また、間隔が広くなりすぎてその間を橋絡を繋げることができるかどうかが、三次元構造物が形成できるかどうかの条件になるということもできる。   In other words, as a condition for forming a three-dimensional structure, the nominal hole diameter of the foam metal 11 has been discussed, but the interval between the convex portions of the three-dimensional structure formed by the nominal hole diameter of the foam metal 11 is determined, and the convex It can be said that the condition of whether or not the three-dimensional structure can be formed depends on whether the portion is not clogged too much, and whether or not the interval is too wide and a bridge can be connected between them.

尚、図5に示した三次元構造物の形成は、加工液中にて放電を発生させて行った。しかし、実験によると必ずしも加工液中である必要は無く、大気中でも同様の構造物の形成は可能であった。ただし、大気中では、酸化の影響のため、構造物、および、被処理材の放電が発生した部分付近が黒く変色するような現象が発生した。これを防ぐためには、Ar等不活性ガス中で処理を行うことが望ましい。そのためには、放電の発生する部分を専用の容器などで覆って不活性ガス雰囲気にするか、或いはより簡便には、放電の発生する部分に向けて、不活性ガスを吹きかけながら加工する方法も可である。   The three-dimensional structure shown in FIG. 5 was formed by generating electric discharge in the machining fluid. However, according to the experiment, it is not always necessary to be in the machining liquid, and it was possible to form a similar structure in the atmosphere. However, in the atmosphere, due to the influence of oxidation, a phenomenon occurred in which the structure and the vicinity of the portion where the discharge of the material to be processed occurred turned black. In order to prevent this, it is desirable to perform the treatment in an inert gas such as Ar. For this purpose, there is a method in which the part where the discharge is generated is covered with an exclusive container to make an inert gas atmosphere, or more simply, the part where the discharge is generated is processed while spraying the inert gas. Yes.

不活性ガスの雰囲気では、加工液中での処理と異なり、以下のような利点がある。第一に、加工液中での処理と異なり、きれいな環境で処理が行える。生成物を不純物を嫌う用途に使用する場合に、加工液中での処理では、炭素などの不純物を三次元構造物中に含んでしまう恐れがあるが、不活性ガス中では、そのような心配がなく純粋な材料の三次元構造物の形成を行うことができる。第二に、活性な材料の三次元構造物の形成を行うことができる。例えばTiなどのような活性な材料では、加工液中で処理を行うと、溶融した部分が加工液中の分解物である炭素と反応し、TiC(炭化チタン)となってしまい安定した三次元構造物の形成が阻害される。不活性ガス中で処理を行うと、活性なTiの場合であってもTiのまま三次元構造物を形成することができる。   In the atmosphere of an inert gas, unlike the processing in the processing liquid, there are the following advantages. First, unlike processing in a machining fluid, processing can be performed in a clean environment. When the product is used for applications that do not like impurities, the processing in the processing liquid may contain impurities such as carbon in the three-dimensional structure. Therefore, it is possible to form a three-dimensional structure of pure material. Secondly, a three-dimensional structure of active material can be formed. For example, when an active material such as Ti is processed in a processing liquid, the melted portion reacts with carbon, which is a decomposition product in the processing liquid, to become TiC (titanium carbide), which is stable three-dimensional. Structure formation is inhibited. When the treatment is performed in an inert gas, a three-dimensional structure can be formed with Ti even in the case of active Ti.

尚、本実施の形態では、電極に発泡金属を用いた例で説明したが、電極は、細線から構成される金属材料であればよく、かならずしも発泡金属に限定されるものではない。一例として例えば、金属短繊維を束ねた状態のものでも同様な効果を得ることができる。ただし、金属短繊維を束ねたものは、発泡金属のように金属細線部分の配列を均一にすることが困難であるため、形成できる三次元構造物の品質、すなわち網目の均一性などは発泡金属の場合よりは劣るという問題はある。   In the present embodiment, the example in which the foam metal is used for the electrode has been described. However, the electrode is not limited to the foam metal as long as it is a metal material composed of fine wires. For example, the same effect can be obtained even in a state in which short metal fibers are bundled. However, since bundles of short metal fibers are difficult to make the arrangement of the fine metal wire portions uniform as in the case of foam metal, the quality of the three-dimensional structure that can be formed, that is, the uniformity of the network, etc. There is a problem that it is inferior to.

以上のように、本発明は、金属表面に三次元網目状の構造物を形成して、他の物質をその上に載せた場合の強いアンカー効果を発揮したり、他の物質と接するときに強い摩擦力を発揮する部材、その作製方法およびその作製装置に適用されて有用なものである。   As described above, the present invention forms a three-dimensional network structure on a metal surface and exhibits a strong anchoring effect when another substance is placed on the structure, or when contacting with another substance. The present invention is useful when applied to a member that exhibits a strong frictional force, a manufacturing method thereof, and a manufacturing apparatus thereof.

本発明の表面三次元形状形成装置の実施の形態の要部の模式図である。It is a schematic diagram of the principal part of embodiment of the surface three-dimensional shape formation apparatus of this invention. 本発明の実施の形態に使用した発泡金属の表面の様子を示す電子顕微鏡写真の図である。It is a figure of the electron micrograph which shows the mode of the surface of the foam metal used for embodiment of this invention. 発泡金属の呼び孔径が小さい場合の膜の例を示す電子顕微鏡写真の図である。It is a figure of the electron micrograph which shows the example of a film | membrane in case the nominal hole diameter of a foam metal is small. 発泡金属の呼び孔径が小さい場合の成膜状態の説明図である。It is explanatory drawing of the film-forming state in case the nominal hole diameter of a foam metal is small. 本発明の実施の形態により形成された三次元構造物を示す電子顕微鏡写真の図である。It is a figure of the electron micrograph which shows the three-dimensional structure formed by embodiment of this invention. 三次元構造物を形成する場合の放電電流電圧波形の例を示す図である。It is a figure which shows the example of the discharge current voltage waveform in the case of forming a three-dimensional structure. 三次元構造物を形成する場合の放電電流電圧波形の別例を示す図である。It is a figure which shows another example of the discharge current voltage waveform in the case of forming a three-dimensional structure. 三次元構造物形成の説明図である。It is explanatory drawing of three-dimensional structure formation.

符号の説明Explanation of symbols

3 被処理材
5 アーク
11 発泡金属(電極)
13 加工タンク
15 加工液
17 電源装置
100 表面三次元形状形成装置
3 Material 5 Arc 11 Metal foam (electrode)
13 processing tank 15 processing liquid 17 power supply device 100 surface three-dimensional shape forming device

Claims (8)

金属細線より構成された電極と被処理材との間に電圧を印加することによりパルス状の放電を発生させて、前記被処理材の表面に三次元網目状の構造物を形成する
ことを特徴とする表面三次元形状形成方法。
A pulsed discharge is generated by applying a voltage between an electrode made of a thin metal wire and the material to be processed, and a three-dimensional network structure is formed on the surface of the material to be processed. A surface three-dimensional shape forming method.
呼び孔径200μm以上1000μm以下の前記電極を用いて、該電極と前記被処理材との間に、パルス幅30μs以上500μs以下のパルス状の放電を発生させることで、前記被処理材の表面に三次元網目状の構造物を形成する
ことを特徴とする請求項1に記載の表面三次元形状形成方法。
By using the electrode having a nominal hole diameter of 200 μm or more and 1000 μm or less and generating a pulsed discharge having a pulse width of 30 μs or more and 500 μs or less between the electrode and the material to be treated, a tertiary is formed on the surface of the material to be treated. An original net-like structure is formed. The method for forming a surface three-dimensional shape according to claim 1.
放電パルスのパルス幅を30μs以上500μ以下とし、パルス休止時間をパルス幅の2倍以下とする
ことを特徴とする請求項2に記載の表面三次元形状形成方法。
The method for forming a surface three-dimensional shape according to claim 2, wherein the pulse width of the discharge pulse is 30 µs or more and 500 µ or less, and the pulse pause time is twice or less of the pulse width.
金属細線より構成された電極との間に電圧を印加され、該電極との間にパルス状の放電を発生されて、表面に三次元網目状の構造物が形成されている
ことを特徴とする表面三次元形状物。
A voltage is applied between the electrode composed of fine metal wires, and a pulsed discharge is generated between the electrode and a three-dimensional network structure is formed on the surface. Surface three-dimensional shape.
呼び孔径200μm以上1000μm以下の前記電極を用いて、該電極との間に、パルス幅30μs以上500μs以下のパルス状の放電を発生されることで、表面に三次元網目状の構造物が形成されている
ことを特徴とする請求項4に記載の表面三次元形状物。
A three-dimensional mesh-like structure is formed on the surface by generating a pulsed discharge having a pulse width of 30 μs or more and 500 μs or less between the electrode having a nominal hole diameter of 200 μm or more and 1000 μm or less. The surface three-dimensional shape object according to claim 4, wherein
金属細線より構成された電極と、
前記電極と被処理材との間に電圧を印加することによりパルス状の放電を発生させて、前記被処理材の表面に三次元網目状の構造物を形成する電源装置と
を有することを特徴とする表面三次元形状形成装置。
An electrode composed of a thin metal wire;
A power supply device that generates a pulsed discharge by applying a voltage between the electrode and the material to be processed to form a three-dimensional network structure on the surface of the material to be processed. Surface three-dimensional shape forming device.
前記電極の呼び孔径が200μm以上1000μm以下であり、前記電源装置は前記電極と前記被処理材との間に、パルス幅30μs以上500μs以下のパルス状の放電を発生させる
ことを特徴とする請求項6に記載の表面三次元形状形成装置。
The nominal hole diameter of the electrode is 200 μm or more and 1000 μm or less, and the power supply device generates a pulsed discharge having a pulse width of 30 μs or more and 500 μs or less between the electrode and the material to be processed. 6. The surface three-dimensional shape forming apparatus according to 6.
放電パルスのパルス幅が30μs以上500μ以下で、休止時間がパルス幅の2倍以下である
ことを特徴とする請求項7に記載の表面三次元形状形成装置。
8. The surface three-dimensional shape forming apparatus according to claim 7, wherein the pulse width of the discharge pulse is not less than 30 μs and not more than 500 μm, and the pause time is not more than twice the pulse width.
JP2008029156A 2008-02-08 2008-02-08 On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus Withdrawn JP2009185367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029156A JP2009185367A (en) 2008-02-08 2008-02-08 On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029156A JP2009185367A (en) 2008-02-08 2008-02-08 On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus

Publications (2)

Publication Number Publication Date
JP2009185367A true JP2009185367A (en) 2009-08-20
JP2009185367A5 JP2009185367A5 (en) 2010-11-11

Family

ID=41068891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029156A Withdrawn JP2009185367A (en) 2008-02-08 2008-02-08 On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus

Country Status (1)

Country Link
JP (1) JP2009185367A (en)

Similar Documents

Publication Publication Date Title
Shin et al. Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses
JP6061202B2 (en) Non-metal coating and production method thereof
Fan et al. Fabrication of tungsten microelectrodes using pulsed electrochemical machining
US20100025252A1 (en) Ceramics coating metal material and manufacturing method of the same
Meng et al. Investigation on wire electrochemical micro machining of Ni-based metallic glass
JP5121933B2 (en) Discharge surface treatment method
Bi et al. Wire electrochemical micromachining of high-quality pure-nickel microstructures focusing on different machining indicators
JP4878196B2 (en) Method for producing metal fine particles using conductive nanodot electrode
RU2319789C2 (en) Method for treating surface with use of electric discharge
Prakash et al. To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II
Meng et al. Micropatterning of Ni-based metallic glass by pulsed wire electrochemical micro machining
Ribalko et al. The use of bipolar current pulses in electrospark alloying of metal surfaces
Paul et al. Effects of preheating electrolyte in micro ECDM process
Verbitchi et al. Electro-spark coating with special materials
JP2007327117A (en) Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle
JP2009185367A (en) On-surface three-dimensional shape forming method, on-surface three-dimensional shaped article and on-surface three-dimensional shape forming apparatus
JP6097900B2 (en) Electric discharge machining method and electric discharge machine for sintered diamond
US20080118664A1 (en) Discharge Surface-Treatment Method and Discharge Surface-Treatment Apparatus
JP4895477B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
JP4065303B1 (en) Needle-shaped discharge electrode and discharge device
Sahin et al. Electrospark deposition: mass transfer
WO2010013313A1 (en) Electric discharge surface treatment method and coating film generation method
JP5809137B2 (en) Electrolytic machining method for electrolytically machining workpieces
JP2008240067A (en) Discharge surface treatment method
JP2008184637A (en) ELECTROLYTIC Ni PLATING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A621 Written request for application examination

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111129