JP2009184917A - Apparatus for preventing contamination of silicon melt - Google Patents

Apparatus for preventing contamination of silicon melt Download PDF

Info

Publication number
JP2009184917A
JP2009184917A JP2009091118A JP2009091118A JP2009184917A JP 2009184917 A JP2009184917 A JP 2009184917A JP 2009091118 A JP2009091118 A JP 2009091118A JP 2009091118 A JP2009091118 A JP 2009091118A JP 2009184917 A JP2009184917 A JP 2009184917A
Authority
JP
Japan
Prior art keywords
single crystal
heat shield
crystal silicon
cooling coil
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091118A
Other languages
Japanese (ja)
Other versions
JP4499178B2 (en
Inventor
Makoto Kamogawa
誠 鴨川
Kuraichi Shimomura
庫一 下村
Sadayuki Suzuki
禎之 鈴木
Daisuke Ebi
大輔 海老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP2009091118A priority Critical patent/JP4499178B2/en
Publication of JP2009184917A publication Critical patent/JP2009184917A/en
Application granted granted Critical
Publication of JP4499178B2 publication Critical patent/JP4499178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for preventing contamination of a silicon melt, where falling of dust to a silicon melt from a heat shielding body surrounding a passage for pulling single-crystal silicon is prevented. <P>SOLUTION: The heat shielding body 55 whose opening at an upper side is larger than that at a lower side, has a slope 55a between the upper opening and the lower opening, facing to the passage for pulling single-crystal silicon. The slope 55a has a convex-concave shape with difference of height of about 0.5-10.0 mm. Where, falling of the dust to the silicon melt is reduced by the structure, to thereby prevent the single-crystal silicon from quality degradation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱遮蔽体からシリコン融液への塵の落下によってシリコン融液が汚染されることを防止するシリコン融液の汚染防止装置に関する。   The present invention relates to a silicon melt contamination prevention device for preventing silicon melt from being contaminated by the fall of dust from a heat shield to the silicon melt.

図1は単結晶シリコン引き上げ装置の模式図である。
単結晶引き上げ装置10の炉体1の内部には、炉体1の内壁面の内側に配置され炉体内外の熱伝達を遮断する断熱材2と、多結晶シリコンのようなシリコン材料を保持しこのシリコン原料溶解後のシリコン融液を貯留するルツボ3と、ルツボ3を囲繞するように配置されルツボ3を介してシリコン材料を熱するヒータ4と、単結晶シリコン8の引き上げ経路を囲繞するようにルツボ3の上方に配置される熱遮蔽体5と、が設けられる。
FIG. 1 is a schematic view of a single crystal silicon pulling apparatus.
Inside the furnace body 1 of the single crystal pulling apparatus 10, a heat insulating material 2 disposed inside the inner wall surface of the furnace body 1 to block heat transfer outside the furnace body and a silicon material such as polycrystalline silicon are held. The crucible 3 for storing the silicon melt after dissolution of the silicon raw material, the heater 4 disposed so as to surround the crucible 3 and heating the silicon material via the crucible 3, and the pulling path of the single crystal silicon 8 are surrounded. And a heat shield 5 disposed above the crucible 3.

また単結晶シリコン8の引き上げ経路を囲繞するようにルツボ3の上方に冷却コイル6が設けられる場合もある。冷却コイル6は、冷却水が流れる管路が螺旋状に巻回されて形成されており、全体の形状が筒状である。冷却コイル6は結晶の引き上げ経路が螺旋の内側に位置するようにルツボ3の上方に配置される。冷却コイル6によって単結晶シリコン8の冷却速度が速められると、単結晶シリコン8に含まれる空孔状の欠陥所謂COPのサイズが小さくなるため結晶品質が向上する。また単結晶シリコン8の製造サイクルが早まるため製造効率が向上する。なお単結晶シリコン8の酸素析出物を制御する場合や酸化膜耐圧を改善する場合があり、冷却コイル6の位置とほぼ同位置に冷却コイルではなく筒状の加熱ヒータやパージチューブが設けられることもある。   Further, the cooling coil 6 may be provided above the crucible 3 so as to surround the pulling path of the single crystal silicon 8. The cooling coil 6 is formed by spirally winding a pipeline through which cooling water flows, and the overall shape is cylindrical. The cooling coil 6 is disposed above the crucible 3 so that the crystal pulling path is located inside the spiral. When the cooling rate of the single crystal silicon 8 is increased by the cooling coil 6, the crystal quality is improved because the size of the so-called COPs of voids contained in the single crystal silicon 8 is reduced. Further, since the manufacturing cycle of the single crystal silicon 8 is accelerated, the manufacturing efficiency is improved. In some cases, oxygen precipitates in the single crystal silicon 8 are controlled or the oxide film breakdown voltage may be improved, and a cylindrical heater or purge tube is provided at substantially the same position as the cooling coil 6 instead of the cooling coil. There is also.

ここで単結晶引き上げ装置10を用いた単結晶シリコン製造処理の手順を簡単に説明する。ルツボ3にシリコン材料を投入しヒータ4を起動する。するとシリコン材料が加熱され溶解しシリコン融液が生成される。生成されたシリコン融液にシリコンの種結晶を浸漬する。この種結晶を引き上げると種結晶の回りには単結晶シリコン8が育成される。単結晶シリコン8の引き上げの際には引き上げ速度や熱遮蔽体5の位置等を調整する。さらに冷却コイル6の管路に冷却水を流して単結晶シリコン8を強制的に冷却する。   Here, the procedure of the single crystal silicon manufacturing process using the single crystal pulling apparatus 10 will be briefly described. Silicon material is put into the crucible 3 and the heater 4 is started. Then, the silicon material is heated and melted to generate a silicon melt. A silicon seed crystal is immersed in the produced silicon melt. When this seed crystal is pulled up, single crystal silicon 8 is grown around the seed crystal. When pulling up the single crystal silicon 8, the pulling speed, the position of the heat shield 5 and the like are adjusted. Further, the single crystal silicon 8 is forcibly cooled by flowing cooling water through the pipe of the cooling coil 6.

単結晶シリコン8の育成時には炉体1内の上方からArガスが供給される。図5は一般的な炉体内のガス流を示す図である。図5(a)では単結晶シリコンの育成初期のガス流が示されており、図5(b)では単結晶シリコンの育成初期後のガス流が示されている。   Ar gas is supplied from above in the furnace body 1 when the single crystal silicon 8 is grown. FIG. 5 is a diagram showing a gas flow in a general furnace body. 5A shows a gas flow at the initial stage of single crystal silicon growth, and FIG. 5B shows a gas flow after the initial stage of single crystal silicon growth.

図5(a)で示されるように、単結晶シリコン8の育成初期は、炉体1内の上方から供給されるArガスが冷却コイル6の内側を通過してシリコン融液近傍まで下降する。さらにルツボ3とヒータ4の間隙を下降し、炉体1の下部に設けられたガス排出口1aから炉体1の外部に流出する。また炉体1内の上方から供給されるArガスの一部は冷却コイル6の内側を通過した後に、冷却コイル6の下端6aと熱遮蔽体5の間隙を通過して冷却コイル6と熱遮蔽体5の間隙を上昇し、炉体1の上方から供給されるArガスと合流する。   As shown in FIG. 5A, at the initial stage of growth of the single crystal silicon 8, Ar gas supplied from above in the furnace body 1 passes through the inside of the cooling coil 6 and descends to the vicinity of the silicon melt. Further, the gap between the crucible 3 and the heater 4 is lowered and flows out of the furnace body 1 from a gas discharge port 1 a provided in the lower part of the furnace body 1. A part of Ar gas supplied from above in the furnace body 1 passes through the inside of the cooling coil 6 and then passes through the gap between the lower end 6 a of the cooling coil 6 and the heat shield 5 to shield the cooling coil 6 from the heat. The gap between the bodies 5 rises and merges with Ar gas supplied from above the furnace body 1.

図5(b)で示されるように、単結晶シリコン8の育成初期後は、炉体1内の上方から供給されるArガスの一部が冷却コイル6の内側すなわち冷却コイル6と単結晶シリコン8の間隙を通過してシリコン融液近傍まで下降する。さらにルツボ3とヒータ4の間隙を下降し、炉体1の下部に設けられたガス排出口1aから炉体1の外部に流出する。また炉体1内の上方から供給されるArガスの一部は冷却コイル6と熱遮蔽体5の間隙を下降して冷却コイル6の下端6aと熱遮蔽体5の間隙を通過し、冷却コイル6の内側を通過してきたArガスと合流する。   As shown in FIG. 5B, after the initial growth of the single crystal silicon 8, a part of Ar gas supplied from above in the furnace body 1 is inside the cooling coil 6, that is, the cooling coil 6 and the single crystal silicon. Passes through the gap 8 and descends to the vicinity of the silicon melt. Further, the gap between the crucible 3 and the heater 4 is lowered and flows out of the furnace body 1 from a gas discharge port 1 a provided in the lower part of the furnace body 1. Further, a part of Ar gas supplied from above in the furnace body 1 descends the gap between the cooling coil 6 and the heat shield 5 and passes through the gap between the lower end 6a of the cooling coil 6 and the heat shield 5, and the cooling coil. 6 merges with the Ar gas that has passed through the inside of 6.

図5(a)、(b)で示されるように、単結晶シリコン8の育成初期とその後とでは冷却コイル6の下端6aと熱遮蔽体5の間隙を流れるArガスの進行方向が変化する。このとき流速の変化量が大きいと熱遮蔽体5に付着する塵が剥離する場合がある。剥離した塵は熱遮蔽体5に沿って落ち、シリコン融液に落下する。
また炉体1の上部に付着する塵が落下する場合もある。塵は熱遮蔽体5に落下し、熱遮蔽体5に沿って落ち、シリコン融液に落下する。
As shown in FIGS. 5A and 5B, the traveling direction of Ar gas flowing through the gap between the lower end 6 a of the cooling coil 6 and the thermal shield 5 changes between the initial stage of growth of the single crystal silicon 8 and thereafter. At this time, if the amount of change in the flow velocity is large, dust adhering to the heat shield 5 may be peeled off. The separated dust falls along the heat shield 5 and falls into the silicon melt.
Moreover, the dust adhering to the upper part of the furnace body 1 may fall. The dust falls on the heat shield 5, falls along the heat shield 5, and falls into the silicon melt.

シリコン融液に塵が落下するとシリコン融液が汚染されることになる。特にシリコン融液中の塵が育成される結晶に取り込まれると結晶の単結晶化が阻害され、単結晶シリコンの品質が低下するといった問題が生ずる。したがってシリコン融液への塵の落下を防止する必要がある。   When dust falls on the silicon melt, the silicon melt is contaminated. In particular, when dust in the silicon melt is taken into the crystal to be grown, there is a problem that the single crystallization of the crystal is hindered and the quality of the single crystal silicon is lowered. Therefore, it is necessary to prevent the dust from falling into the silicon melt.

本発明はこうした実状に鑑みてなされたものであり、シリコン融液への塵の落下を低減し、単結晶シリコンの品質低下を防止することを解決課題とするものである。   The present invention has been made in view of such a situation, and an object of the present invention is to reduce the fall of dust into the silicon melt and prevent the deterioration of the quality of single crystal silicon.

本発明は、
単結晶シリコンの引き上げ経路を囲繞する熱遮蔽体からシリコン融液への塵の落下を防止するシリコン融液の汚染防止装置において、
熱遮蔽体は、下方の開口よりも上方の開口が大きく、上方の開口と下方の開口の間にあって単結晶シリコンの引き上げ経路側に向く斜面を有し、この斜面に高低差が0.5〜10.0mm程度の凹凸を有すること
を特徴とする。
The present invention
In the silicon melt contamination prevention device for preventing dust from falling from the heat shield surrounding the single crystal silicon pulling path to the silicon melt,
The thermal shield has an upper opening larger than the lower opening, and has a slope between the upper opening and the lower opening and facing the pulling path side of the single crystal silicon. It has unevenness of about 10.0 mm.

熱遮蔽体上の塵は、熱遮蔽体表面の凹凸部分に留められシリコン融液に落下しない。凹凸の高低差が大きすぎると熱遮蔽体自体の大型化を招き、小さすぎると塵を留める役割を果たさない。したがって0.5〜10.0mm程度が適切である。   The dust on the heat shield is retained by the uneven portions on the surface of the heat shield and does not fall into the silicon melt. If the height difference of the unevenness is too large, the heat shield itself will be enlarged, and if it is too small, it will not play a role to keep dust. Therefore, about 0.5 to 10.0 mm is appropriate.

本発明によれば、炉体内上部から熱遮蔽体に落下する塵及び熱遮蔽体上の塵を熱遮蔽体に留めることができる。よって熱遮蔽体からシリコン融液への塵の落下が低減され、単結晶シリコンの品質低下が防止される。   According to the present invention, dust falling on the heat shield from the upper part of the furnace body and dust on the heat shield can be retained on the heat shield. Therefore, the fall of the dust from the heat shield to the silicon melt is reduced, and the deterioration of the quality of the single crystal silicon is prevented.

図1は単結晶シリコン引き上げ装置の模式図である。FIG. 1 is a schematic view of a single crystal silicon pulling apparatus. 図2は第1の実施形態で用いる面積S1、S2を示す図である。FIG. 2 is a diagram showing the areas S1 and S2 used in the first embodiment. 図3は第1の実施形態による炉体内のガス流を示す図である。FIG. 3 is a view showing a gas flow in the furnace body according to the first embodiment. 図4は熱遮蔽体の断面の模式図である。FIG. 4 is a schematic view of a cross section of the heat shield. 図5は一般的な炉体内のガス流を示す図である。FIG. 5 is a diagram showing a gas flow in a general furnace body. 図6は一般的な冷却コイルの模式図である。FIG. 6 is a schematic diagram of a general cooling coil. 図7(a)、(b)はコイル補完部材が取り付けられた冷却コイルの模式図である。7A and 7B are schematic views of a cooling coil to which a coil complementing member is attached.

以下、本発明の実施の形態について図面を参照して説明する。
実施例1は冷却コイルの下端と熱遮蔽体の間隙を通過するガス流の制御に関し、実施例2、3は熱遮蔽体の形状に関する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Example 1 relates to control of the gas flow passing through the gap between the lower end of the cooling coil and the heat shield, and Examples 2 and 3 relate to the shape of the heat shield.

本実施形態の装置構成は図1で示される単結晶引き上げ装置10と同じであるが、熱遮蔽体5と冷却コイル6と単結晶シリコン8の引き上げ経路の配置が後述する面積S1、S2を基にして決定されているという点で異なる。   The apparatus configuration of the present embodiment is the same as that of the single crystal pulling apparatus 10 shown in FIG. 1, but the arrangement of the pulling paths of the heat shield 5, the cooling coil 6, and the single crystal silicon 8 is based on areas S1 and S2, which will be described later. It is different in that it is determined.

熱遮蔽体5と冷却コイル6と単結晶シリコン8の引き上げ経路の相対的な位置は、冷却コイル6の下端6aと熱遮蔽体5の間隙を通過するガスの流速が熱遮蔽体5から塵を剥離させない程度となるように調整される。その位置は、例えば単結晶引き上げ装置10の製造段階で、各構成要素のサイズ・形状に応じて後述する面積比S2/S1を求め決定される。   The relative position of the heat shield 5, the cooling coil 6, and the single crystal silicon 8 pulling path is such that the flow velocity of the gas passing through the gap between the lower end 6 a of the cooling coil 6 and the heat shield 5 It adjusts so that it may not be made to peel. The position is determined, for example, by determining an area ratio S2 / S1, which will be described later, according to the size and shape of each component in the manufacturing stage of the single crystal pulling apparatus 10.

また冷却コイル6と熱遮蔽体5のうちの少なくとも一方を昇降動作自在にし、冷却コイル6と熱遮蔽体5の相対的な位置を適宜変化させてもよい。この場合、冷却コイル6と熱遮蔽体5の昇降動作は図示しないコントローラで制御される。なお本実施形態では単結晶シリコン8の引き上げ経路を囲繞する筒状体を冷却コイル6として説明するが、冷却コイル6の代わりに加熱ヒータやパージチューブが設けられる場合にも本発明を適用することが可能である。   Further, at least one of the cooling coil 6 and the heat shield 5 may be movable up and down, and the relative positions of the cooling coil 6 and the heat shield 5 may be changed as appropriate. In this case, the raising / lowering operation of the cooling coil 6 and the heat shield 5 is controlled by a controller (not shown). In this embodiment, the cylindrical body surrounding the pulling path of the single crystal silicon 8 will be described as the cooling coil 6. However, the present invention is also applied to a case where a heater or a purge tube is provided instead of the cooling coil 6. Is possible.

図2は本実施形態で用いる面積S1、S2を示す図である。
本実施形態では単結晶シリコン8の引き上げ経路と冷却コイル6と熱遮蔽体5の相対的な位置の調整を面積S1、S2という要素に基づいて行う。
FIG. 2 is a diagram showing the areas S1 and S2 used in the present embodiment.
In the present embodiment, the relative positions of the pulling path of the single crystal silicon 8 and the cooling coil 6 and the heat shield 5 are adjusted based on the elements of areas S1 and S2.

単結晶シリコン8の側面と冷却コイル6の内壁面との間には環状空間21が形成される。環状空間21において、軸と直交する平面に含まれる断面部分の断面21aを図2(b)で示す。この断面21aの面積をS1とする。次に冷却コイル6が下方に延在する場合を想定する。このような場合に冷却コイル6の下方には筒状空間22が想定される。この筒状空間22において、冷却コイル6と熱遮蔽体5との間に形成される部分22aを図2(c)で示す。この部分22aの周面の面積をS2とする。   An annular space 21 is formed between the side surface of the single crystal silicon 8 and the inner wall surface of the cooling coil 6. In the annular space 21, a cross section 21a of a cross section included in a plane orthogonal to the axis is shown in FIG. The area of the cross section 21a is S1. Next, it is assumed that the cooling coil 6 extends downward. In such a case, a cylindrical space 22 is assumed below the cooling coil 6. In this cylindrical space 22, a portion 22a formed between the cooling coil 6 and the heat shield 5 is shown in FIG. The area of the peripheral surface of this portion 22a is S2.

面積S1は引き上げる単結晶シリコン8の径と冷却コイル6の径に応じて決まる。面積S2は熱遮蔽体5の形状と冷却コイル6の径、また熱遮蔽体5及び冷却コイル6の位置に応じて決まる。ここで重要なのは面積S1、S2の値ではなく、その比S2/S1(又はS1/S2)である。   The area S1 is determined according to the diameter of the single crystal silicon 8 to be pulled up and the diameter of the cooling coil 6. The area S2 is determined according to the shape of the heat shield 5, the diameter of the cooling coil 6, and the positions of the heat shield 5 and the cooling coil 6. What is important here is not the values of the areas S1 and S2, but the ratio S2 / S1 (or S1 / S2).

表1に面積比S2/S1に関する本発明者の実験データを示す。表1は直径200mmの結晶を引き上げた場合のデータである。   Table 1 shows the inventor's experimental data regarding the area ratio S2 / S1. Table 1 shows data when a crystal having a diameter of 200 mm is pulled up.

Figure 2009184917
Figure 2009184917

シリコン融液中の塵は単結晶シリコンの品質に影響を及ぼす。具体的には塵は結晶の単結晶化を阻害する。シリコン融液中に塵が多いほど生成された結晶の単結晶化率は低くなり、逆に多結晶化率が高くなる。面積比S2/S1を1.15とした場合に生成された結晶は単結晶化率が低く、製品として許容できなかった。面積比S2/S1を1.15未満とした場合(1.01、0.8)に生成された結晶は単結晶化率が高い。本発明者は、面積比S2/S1を1.15とした場合に生成される結晶の単結晶化率が、製品として許容できるか否かの閾値であると考えている。よって面積比S2/S1が1.15未満となるように熱遮蔽体5と冷却コイル6と単結晶シリコン8の引き上げ経路の相対的な位置を調整すれば、製品として良好な結晶を生成することができる。   Dust in the silicon melt affects the quality of single crystal silicon. Specifically, dust inhibits single crystallization of crystals. The greater the amount of dust in the silicon melt, the lower the single crystallization rate of the generated crystal, and the higher the polycrystallization rate. Crystals produced when the area ratio S2 / S1 was 1.15 had a low rate of single crystallization and were not acceptable as a product. Crystals produced when the area ratio S2 / S1 is less than 1.15 (1.01, 0.8) have a high single crystallization rate. The present inventor believes that the single crystallization rate of crystals generated when the area ratio S2 / S1 is 1.15 is a threshold value as to whether or not the product is acceptable. Therefore, if the relative positions of the pulling paths of the heat shield 5, the cooling coil 6 and the single crystal silicon 8 are adjusted so that the area ratio S2 / S1 is less than 1.15, a good crystal can be produced as a product. Can do.

表1は直径200mmのデータであるが、他の径の結晶であっても同じ様な結果が得られる。   Table 1 shows data with a diameter of 200 mm, but similar results can be obtained with crystals of other diameters.

図3は本実施形態による炉体内のガス流を示す図である。図3(a)では単結晶シリコンの育成初期のガス流が示されており、図3(b)では単結晶シリコンの育成初期後のガス流が示されている。
単結晶シリコン引き上げ装置の炉体内上方からArガスを供給すると、Arガスは単結晶シリコン8の引き上げ経路に沿って下降する。図3で示されるように、面積比S2/S1が適当な値であると、冷却コイル6の下端6aと熱遮蔽体5の間隙を通過するガスの流速が小さくなる。冷却コイル6の下端6aと熱遮蔽体5の間隙を通過するArガスの流速が小さければArガスの進行方向の変化があっても流速の変化量は小さい。したがってArガスの進行方向の変化に起因する熱遮蔽体5からの塵の落下が抑制される。
FIG. 3 is a view showing a gas flow in the furnace according to the present embodiment. FIG. 3A shows a gas flow at the initial stage of single crystal silicon growth, and FIG. 3B shows a gas flow after the initial stage of single crystal silicon growth.
When Ar gas is supplied from above the furnace body of the single crystal silicon pulling apparatus, the Ar gas descends along the pulling path of the single crystal silicon 8. As shown in FIG. 3, when the area ratio S2 / S1 is an appropriate value, the flow rate of the gas passing through the gap between the lower end 6a of the cooling coil 6 and the heat shield 5 becomes small. If the flow rate of Ar gas passing through the gap between the lower end 6a of the cooling coil 6 and the heat shield 5 is small, the amount of change in flow rate is small even if there is a change in the Ar gas traveling direction. Therefore, the fall of the dust from the heat shield 5 due to the change in the traveling direction of Ar gas is suppressed.

本実施形態によれば、冷却コイルなどの筒状体の下端と熱遮蔽体の間隙を通過するArガスの流速を小さくすることができる。このためガス流の変化に起因する熱遮蔽体表面からの塵の剥離が低減される。よってシリコン融液への塵の落下が低減され、単結晶シリコンの品質低下が防止される。   According to the present embodiment, the flow rate of Ar gas passing through the gap between the lower end of a cylindrical body such as a cooling coil and the heat shield can be reduced. For this reason, the separation of dust from the surface of the heat shield due to the change of the gas flow is reduced. Therefore, the fall of the dust to a silicon melt is reduced, and the quality fall of a single crystal silicon is prevented.

図4は熱遮蔽体の断面の模式図である。
熱遮蔽体55において、単結晶シリコン58側の表面55aは凹凸状である。凹凸の高低差は熱遮蔽体55の表面55aに沿って落ちる塵を留められる程度である。具体的には、0.5〜10.0mm程度である。
FIG. 4 is a schematic view of a cross section of the heat shield.
In the heat shield 55, the surface 55a on the single crystal silicon 58 side is uneven. The level difference of the unevenness is such that dust falling along the surface 55a of the heat shield 55 can be retained. Specifically, it is about 0.5 to 10.0 mm.

本実施形態によれば、炉体内上部から熱遮蔽体に落下する塵及び熱遮蔽体上の塵を熱遮蔽体に留めることができる。よって熱遮蔽体からシリコン融液への塵の落下が低減され、単結晶シリコンの品質低下が防止される。   According to this embodiment, dust falling on the heat shield from the upper part of the furnace body and dust on the heat shield can be retained on the heat shield. Therefore, the fall of the dust from the heat shield to the silicon melt is reduced, and the deterioration of the quality of the single crystal silicon is prevented.

ところで図6で示されるように、実際の冷却コイル6は単結晶シリコン8の引き上げ経路を略中心にして螺旋状に巻かれた冷却パイプ6bを有する。この冷却パイプ6bの内部には冷却媒体である冷却水が、図示しない冷却水供給機構から供給される。このように冷却パイプ6bを螺旋状にして筒状の冷却コイル6を形成した場合に、冷却コイル6の下端6aは平坦にならず、最大でパイプ1本分の高低差L1−L2が生じる。このため冷却コイル6の下端6aと熱遮蔽体5との間隙は場所によって異なることになり、ガス流れの速い箇所と遅い箇所が発生してガス流れの不均一化が発生する。このように冷却コイル6の下端6aと熱遮蔽体5との間隙でガス流れが不均一化すると、単結晶シリコン8の引き上げに伴いガス流れが変化する際に、炉体内の上部に堆積した微小な塵(カーボン等)の落下を誘発することがある。   Incidentally, as shown in FIG. 6, the actual cooling coil 6 has a cooling pipe 6 b spirally wound around the pulling path of the single crystal silicon 8. Cooling water as a cooling medium is supplied into the cooling pipe 6b from a cooling water supply mechanism (not shown). When the cylindrical cooling coil 6 is formed by spirally forming the cooling pipe 6b as described above, the lower end 6a of the cooling coil 6 is not flat, and a height difference L1-L2 corresponding to one pipe is generated at the maximum. For this reason, the gap between the lower end 6a of the cooling coil 6 and the heat shield 5 varies depending on the location, and a portion where the gas flow is fast and a portion where the gas flow is slow are generated, resulting in non-uniform gas flow. If the gas flow becomes non-uniform in the gap between the lower end 6a of the cooling coil 6 and the heat shield 5 in this way, when the gas flow changes as the single crystal silicon 8 is pulled up, the minute amount deposited on the upper part of the furnace body. May cause falling of heavy dust (carbon etc.).

本実施形態では、こうした高低差に起因する塵の落下を防止するために、図7(a)で示されるように、冷却コイル6の下端6aの一部に沿ってコイル補完部材61が取り付けられている。コイル補完部材61は冷却コイル6の曲率と同じ曲率を有する。冷却コイル6とコイル補完部材61とは一体化され、ここでは一体化された構造体をコイル体60と称する。コイル補完部材61は冷却コイル6における下端6aの高低差を補完して、コイル体60の下端を略平坦にする。コイル補完部材61の材料は、単結晶シリコン8の形成や品質に支障をきたすことがないのであれば、どのようなものでもよい。   In the present embodiment, in order to prevent the dust from falling due to such a height difference, a coil complementing member 61 is attached along a part of the lower end 6a of the cooling coil 6 as shown in FIG. ing. The coil complementing member 61 has the same curvature as that of the cooling coil 6. The cooling coil 6 and the coil complementing member 61 are integrated. Here, the integrated structure is referred to as a coil body 60. The coil complementing member 61 complements the height difference of the lower end 6a of the cooling coil 6 to make the lower end of the coil body 60 substantially flat. The material of the coil complementing member 61 may be any material as long as it does not hinder the formation and quality of the single crystal silicon 8.

図7(a)で示されるように、冷却コイル6における下端6aの一部にコイル補完部材61が取り付けられるのではなく、図7(b)で示されるように、冷却コイル6における下端6aの全体にコイル補完部材62が取り付けられてもよい。   As shown in FIG. 7A, the coil complementing member 61 is not attached to a part of the lower end 6a of the cooling coil 6, but the lower end 6a of the cooling coil 6 is not attached as shown in FIG. The coil complementing member 62 may be attached to the entirety.

また本実施形態では、コイル補完部材61を筒状の冷却パイプ6に設けているが、これに限らず、コイル補完部材61を螺旋状のパイプに温度調整媒体を流す筒状のコイルに設けてもよい。   In this embodiment, the coil complementing member 61 is provided on the cylindrical cooling pipe 6. However, the present invention is not limited to this, and the coil complementing member 61 is provided on a cylindrical coil that allows a temperature adjusting medium to flow through the spiral pipe. Also good.

本実施形態によれば、冷却コイルのような温度調整コイルの下端にコイル補完部材を取り付けてコイル体を形成するため、コイル体の下端と熱遮蔽体との間隙を全ての部分で一定にすることができる。したがってコイル体と熱遮蔽体との間隙でガス流れの不均一化が発生しなくなる。よって炉体内の上部に堆積した微小な塵の落下を誘発することがなくなり、シリコン融液への塵の落下が低減され、単結晶シリコンの品質低下が防止される。   According to this embodiment, a coil complement member is attached to the lower end of a temperature adjustment coil such as a cooling coil to form a coil body, so that the gap between the lower end of the coil body and the heat shield is constant in all parts. be able to. Therefore, nonuniform gas flow does not occur in the gap between the coil body and the heat shield. Therefore, it does not induce the fall of the minute dust deposited on the upper part of the furnace body, the fall of the dust to the silicon melt is reduced, and the quality deterioration of the single crystal silicon is prevented.

1 炉体
5、45、55 熱遮蔽体
6 冷却コイル
8 単結晶シリコン
10 単結晶引き上げ装置
60 コイル体
61 コイル補完部材
DESCRIPTION OF SYMBOLS 1 Furnace 5, 45, 55 Thermal shield 6 Cooling coil 8 Single crystal silicon 10 Single crystal pulling device 60 Coil body 61 Coil complementary member

Claims (1)

単結晶シリコンの引き上げ経路を囲繞する熱遮蔽体からシリコン融液への塵の落下を防止するシリコン融液の汚染防止装置において、
熱遮蔽体は、下方の開口よりも上方の開口が大きく、上方の開口と下方の開口の間にあって単結晶シリコンの引き上げ経路側に向く斜面を有し、この斜面に高低差が0.5〜10.0mm程度の凹凸を有すること
を特徴とするシリコン融液の汚染防止装置。
In the silicon melt contamination prevention device for preventing dust from falling from the heat shield surrounding the single crystal silicon pulling path to the silicon melt,
The thermal shield has an upper opening larger than the lower opening, and has a slope between the upper opening and the lower opening and facing the pulling path side of the single crystal silicon. An apparatus for preventing contamination of silicon melt, which has irregularities of about 10.0 mm.
JP2009091118A 2009-04-03 2009-04-03 Silicon melt contamination prevention device Active JP4499178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091118A JP4499178B2 (en) 2009-04-03 2009-04-03 Silicon melt contamination prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091118A JP4499178B2 (en) 2009-04-03 2009-04-03 Silicon melt contamination prevention device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005279979A Division JP4349493B2 (en) 2005-09-27 2005-09-27 Single crystal silicon pulling apparatus, silicon melt contamination prevention method, and silicon melt contamination prevention apparatus

Publications (2)

Publication Number Publication Date
JP2009184917A true JP2009184917A (en) 2009-08-20
JP4499178B2 JP4499178B2 (en) 2010-07-07

Family

ID=41068545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091118A Active JP4499178B2 (en) 2009-04-03 2009-04-03 Silicon melt contamination prevention device

Country Status (1)

Country Link
JP (1) JP4499178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052912B1 (en) 2021-06-14 2022-04-12 信越半導体株式会社 Single crystal pulling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JP2001039798A (en) * 1999-07-23 2001-02-13 Mitsubishi Materials Silicon Corp Heat shielding member for silicon single crystal growing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JP2001039798A (en) * 1999-07-23 2001-02-13 Mitsubishi Materials Silicon Corp Heat shielding member for silicon single crystal growing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052912B1 (en) 2021-06-14 2022-04-12 信越半導体株式会社 Single crystal pulling device
KR20220167762A (en) 2021-06-14 2022-12-21 신에쯔 한도타이 가부시키가이샤 Single crystal pulling apparatus
JP2022190408A (en) * 2021-06-14 2022-12-26 信越半導体株式会社 Drawing-up apparatus of single crystal

Also Published As

Publication number Publication date
JP4499178B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
JP6202119B2 (en) Method for producing silicon single crystal
JP4349493B2 (en) Single crystal silicon pulling apparatus, silicon melt contamination prevention method, and silicon melt contamination prevention apparatus
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
JP2008105873A (en) Single crystal manufacturing apparatus and single crystal manufacturing method
TWI598475B (en) Weir for improved crystal growth in a continuous czochralski process
JP4499178B2 (en) Silicon melt contamination prevention device
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP2011102234A (en) Method for producing single crystal composed of silicon by remelting granule
KR101279390B1 (en) Apparatus for growing single crystal ingot and method for spraying gas in ingot growing apparatus
JP4862836B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2007204332A (en) Device and method for manufacturing single crystal
JP2007186356A (en) Apparatus and method for producing single crystal
JP6729484B2 (en) Method for producing silicon single crystal
JP2009091237A (en) Method and apparatus for manufacturing ultra low defect semiconductor single crystalline ingot
JP2007182355A (en) Heat shielding member of silicon single crystal pulling apparatus
JP2007204305A (en) Single crystal pulling apparatus
JP2008127216A (en) Production method of semiconductor single crystal
JP2007031235A (en) Apparatus for manufacturing single crystal
JP2011026147A (en) Silicon single crystal pulling device
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
JP6658780B2 (en) Heat shielding member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
JP2008189529A (en) Method for producing semiconductor single crystal
JP2008120623A (en) Single crystal pulling method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250