JP4878196B2 - Method for producing metal fine particles using conductive nanodot electrode - Google Patents

Method for producing metal fine particles using conductive nanodot electrode Download PDF

Info

Publication number
JP4878196B2
JP4878196B2 JP2006094449A JP2006094449A JP4878196B2 JP 4878196 B2 JP4878196 B2 JP 4878196B2 JP 2006094449 A JP2006094449 A JP 2006094449A JP 2006094449 A JP2006094449 A JP 2006094449A JP 4878196 B2 JP4878196 B2 JP 4878196B2
Authority
JP
Japan
Prior art keywords
metal
copper
aqueous solution
conductive
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006094449A
Other languages
Japanese (ja)
Other versions
JP2007270184A (en
Inventor
琢也 原田
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006094449A priority Critical patent/JP4878196B2/en
Publication of JP2007270184A publication Critical patent/JP2007270184A/en
Application granted granted Critical
Publication of JP4878196B2 publication Critical patent/JP4878196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銅、銀、ニッケル、コバルト、鉄、亜鉛、スズ、銀、金、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム等からなる金属の製造方法に関し、特に液相中での電気化学的なナノサイズの金属微粒子の製造方法に関する。 The present invention relates to a method for producing a metal comprising copper, silver, nickel, cobalt, iron, zinc, tin, silver, gold, platinum, palladium, iridium, rhodium, osmium, ruthenium, etc., and in particular, electrochemistry in a liquid phase The present invention relates to a method for producing typical nano-sized metal fine particles.

ナノサイズ(粒径が1μm以下)の金属微粒子は、バルク材料にはない様々な特異な特性を持つことが知られている。そしてこの特性を生かした様々な工学的応用が、現在、エレクトロニクス、バイオ、エネルギー等の各分野で大いに期待されている。   It is known that nano-sized metal particles (particle size of 1 μm or less) have various unique characteristics not found in bulk materials. Various engineering applications that take advantage of this property are now highly expected in fields such as electronics, biotechnology, and energy.

このようなナノサイズの金属微粒子を製造する方法としては、大きく気相合成法と液相合成法の2種類の製法が知られている。ここで気相合成法とは、気相中に導入した金属蒸気から固体の金属微粒子を形成する方法であり、他方、液相合成法とは、溶液中に分散させた金属イオンを還元することにより金属微粒子を析出させる方法である。   As methods for producing such nano-sized metal fine particles, two types of production methods, a gas phase synthesis method and a liquid phase synthesis method, are widely known. Here, the gas phase synthesis method is a method of forming solid metal fine particles from metal vapor introduced into the gas phase, while the liquid phase synthesis method is to reduce metal ions dispersed in a solution. This is a method of depositing metal fine particles.

このうち気相合成法においては、一般にCVD、ガス中蒸発、レーザーアブレーション、スパッタリングなどにより金属蒸気が反応容器に供給されて金属微粒子の生成が行われるが、これら反応装置は概して高価である上、原料の使用量に対する製造量(すなわち歩留まり)が悪く、製造コストが高いという問題があることが分かっている。またさらに、得られる金属微粒子は粒径分布が広いという問題があることも指摘されている。   Among them, in the vapor phase synthesis method, metal vapor is generally supplied to the reaction vessel by CVD, gas evaporation, laser ablation, sputtering, etc., and metal fine particles are generated, but these reaction apparatuses are generally expensive, It has been found that there is a problem that the production amount (that is, the yield) relative to the amount of raw material used is poor and the production cost is high. Furthermore, it has been pointed out that the obtained metal fine particles have a problem that the particle size distribution is wide.

また、液相合成法においては、一般にその金属イオンを還元するための還元方法として、アルコール、ポリオール、アルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を使用する方法と、電気化学的にカソード電極上で還元を行う方法が知られている。この中で電気化学的に還元を行う方法は、その還元速度を電流量によって調整することで、生成する金属微粒子の形状・サイズを容易に調整することが出来、また同じく電流量の調整により、複合(合金)微粒子の生成も容易であるとの理由で、近年大いに注目されている。
特開2005-281781号公報 特開2003-147417号公報 特開2005-248204号公報 M.T.Reetz et al., J. Am. Chem. Soc. Vol.116 (1994) p7401-7402, M.T.Reetz et al., Chem. Mater. Vol.7 (1995) p2227-2228 A.Pietrikova et al., Metallic Materials Vol.29 (1991) p262-272
Further, in the liquid phase synthesis method, generally, as a reduction method for reducing the metal ion, a method using a reducing agent such as alcohol, polyol, aldehyde, hydrazine, sodium borohydride, or the like, and an electrochemical cathode electrode Methods for performing the above reduction are known. Among them, the electrochemical reduction method can easily adjust the shape and size of the generated metal fine particles by adjusting the reduction rate according to the amount of current, and also by adjusting the amount of current, In recent years, it has attracted much attention because it is easy to produce composite (alloy) particles.
JP 2005-281781 Japanese Patent Laid-Open No. 2003-147417 JP 2005-248204 A MTReetz et al., J. Am. Chem. Soc. Vol.116 (1994) p7401-7402, MTReetz et al., Chem. Mater. Vol.7 (1995) p2227-2228 A. Pietrikova et al., Metallic Materials Vol. 29 (1991) p262-272

しかしながら、この電気化学的還元法としてこれまでに知られている手法では、還元された金属がデンドライト(樹枝)状に成長したり、粒子を大量に製造する場合に、粒子が肥大化するという問題が存在することが指摘されてきた。   However, in the technique known so far as this electrochemical reduction method, the problem is that the reduced metal grows in a dendrite shape or when the particles are produced in large quantities, the particles are enlarged. Has been pointed out.

従って、この発明の目的は、還元された金属がデンドライト(樹枝)状に成長することなく、粒子を大量に製造する場合に、粒子が肥大化することがなく、粒状でナノサイズの金属微粒子を効率よく製造することができる銅ナノ粒子の製造方法を提供することにある。   Therefore, the object of the present invention is to produce granular nano-sized fine metal particles without producing enlarged particles when the reduced metal does not grow into dendrites (dendrites) and the particles are produced in large quantities. It is providing the manufacturing method of the copper nanoparticle which can be manufactured efficiently.

発明者は上述した従来の問題点について鋭意研究を重ねた。その結果、従来、電気化学的な液相還元方法に用いられていた板状もしくは棒状の白金等の金属からなるカソード電極に代わり、ナノサイズの多数の金属突起からなるナノドット金属によるカソード電極を用いて金属イオンの電気化学的還元を行うと、粒状でナノサイズの金属微粒子を効率よく製造することができることが判明した。そして、この時電気化学還元を行う電解溶液中に、製造対象である金属のイオンを適宜添加することで、得られる金属微粒子の生成量を制御することが出来ること、また上記電解液中にポリビニルピロリドンやポリアクリル酸等の有機物分散媒を添加すれば、生成の粒子同士の凝集を低減できること、更に、印加する電流をパルス電流にし、さらに反応溶液およびカソード電極を超音波振動させると、得られる金属微粒子の形状均一性がより向上することが判明した。この発明は上述した研究成果によってなされたものである。
The inventor conducted extensive research on the above-described conventional problems. As a result, instead of the cathode electrode made of metal such as plate-like or rod-like platinum that has been used in the conventional electrochemical liquid phase reduction method, a cathode electrode made of nanodot metal made up of a large number of nano-sized metal protrusions is used. Thus, it was found that granular nanosized metal fine particles can be efficiently produced by electrochemical reduction of metal ions. At this time, the amount of metal fine particles to be obtained can be controlled by appropriately adding ions of the metal to be produced to the electrolytic solution for electrochemical reduction. If an organic dispersion medium such as pyrrolidone or polyacrylic acid is added, it is possible to reduce the aggregation of the generated particles. Further, when the applied current is changed to a pulsed current and the reaction solution and the cathode electrode are vibrated ultrasonically, it is obtained. It has been found that the shape uniformity of the metal fine particles is further improved. The present invention has been made based on the research results described above.

この発明の製造方法の第1の態様は、銅、ニッケル、コバルト、鉄、亜鉛、スズ、銀、金、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウムから選択された少なくとも1種の金属からなる製造対象の金属である陽極と、白金もしくはカーボンからなる最大長さが1μm以下の互いに絶縁された多数の導電性ナノドット電極からなる陰極を有し、
さらに、前記陽極と前記陰極を、導電性水溶液中で、通電して金属微粒子を製造する金属微粒子の製造方法であって、
前記導電性水溶液は、製造対象の金属イオンを含み、
さらに、有機物分散媒として、ポリビニルピロリドン等のアミド系の高分子と、ポリエチレンイミンが添加されたものであることを特徴とする
金属微粒子の製造方法である。
The first aspect of the production method of the present invention comprises at least one metal selected from copper, nickel, cobalt, iron, zinc, tin, silver, gold, platinum, palladium, iridium, rhodium, osmium, and ruthenium. An anode that is a metal to be manufactured, and a cathode that is made of a number of conductive nanodot electrodes insulated from each other with a maximum length of 1 μm or less made of platinum or carbon,
Furthermore, the anode and the cathode, in a conductive aqueous solution, a method for producing metal fine particles by producing metal fine particles by energization,
The conductive aqueous solution contains a metal ion to be manufactured,
Further , the present invention is a method for producing fine metal particles, wherein an amide polymer such as polyvinylpyrrolidone and polyethyleneimine are added as an organic dispersion medium .

この発明の製造方法の第2の態様は、前記陰極が白金からなる導電性ナノドット電極で、前記陽極が銅シートからなる電極であり、さらに、支持電解質として、希硫酸水溶液に、有機分散媒としてポリビニルピロリドンと、製造対象の金属イオン原料として酢酸銅を加えた導電性水溶液を用いて銅微粒子を製造することを特徴とする請求項1に記載の金属微粒子の製造方法である。
According to a second aspect of the production method of the present invention, the cathode is a conductive nanodot electrode made of platinum and the anode is an electrode made of a copper sheet. Further, as a supporting electrolyte, a dilute sulfuric acid aqueous solution is used as an organic dispersion medium. 2. The method for producing fine metal particles according to claim 1, wherein the fine copper particles are produced using polyvinylpyrrolidone and a conductive aqueous solution to which copper acetate is added as a metal ion raw material to be produced.

この発明の製造方法の第3の態様は、請求項2に記載の銅微粒子を製造する金属微粒子の製造方法おいて、希硫酸水溶液200質量部に対して、有機分散媒としてポリビニルピロリドン0.5重量部と、製造対象の金属イオン原料として酢酸銅0.5重量部加えた導電性水溶液を用いて、平均粒径50nmの銅粒子を製造することを特徴とする請求項2に記載の金属微粒子の製造方法である。
According to a third aspect of the production method of the present invention, in the method for producing metal fine particles for producing copper fine particles according to claim 2, polyvinylpyrrolidone 0.5 as an organic dispersion medium is used with respect to 200 parts by mass of dilute sulfuric acid aqueous solution. 3. The metal fine particles according to claim 2, wherein copper particles having an average particle diameter of 50 nm are produced using parts by weight and a conductive aqueous solution added with 0.5 parts by weight of copper acetate as a metal ion raw material to be produced. It is a manufacturing method.

この発明の製造方法の第4の態様は、前記通電を周波数1Hz以上のパルス電流により行うか、前記通電中に、導電性水溶液および陰極に超音波振動を与えるか、あるいは前記通電を周波数1Hz以上のパルス電流により行うと同時に前記通電中に、導電性水溶液および陰極に超音波振動を与える方法により平均粒径15〜30nmの銅微粒子を製造することを特徴とする請求項3に記載の金属微粒子の製造方法である。
According to a fourth aspect of the manufacturing method of the present invention, the energization is performed with a pulse current having a frequency of 1 Hz or higher, or ultrasonic vibration is applied to the conductive aqueous solution and the cathode during the energization, or the energization is performed with a frequency of 1 Hz or higher. 4. The fine metal particles according to claim 3, wherein copper fine particles having an average particle diameter of 15 to 30 nm are produced by a method of applying ultrasonic vibration to the conductive aqueous solution and the cathode during the energization simultaneously with the pulse current of It is a manufacturing method.

本発明によると、ナノサイズの多数の導電性電極による陰極(カソード電極)を用いて金属イオンの電気化学的還元を行うので、粒状でナノサイズの金属微粒子を効率よく製造することができる。 According to the present invention, since metal ions are electrochemically reduced using a cathode (cathode electrode) made up of a large number of nano-sized conductive electrodes, it is possible to efficiently produce granular nano-sized metal fine particles.

更に、本発明によると、印加する電流をパルス電流にし、さらに反応溶液および極を超音波振動させるので、得られる金属微粒子の形状均一性がより向上する。
Furthermore, according to the present invention, the applied current is changed to a pulse current, and the reaction solution and the electrode are vibrated ultrasonically, so that the shape uniformity of the obtained metal fine particles is further improved.

この発明による金属微粒子の一つである銅ナノ粒子の製造方法を図面を参照しながら説明する。
この発明の銅ナノ粒子の製造方法の第1の態様は、有機物分散媒を含む導電性水溶液中で、銅からなる陽極と、互いに電気的に絶縁された陰極を通電することを特徴とする、銅ナノ粒子の製造方法である。
A method for producing copper nanoparticles that are one of the metal fine particles according to the present invention will be described with reference to the drawings.
The first aspect of the method for producing copper nanoparticles of the present invention is characterized in that, in a conductive aqueous solution containing an organic dispersion medium, an anode made of copper and a cathode electrically insulated from each other are energized. This is a method for producing copper nanoparticles.

上述した陰極は、最大長さが1μm以下となるように互いに絶縁されている導電性電極である。例えば、直径1μm以下の円柱または一辺の長さが1μm以下の矩形状の互いに電気的に絶縁された導電性電極等である。前記電気的に絶縁された導電性電極からなる陰極は、ナノインプリンティング法による形成法、フォーカスド・イオン・ビーム(FIB:Focused Ion Beam)装置によりSi基板に孔を空けてめっきで埋め込むことによる形成法、ナノサイズの製造対象の金属微粒子をラングミュア・ブロジェット(LB:Langmuir−Blodgett)法により配列させることによる形成法等がある。
この発明においては、ナノサイズの多数の導電性電極からなるナノドット電極を用いて金属イオンの電気化学的還元を行う。以下に、板状白金電極を用いた場合と、ナノドット白金電極を用いた時の得られる粒子の相異を実施例によって説明する。
The cathodes described above are conductive electrodes that are insulated from each other so that the maximum length is 1 μm or less. For example, a cylindrical electrode having a diameter of 1 μm or less or a rectangular electrode having a length of one side of 1 μm or less and electrically insulated conductive electrodes. The cathode made of the electrically insulated conductive electrode is formed by a nano-imprinting method, a hole is formed in the Si substrate by a focused ion beam (FIB) apparatus, and embedded by plating. There are a forming method, a forming method by arranging nano-sized metal fine particles to be manufactured by a Langmuir-Blodgett (LB) method, and the like.
In the present invention, metal ions are electrochemically reduced using nanodot electrodes composed of a large number of nano-sized conductive electrodes. In the following, the difference in particles obtained when a plate-like platinum electrode is used and when a nanodot platinum electrode is used will be described by way of examples.

ナノドット白金電極の製造方法)
本発明において極として使用するナノドット白金電極は、図1(a)から図1(c)に示すように、以下の手順で作成した。
まず白金の板状基板1の表面を絶縁性の樹脂2でコーティングした(図1(a))。その後、ナノインプリンティングにより一辺の長さが約1μmの正方形の多数のホール4からなるパターン基板3を形成した(図1(b))。このように形成したパターン基板に電気化学的めっきを施すことによって、上述したホール部分に、白金を埋め込み導電性電極を形成してナノドット白金電極5を得た(図1(c))。
( Manufacturing method of nanodot platinum electrode)
The nanodot platinum electrode used as a pole in the present invention was prepared by the following procedure as shown in FIGS. 1 (a) to 1 (c).
First, the surface of the platinum plate-like substrate 1 was coated with an insulating resin 2 (FIG. 1A). Thereafter, a pattern substrate 3 composed of a large number of square holes 4 each having a side length of about 1 μm was formed by nanoimprinting (FIG. 1B). By applying electrochemical plating to the pattern substrate thus formed, platinum was embedded in the hole portion described above to form a conductive electrode to obtain a nanodot platinum electrode 5 (FIG. 1C).

(板状白金電極を用いた場合と、ナノドット白金電極を用いた時の得られる粒子の相異)
板状白金電極を用いた場合と、ナノドット白金電極を用いた場合において、それぞれ得られる粒子の相異を、以下の銅ナノ粒子製造実験により確認した。
(Differences in the particles obtained when using a plate-like platinum electrode and when using a nanodot platinum electrode)
When the plate-like platinum electrode was used and when the nanodot platinum electrode was used, the difference in the obtained particles was confirmed by the following copper nanoparticle production experiment.

まず支持電解質として希硫酸を少量添加した水溶液200gに、有機物分散媒としてポリビニルピロリドン(PVP)を0.5g、製造対象の金属イオン原料として酢酸銅0.5g添加して銅イオンを含む導電性水溶液である反応溶液を作成した。続いてこの溶液中で、2cm四方の銅シートからなる陽極(アノード電極)と、上記製法によって作成した白金ナノドット基板からなる陰極(カソード電極)を30分間通電した。この時、印加した電圧は参照電極に対して1V、電流密度は0.1mA/cm2とした。その後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、透過電子顕微鏡(TEM)を用いて、生成した微粒子を観測した。また陰極(カソード電極)に板状白金電極を用いた場合も同様の条件で銅ナノ粒子製造を実施した。
上記実験により得られた結果を表1に示す。

Figure 0004878196
電気化学還元法によって得られた銅微粒子の特徴)
表1から明らかなように、カソード電極にナノドット白金電極を使用して金属イオンの電気化学的還元を行うと、粒子形状は球状で、平均粒径は50nmであるのに対して、カソード電極に板状白金電極を使用して同様に電気化学的還元を行うと、粒子形状は棒状(または樹枝状)で、平均粒径は200nmである。従って、カソード電極にナノドット白金電極を用いて金属イオンの電気化学的還元を行うと、粒状で、ナノサイズの金属微粒子を効率よく製造することができる。
更に、この発明においては、印加する電流をパルス電流にし、さらに反応溶液およびカソード電極を超音波振動させる。以下に、印加電流をパルスにした時の効果および反応溶液およびカソード電極を超音波振動させた時の効果を実施例によって説明する。
First, a conductive aqueous solution containing copper ions by adding 0.5 g of polyvinylpyrrolidone (PVP) as an organic dispersion medium and 0.5 g of copper acetate as a metal ion raw material to be produced to 200 g of an aqueous solution containing a small amount of dilute sulfuric acid as a supporting electrolyte. A reaction solution was prepared. Subsequently, in this solution, an anode (anode electrode) made of a 2 cm square copper sheet and a cathode (cathode electrode) made of a platinum nanodot substrate prepared by the above production method were energized for 30 minutes. At this time, the applied voltage was 1 V with respect to the reference electrode, and the current density was 0.1 mA / cm2. Thereafter, the obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, the generated fine particles were observed using a transmission electron microscope (TEM). Further, when a plate-like platinum electrode was used as the cathode (cathode electrode), copper nanoparticles were produced under the same conditions.
The results obtained from the above experiment are shown in Table 1.
Figure 0004878196
( Characteristics of copper fine particles obtained by electrochemical reduction method)
As is apparent from Table 1, when a metal dot is electrochemically reduced using a nanodot platinum electrode as the cathode electrode, the particle shape is spherical and the average particle diameter is 50 nm. When electrochemical reduction is similarly performed using a plate-like platinum electrode, the particle shape is rod-shaped (or dendritic), and the average particle size is 200 nm. Therefore, when a metal dot is electrochemically reduced using a nanodot platinum electrode as a cathode electrode, granular nanosized metal fine particles can be efficiently produced.
Furthermore, in the present invention, the applied current is changed to a pulse current, and the reaction solution and the cathode electrode are vibrated ultrasonically. Hereinafter, the effect when the applied current is made into a pulse and the effect when the reaction solution and the cathode electrode are vibrated ultrasonically will be described by way of examples.

印加電流をパルスにした時の効果)
印加電流をパルス電流にした時の効果について下記の実験により確認した。
カソード電極に実施例1で作成したナノドット白金電極を用い、通電条件以外が実施例2と同様の条件で、図2に示す、電圧振幅1V、電流密度(ip)0.1mA/cm2、周波数100Hzのパルス電流(ただしToff=Ton)を印加した。30分間の通電後得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、透過電子顕微鏡(TEM)を用いて、生成した粒子を観測した。その結果を表2に示す。

Figure 0004878196
表2から明らかなように、直流電流を印加した場合の平均粒径が50nmであるのに対して、パルス電流を印加した場合の平均粒径は30nmである。従って、印加する電流をパルス電流にすることによって、得られる金属微粒子の形状均一性が一層向上している。
(Effect when applying current to pulse)
The effect when the applied current was changed to a pulse current was confirmed by the following experiment.
The nanodot platinum electrode prepared in Example 1 is used as the cathode electrode, and the voltage amplitude is 1 V, the current density (ip) is 0.1 mA / cm2, and the frequency is 100 Hz as shown in FIG. A pulse current (Toff = Ton) was applied . The colloidal solution obtained after the energization for 30 minutes was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, the generated particles were observed using a transmission electron microscope (TEM). The results are shown in Table 2.
Figure 0004878196
As is apparent from Table 2, the average particle diameter when a direct current is applied is 50 nm, whereas the average particle diameter when a pulse current is applied is 30 nm. Therefore, by making the applied current a pulse current, the shape uniformity of the obtained metal fine particles is further improved.

(反応溶液およびカソード電極を超音波振動させた時の効果)
反応溶液およびカソード電極を超音波振動させた時の効果について下記の実験により確認した。カソード電極に実施例1で作成したナノドット白金電極を用い、反応溶液を超音波振動装置により振動させながら、実施例2,3と同様の条件で電気化学還元を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、透過電子顕微鏡(TEM)を用いて、生成した粒子を観測した。その結果を表3に示す。

Figure 0004878196
表3から明らかなように、反応溶液およびカソード電極を振動させないで直流電流を使用したとき、平均粒径50nmの球状の粒子であるのに対して、直流電流を使用し、反応溶液およびカソード電極を超音波振動させた時は、平均粒径20nmの球状の粒子である。更に、直流電流の代わりにパルス電流を印加すると、反応溶液およびカソード電極を超音波振動させた時は、平均粒径15nmの球状の粒子である。即ち、印加電流をパルスにした時の効果および反応溶液およびカソード電極を超音波振動させると、金属微粒子の形状均一性がより一層向上する。
上述したように、適当な有機保護剤(例えばポリビニルピロリドンを分散させた電解質溶液中(例えば、水、THFなど)で、ナノサイズの白金ドット電極からなるカソードと、対象金属のバルク体からなるアノードに通電することで、有機保護剤に被膜された金属微粒子を得ることができる。この時、通電する電流をパルス電流にすることで、さらには反応溶液および電極を振動させることにより、得られる金属微粒子の粒径がより小さくまた形状がより球状になる。
(Effect when the reaction solution and cathode electrode are vibrated ultrasonically)
The effect of ultrasonically vibrating the reaction solution and the cathode electrode was confirmed by the following experiment. The nanodot platinum electrode prepared in Example 1 was used as the cathode electrode, and electrochemical reduction was performed under the same conditions as in Examples 2 and 3 while vibrating the reaction solution with an ultrasonic vibration device. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, the generated particles were observed using a transmission electron microscope (TEM). The results are shown in Table 3.
Figure 0004878196
As is apparent from Table 3, when direct current is used without vibrating the reaction solution and the cathode electrode, the direct current is used for the reaction solution and the cathode electrode, while the spherical particles have an average particle diameter of 50 nm. Is a spherical particle having an average particle diameter of 20 nm. Furthermore, when a pulse current is applied instead of a direct current, when the reaction solution and the cathode electrode are vibrated ultrasonically, they are spherical particles having an average particle diameter of 15 nm. That is, when the applied current is pulsed and when the reaction solution and the cathode electrode are vibrated ultrasonically, the shape uniformity of the metal fine particles is further improved.
As described above, in an electrolyte solution (for example, water, THF, etc.) in which an appropriate organic protective agent (for example, polyvinylpyrrolidone ) is dispersed, a cathode composed of a nano-sized platinum dot electrode and a bulk body of the target metal By energizing the anode, fine metal particles coated with an organic protective agent can be obtained. At this time, the current to be energized is changed to a pulse current, and further, the reaction solution and the electrode are vibrated, whereby the resulting metal fine particles have a smaller particle size and a more spherical shape.

この発明によると、ナノサイズの多数の導電性ナノドット電極を用いて金属イオンの電気化学的還元を行うので、粒状でナノサイズの金属微粒子を効率よく製造することができる。更に、印加する電流をパルス電流にし、さらに反応溶液およびカソード電極を超音波振動させるので、得られる金属微粒子の形状均一性がより向上するので、産業上の利用可能性が大きい。 According to the present invention, since metal ions are electrochemically reduced using a large number of nano-sized conductive nanodot electrodes , granular nano-sized metal fine particles can be efficiently produced. Furthermore, since the applied current is changed to a pulse current, and the reaction solution and the cathode electrode are ultrasonically vibrated, the shape uniformity of the obtained metal fine particles is further improved, and thus the industrial applicability is great.

図1は、ナノドット白金電極の製造方法を説明する模式図である。FIG. 1 is a schematic view for explaining a method for producing a nanodot platinum electrode. 図2は、パルス電流を示す図である。FIG. 2 is a diagram showing a pulse current.

符号の説明Explanation of symbols

1 白金の板状基板
2 絶縁性樹脂
3 パターン基板
4 ホール
5 ナノドット白金電極
1 platinum plate-like substrate 2 insulating resin 3 pattern substrate 4 hole 5 nanodot platinum electrode

Claims (4)

銅、ニッケル、コバルト、鉄、亜鉛、スズ、銀、金、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウムから選択された少なくとも1種の金属からなる製造対象の金属である陽極と、白金もしくはカーボンからなる最大長さが1μm以下の互いに絶縁された多数の導電性ナノドット電極からなる陰極を有し、
さらに、前記陽極と前記陰極を、導電性水溶液中で、通電して金属微粒子を製造する金属微粒子の製造方法であって、
前記導電性水溶液は、製造対象の金属イオンを含み、
さらに、有機物分散媒として、ポリビニルピロリドン等のアミド系の高分子と、ポリエチレンイミンが添加されたものであることを特徴とする
金属微粒子の製造方法。
An anode, which is a metal to be manufactured, made of at least one metal selected from copper, nickel, cobalt, iron, zinc, tin, silver, gold, platinum, palladium, iridium, rhodium, osmium, and ruthenium, and platinum or carbon A cathode consisting of a number of electrically conductive nanodot electrodes insulated from each other with a maximum length of 1 μm or less,
Furthermore, the anode and the cathode, in a conductive aqueous solution, a method for producing metal fine particles by producing metal fine particles by energization,
The conductive aqueous solution contains a metal ion to be manufactured,
Furthermore, a method for producing fine metal particles, characterized in that an amide polymer such as polyvinylpyrrolidone and polyethyleneimine are added as an organic dispersion medium .
前記陰極が白金からなる導電性ナノドット電極で、前記陽極が銅シートからなる電極であり、さらに、支持電解質としての希硫酸水溶液に、有機分散媒としてポリビニルピロリドンと、製造対象の金属イオン原料として酢酸銅を加えた導電性水溶液を用いて銅微粒子を製造することを特徴とする請求項1に記載の金属微粒子の製造方法。   The cathode is a conductive nanodot electrode made of platinum, the anode is an electrode made of a copper sheet, and further, an aqueous solution of dilute sulfuric acid as a supporting electrolyte, polyvinylpyrrolidone as an organic dispersion medium, and acetic acid as a metal ion raw material to be produced. 2. The method for producing fine metal particles according to claim 1, wherein the fine copper particles are produced using a conductive aqueous solution to which copper is added. 請求項2に記載の銅微粒子を製造する金属微粒子の製造方法おいて、希硫酸水溶液200質量部に対して、有機分散媒としてポリビニルピロリドン0.5重量部と、製造対象の金属イオン原料として酢酸銅0.5重量部加えた導電性水溶液を用いて、平均粒径50nmの銅粒子を製造することを特徴とする請求項2に記載の金属微粒子の製造方法。   In the manufacturing method of the metal microparticle which manufactures the copper microparticle of Claim 2, with respect to 200 mass parts of dilute sulfuric acid aqueous solution, 0.5 weight part of polyvinylpyrrolidone as an organic dispersion medium, and acetic acid as a metal ion raw material to be manufactured The method for producing fine metal particles according to claim 2, wherein copper particles having an average particle diameter of 50 nm are produced using a conductive aqueous solution added with 0.5 parts by weight of copper. 前記通電を周波数1Hz以上のパルス電流により行うか、前記通電中に、導電性水溶液および陰極に超音波振動を与えるか、あるいは前記通電を周波数1Hz以上のパルス電流により行うと同時に前記通電中に、導電性水溶液および陰極に超音波振動を与える方法により平均粒径15〜30nmの銅微粒子を製造することを特徴とする請求項3に記載の金属微粒子の製造方法。
The energization is performed with a pulse current having a frequency of 1 Hz or higher, the ultrasonic vibration is applied to the conductive aqueous solution and the cathode during the energization, or the energization is performed with the pulse current having a frequency of 1 Hz or more and simultaneously with the energization, 4. The method for producing metal fine particles according to claim 3, wherein copper fine particles having an average particle diameter of 15 to 30 nm are produced by a method of applying ultrasonic vibration to the conductive aqueous solution and the cathode.
JP2006094449A 2006-03-30 2006-03-30 Method for producing metal fine particles using conductive nanodot electrode Expired - Fee Related JP4878196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094449A JP4878196B2 (en) 2006-03-30 2006-03-30 Method for producing metal fine particles using conductive nanodot electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094449A JP4878196B2 (en) 2006-03-30 2006-03-30 Method for producing metal fine particles using conductive nanodot electrode

Publications (2)

Publication Number Publication Date
JP2007270184A JP2007270184A (en) 2007-10-18
JP4878196B2 true JP4878196B2 (en) 2012-02-15

Family

ID=38673290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094449A Expired - Fee Related JP4878196B2 (en) 2006-03-30 2006-03-30 Method for producing metal fine particles using conductive nanodot electrode

Country Status (1)

Country Link
JP (1) JP4878196B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064724B2 (en) * 2006-06-09 2012-10-31 学校法人早稲田大学 Electrode, metal fine particle production apparatus, and metal fine particle production method
JP2009155678A (en) * 2007-12-25 2009-07-16 Mitsubishi Materials Corp Method for recovering noble metal, and recovered noble metal
JP5065072B2 (en) * 2008-02-07 2012-10-31 古河電気工業株式会社 Method for producing copper fine particles
PL212865B1 (en) * 2009-03-20 2012-12-31 Inst Chemii Przemyslowej Im Prof Ignacego Moscickiego Method of obtaining copper powders and nano-powders from industrial electrolytes, also the waste ones
JP5566743B2 (en) * 2010-03-26 2014-08-06 古河電気工業株式会社 Method for producing copper alloy fine particles
JP5485239B2 (en) * 2010-09-17 2014-05-07 古河電気工業株式会社 Method for producing copper fine particles
JP6004643B2 (en) * 2011-12-20 2016-10-12 学校法人早稲田大学 Method and apparatus for producing metal fine particles
CN104030414B (en) * 2014-06-23 2015-09-09 北京师范大学 For the heterogeneous electricity-Fenton device of high concentrated organic wastewater process
CN104045132B (en) * 2014-06-23 2016-03-02 北京师范大学 Can be used for the three-dimensional porous membrane electrode of photoelectric-synergetic effect Fenton system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778279B2 (en) * 1985-05-27 1995-08-23 松下電工株式会社 Method for producing fine metal particles
JPH04173992A (en) * 1990-11-06 1992-06-22 Matsushita Electric Ind Co Ltd Production of metal particle
JP3767850B2 (en) * 2000-09-20 2006-04-19 住友電気工業株式会社 Method for producing metal powder
JP3913725B2 (en) * 2003-09-30 2007-05-09 日鉱金属株式会社 High purity electrolytic copper and manufacturing method thereof
US7393438B2 (en) * 2004-07-22 2008-07-01 Phelps Dodge Corporation Apparatus for producing metal powder by electrowinning
JP2006063445A (en) * 2004-07-30 2006-03-09 Shinano Kenshi Co Ltd Metal particle and method for producing the same

Also Published As

Publication number Publication date
JP2007270184A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4878196B2 (en) Method for producing metal fine particles using conductive nanodot electrode
Islam et al. Recent developments in the sonoelectrochemical synthesis of nanomaterials
Gu et al. Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces
Mohanty Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals
KR100907758B1 (en) Metallization of Carbon Nanotubes for Field Emission Applications
Tien et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method
JP5064724B2 (en) Electrode, metal fine particle production apparatus, and metal fine particle production method
JP7397061B2 (en) Metal-CNT composites, their manufacturing methods and materials
WO2004005193A2 (en) Fabrication and activation processes for nanostructure composite field emission cathodes
WO2007029395A1 (en) Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
TW200410777A (en) Nanostructured metal powder and the method of fabricating the same
Qiu et al. Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method
KR100836538B1 (en) Metallization of carbon nanotubes for field emission applications
Yu et al. Electrochemical synthesis of palladium nanostructures with controllable morphology
Wang et al. Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells
Mebed et al. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates
Sakkas et al. Fundamental studies of sonoelectrochemical nanomaterials preparation
JP4351120B2 (en) Method for producing metal particles
JP6090773B2 (en) Method for producing alloy nanoparticles
CA2533269A1 (en) Carbon nanotube manufacturing apparatus and method for manufacturing carbon nanotube
US8007650B2 (en) Apparatus for manufacturing metal nanotube and process for manufacturing metal nanotube
CN113634743B (en) Ostwald nano welding method
JP6008272B2 (en) Method for producing metal nano-x raster-supported carbon porous body
JP5566794B2 (en) Method for producing metal fine particles
JP2006063445A (en) Metal particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R151 Written notification of patent or utility model registration

Ref document number: 4878196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees