JP2009185361A - High-strength hot-rolled steel sheet and producing method therefor - Google Patents

High-strength hot-rolled steel sheet and producing method therefor Download PDF

Info

Publication number
JP2009185361A
JP2009185361A JP2008028455A JP2008028455A JP2009185361A JP 2009185361 A JP2009185361 A JP 2009185361A JP 2008028455 A JP2008028455 A JP 2008028455A JP 2008028455 A JP2008028455 A JP 2008028455A JP 2009185361 A JP2009185361 A JP 2009185361A
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
hot
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028455A
Other languages
Japanese (ja)
Other versions
JP2009185361A5 (en
JP5194858B2 (en
Inventor
Shinjiro Kaneko
真次郎 金子
Kaneharu Okuda
金晴 奥田
Tetsuo Shimizu
哲雄 清水
Nagaaki Moriyasu
永明 森安
Masahide Watabe
真英 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008028455A priority Critical patent/JP5194858B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to US12/866,382 priority patent/US20100319819A1/en
Priority to KR1020107014865A priority patent/KR101203018B1/en
Priority to PCT/JP2009/052244 priority patent/WO2009099237A1/en
Priority to CN2009801045882A priority patent/CN101939459B/en
Priority to EP09708321.6A priority patent/EP2243853B1/en
Publication of JP2009185361A publication Critical patent/JP2009185361A/en
Publication of JP2009185361A5 publication Critical patent/JP2009185361A5/ja
Application granted granted Critical
Publication of JP5194858B2 publication Critical patent/JP5194858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength hot-rolled steel sheet which has tensile strength (TS) of 540-780 MPa, and is excellent in the strength uniformity wherein variance in strength is small by using an inexpensive Ti series general-using steel sheet. <P>SOLUTION: The component composition of this steel sheet contains, by mass, 0.05-0.12% C, ≤0.5% Si, 0.8-1.8% Mn, ≤0.030% P, ≤0.01% S, 0.005-0.1% Al, ≤0.01% N, 0.030-0.080% Ti and the balance Fe with inevitable impurities. And, in the structure, a polygonal-ferrite is contained in faction ratio of ≥70% and the quantity of Ti existing in the precipitation having size of <20 nm, is ≥50% of Ti* value calculated with the following formula (1)...T*=[Ti]-48/14×[N]. Wherein, [Ti] and [N] each represent the component-compositions (mass%) of Ti ans N in the steel sheet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用鋼板などに使途に有用な、引張強さ(TS)が540〜780MPaで、コイル間およびコイル内での強度バラツキの小さい強度均一性に優れた、高強度熱延鋼板およびその製造方法に関するものである。   The present invention is a high-strength hot-rolled steel sheet having a tensile strength (TS) of 540 to 780 MPa that is useful for use in automobile steel sheets and the like, and excellent in strength uniformity with small strength variations between and within the coils. It relates to the manufacturing method.

近年、地球環境保全の観点から、CO2の排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心とした安全性向上も要求されている。このため、自動車車体の軽量化および強化の双方が積極的に進められている。自動車車体の軽量化と強化を同時に満たすには、剛性の問題とならない範囲で部材素材を高強度化し、板厚を減ずることによって軽量化することが効果的といわれており、最近では高強度鋼板が自動車部品に積極的に使用されている。軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば構造用材料として引張強度(TS)が540MPa以上の鋼板を使用する動向にある。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, safety improvements centering on the collision characteristics of automobile bodies are also required. For this reason, both weight reduction and strengthening of the automobile body are being actively promoted. In order to satisfy the weight reduction and strengthening of the car body at the same time, it is said that it is effective to increase the material strength within the range where rigidity does not become a problem and reduce the weight by reducing the plate thickness. Are actively used in automotive parts. Since the weight reduction effect increases as the strength of the steel sheet used increases, the automotive industry tends to use, for example, a steel sheet having a tensile strength (TS) of 540 MPa or more as a structural material.

一方、鋼板を素材とする自動車部品の多くは、プレス成形によって製造される。高強度鋼板の成形性に関しては、割れ、しわ以外に寸法精度が重要であり、特にスプリングバックの制御が重要課題になっている。最近ではCAE(Computer Assisted Engineering)により新車の開発が非常に効率化されてきて、金型を何度も造ることがなくなってきた。同時に、鋼板の特性を入力するとスプリングバック量をより精度良く予測可能となっている。スプリングバック量にバラツキがあると、部品同士を接合する際に問題となるので、より小さくする必要があるが、それには、特に強度バラツキの小さい強度均一性に優れた高強度鋼板が求められている。   On the other hand, many automobile parts made of steel plates are manufactured by press molding. Regarding the formability of a high-strength steel sheet, dimensional accuracy is important in addition to cracking and wrinkling, and in particular, control of the spring back is an important issue. Recently, CAE (Computer Assisted Engineering) has made the development of new cars much more efficient, and it has become impossible to make molds many times. At the same time, when the characteristics of the steel plate are input, the amount of springback can be predicted with higher accuracy. If there is variation in the amount of springback, it becomes a problem when parts are joined together, so it is necessary to make it smaller, but this requires a high-strength steel sheet with particularly low strength variation and excellent strength uniformity. Yes.

コイル内の強度バラツキを小さくする方法として、特許文献1(特開平4−289125号公報)には、Nbを含有する低Mn鋼(Mn:0.5%以下)を熱間圧延するに際し、粗圧延後のシートバーを一旦コイル状に巻取り、その後巻き戻しながら先行するシートバーに接合し、連続的に仕上げ圧延を行うことにより、高強度熱延鋼板のコイル内の強度均一化を達成する方法が開示されている。また、特許文献2(特開2002−322541号公報)には、TiとMoを複合添加して、非常に微細な析出物を均一に分散させた強度バラツキの小さい強度均一性に優れた、高強度熱延鋼板が提案されている。
特開平4−289125号公報 特開2002−322541号公報
As a method for reducing the strength variation in the coil, Patent Document 1 (Japanese Patent Laid-Open No. 4-289125) discloses that after hot rolling a low-Mn steel containing Nb (Mn: 0.5% or less), after rough rolling. A method of achieving uniform strength in a coil of a high-strength hot-rolled steel sheet by winding the sheet bar into a coil shape, joining to the preceding sheet bar while rewinding, and continuously performing finish rolling. It is disclosed. Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-322541) includes a combination of Ti and Mo, which is excellent in strength uniformity with small strength variation in which very fine precipitates are uniformly dispersed. Strength hot-rolled steel sheets have been proposed.
JP-A-4-289125 JP 2002-322541 A

しかしながら、上述の従来技術には、次のような問題がある。
特許文献1に記載の方法では、巻取時にコイルを再度分割することなどの問題がある。さらに、Nb添加のためコスト増加を招き経済的に不利である。また、特許文献2に記載の鋼板では、Ti系であるが、高価なMoを添加する必要があり、コストアップを招く。さらには、いずれの特許文献においても、コイルの幅方向と長手方向の両方を含む、コイル面内の2次元的な強度の均一性については考慮されていない。このようなコイル面内の強度バラツキは、いかに巻取り温度を均一に制御したとしても巻取り後のコイルの冷却履歴が位置毎に異なるために不可避的に生じるという問題がある。
However, the above prior art has the following problems.
In the method described in Patent Document 1, there is a problem that the coil is divided again at the time of winding. Further, Nb addition causes an increase in cost and is economically disadvantageous. Further, although the steel sheet described in Patent Document 2 is Ti-based, expensive Mo needs to be added, resulting in an increase in cost. Furthermore, none of the patent documents considers the two-dimensional intensity uniformity in the coil plane including both the width direction and the longitudinal direction of the coil. Such intensity variation in the coil surface inevitably occurs because the coil cooling history after winding differs depending on the position, no matter how the winding temperature is controlled uniformly.

本発明は、かかる事情に鑑み、上記問題点を有利に解決し、安価なTi系汎用鋼板を用い、引張強度(TS)が540〜780MPaで、強度バラツキの小さい強度均一性に優れた高強度熱延鋼板を提供することを目的としている。   In view of such circumstances, the present invention advantageously solves the above-mentioned problems, uses an inexpensive Ti-based general-purpose steel plate, has a tensile strength (TS) of 540 to 780 MPa, and has high strength excellent in strength uniformity with small strength variation. The object is to provide a hot-rolled steel sheet.

上記のような課題を解決すべく鋭意検討を進めたところ、鋼板の化学組成、金属組織および析出強化に寄与するTiの析出状態とを制御することにより、熱延鋼板全面に渡って強度バラツキの小さい強度均一性に優れた高強度熱延鋼板を得ることに成功し本発明に至った。   As a result of diligent investigations to solve the above-mentioned problems, by controlling the chemical composition of the steel sheet, the metal structure, and the precipitation state of Ti that contributes to precipitation strengthening, there is no variation in strength over the entire surface of the hot-rolled steel sheet. The present invention succeeded in obtaining a high-strength hot-rolled steel sheet excellent in small strength uniformity.

本発明による、面内強度のバラツキの小さい強度均一性に優れた高強度熱延鋼板およびその製造方法の要旨は以下の通りである。
[1]成分組成が、質量%でC:0.05〜0.12%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.030〜0.080%を含有し、残部がFeおよび不可避的不純物からなり、ポリゴナルフェライトが70%以上の分率で含む組織を有し、かつサイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の50%以上であることを特徴とする高強度熱延鋼板。
Ti*=[Ti]−48÷14×[N]…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
[2]成分組成が、質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.030〜0.080%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1150〜1300℃の加熱温度に加熱後、800〜950℃の仕上げ温度で熱間仕上げ圧延を行い、該熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度で冷却を開始し、650℃〜750℃の温度で冷却を停止し、引き続いて2秒〜15秒の放冷工程を経たのちに、再度100℃/s未満の冷却速度で冷却を施し、550〜650℃の温度域でコイル状に巻き取ることを特徴とする高強度熱延鋼板の製造方法
The summary of the high-strength hot-rolled steel sheet and the method for producing the same according to the present invention, which are excellent in strength uniformity with small variations in in-plane strength, are as follows.
[1] Component composition is mass% C: 0.05-0.12%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.030% or less, S: 0.01% or less, Al: 0.005-0.1%, N : 0.01% or less, Ti: 0.030 to 0.080%, with the balance consisting of Fe and inevitable impurities, with a structure containing polygonal ferrite in a fraction of 70% or more, and in precipitates less than 20 nm in size A high-strength hot-rolled steel sheet characterized in that the amount of Ti present in is 50% or more of the value of Ti * calculated by the following formula (1).
Ti * = [Ti] −48 ÷ 14 × [N] (1)
Here, [Ti] and [N] indicate the component composition (mass%) of Ti and N of the steel sheet, respectively.
[2] Component composition is mass%, C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.030% or less, S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.01% or less, Ti: 0.030-0.080%, the steel slab consisting of Fe and unavoidable impurities in the remainder is heated to a heating temperature of 1150-1300 ° C and then hot at a finishing temperature of 800-950 ° C Perform finish rolling, start cooling at a cooling rate of 20 ° C./s or more within 2 seconds after the hot finish rolling, stop cooling at a temperature of 650 ° C. to 750 ° C., and continue for 2 to 15 seconds. A method for producing a high-strength hot-rolled steel sheet, which is subjected to a cooling step and then cooled again at a cooling rate of less than 100 ° C / s and wound in a coil shape in a temperature range of 550 to 650 ° C.

本発明によれば、引張強度(TS)が540〜780MPaの高強度熱延鋼板で、コイル内での強度バラツキを狭小化することが可能であり、これにより、本鋼板のプレス成形時の形状凍結性や部品強度、耐久性能を安定化することが達成され、自動車部品の生産・使用時における信頼性の向上がはかれることになる。さらに、本発明では、Nb等の高価な原料を添加せずとも上記効果が得られるので、コスト削減がはかれることになる。   According to the present invention, a high strength hot rolled steel sheet having a tensile strength (TS) of 540 to 780 MPa, it is possible to narrow the strength variation in the coil, and thereby the shape of the steel sheet during press forming can be reduced. Stabilization of freezing, component strength, and durability performance is achieved, and reliability during production and use of automobile parts is improved. Furthermore, in the present invention, the above effect can be obtained without adding an expensive raw material such as Nb, so that the cost can be reduced.

以下に本発明を詳細に説明する。
1)まず、本発明における強度バラツキが少ない、即ち強度均一性の評価方法について説明する。
対象の鋼板の一例としてはコイル状に巻きとったもので、その重量が5t以上、鋼板の幅が500mm以上のものがあげられる。このような場合には、また熱間圧延ままの状態における、長手方向の先端部と後端部で最内周と最外周の各々ひと巻きと幅方向の両端10mmは評価の対象とはしない。これの、長手方向に少なくとも10分割、幅方向に少なくとも5分割に2次元的に測定した引張強度の分布をもって強度バラツキを評価するものとする。また、本発明は鋼板の引張強度(TS)が540MPa以上、780MPa以下の範囲を対象としている。
The present invention is described in detail below.
1) First, a method for evaluating strength uniformity with little variation in strength in the present invention will be described.
An example of the target steel sheet is a coil wound in a coil shape with a weight of 5 t or more and a steel sheet width of 500 mm or more. In such a case, the innermost and outermost windings at the front and rear ends in the longitudinal direction and 10 mm at both ends in the width direction are not subject to evaluation in the hot-rolled state. The strength variation is evaluated by the distribution of tensile strength measured two-dimensionally in at least 10 divisions in the longitudinal direction and at least 5 divisions in the width direction. Further, the present invention is directed to the range where the tensile strength (TS) of the steel sheet is not less than 540 MPa and not more than 780 MPa.

2)つぎに、本発明における鋼の化学成分(成分組成)の限定理由について説明する。
なお、元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
2) Next, the reasons for limiting the chemical composition (component composition) of steel in the present invention will be described.
The unit of element content is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.

C:0.05〜0.12%
Cは、後述のTiとともに本発明における重要な元素である。Cは、Tiとともに炭化物を形成し、析出強化により鋼板を高強度するのに有効である。本発明では析出強化の観点からCを0.05%以上含有することが好ましく、さらに好ましくは0.06%以上である。一方、0.012%を超えるCの含有は良好な伸びや穴広げ性に悪影響を及ぼしやすく、C含有量の上限を0.12%とし、好ましくは0.10%以下とする。
C: 0.05-0.12%
C is an important element in the present invention together with Ti described later. C forms a carbide with Ti and is effective for increasing the strength of the steel sheet by precipitation strengthening. In the present invention, from the viewpoint of precipitation strengthening, it is preferable to contain 0.05% or more of C, and more preferably 0.06% or more. On the other hand, the content of C exceeding 0.012% tends to adversely affect good elongation and hole expandability, and the upper limit of the C content is 0.12%, preferably 0.10% or less.

Si:0.5%以下
Siは、固溶強化の効果ともに延性を向上させる効果がある。上記効果を得るためには、Siは0.01%以上含有することが有効である。一方、Siを0.5%を超えて含有すると、熱間圧延時に赤スケールと称される表面欠陥が発生しやすくなり、鋼板とした時の表面外観を悪くすることがあるので、Si含有量は0.5%以下とすることが好ましく、さらに好ましくは0.3%以下とする。
Si: 0.5% or less
Si has the effect of improving ductility as well as the effect of solid solution strengthening. In order to acquire the said effect, it is effective to contain Si 0.01% or more. On the other hand, if Si is contained in excess of 0.5%, surface defects called red scales are likely to occur during hot rolling, and the surface appearance of the steel sheet may deteriorate, so the Si content is 0.5%. % Or less, and more preferably 0.3% or less.

Mn:0.8〜1.8%
Mnは、高強度化に有効であるとともに、変態点を下げ、フェライト粒径を微細化させる作用があり、Mnは0.8%以上含有する必要があり、好ましくは1.0%以上とする。一方、1.8%を超える過度のMnを含有すると、熱延後に低温変態相が生成して延性が低下したり、TiCの析出が不安定になりやすくなることから、Mn含有量の上限は1.8%とする。
Mn: 0.8-1.8%
Mn is effective for increasing the strength and has the effect of lowering the transformation point and making the ferrite grain size finer. Mn needs to be contained in an amount of 0.8% or more, preferably 1.0% or more. On the other hand, if it contains excessive Mn exceeding 1.8%, a low-temperature transformation phase is generated after hot rolling and the ductility is lowered, and TiC precipitation tends to become unstable, so the upper limit of Mn content is 1.8% And

P:0.030%以下
Pは、固溶強化の効果がある元素であり、また、Si起因のスケール欠陥を軽減する効果をもつ。しかしながら、0.030%を超える過剰なPの含有は、Pが粒界に偏析しやすく、靭性および溶接性を劣化させやすい。従って、P含有量の上限は0.030%とした。
P: 0.030% or less P is an element having an effect of strengthening solid solution, and has an effect of reducing scale defects caused by Si. However, if the P content exceeds 0.030%, P tends to segregate at grain boundaries, and toughness and weldability tend to deteriorate. Therefore, the upper limit of the P content is 0.030%.

S:0.01%以下
Sは、不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減する必要がある。具体的には、S含有量は、0.01%までは許容できるため、0.01%以下とする。
S: 0.01% or less S is an impurity and causes hot cracking. In addition, S is present as an inclusion in steel and deteriorates various properties of the steel sheet, so it is necessary to reduce it as much as possible. Specifically, the S content is 0.01% or less because it is acceptable up to 0.01%.

Al:0.005〜0.1%
Alは、鋼の脱酸元素として有用である他、不純物として存在する固溶Nを固定して耐常温時効性を向上させる作用がある.かかる作用を発揮させるためには、Al含有量は0.005%以上とする必要がある。一方、0.5%を超えるAlの含有は、高合金コストを招き、さらに表面欠陥を誘発しやすいので、Al含有量の上限を0.1%とする。
Al: 0.005-0.1%
In addition to being useful as a deoxidizing element for steel, Al has the effect of improving the normal temperature aging resistance by fixing solute N present as an impurity. In order to exert such an effect, the Al content needs to be 0.005% or more. On the other hand, if the Al content exceeds 0.5%, high alloy costs are caused and surface defects are more likely to be induced. Therefore, the upper limit of Al content is set to 0.1%.

N:0.01%以下
Nは耐常温時効性を劣化させる元素であり、できるだけ低減することが好ましい元素である。N含有量が多くなると耐常温時効性が劣化し、固溶Nを固定するために多量のAlやTi添加が必要となるため、できるだけ低減することが好ましく、N含有量の上限を0.01%とする。
N: 0.01% or less N is an element that degrades aging resistance at room temperature, and is an element that is preferably reduced as much as possible. When the N content increases, the room temperature aging resistance deteriorates, and a large amount of Al or Ti is required to fix the solid solution N. Therefore, it is preferable to reduce it as much as possible, and the upper limit of the N content is 0.01%. To do.

Ti:0.030〜0.080%
Tiは、析出強化により鋼を強化させるために重要な元素である。本願発明の場合、Cとともに炭化物を形成することで析出強化に寄与する。
つまり、引張強度TSが540MPa以上、780MPa以下の高強度鋼板を得るためには、析出物は析出物サイズ20nm未満となるように微細化することが好ましい。また、この微細な析出物(析出物サイズ20nm未満)の割合を高めることが重要である。この理由の一つとして、析出物のサイズが20nm以上では、転位の移動を抑制する効果が得られにくく、またポリゴナルフェライトを十分に硬質化できないため、強度が低下する場合があるからと考えられる。したがって、析出物のサイズは20nm未満とすることが好ましい。また、本願発明において、この20nm未満の微細なTiを含む析出物は、TiとCを共に上記範囲で添加することにより形成される。本明細書では、これらTiとCを含有する析出物を総称してTi系炭化物と呼ぶ。Ti系炭化物としては例えばTiC、Ti4C2S2などがあげられる。また、前記炭化物中にNを組成として含んだり、MnSなどと複合して析出していても良い。
本願発明の高強度鋼板においては、Ti系炭化物は、主にポリゴナルフェライト中に析出していることが、確認できている。これは、ポリゴナルフェライトにおけるCの固溶限は小さいので、過飽和のCがポリゴナルフェライト中に炭化物として析出しやすいためと考えられる。このため、このような析出物により軟質のポリゴナルフェライトが硬質化し、540MPa以上、780MPa以下の引張強度(TS)が得られることになる。同時にTiは、固溶Nと結合しやすいので、固溶Nを固定するのにも好ましい元素でもある。その意味で0.030%以上とする。しかしながら、Tiの過剰な添加は加熱段階で強度に寄与しない粗大なTiの未溶解炭化物であるTiC等を生成させるだけで好ましくなく、非経済的である。この観点より、Tiの上限を0.080%とする。
また、本発明では、上記した成分以外の残部は実質的に鉄および不可避的不純物の組成とすることが好ましい。
Ti: 0.030-0.080%
Ti is an important element for strengthening steel by precipitation strengthening. In the case of the present invention, it contributes to precipitation strengthening by forming carbide together with C.
That is, in order to obtain a high-strength steel sheet having a tensile strength TS of 540 MPa or more and 780 MPa or less, it is preferable to refine the precipitate so that the precipitate size is less than 20 nm. It is also important to increase the proportion of this fine precipitate (precipitate size less than 20 nm). One reason for this is that when the size of the precipitate is 20 nm or more, it is difficult to obtain the effect of suppressing the movement of dislocations, and polygonal ferrite cannot be hardened sufficiently, so that the strength may decrease. It is done. Therefore, the size of the precipitate is preferably less than 20 nm. In the present invention, the precipitate containing fine Ti of less than 20 nm is formed by adding both Ti and C within the above range. In the present specification, precipitates containing Ti and C are collectively referred to as Ti-based carbides. Examples of Ti-based carbides include TiC and Ti 4 C 2 S 2 . Further, N may be included in the carbide as a composition, or may be precipitated in combination with MnS or the like.
In the high-strength steel sheet of the present invention, it has been confirmed that Ti-based carbides are mainly precipitated in polygonal ferrite. This is presumably because the solid solubility limit of C in polygonal ferrite is small, and thus supersaturated C tends to precipitate as carbide in polygonal ferrite. For this reason, such a precipitate hardens soft polygonal ferrite, and a tensile strength (TS) of 540 MPa or more and 780 MPa or less is obtained. At the same time, Ti is a preferable element for fixing solute N because Ti is easily bonded to solute N. In that sense, 0.030% or more. However, excessive addition of Ti is not preferable because it only produces TiC, which is a coarse undissolved carbide of Ti that does not contribute to strength in the heating stage, and is uneconomical. From this viewpoint, the upper limit of Ti is set to 0.080%.
In the present invention, the balance other than the above-described components is preferably substantially composed of iron and inevitable impurities.

3)次に、本発明の鋼板の鋼組織を限定した理由について説明する。
ポリゴナルフェライトを70%以上の分率で含む組織を有し、かつ20nm未満のサイズの析出物中のTi量が、式(1)で示されるTi*の50%以上
本願発明にかかる高強度熱延鋼板の強度は、鋼自身が有しているベースとなる強度に、固溶強化、組織強化または析出強化の3つの強化機構によるそれぞれの強化量が重畳することで決定される。このうち、ベース強度は鉄の本来の強度であり、固溶強化分は化学組成が決まればほぼ一義的に定まることから、この二つの強化機構はコイル内の強度バラツキには殆ど関与しない。強度バラツキに最も関係が深いのが析出強化であり、次いで組織強化である。
3) Next, the reason why the steel structure of the steel sheet of the present invention is limited will be described.
The amount of Ti in the precipitate having a structure containing polygonal ferrite in a fraction of 70% or more and a size of less than 20 nm is 50% or more of Ti * represented by the formula (1). The strength of the hot-rolled steel sheet is determined by superimposing the respective strengthening amounts by the three strengthening mechanisms of solid solution strengthening, structure strengthening or precipitation strengthening on the base strength of the steel itself. Of these, the base strength is the original strength of iron, and the solid solution strengthening is determined almost uniquely when the chemical composition is determined. Therefore, these two strengthening mechanisms are hardly involved in the strength variation in the coil. Precipitation strengthening is most closely related to strength variation, followed by structure strengthening.

析出強化による強化量は、析出物のサイズと分散(具体的には析出物間隔)によって定められる。析出物の分散は、析出物の量とサイズによって表現できるため、析出物のサイズと量が決まれば析出強化による強化量が定まる。組織強化は鋼組織の種類によって定まる。鋼組織はオーステナイトから変態する温度域によって、その種類が決まり、化学組成と鋼組織が決まれば、強化量が定まる。   The amount of strengthening by precipitation strengthening is determined by the size and dispersion of the precipitate (specifically, the precipitate interval). Since the dispersion of the precipitate can be expressed by the amount and size of the precipitate, if the size and amount of the precipitate are determined, the strengthening amount by precipitation strengthening is determined. The structure strengthening is determined by the type of steel structure. The type of steel structure is determined by the temperature range that transforms from austenite. If the chemical composition and steel structure are determined, the amount of strengthening is determined.

4)次に、この発明の根拠となる実験事実について述べる。
化学組成が、0.08C‐0.1Si-1.5Mn-0.011P-0.002S-0.017Al-0.005Nを基本組成としてTi添加量が0.04%である鋼Aおよび0.06%である鋼Bを実験室的に溶製して鋳片とした。これらを分塊圧延で25mm厚のシートバーとした。これを1230℃にて加熱し、5パスで仕上げ温度880℃の熱間圧延をおこない、仕上げ圧延から1.7秒後に25℃/sの冷却速度で水冷却を施した。このとき冷却停止温度を720〜520℃の間で種々変化させた。水冷却の後は10秒間放冷した後500〜700℃の電気炉に挿入して巻取り処理をおこない、炉中の保持時間を1〜300分の間で変化させた。このとき、冷却停止温度と炉温の差が30℃以上の場合には、放冷に引続いて25℃/sの冷却速度で水冷却を炉温度の30℃手前まで実施している。以上の方法で、Tiの析出状態と鋼組織とを種々に変化させた熱延鋼板を製造した。これらの熱延鋼帯を酸洗後、伸び率0.5%の調質圧延を施したのち、引張試験片と析出物分析サンプルを採取した。
4) Next, experimental facts that serve as the basis for the present invention will be described.
Steel composition with 0.08C-0.1Si-1.5Mn-0.011P-0.002S-0.017Al-0.005N as the basic composition and Ti addition of 0.04% and steel B with 0.06% in the laboratory It was made into a slab by melting. These were made into 25 mm thick sheet bars by split rolling. This was heated at 1230 ° C., hot-rolled at a finishing temperature of 880 ° C. in 5 passes, and water-cooled at a cooling rate of 25 ° C./s 1.7 seconds after finish rolling. At this time, the cooling stop temperature was variously changed between 720-520 ° C. After cooling with water, it was allowed to cool for 10 seconds and then inserted into an electric furnace at 500 to 700 ° C. to perform a winding process, and the holding time in the furnace was changed between 1 and 300 minutes. At this time, when the difference between the cooling stop temperature and the furnace temperature is 30 ° C. or more, the water cooling is performed at a cooling rate of 25 ° C./s to 30 ° C. before the furnace temperature following the standing to cool. By the above method, hot-rolled steel sheets with various Ti precipitation states and steel structures were produced. These hot-rolled steel strips were pickled and subjected to temper rolling with an elongation of 0.5%, and then a tensile specimen and a precipitate analysis sample were collected.

上記のように製造された熱延鋼板群より、サイズ20nm未満の析出物に含まれるTi量が、下式(1)で示されるTi*の50%以上であるものを抽出し、ポリゴナルフェライトの分率(%)と引張強度TS(MPa)との相関を調査した結果を図1に示す。この図から分かるようにポリゴナルフェライト分率の増加ともに引張強度TSは減少の傾向を示すが、70%以上のポリゴナルフェライト分率ではTSの変動が小さくなり安定化する。
尚、ポリゴナルフェライトの分率は例えば以下のようにして求めることができる。鋼板のL断面(圧延方向に平行な断面)の板厚の表層10%を除く部分について、5%ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で1000倍に拡大して撮影する。粒界の凹凸が0.1μm未満の滑らかで、かつ粒内に腐食痕が残らず平滑なフェライト結晶粒をポリゴナルフェライトと定義して、その他の形態のフェライト相やパーライトやベイナイトなどの異なる変態相区別する。これらを画像解析ソフト上で色分けし、その面積率をもって、ポリゴナルフェライト分率とする。
同様に、上記のように製造された熱延鋼板群より、ポリゴナルフェライトの分率が70%以上のものを抽出し、下式(1)で示されるTi*に対するサイズ20nm未満の析出物に含まれるTi量の割合(%)と、引張強度TS(MPa)との相関を調査した結果を図2に示す。上述したように、析出強化に寄与するサイズ20nm未満の析出物は、添加されたTiにより形成されるため、20nm未満の析出物中のTi量を把握すれば、Tiが効率良く微細析出物として析出しているかどうかを明確にできるからである。この図から分かるように、20nm未満のサイズの析出物に含まれるTi量の増加ともにTSは増加の傾向を示すが、析出物に含まれるTi量がTi*の50%以上ではTSの変動が小さくなり安定化する。
From the group of hot-rolled steel sheets produced as described above, the one in which the amount of Ti contained in the precipitate having a size of less than 20 nm is 50% or more of Ti * represented by the following formula (1) is extracted, and polygonal ferrite is extracted. FIG. 1 shows the results of investigating the correlation between the fraction (%) and the tensile strength TS (MPa). As can be seen from this figure, the tensile strength TS tends to decrease as the polygonal ferrite fraction increases, but at a polygonal ferrite fraction of 70% or more, the fluctuation of TS becomes small and stabilizes.
The fraction of polygonal ferrite can be determined, for example, as follows. For the portion of the steel sheet with the L cross section (cross section parallel to the rolling direction) except the surface layer of 10%, the corrosion appearance structure with 5% nital is magnified 1000 times with a scanning electron microscope (SEM). Smooth ferrite grains with grain boundary irregularities of less than 0.1 μm and no corrosion marks in the grains are defined as polygonal ferrite, and other forms of ferrite phases and different transformation phases such as pearlite and bainite Distinguish. These are color-coded on the image analysis software, and the area ratio is defined as the polygonal ferrite fraction.
Similarly, from the group of hot-rolled steel sheets manufactured as described above, the one having a polygonal ferrite fraction of 70% or more is extracted, and the precipitate of less than 20 nm in size with respect to Ti * represented by the following formula (1) is extracted. FIG. 2 shows the result of investigating the correlation between the ratio (%) of the amount of Ti contained and the tensile strength TS (MPa). As described above, precipitates with a size of less than 20 nm that contribute to precipitation strengthening are formed by the added Ti. Therefore, if the amount of Ti in the precipitates of less than 20 nm is grasped, Ti can be efficiently converted into fine precipitates. This is because it can be clarified whether or not it is deposited. As can be seen from this figure, TS shows an increasing trend with an increase in the amount of Ti contained in precipitates with a size of less than 20 nm. However, when the amount of Ti contained in the precipitates is 50% or more of Ti *, there is a fluctuation in TS. Smaller and more stable.

以上の結果から、鋼組織をポリゴナルフェライトが70%以上の分率範囲に制御し、かつ20nm未満のサイズの析出物に含まれるTi量が下記式(1)で示されるTi*の50%以上の範囲となるように制御すれば、たとえ巻取り後のコイルの冷却履歴が位置毎に異なるために強度バラツキが不可避的に生じても、その生じる強度バラツキは、著しく小さくなり実用上問題ない程度にできることに想到した。
Ti*=[Ti]−48÷14×[N]…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
From the above results, the steel structure is controlled to a fractional range where polygonal ferrite is 70% or more, and the amount of Ti contained in precipitates having a size of less than 20 nm is 50% of Ti * represented by the following formula (1). If the control is performed so as to be within the above range, even if the intensity variation inevitably occurs because the cooling history of the coil after winding varies depending on the position, the resulting intensity variation is remarkably reduced and there is no practical problem. I came up with what I could do.
Ti * = [Ti] −48 ÷ 14 × [N] (1)
Here, [Ti] and [N] indicate the component composition (mass%) of Ti and N of the steel sheet, respectively.

したがって、本願発明の要件、すなわち、ポリゴナルフェライトを70%以上の分率で含む組織を有し、かつサイズ20nm未満の析出物に含まれるTi量が、上記式(1)で示されるTi*の50%以上の量であることが、鋼板のいずれの位置においても達成されているならば、コイルの冷却履歴が位置毎に異なってもその各位置における鋼板の強化量はほぼ同じとなり、結果として当該鋼板は、強度バラツキの小さい強度均一性に優れたものとできる。   Therefore, the requirement of the present invention, that is, the amount of Ti contained in the precipitate having a structure containing polygonal ferrite in a fraction of 70% or more and having a size of less than 20 nm is Ti * represented by the above formula (1). If the amount of the steel sheet is achieved at any position of the steel sheet, even if the coil cooling history varies from position to position, the amount of strengthening of the steel sheet at each position is almost the same. The steel sheet can be excellent in strength uniformity with small strength variation.

5)また、サイズ20nm未満の析出物に含まれるTiの量は、以下の方法により測定することができる。
試料を電解液中で所定量電解した後、試料片を電解液から取り出して分散性を有する溶液中に浸漬する。次いで、この溶液中に含まれる析出物を、孔径20nmのフィルタを用いてろ過する。この孔径20nmのフィルタをろ液と共に通過した析出物がサイズ20nm未満である。次いで、ろ過後のろ液に対して、誘導結合プラズマ(ICP)発光分光分析法、ICP質量分析法、および原子吸光分析法等から適宜選択して分析し、サイズ20nm未満での析出物におけるTiの量を求める。
5) Further, the amount of Ti contained in the precipitate having a size of less than 20 nm can be measured by the following method.
After the sample is electrolyzed in a predetermined amount in the electrolytic solution, the sample piece is taken out of the electrolytic solution and immersed in a solution having dispersibility. Next, the precipitate contained in the solution is filtered using a filter having a pore diameter of 20 nm. Precipitates that have passed through the filter having a pore diameter of 20 nm together with the filtrate have a size of less than 20 nm. Next, the filtrate after filtration is analyzed by appropriately selecting from inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc., and Ti in precipitates with a size of less than 20 nm Find the amount of.

6)次に、本発明の高強度熱延鋼板の好ましい製造方法一例について説明する。
本発明の製造方法に用いられる鋼スラブの組成は、上述した鋼板の組成と同様であり、またその限定理由も同様である。本発明の高強度熱延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に粗圧延を施し熱延鋼板とする熱間圧延工程を経ることにより製造できる。
6) Next, an example of a preferable method for producing the high-strength hot-rolled steel sheet of the present invention will be described.
The composition of the steel slab used in the production method of the present invention is the same as that of the steel sheet described above, and the reason for the limitation is also the same. The high-strength hot-rolled steel sheet of the present invention can be produced by using a steel slab having a composition within the above-described range as a raw material, and subjecting the raw material to rough rolling to obtain a hot-rolled steel sheet.

イ)加熱温度を1150℃〜1300℃
スラブ加熱温度は、加熱段階でTiCのようなTi系炭化物が未固溶とならないために熱延鋼板1150℃以上が望ましい。Ti系炭化物が未固溶となると熱延鋼板の引張強度に悪影響を与えるため避けることが好ましいからである。しかし、過剰な温度による加熱は、酸化重量の増加に伴うスケールロスの増大などの問題を引き起こすから、スラブ加熱温度の上限は1300℃とすることが好ましい。
上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行なえばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点からは、シートバーを加熱する、所謂シートバーヒーターを活用することが好ましい。
次いで、シートバーを仕上げ圧延して熱延鋼板とする。
B) Heating temperature is 1150 ℃ ~ 1300 ℃
The slab heating temperature is preferably 1150 ° C. or higher in order to prevent Ti-based carbides such as TiC from becoming insoluble in the heating stage. This is because it is preferable to avoid the Ti-based carbide from becoming insoluble since it adversely affects the tensile strength of the hot-rolled steel sheet. However, since heating at an excessive temperature causes problems such as an increase in scale loss accompanying an increase in oxidized weight, the upper limit of the slab heating temperature is preferably 1300 ° C.
The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be determined according to a conventional method. From the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, it is preferable to use a so-called sheet bar heater that heats the sheet bar.
Next, the sheet bar is finish-rolled to obtain a hot-rolled steel sheet.

ロ)仕上げ温度(FDT)を800〜950℃
仕上げ温度が高いと粒が粗大となり、成形性が低下すること、またスケール欠陥が発生しやすいため950℃以下とする。また、800℃未満では圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイト未再結晶での圧延率が高くなり、異常な集合組織が発達し、強度均一性の観点から好ましくない。その意味で仕上げ温度は800℃以上950℃以下とする。好ましくは840℃〜920℃とする。
また、熱間圧延時の圧延荷重を低減するため、仕上げ圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行なうことは、鋼板形状の均一化や強度の均一化の観点から有効である。潤滑圧延の際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上げ圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
B) Finishing temperature (FDT) of 800-950 ° C
When the finishing temperature is high, the grains become coarse, the moldability is lowered, and scale defects are likely to occur. On the other hand, if the temperature is less than 800 ° C., the rolling load increases, the rolling load increases, the rolling rate of austenite unrecrystallized increases, an abnormal texture develops, and this is not preferable from the viewpoint of strength uniformity. In that sense, the finishing temperature is 800 ° C. or higher and 950 ° C. or lower. Preferably it is set as 840 to 920 degreeC.
Moreover, in order to reduce the rolling load at the time of hot rolling, lubrication rolling may be performed between some or all passes of finish rolling. Lubrication rolling is effective from the viewpoint of uniform steel plate shape and uniform strength. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to set it as the continuous rolling process which joins the sheet bar which precedes and follows, and carries out finish rolling continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

ハ)熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度(一次冷却)で冷却
仕上げ圧延後に冷却を開始するまでに2秒を超える時間を経過すると、仕上げ圧延時に蓄積された歪みが開放され、後述する冷却制御を施しても効果的にフェライト生成が生じず、TICの安定的な析出が行われない。また、冷却速度が20℃/sを下回る場合も同様な現象が生じやすくなる。
C) Distortion accumulated during finish rolling if more than 2 seconds elapses before starting cooling after cooling finish rolling at a cooling rate (primary cooling) of 20 ° C / s or more within 2 seconds after hot finish rolling. Is released, and even if the cooling control described later is performed, the generation of ferrite does not occur effectively, and stable precipitation of TIC is not performed. Moreover, the same phenomenon is likely to occur when the cooling rate is lower than 20 ° C./s.

ニ)650℃〜750℃の温度域での冷却停止と、2秒〜15秒の放冷工程
放冷の温度はランアウトテーブルを通過する短時間に効果的にTiC のようなTi系炭化物を析出させるために、最もフェライト変態が進行する温度域に一定時間保持する必要がある。650℃よりも放冷(保持)温度が低い場合にはTi系炭化物の析出の成長速度が小さいために、所望とする強化量に必要なTi系炭化物の量を確保できない。一方、750℃よりも放冷温度が高い場合には、析出の核生成が十分で無く成長速度が速いためTi系炭化物が疎かつ粗大に分布するため強化能が小さくなる。したがって、放冷温度は650℃〜750℃とする。
放冷時間が2秒よりも小さい場合には、Ti系炭化物の析出量が十分では無く、必要な強化量を確保できにくい。一方、放冷時間が15秒よりも大きい場合には、Ti系炭化物が疎かつ粗大に分布するため強化能が小さくなる。したがって、放冷時間は2秒〜15秒とする。
D) The cooling stop in the temperature range of 650 ° C to 750 ° C and the cooling temperature in the cooling process of 2 to 15 seconds effectively deposits Ti carbide such as TiC in a short time passing through the run-out table. In order to achieve this, it is necessary to maintain for a certain time in a temperature range where the ferrite transformation proceeds most. When the cooling (holding) temperature is lower than 650 ° C., the growth rate of precipitation of Ti-based carbides is small, so that the amount of Ti-based carbides necessary for the desired strengthening amount cannot be secured. On the other hand, when the cooling temperature is higher than 750 ° C., the nucleation of precipitation is not sufficient and the growth rate is fast, so that the Ti-based carbides are sparse and coarsely distributed, so that the strengthening ability is reduced. Therefore, the cooling temperature is set to 650 ° C to 750 ° C.
When the cooling time is shorter than 2 seconds, the amount of Ti-based carbide deposited is not sufficient, and it is difficult to secure the necessary strengthening amount. On the other hand, when the cooling time is longer than 15 seconds, the Ti-based carbides are sparse and coarsely distributed, so that the strengthening ability is reduced. Therefore, the cooling time is 2 seconds to 15 seconds.

ホ)再度100℃/s未満の冷却速度(二次冷却)で冷却
放冷処理に引き続く冷却速度が、100℃以上の場合には巻取り温度の制御性が悪くなり強度の安定化が困難になる。よって100℃/s未満とする。冷却速度の下限は特にこれを限定しないが、析出物の粗大化を抑制する観点からは、5℃/s以上が好ましい。
E) When the cooling rate following the cooling and cooling process is 100 ° C / s or higher again at a cooling rate of less than 100 ° C / s (secondary cooling), the controllability of the coiling temperature becomes worse and it becomes difficult to stabilize the strength. Become. Therefore, it shall be less than 100 ° C / s. The lower limit of the cooling rate is not particularly limited, but is preferably 5 ° C./s or more from the viewpoint of suppressing the coarsening of the precipitate.

ヘ)550〜650℃の温度域でコイル状に巻き取る
巻取り温度が550℃未満の場合には、ランナウトテーブル上で未変態の部分が低温変態相として生成して強度バラツキの原因になるとともに延性が低下する。巻取り温度が650℃を超える場合には、TiCのようなTi系炭化物の成長が巻取り後にも進行するため疎かつ粗大に分布するため強化能が小さくなるとともに、巻取り後の冷却履歴に対応した強度バラツキが生じやすい。したがって、巻取り温度は550〜650℃とする。
F) When the coiling temperature in the temperature range of 550 to 650 ° C. is less than 550 ° C., an untransformed part is generated as a low-temperature transformation phase on the run-out table and causes variation in strength. Ductility decreases. When the coiling temperature exceeds 650 ° C, the growth of Ti-based carbides such as TiC proceeds even after coiling and is distributed sparsely and coarsely, so the strengthening ability is reduced and the cooling history after coiling is reduced. Corresponding strength variations are likely to occur. Accordingly, the winding temperature is 550 to 650 ° C.

強度バラツキをコイル内で考慮した場合、例えばTiCのようなTi系炭化物の析出は巻き取り後の冷却段階で主に進むために巻取り後の鋼板の冷却履歴を考慮するのが望ましい。特に、コイルの先端部と後端部では冷却が早いためにTi系炭化物の析出が十分に進まないことがある。このため、コイル先端部と後端部において、当該先端部と後端部以外のコイル内側に対し、温度差をつけて温度を高くすると強度バラツキが、より一層改善される。   When the strength variation is taken into consideration in the coil, for example, precipitation of Ti carbide such as TiC mainly proceeds in the cooling stage after winding, so it is desirable to consider the cooling history of the steel sheet after winding. In particular, the precipitation of Ti-based carbides may not sufficiently proceed at the leading end and the trailing end of the coil due to rapid cooling. For this reason, in the coil front end portion and the rear end portion, when the temperature is increased with respect to the inside of the coil other than the front end portion and the rear end portion, the strength variation is further improved.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで、表2に示す条件の仕上圧延を施す熱間圧延工程により熱延鋼板とした。
次いで、これらの熱延鋼板を酸洗後、伸び率0.5%の調質圧延を施したのち、幅方向の端部10mmをトリミングして除去し、各種特性を評価した。コイルの長手の、先端部と後端部で最内周と最外周の各々ひと巻きをカットした位置とその内側を長手方向に20等分した分割点より鋼板を採取した。これらの幅端部および幅方向に8分割した分割点より引張試験片と析出物分析サンプルを採取した。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, and then hot rolled steel sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed.
Next, these hot-rolled steel sheets were pickled and subjected to temper rolling with an elongation of 0.5%, and then 10 mm in the end in the width direction was trimmed and removed to evaluate various properties. A steel plate was sampled from a position where the innermost and outermost windings were cut at the front end and rear end of the coil, and a dividing point obtained by dividing the inside into 20 equal parts in the longitudinal direction. Tensile specimens and precipitate analysis samples were collected from these width ends and dividing points divided into 8 in the width direction.

引張試験の試験片は圧延方向に平行な方向(L方向)に採取しJIS5号引張試験片に加工した。JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、引張強さ(TS)を求めた。得られた各熱延鋼板の引張特性を調査した結果を表2に示す。
ミクロ組織はL断面(圧延方向に平行な断面)の板厚の表層10%を除く部分について、ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大し同定し、ポリゴナルフェライトの分率は、上記した方法で画像処理ソフトを用いて測定した。
20nm未満のサイズの析出物中におけるTiの定量は、以下の定量法により実施した。
上記により得られた熱延鋼板を適当な大きさに切断し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した。
電解後の、表面に析出物が付着している試料片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料片から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径20nmのフィルタを用いてろ過し、ろ過後のろ液に対してICP発光分光分析装置を用いて分析し、ろ液中のTiの絶対量を測定した。次いで、Tiの絶対量を電解重量で除して、サイズ20nm未満の析出物に含まれるTiの量(質量%)を得た。なお、電解重量は、析出物剥離後の試料に対して重量を測定し、電解前の試料重量から差し引くことで求めた。この後、上記で得られたサイズ20nm未満の析出物に含まれるTiの量(質量%)を、表1に示したTiとNの含有量を式(1)に代入して算出したTi*で除して、サイズ20nm未満の析出物に含まれるTiの量の割合(%)とした。
Tensile test specimens were taken in the direction parallel to the rolling direction (L direction) and processed into JIS No. 5 tensile specimens. A tensile test was performed at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241 to determine the tensile strength (TS). Table 2 shows the results of examining the tensile properties of the obtained hot-rolled steel sheets.
The microstructure of the L section (cross section parallel to the rolling direction) excluding the surface layer of 10% is identified by magnifying the corrosion appearance structure by nital by 5,000 times with a scanning electron microscope (SEM). The ferrite fraction was measured using image processing software by the method described above.
The quantitative determination of Ti in the precipitate having a size of less than 20 nm was carried out by the following quantitative method.
The hot-rolled steel sheet obtained as described above is cut to an appropriate size, and about 0.2 g in a 10% AA electrolyte solution (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol) has a current density of 20 mA / cm 2. And constant current electrolysis.
After the electrolysis, remove the sample piece with deposits on the surface from the electrolyte and immerse it in an aqueous solution of sodium hexametaphosphate (500 mg / l) (hereinafter referred to as the SHMP aqueous solution) to apply ultrasonic vibration. The precipitate was peeled off from the sample piece and extracted into an aqueous SHMP solution. Next, the SHMP aqueous solution containing the precipitate was filtered using a filter with a pore size of 20 nm, and the filtrate after filtration was analyzed using an ICP emission spectrometer, and the absolute amount of Ti in the filtrate was measured. . Next, the absolute amount of Ti was divided by the electrolytic weight to obtain the amount (mass%) of Ti contained in the precipitate having a size of less than 20 nm. In addition, the electrolysis weight was calculated | required by measuring a weight with respect to the sample after deposit peeling, and subtracting from the sample weight before electrolysis. After this, the amount of Ti (mass%) contained in the precipitate having a size less than 20 nm obtained above was calculated by substituting the Ti and N contents shown in Table 1 into the formula (1). To obtain the ratio (%) of the amount of Ti contained in the precipitate having a size of less than 20 nm.

Figure 2009185361
Figure 2009185361

Figure 2009185361
Figure 2009185361

ここで表2に示す結果のうち、ポリゴナルフェライト分率、式(1)で示されるTi*に対するサイズ20nm未満の析出物に含まれるTi量の割合、および引張強度TSは、コイルの長手中央かつ幅中央の値をもって代表値としたものである。また、鋼組織適合率は、測定した189点のうち、ポリゴナルフェライト分率とサイズ20nm未満の析出物におけるTi量の割合の、両方の要件を満足した点の割合である。TS適合率は、測定した189点のうち540MPa以上の値を示した割合である。ΔTSは測定した189点のTSで標準偏差σを求めてこれを4倍したものである。
表2に示す調査結果より明らかなように、本発明例では、いずれもTSは540MPa以上の高強度であり、かつ、コイル面内での強度バラツキ(ΔTS)が50MPa以下と小さい強度均一性の良好な鋼板が得られている。
Here, among the results shown in Table 2, the fraction of polygonal ferrite, the ratio of the amount of Ti contained in precipitates with a size of less than 20 nm with respect to Ti * represented by the formula (1), and the tensile strength TS are the longitudinal center of the coil. The value at the center of the width is used as a representative value. Moreover, the steel structure conformity ratio is a ratio of points satisfying both requirements of the measured 189 points, that is, the ratio of polygonal ferrite and the ratio of Ti amount in precipitates having a size of less than 20 nm. The TS conformity rate is a ratio showing a value of 540 MPa or more out of 189 measured points. ΔTS is a value obtained by multiplying the standard deviation σ by four times from the measured TS of 189 points.
As is clear from the investigation results shown in Table 2, in all of the examples of the present invention, TS has a high strength of 540 MPa or more, and strength variation (ΔTS) in the coil surface is as small as 50 MPa or less. A good steel sheet is obtained.

本発明によれば、引張強度(TS)540MPa以上でありかつ強度バラツキの小さい熱延鋼板を安価で安定して製造することが可能となり、産業上格段の効果を奏する。例えば、本発明の高強度熱延鋼板を自動車部品に適用した場合、ハイテンにおける成形後のスプリングバック量や衝突特性のバラツキも低減し、車体設計の高精度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。   According to the present invention, it is possible to stably produce a hot-rolled steel sheet having a tensile strength (TS) of 540 MPa or more and a small variation in strength at a low cost, and has a remarkable industrial effect. For example, when the high-strength hot-rolled steel sheet of the present invention is applied to automobile parts, the amount of springback after forming in high tension and the variation in collision characteristics can be reduced, making it possible to increase the accuracy of vehicle body design, and collision safety of automobile bodies There is an effect that it can sufficiently contribute to performance and weight reduction.

ポリゴナルフェライトの分率(%)と引張強度TS(MPa)との相関を調査した結果を示す図である。It is a figure which shows the result of having investigated the correlation with the fraction (%) of polygonal ferrite, and tensile strength TS (MPa). Ti*に対するサイズ20nm未満の析出物に含まれるTi量の割合(%)と、引張強度TS(MPa)との相関を調査した結果を示す図である。FIG. 6 is a diagram showing the results of investigating the correlation between the ratio (%) of the amount of Ti contained in precipitates having a size of less than 20 nm with respect to Ti * and the tensile strength TS (MPa).

Claims (2)

成分組成が、質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.030〜0.080%を含有し、残部がFeおよび不可避的不純物からなり、ポリゴナルフェライトを70%以上の分率で含む組織を有し、かつサイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の50%以上であることを特徴とする高強度熱延鋼板。
Ti*=[Ti]−48÷14×[N]…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
Component composition is mass%, C: 0.05-0.12%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.030% or less, S: 0.01% or less, Al: 0.005-0.1%, N: 0.01 % Or less, Ti: 0.030 to 0.080%, the remainder is composed of Fe and inevitable impurities, has a structure containing polygonal ferrite in a fraction of 70% or more, and exists in precipitates with a size of less than 20 nm A high-strength hot-rolled steel sheet characterized in that the amount of Ti to be processed is 50% or more of the value of Ti * calculated by the following formula (1).
Ti * = [Ti] −48 ÷ 14 × [N] (1)
Here, [Ti] and [N] indicate the component composition (mass%) of Ti and N of the steel sheet, respectively.
成分組成が、質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.030〜0.080%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1150〜1300℃の加熱温度に加熱後、800〜950℃の仕上げ温度で熱間仕上げ圧延を行い、該熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度で冷却を開始し、650℃〜750℃の温度で冷却を停止し、引き続いて2秒〜15秒の放冷工程を経たのちに、再度100℃/s未満の冷却速度で冷却を施し、550〜650℃の温度域でコイル状に巻き取ることを特徴とする高強度熱延鋼板の製造方法。   Component composition is mass%, C: 0.05-0.12%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.030% or less, S: 0.01% or less, Al: 0.005-0.1%, N: 0.01 % Steel, Ti: 0.030-0.080%, the remainder of the steel slab consisting of Fe and inevitable impurities is heated to a heating temperature of 1150-1300 ° C and then hot-finished rolling at a finishing temperature of 800-950 ° C The cooling is started at a cooling rate of 20 ° C./s or more within 2 seconds after the hot finish rolling, the cooling is stopped at a temperature of 650 ° C. to 750 ° C., and then the cooling process is performed for 2 seconds to 15 seconds. After that, a method for producing a high-strength hot-rolled steel sheet, which is cooled again at a cooling rate of less than 100 ° C./s and wound in a coil shape in a temperature range of 550 to 650 ° C.
JP2008028455A 2008-02-08 2008-02-08 High strength hot rolled steel sheet and method for producing the same Active JP5194858B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008028455A JP5194858B2 (en) 2008-02-08 2008-02-08 High strength hot rolled steel sheet and method for producing the same
KR1020107014865A KR101203018B1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and process for production thereof
PCT/JP2009/052244 WO2009099237A1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and process for production thereof
CN2009801045882A CN101939459B (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and process for production thereof
US12/866,382 US20100319819A1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and method for manufacturing same
EP09708321.6A EP2243853B1 (en) 2008-02-08 2009-02-04 High-strength hot-rolled steel sheet and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028455A JP5194858B2 (en) 2008-02-08 2008-02-08 High strength hot rolled steel sheet and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009185361A true JP2009185361A (en) 2009-08-20
JP2009185361A5 JP2009185361A5 (en) 2010-10-21
JP5194858B2 JP5194858B2 (en) 2013-05-08

Family

ID=40952299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028455A Active JP5194858B2 (en) 2008-02-08 2008-02-08 High strength hot rolled steel sheet and method for producing the same

Country Status (6)

Country Link
US (1) US20100319819A1 (en)
EP (1) EP2243853B1 (en)
JP (1) JP5194858B2 (en)
KR (1) KR101203018B1 (en)
CN (1) CN101939459B (en)
WO (1) WO2009099237A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131761A1 (en) * 2009-05-12 2010-11-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet and process for manufacture thereof
JP2011140672A (en) * 2010-01-05 2011-07-21 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2011140671A (en) * 2010-01-05 2011-07-21 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2012012658A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Baked hardening hot-rolled steel sheet excellent in burring properties and method for manufacturing the same
WO2013022043A1 (en) 2011-08-09 2013-02-14 新日鐵住金株式会社 Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
WO2013161090A1 (en) 2012-04-26 2013-10-31 Jfeスチール株式会社 High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515732B2 (en) * 2009-12-25 2014-06-11 Jfeスチール株式会社 Method for producing hot-rolled steel sheet without edge cracks and method for producing cold-rolled steel sheet without edge cracks
JP5609712B2 (en) * 2011-02-24 2014-10-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet having good ductility, stretch flangeability, and material uniformity and method for producing the same
CN102383035A (en) * 2011-11-07 2012-03-21 武汉钢铁(集团)公司 Steel for 10-ton axle shell and production method for steel
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
CN102839322A (en) * 2012-09-13 2012-12-26 首钢总公司 Hot galvanizing steel plate for car and production method thereof
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
BR112019000306B1 (en) 2016-08-05 2023-02-14 Nippon Steel Corporation STEEL PLATE AND GALVANIZED STEEL PLATE
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation Steel sheet and plated steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
MX2019000576A (en) * 2016-08-05 2019-09-02 Nippon Steel Corp Steel sheet and plated steel sheet.
KR101940919B1 (en) 2017-08-08 2019-01-22 주식회사 포스코 Hot rolled steel sheet having excellent strength and elongation and method of manufacturing the same
KR102098478B1 (en) 2018-07-12 2020-04-07 주식회사 포스코 Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same
CN114054515B (en) * 2021-06-18 2024-02-27 德龙钢铁有限公司 Method for controlling scale of cold rolling base stock after rolling
CN114309086B (en) * 2022-01-05 2024-02-23 湖南华菱涟钢特种新材料有限公司 Preparation method for improving performance uniformity of Ti-reinforced cold-formed high-strength steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248240A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp High burring hot rolled steel sheet with bake hardenability, and its manufacturing method
JP2008019453A (en) * 2006-07-10 2008-01-31 Jfe Steel Kk Hot-rolled thin steel plate having superior workability and superior strength and toughness after heat treatment, and manufacturing method therefor
JP2009007652A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk Thick hot-rolled steel sheet excellent in workability and excellent in strength and toughness after heat-treatment, and method for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145419B2 (en) 1991-01-14 2001-03-12 川崎製鉄株式会社 Manufacturing method of hot-rolled high-strength steel sheet with excellent material uniformity
JPH0826433B2 (en) * 1992-12-28 1996-03-13 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent stretch flangeability
JP3233743B2 (en) * 1993-06-28 2001-11-26 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent stretch flangeability
JP3417878B2 (en) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
EP1176217B1 (en) * 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3790135B2 (en) 2000-07-24 2006-06-28 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP3888128B2 (en) 2000-10-31 2007-02-28 Jfeスチール株式会社 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
WO2002036840A1 (en) * 2000-10-31 2002-05-10 Nkk Corporation High tensile hot rolled steel sheet and method for production thereof
JP4205853B2 (en) * 2000-11-24 2009-01-07 新日本製鐵株式会社 Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JP3858770B2 (en) * 2002-06-21 2006-12-20 住友金属工業株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
JP4470701B2 (en) * 2004-01-29 2010-06-02 Jfeスチール株式会社 High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4803055B2 (en) * 2006-02-10 2011-10-26 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet for high-strength cold-rolled steel sheet
JP4009313B2 (en) * 2006-03-17 2007-11-14 株式会社神戸製鋼所 High strength steel material excellent in weldability and method for producing the same
WO2007132548A1 (en) * 2006-05-16 2007-11-22 Jfe Steel Corporation High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248240A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp High burring hot rolled steel sheet with bake hardenability, and its manufacturing method
JP2008019453A (en) * 2006-07-10 2008-01-31 Jfe Steel Kk Hot-rolled thin steel plate having superior workability and superior strength and toughness after heat treatment, and manufacturing method therefor
JP2009007652A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk Thick hot-rolled steel sheet excellent in workability and excellent in strength and toughness after heat-treatment, and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131761A1 (en) * 2009-05-12 2010-11-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet and process for manufacture thereof
JP2010265486A (en) * 2009-05-12 2010-11-25 Jfe Steel Corp High-strength hot-rolled steel sheet and method of manufacturing the same
US8535458B2 (en) 2009-05-12 2013-09-17 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
JP2011140672A (en) * 2010-01-05 2011-07-21 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2011140671A (en) * 2010-01-05 2011-07-21 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2012012658A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Baked hardening hot-rolled steel sheet excellent in burring properties and method for manufacturing the same
WO2013022043A1 (en) 2011-08-09 2013-02-14 新日鐵住金株式会社 Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
WO2013161090A1 (en) 2012-04-26 2013-10-31 Jfeスチール株式会社 High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same
KR20140129148A (en) 2012-04-26 2014-11-06 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same
US9657380B2 (en) 2012-04-26 2017-05-23 Jfe Steel Corporation High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method of manufacturing the same

Also Published As

Publication number Publication date
EP2243853A1 (en) 2010-10-27
KR101203018B1 (en) 2012-11-20
CN101939459B (en) 2012-07-11
CN101939459A (en) 2011-01-05
EP2243853A4 (en) 2012-04-25
US20100319819A1 (en) 2010-12-23
WO2009099237A1 (en) 2009-08-13
KR20100087239A (en) 2010-08-03
JP5194858B2 (en) 2013-05-08
EP2243853B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5194858B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4998755B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5041084B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
RU2518852C1 (en) High-strength cold-rolled sheet steel and method of its production
KR101706441B1 (en) High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same
JP5482204B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5194857B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2007321168A (en) High-rigidity low-density steel sheet and its manufacturing method
JP5453964B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5609712B2 (en) High-strength hot-rolled steel sheet having good ductility, stretch flangeability, and material uniformity and method for producing the same
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5482205B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5637225B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5453973B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2010121176A (en) Steel sheet and method for manufacturing the same
JP6036617B2 (en) High strength hot rolled steel sheet with excellent toughness and method for producing the same
JP2011122189A (en) HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN ELONGATION AND STRETCH-FLANGE PROPERTY AND HAVING TENSILE STRENGTH OF &gt;=780 MPa, AND METHOD FOR PRODUCING IT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250