JP2009184904A - (Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF - Google Patents
(Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF Download PDFInfo
- Publication number
- JP2009184904A JP2009184904A JP2008289468A JP2008289468A JP2009184904A JP 2009184904 A JP2009184904 A JP 2009184904A JP 2008289468 A JP2008289468 A JP 2008289468A JP 2008289468 A JP2008289468 A JP 2008289468A JP 2009184904 A JP2009184904 A JP 2009184904A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- grains
- piezoelectric material
- less
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 229910052700 potassium Inorganic materials 0.000 title claims abstract description 38
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 38
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 37
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 37
- 229910052758 niobium Inorganic materials 0.000 title claims abstract description 36
- 229910052787 antimony Inorganic materials 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000010304 firing Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 48
- 239000011362 coarse particle Substances 0.000 claims description 21
- 239000010419 fine particle Substances 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 230000005684 electric field Effects 0.000 abstract description 21
- 238000005245 sintering Methods 0.000 abstract description 10
- 238000001354 calcination Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000010955 niobium Substances 0.000 description 29
- 239000011734 sodium Substances 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 23
- 239000013078 crystal Substances 0.000 description 11
- 230000010287 polarization Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 4
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229940008015 lithium carbonate Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 239000001472 potassium tartrate Substances 0.000 description 1
- 229940111695 potassium tartrate Drugs 0.000 description 1
- 235000011005 potassium tartrates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、アクチュエータやセンサーに用いられる(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料、及びその製造方法に関する。 The present invention relates to a (Li, Na, K) (Nb, Ta, Sb) O 3 based piezoelectric material used for actuators and sensors, and a method for manufacturing the same.
圧電/電歪アクチュエータは、サブミクロンのオーダーで変位を精密に制御することができるという利点を有する。特に、圧電/電歪磁器組成物の焼結体を圧電/電歪体として用いた圧電/電歪アクチュエータは、変位を精密に制御することができる他にも、電気機械変換効率が高く、発生力が大きく、応答速度が速く、耐久性が高く、消費電力が少ないという利点も有し、これらの利点を生かして、インクジェットプリンタのヘッドやディーゼルエンジンのインジェクタ等に採用されている。 Piezoelectric / electrostrictive actuators have the advantage that displacement can be precisely controlled on the order of submicrons. In particular, a piezoelectric / electrostrictive actuator using a sintered body of a piezoelectric / electrostrictive porcelain composition as a piezoelectric / electrostrictive body can precisely control displacement, and has high electromechanical conversion efficiency. It has the advantages of high power, fast response speed, high durability, and low power consumption. Taking advantage of these advantages, it is employed in inkjet printer heads, diesel engine injectors, and the like.
圧電/電歪アクチュエータ用の圧電/電歪磁器組成物としては、従来、Pb(Zr,Ti)O3(PZT)系の圧電/電歪磁器組成物が用いられていたが、焼結体からの鉛の溶質が地球環境に与える影響が強く懸念されるようになってからは、(Li,Na,K)(Nb,Ta)O3系の圧電/電歪磁器組成物も検討されている。 As a piezoelectric / electrostrictive ceramic composition for a piezoelectric / electrostrictive actuator, a Pb (Zr, Ti) O 3 (PZT) -based piezoelectric / electrostrictive ceramic composition has been conventionally used. (Li, Na, K) (Nb, Ta) O 3 -based piezoelectric / electrostrictive porcelain compositions have been studied since the influence of lead solutes on the global environment is strongly concerned. .
(Li,Na,K)(Nb,Ta)O3系圧電材料は、一般的に1020〜1250℃×0.15〜4時間(大気中、若しくは酸素雰囲気中)で焼結される(例えば特許文献1〜3)。焼結温度に達するまでの昇温速度については、200℃/h又は300℃/hで、室温から焼結温度まで一定速度で昇温している(例えば特許文献4)。 (Li, Na, K) (Nb, Ta) O 3 piezoelectric materials are generally sintered at 1020 to 1250 ° C. × 0.15 to 4 hours (in the air or in an oxygen atmosphere) (for example, patents). Literatures 1-3). About the temperature increase rate until it reaches the sintering temperature, the temperature is increased at a constant rate from room temperature to the sintering temperature at 200 ° C./h or 300 ° C./h (for example, Patent Document 4).
そして、昇温中に600〜650℃の範囲で1〜5時間キープすることにより粉末の成形性を良くする為に添加した有機バインダーを除去(脱バインダー工程)している研究例がある(例えば特許文献4)。これら焼結体の微構造は10μm程度の粒子から成っている(例えば特許文献1)。また配向構造(特許文献5)を目指した研究例もある。 And there is a research example of removing the organic binder added to improve the moldability of the powder by keeping it in the range of 600 to 650 ° C. for 1 to 5 hours during the temperature rise (for example, debinding process) (for example, Patent Document 4). The microstructure of these sintered bodies is composed of particles of about 10 μm (for example, Patent Document 1). There is also an example of research aimed at an oriented structure (Patent Document 5).
従来から、電気的特性を向上させる為に、粒径が小さく均一な微構造、又は、配向構造を目指して研究されてきた。しかしながら、例えば、電界誘起歪S4000は、400〜550ppmと不十分であり、電界誘起歪等の電気的特性をさらに向上させた圧電材料が望まれている。 Conventionally, in order to improve electrical characteristics, research has been conducted aiming at a uniform microstructure or an oriented structure with a small particle size. However, for example, the electric field induced strain S4000 is insufficient at 400 to 550 ppm, and a piezoelectric material with further improved electrical characteristics such as electric field induced strain is desired.
本発明の課題は、電気的特性をさらに向上させた(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料、及びその製造方法を提供することにある。 An object of the present invention is to provide a (Li, Na, K) (Nb, Ta, Sb) O 3 -based piezoelectric material having further improved electrical characteristics, and a method for manufacturing the same.
本願発明者らは、仮焼/粉砕粉を、800〜950℃の範囲内の一定温度で一定時間維持した後、更に昇温して焼成温度にて焼結することにより、焼結体の表面微構造が、粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、粒径15μm以上50μm以下の粗大粒からなり、面積基準で前記粗大粒を3%以上含み、電気的特性が向上した(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料を得ることができることを見出した。すなわち、本発明によれば、以下の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料が提供される。 The inventors of the present application maintain the surface of the sintered body by maintaining the calcined / ground powder at a constant temperature in the range of 800 to 950 ° C. for a certain period of time and then further heating and sintering at the firing temperature. The microstructure is composed of fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm, and coarse particles having a particle size of 15 μm or more and 50 μm or less. It has been found that an improved (Li, Na, K) (Nb, Ta, Sb) O 3 based piezoelectric material can be obtained. That is, according to the present invention, the following (Li, Na, K) (Nb, Ta, Sb) O 3 based piezoelectric material is provided.
[1] 焼結体の表面微構造が、粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、粒径15μm以上50μm以下の粗大粒からなり、面積基準で前記粗大粒を3%以上含む(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料。 [1] The surface microstructure of the sintered body is composed of fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm, and coarse particles having a particle size of 15 μm or more and 50 μm or less. % (Li, Na, K) (Nb, Ta, Sb) O 3 based piezoelectric material.
[2] 面積基準で前記微細粒を30%〜60%含む前記[1]に記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料。 [2] The (Li, Na, K) (Nb, Ta, Sb) O 3 -based piezoelectric material according to [1] containing 30% to 60% of the fine particles on an area basis.
[3] 組成式:{Liy(Na1−xKx)1−y}a(Nb1−z−wTazSbw)O3
(但し、1≦a≦1.05、0.3≦x≦0.7、0.02≦y≦0.1、0≦z≦0.5、及び、0.01≦w≦0.1)
で表される前記[1]または[2]に記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料。
[3] Composition formula: {Li y (Na 1−x K x ) 1−y } a (Nb 1−z−w Ta z Sb w ) O 3
(However, 1 ≦ a ≦ 1.05, 0.3 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.5, and 0.01 ≦ w ≦ 0.1. )
The (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material according to [1] or [2] represented by
[4] Mn、Cr、Fe、Co、Ni、Cu、及びZnからなる群から選択される少なくとも1種の金属元素を含有する前記[1]〜[3]のいずれかに記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料。 [4] (Li, any one of the above [1] to [3] containing at least one metal element selected from the group consisting of Mn, Cr, Fe, Co, Ni, Cu, and Zn Na, K) (Nb, Ta, Sb) O 3 piezoelectric material.
[5] (Li,Na,K)(Nb,Ta,Sb)O3で表される組成となるように金属元素を含有する化合物を混合して仮焼した後に粉砕して仮焼/粉砕粉を得、昇温過程において、800〜950℃の範囲内の一定温度で一定時間維持するキープ工程を行った後、更に昇温して焼成温度にて焼結する(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料の製造方法。 [5] (Li, Na, K) (Nb, Ta, Sb) O 3 is mixed with a compound containing a metal element and calcined and calcined and calcined / pulverized powder. In the temperature raising process, after performing a keeping process of maintaining at a constant temperature within a range of 800 to 950 ° C. for a certain time, the temperature is further raised and sintered at a firing temperature (Li, Na, K) ( Nb, Ta, Sb) Manufacturing method of O 3 based piezoelectric material.
[6] 前記キープ工程において、0.5時間〜20時間の一定時間維持する前記[5]に記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料の製造方法。 [6] The method for producing a (Li, Na, K) (Nb, Ta, Sb) O 3 -based piezoelectric material according to [5], wherein a constant time of 0.5 to 20 hours is maintained in the keep step.
[7] 前記仮焼/粉砕粉にMn、Cr、Fe、Co、Ni、Cu、及びZnからなる群から選択される少なくとも1種の金属元素を添加した後に、焼成する前記[5]または[6]に記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料の製造方法。 [7] The above [5] or [5], wherein at least one metal element selected from the group consisting of Mn, Cr, Fe, Co, Ni, Cu, and Zn is added to the calcined / ground powder, and then fired. 6] The method for producing a (Li, Na, K) (Nb, Ta, Sb) O 3 -based piezoelectric material according to [6].
粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、粒径15μm以上50μm以下の粗大粒からなり、面積基準で粗大粒を3%以上含む(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料を作製することにより、従来よりも電界誘起歪等の電気的特性が向上した圧電材料とすることができる。 It consists of fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm, and coarse particles having a particle size of 15 μm or more and 50 μm or less, and containing 3% or more of coarse particles on an area basis (Li, Na, K) (Nb, By producing a Ta, Sb) O 3 -based piezoelectric material, a piezoelectric material with improved electrical characteristics such as electric field induced strain can be obtained.
(Li,Na,K)(Nb,Ta,Sb)O3で表される原料を仮焼した後に粉砕した仮焼/粉砕粉を、800℃〜950℃の範囲内の一定温度で一定時間維持するキープ工程を行った後、更に昇温して焼成温度にて焼結することにより、上記のような微細粒、中間粒、粗大粒を含む圧電材料とすることができ、その結果、電界誘起歪等の電気的特性が向上した圧電材料とすることができる。 The calcined / ground powder obtained by calcining the raw material represented by (Li, Na, K) (Nb, Ta, Sb) O 3 is maintained at a constant temperature within a range of 800 ° C. to 950 ° C. for a predetermined time. After performing the keeping step, the piezoelectric material containing the fine grains, intermediate grains, and coarse grains as described above can be obtained by further raising the temperature and sintering at the firing temperature. A piezoelectric material with improved electrical characteristics such as strain can be obtained.
以下、本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
本発明の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料は、焼結体の表面微構造が、粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、粒径15μm以上50μm以下の粗大粒からなり、面積基準で粗大粒を3%以上含む。ここで、粒径は、等面積円相当径であり、焼結体表面をSEM等で観察した時の各粒子と同じ面積を持つ円の直径である。さらに、面積基準で微細粒を30%〜60%含む構成とすることが好ましい。 The (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material of the present invention has a sintered body whose surface microstructure is fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm. , Consisting of coarse particles having a particle size of 15 μm or more and 50 μm or less, and containing 3% or more of coarse particles on an area basis. Here, the particle diameter is an equivalent area equivalent circle diameter, which is a diameter of a circle having the same area as each particle when the surface of the sintered body is observed with an SEM or the like. Furthermore, it is preferable to make it the structure which contains 30%-60% of a fine grain on an area basis.
従来の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料は、粒径15μm以上50μm以下の粗大粒が、2%以下であり、本発明のように粗大粒が3%以上とすることにより、電気的特性を飛躍的に向上させることができる。粗大粒を3%以上とする製造法は、従来知られておらず、後述するように、所定の温度範囲にて一定時間維持するキープ工程を行った後に、更に高温にて焼結することにより、得られるものである。つまり、このようなキープ工程を導入することにより、従来では作製できなかった粗大粒が3%以上含まれる(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料を作製することが可能となり、粗大粒の割合が従来に比べて若干増加しただけのようにも思われるが、その電気的特性は、格段に向上する。 The conventional (Li, Na, K) (Nb, Ta, Sb) O 3 based piezoelectric material has 2% or less of coarse particles having a particle diameter of 15 μm or more and 50 μm or less, and 3% of coarse particles as in the present invention. By setting it as the above, an electrical property can be improved greatly. The production method for making coarse particles 3% or more has not been known in the past, and, as will be described later, after performing a keeping process for a predetermined time in a predetermined temperature range, by further sintering at a higher temperature , What you get. That is, by introducing such a keep process, a (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material containing 3% or more of coarse particles that could not be produced conventionally is produced. It seems that the ratio of coarse particles is slightly increased compared to the conventional one, but its electrical characteristics are remarkably improved.
本発明の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料は、AサイトにLi,Na,Kからなる群から選択される少なくとも1種のイオン、BサイトにNb,Ta,Sbからなる群から選択される少なくとも1種のイオンを含むペロブスカイト構造を有する。 The (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material of the present invention has at least one ion selected from the group consisting of Li, Na, and K at the A site, and Nb, at the B site. It has a perovskite structure including at least one ion selected from the group consisting of Ta and Sb.
さらに具体的には、下記組成式で表されるものを挙げることができる。
{Liy(Na1−xKx)1−y}a(Nb1−z−wTazSbw)O3
(但し、1≦a≦1.05、0.3≦x≦0.7、0.02≦y≦0.1、0≦z≦0.5、及び、0.01≦w≦0.1)
More specifically, there can be mentioned those represented by the following composition formula.
{Li y (Na 1−x K x ) 1−y } a (Nb 1−z−w Ta z Sb w ) O 3
(However, 1 ≦ a ≦ 1.05, 0.3 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.5, and 0.01 ≦ w ≦ 0.1. )
A/B比をa≦1.05としたのは、この範囲を上回ると、誘電損失が増加し、高電界印加時の電界誘起歪が小さくなる傾向があるからである。誘電損失の増加は、高電界を印加するアクチュエータ用の圧電/電歪磁器組成物では問題が大きい。一方、1≦aとしたのは、粒成長を促進させ、緻密化させるためである。この範囲を下回ると、粒成長を促進させるために1100℃以上の加熱が必要となる。この場合、アルカリ成分の蒸発が起こり易くなり、組成が変動することで特性が不安定になる。 The reason why the A / B ratio is set to a ≦ 1.05 is that if it exceeds this range, the dielectric loss increases and the electric field induced strain when applying a high electric field tends to be small. The increase in dielectric loss is a serious problem in a piezoelectric / electrostrictive ceramic composition for an actuator that applies a high electric field. On the other hand, the reason why 1 ≦ a is set is to promote grain growth and densify. Below this range, heating at 1100 ° C. or higher is required to promote grain growth. In this case, evaporation of the alkali component is likely to occur, and the characteristics become unstable due to fluctuations in the composition.
Sb置換量を0.01≦w≦0.1としたのは、この範囲において、圧電/電歪特性が高くなる正方晶−斜方晶相転移温度(以下、単に「相転移温度」という)TOTを大きく変動させることなく、高電界印加時の電界誘起歪を大きくすることができるからである。特に、Sb置換量を0.01≦w≦0.05とした場合は、相転移温度TOTをほとんど変動させることなく、高電界印加時の電界誘起歪を特に大きくすることができる。これは、Sb置換量が0.01≦w≦0.05の範囲を上回るとLiSbO3の異相が焼結体の内部に生成して、相転移温度TOTが上昇傾向となるからである。 The reason why the Sb substitution amount is set to 0.01 ≦ w ≦ 0.1 is that the tetragonal-orthorhombic phase transition temperature (hereinafter simply referred to as “phase transition temperature”) in which the piezoelectric / electrostrictive characteristics are enhanced in this range. This is because the electric field induced strain at the time of applying a high electric field can be increased without greatly changing TOT . In particular, when the Sb substitution amount is 0.01 ≦ w ≦ 0.05, the electric field induced strain when a high electric field is applied can be particularly increased without substantially changing the phase transition temperature TOT . This is because heterogeneous phases LiSbO 3 When Sb substitution amount exceeds the range of 0.01 ≦ w ≦ 0.05 is generated in the interior of the sintered body, the phase transition temperature T OT is upward trend.
K、Li及びTa量をそれぞれ0.3≦x≦0.7、0.02≦y≦0.1及び0≦z≦0.5としたのは、この範囲でアクチュエータ用として好適な圧電/電歪磁器組成物を得る事ができるからである。例えば、xがこの範囲を下回ると、圧電/電歪特性が急激に低下する。一方、xがこの範囲を上回ると、焼結が困難になり、焼成温度を高くしなければならなくなる。焼成温度を高くすることが望ましくないのは、焼成温度を高くすると、圧電/電歪磁器組成物に含まれるアルカリ成分が蒸発し、圧電/電歪特性を安定して得ることができなくなるからである。また、yがこの範囲を下回ると、やはり、焼結が困難になり、焼成温度を高くしなければならなくなる。一方、yがこの範囲を上回ると、異相の析出が多くなり、絶縁性が低下する。さらに、zがこの範囲を上回ると、やはり、焼結が困難になり、焼成温度を高くしなければならなくなる(なお、上記組成式の組成範囲については、特願2007−259706号に記載されている)。 The K, Li, and Ta amounts were set to 0.3 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.1, and 0 ≦ z ≦ 0.5, respectively. This is because an electrostrictive porcelain composition can be obtained. For example, when x is less than this range, the piezoelectric / electrostrictive characteristics are rapidly lowered. On the other hand, if x exceeds this range, sintering becomes difficult and the firing temperature must be increased. It is not desirable to increase the firing temperature because the alkali component contained in the piezoelectric / electrostrictive porcelain composition evaporates and the piezoelectric / electrostrictive characteristics cannot be obtained stably when the firing temperature is increased. is there. If y is less than this range, sintering is still difficult, and the firing temperature must be increased. On the other hand, when y exceeds this range, precipitation of heterogeneous phases increases, and the insulation properties decrease. Furthermore, if z exceeds this range, it becomes difficult to sinter and the firing temperature must be increased (the composition range of the above composition formula is described in Japanese Patent Application No. 2007-259706). )
また、本発明の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料は、Mn,Cr,Fe,Co,Ni,Cu,及びZnからなる群から選択される少なくとも1種の金属元素を含有することが好ましい。これらの元素は、遷移金属元素または典型金属元素であり、化学的な性質が類似する第4周期の6族〜12族に属し、粒界相に取り込まれることによって、粒界相の融点を低下させて、粗大粒を成長させる。これら上記の元素は、酸化物等として粒界相だけでなく、粒内または異相に含有されていてもよい。これら副成分である金属元素は、ペロブスカイト型酸化物100モル部に対する金属原子換算の添加量が3モル部以下となるように含有されていることが望ましい。含有量を3モル部以下としたのは、この範囲を上回ると、誘電損失が増加し、高電界印加時の電界誘起歪が小さくなる傾向があるからである。 The (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material of the present invention is at least one selected from the group consisting of Mn, Cr, Fe, Co, Ni, Cu, and Zn. It is preferable to contain these metal elements. These elements are transition metal elements or typical metal elements, belonging to Group 6 to Group 12 of the 4th period with similar chemical properties, and are incorporated into the grain boundary phase to lower the melting point of the grain boundary phase. To grow coarse grains. These elements may be contained not only in the grain boundary phase but also in the grains or in different phases as oxides. It is desirable that the metal element as the accessory component is contained so that the amount of addition in terms of metal atom is 3 mol parts or less with respect to 100 mol parts of the perovskite oxide. The reason why the content is 3 mol parts or less is that when the content exceeds this range, the dielectric loss increases, and the electric field induced strain at the time of applying a high electric field tends to be small.
次に、本発明の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料の製造方法を説明する。先ず、原料粉末を製造する。原料粉末の組成中の各金属元素の割合(モル比)を満たすように、それぞれの金属元素を含有する化合物を秤量し、ボールミル等の混合方法によりエタノール等の溶剤と混合して混合スラリーを得る。なお、それぞれの金属元素を含有する化合物の種類は特に限定されないが、各金属元素の酸化物、又は炭酸塩等が好適に用いられ、例えば、炭酸リチウム、酒石酸カリウム、酒石酸ナトリウム、酸化ニオブ、酸化タンタルを用いることができる。 Next, a method for producing the (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material of the present invention will be described. First, raw material powder is manufactured. The compound containing each metal element is weighed so as to satisfy the ratio (molar ratio) of each metal element in the composition of the raw material powder, and mixed with a solvent such as ethanol by a mixing method such as a ball mill to obtain a mixed slurry. . The type of the compound containing each metal element is not particularly limited, but an oxide or carbonate of each metal element is preferably used. For example, lithium carbonate, potassium tartrate, sodium tartrate, niobium oxide, oxide Tantalum can be used.
得られた混合スラリーを、乾燥器を使用するか、又は濾過等の操作によって乾燥し、仮焼、粉砕する。粉砕はボールミル等の方法により行えばよい。このようにして、原料粉末(仮焼/粉砕粉)を製造する。 The obtained mixed slurry is dried, calcined, or pulverized by using a drier or by an operation such as filtration. The pulverization may be performed by a method such as a ball mill. In this way, raw material powder (calcined / ground powder) is produced.
仮焼、粉砕後の原料粉末の平均粒径は、0.1μm以上1μm以下であることが好ましい。ここで、平均粒径とは累積分布における50%径(メジアン径)とする。 The average particle diameter of the raw powder after calcination and pulverization is preferably 0.1 μm or more and 1 μm or less. Here, the average particle diameter is a 50% diameter (median diameter) in the cumulative distribution.
(Li,Na,K)(Nb,Ta,Sb)O3仮焼/粉砕粉に、Mn,Cr,Fe,Co,Ni,Cu,及びZnからなる群から選択される少なくとも1種の金属元素を添加する事が好ましい。この仮焼/粉砕粉をペレット状に成形し焼成する。焼成は、昇温過程において、800〜950℃の範囲の一定温度で、一定時間維持するキープ工程を行った後、さらに昇温して焼結温度にて焼結する。好ましくは、キープ工程において、0.5〜20時間の一定時間、維持するとよい。特に、キープ温度850〜900℃の範囲が、より好ましい。焼成は、大気中での通常焼成のほか、酸素雰囲気中での焼成、ホットプレス焼成であってもよい。 (Li, Na, K) (Nb, Ta, Sb) O 3 calcined / ground powder, at least one metal element selected from the group consisting of Mn, Cr, Fe, Co, Ni, Cu, and Zn It is preferable to add. This calcined / ground powder is formed into pellets and fired. Firing is performed at a constant temperature in the range of 800 to 950 ° C. during a temperature rising process, and then maintained at a constant time, and then further heated to sinter at the sintering temperature. Preferably, in the keeping step, it may be maintained for a fixed time of 0.5 to 20 hours. In particular, a range of a keep temperature of 850 to 900 ° C. is more preferable. The firing may be normal firing in the air, firing in an oxygen atmosphere, or hot press firing.
その後、得られた焼結体を必要に応じて適当な形状(例えば、角板状)に加工後、分極処理を行い、圧電材料として用いる。分極処理は、圧電材料に、5kV/mm程度の電圧を15分以上印加して行う。 Thereafter, the obtained sintered body is processed into an appropriate shape (for example, a square plate shape) as necessary, and then subjected to polarization treatment to be used as a piezoelectric material. The polarization treatment is performed by applying a voltage of about 5 kV / mm to the piezoelectric material for 15 minutes or more.
前述のように、粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、粒径15μm以上50μm以下の粗大粒からなり、面積基準で粗大粒を3%以上含む焼結体を作製することにより、電気的特性(電界誘起歪、比誘電率、圧電定数、誘電損失等)を向上させることができる。さらに、(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料を形成するための仮焼/粉砕粉にMnO2等の助剤を後添加するとよい。また、室温から焼結温度に至る昇温過程の途中に一定温度でキープするキープ工程を焼成スケジュールに入れるとよい。その結果、上記微構造を持つ焼結体が得られ、電気的特性が向上する。電気的特性が向上するのは、焼結体に内部応力が加わる為と考えられる。 As described above, a sintered body containing fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm, and coarse particles having a particle size of 15 μm or more and 50 μm or less and containing 3% or more of coarse particles on an area basis is prepared. By doing so, electrical characteristics (electric field induced strain, relative dielectric constant, piezoelectric constant, dielectric loss, etc.) can be improved. Further, an auxiliary agent such as MnO 2 may be added to the calcined / ground powder for forming the (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material. Moreover, it is good to put in the baking schedule the keep process which keeps at fixed temperature in the middle of the temperature rising process from room temperature to sintering temperature. As a result, a sintered body having the above-described microstructure is obtained, and the electrical characteristics are improved. The electrical characteristics are improved because internal stress is applied to the sintered body.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(比較例1)
{Liy(Na1−xKx)1−y}a(Nb1−z−wTazSbw)O3(x=0.450,y=0.060,z=0.082,a=1.01,w=0.040)+0.02mol%MnO2の組成から成る仮焼/粉砕粉(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。焼結体表面のX線回折プロファイルを測定し、半値幅中点法によりc軸とa軸の比のc/a(正方晶性)を算出した。走査型電子顕微鏡(SEM)により、焼結体表面の微構造を観察した。アルキメデス法による嵩密度を測定した。得られた焼結体の表面微構造(図2のSEM写真を参照)から、縦軸を面積基準として、等面積円相当径(直径)による粒径分布を解析した。短冊状に加工した後、シリコンオイル中で5kV/mm×15min.(室温)の条件で分極処理を行い,電気的特性(比誘電率ε,圧電定数d31,誘電損失tanδ,電界誘起歪S4000,昇温時の誘電率が最大となる温度TOT、等)を評価した。S4000とは4kV/mmの電界を加えた時の31方向(電界印加方向に対して垂直方向)の歪量である。これらの結果を表1と表2に示した。
(Comparative Example 1)
{Li y (Na 1−x K x ) 1−y } a (Nb 1−z−w Ta z Sb w ) O 3 (x = 0.450, y = 0.060, z = 0.082, a = 1.01, w = 0.040) +0.02 mol% MnO 2 calcined / ground powder (particle size 0.2-0.5 μm, spherical shape) was formed into pellets (pellet) Sample). This pellet-like sample was heated to a firing temperature of 1000 ° C. at a rate of 200 ° C./h in the atmosphere. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The X-ray diffraction profile on the surface of the sintered body was measured, and c / a (tetragonality) of the ratio of c axis to a axis was calculated by the half-width half-point method. The microstructure of the sintered body surface was observed with a scanning electron microscope (SEM). The bulk density by the Archimedes method was measured. From the surface microstructure of the obtained sintered body (see the SEM photograph in FIG. 2), the particle size distribution by the equivalent area equivalent circle diameter (diameter) was analyzed with the vertical axis as the area standard. After processing into a strip shape, 5 kV / mm × 15 min. In silicon oil. Electrical properties (relative permittivity ε, piezoelectric constant d 31 , dielectric loss tan δ, electric field induced strain S4000, temperature T OT at which the dielectric constant at the time of temperature rise becomes maximum, etc.) Evaluated. S4000 is the amount of strain in 31 directions (perpendicular to the direction of electric field application) when an electric field of 4 kV / mm is applied. These results are shown in Tables 1 and 2.
(実施例1)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で800℃まで昇温し、800℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1に示した。
(Example 1)
The pellet-like sample shown in Comparative Example 1 was heated to 800 ° C. at a rate of 200 ° C./h in the atmosphere, held at 800 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 1.
(実施例2)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で850℃まで昇温し、850℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1に示した。
(Example 2)
The pellet-like sample shown in Comparative Example 1 was heated to 850 ° C. at a rate of 200 ° C./h in the atmosphere, held at 850 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 1.
(実施例3)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で880℃まで昇温し、880℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1、表2、及び表3に示した。図1に焼結体の表面微構造を示した。
(Example 3)
The pellet-like sample shown in Comparative Example 1 was heated to 880 ° C. at a rate of 200 ° C./h in the atmosphere, held at 880 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Tables 1, 2 and 3. FIG. 1 shows the surface microstructure of the sintered body.
(実施例4)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で900℃まで昇温し、900℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1に示した。
Example 4
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./h in the atmosphere, held at 900 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 1.
(実施例5)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で950℃まで昇温し、950℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1に示した。
(Example 5)
The pellet-like sample shown in Comparative Example 1 was heated to 950 ° C. at a rate of 200 ° C./h in the atmosphere, held at 950 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 1.
(比較例2)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で960℃まで昇温し、960℃で3時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表1に示した。
(Comparative Example 2)
The pellet-like sample shown in Comparative Example 1 was heated to 960 ° C. at a rate of 200 ° C./h in the atmosphere, held at 960 ° C. for 3 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 1.
(実施例6)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で880℃まで昇温し、880℃で0.5時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表2に示した。
(Example 6)
The pellet-like sample shown in Comparative Example 1 was heated to 880 ° C. at a rate of 200 ° C./h in the atmosphere, held at 880 ° C. for 0.5 hour, and then fired at 1000 ° C. at a rate of 200 ° C./h. The temperature was raised to. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 2.
(実施例7)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で880℃まで昇温し、880℃で6時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表2に示した。
(Example 7)
The pellet-like sample shown in Comparative Example 1 was heated to 880 ° C. at a rate of 200 ° C./h in the atmosphere, held at 880 ° C. for 6 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 2.
(実施例8)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で880℃まで昇温し、880℃で13時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表2に示した。
(Example 8)
The pellet-like sample shown in Comparative Example 1 was heated to 880 ° C. at a rate of 200 ° C./h in the atmosphere, held at 880 ° C. for 13 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 2.
(実施例9)
比較例1で示したペレット状試料を、大気中で200℃/hの速度で880℃まで昇温し、880℃で20時間保持した後、200℃/hの速度で焼成温度1000℃まで昇温した。1000℃で3時間保持した後、炉冷した。比較例1で述べた特性と結晶構造・微構造を評価した。これらの結果を表2に示した。
Example 9
The pellet-like sample shown in Comparative Example 1 was heated to 880 ° C. at a rate of 200 ° C./h in the atmosphere, held at 880 ° C. for 20 hours, and then increased to a firing temperature of 1000 ° C. at a rate of 200 ° C./h. Warm up. After holding at 1000 ° C. for 3 hours, the furnace was cooled. The characteristics and crystal structure / microstructure described in Comparative Example 1 were evaluated. These results are shown in Table 2.
(実施例10)
実施例3の手順で作製した焼結体を短冊状に加工した後、シリコンオイル中で5kV/mm×15min(80℃)の条件で分極処理を行い、電気的特性を評価した.これらの結果を表3に示した。
(Example 10)
After processing the sintered compact produced by the procedure of Example 3 into a strip shape, polarization treatment was performed in silicon oil under the conditions of 5 kV / mm × 15 min (80 ° C.) to evaluate the electrical characteristics. These results are shown in Table 3.
なお、表1は、キープ温度依存性を示し、キープ時間は3時間である。特性は室温データで、比誘電率と圧電定数は分極後の値である。微細粒の粒径は5μm未満、中間粒は5μm以上15μm未満、粗大粒は15μm以上50μm以下である。粒の割合は面積基準で算出した。 Table 1 shows the keep temperature dependence, and the keep time is 3 hours. The characteristics are room temperature data, and the relative dielectric constant and piezoelectric constant are values after polarization. The fine particles have a particle size of less than 5 μm, the intermediate particles have a particle size of 5 to 15 μm, and the coarse particles have a particle size of 15 to 50 μm. The proportion of grains was calculated on an area basis.
なお、表2は、キープ時間依存性を示し、キープ温度は、880℃である。また、表1と同様に、特性は室温データで、比誘電率と圧電定数は分極後の値である。微細粒の粒径は5μm未満、中間粒は5μm以上15μm未満、粗大粒は15μm以上50μm以下である。粒の割合は面積基準で算出した。 Table 2 shows the keep time dependency, and the keep temperature is 880 ° C. Similarly to Table 1, the characteristics are room temperature data, and the relative dielectric constant and piezoelectric constant are values after polarization. The fine particles have a particle size of less than 5 μm, the intermediate particles have a particle size of 5 to 15 μm, and the coarse particles have a particle size of 15 to 50 μm. The proportion of grains was calculated on an area basis.
なお、表3は、分極温度依存性を示し、キープ条件は、880℃×3hである。特性は室温データで、比誘電率と圧電定数は分極後の値である。 Table 3 shows the polarization temperature dependency, and the keeping condition is 880 ° C. × 3 h. The characteristics are room temperature data, and the relative dielectric constant and piezoelectric constant are values after polarization.
以上の結果より、焼成スケジュールに室温から焼成温度に至る昇温過程の途中に一定温度でキープする定温キープ工程を800〜950℃(850〜900℃が更に良い)の間に入れる事により、粒径5μm未満の微細粒の割合が減り、粒径15μm以上50μm以下の粗大粒の割合が増え、電界誘起歪S4000をはじめとする電気的特性が向上した。キープ時間は0.5時間以上で特性向上の効果があり、20時間で特性は僅かに低下する傾向を示したが、十分な特性向上の効果が得られた。電気的特性が向上したキープ条件では、微細粒の割合が減り、粗大粒の割合が増え、c/a(正方晶性)は大きくなった。しかし、焼結体を粉砕し、X線回折プロファイルを測定すると、元々の焼結体の微構造に関わらず、粉砕粉のc/aは低下し、且つ、全ての試料で同等の値となった。故に、実施例1〜9で見られた焼結体には内部応力が存在し、それにより室温域で正方晶が安定に近い結晶相となり、c/aが大きく、電界誘起歪をはじめとする電気的特性が向上したものである。 From the above results, by placing a constant temperature keeping process in the firing schedule between 800 to 950 ° C. (850 to 900 ° C. is better) by keeping a constant temperature during the temperature rising process from room temperature to the firing temperature, The proportion of fine particles having a diameter of less than 5 μm decreased, the proportion of coarse particles having a particle size of 15 μm or more and 50 μm or less increased, and electrical characteristics including electric field induced strain S4000 were improved. The keep time was 0.5 hours or more and the effect of improving the characteristics was exhibited, and the characteristics tended to slightly decrease after 20 hours. Under the keeping conditions with improved electrical characteristics, the proportion of fine grains decreased, the proportion of coarse grains increased, and c / a (tetragonal) increased. However, when the sintered body is pulverized and the X-ray diffraction profile is measured, the c / a of the pulverized powder is reduced regardless of the original microstructure of the sintered body, and is equal to all samples. It was. Therefore, internal stresses exist in the sintered bodies seen in Examples 1 to 9, whereby a tetragonal crystal becomes nearly stable in a room temperature region, c / a is large, and electric field induced strain is included. It has improved electrical characteristics.
キープ工程により微細粒が減り、粗大粒が増えるメカニズムは、以下の様なものである。800〜950℃の範囲でのキープ工程は、粒界相を薄く均一に広げる。それによって粒成長が抑制、即ち、粒成長のエネルギーが蓄えられる。Mn等の金属元素が粒界相に取り込まれることによって、粒界相の融点が低下し、焼成温度で溶解する。その時、蓄えられた粒成長のエネルギーが一気に開放される為、粗大粒が成長する。空間的に不連続な表面や気孔部にある粒は、粗大粒に取り込まれにくい為、微細粒や中間粒となる。 The mechanism by which fine grains are reduced and coarse grains are increased by the keeping process is as follows. The keeping step in the range of 800 to 950 ° C. spreads the grain boundary phase thinly and uniformly. Thereby, grain growth is suppressed, that is, energy for grain growth is stored. When a metal element such as Mn is taken into the grain boundary phase, the melting point of the grain boundary phase is lowered and dissolved at the firing temperature. At that time, since the stored grain growth energy is released at once, coarse grains grow. Since the particles on the spatially discontinuous surface and pores are difficult to be taken into the coarse particles, they become fine particles and intermediate particles.
焼結体の微構造を粒径5μm未満の微細粒、粒径5μm以上15μm未満の中間粒、15μm以上50μm以下の粗大粒で構成させ、面積基準で粗大粒を3%以上含むようにすることにより、高い電気的特性(比誘電率、圧電定数、誘電損失、電界誘起歪)が得られる。これは内部応力の効果に因るものである。この様な微構造を得る手段として、(1)(Li,Na,K)(Nb,Ta,Sb)O3の組成から成る仮焼/粉砕粉にMn、Cr、Fe、Co、Ni、Cu、Znを主として含む助剤を添加し、(2)焼成工程において、800〜950℃でキープする工程を加えることが有効である。本方法により、537ppmだったS4000を、最大で621ppmまで向上させることができた。さらに、高温分極処理を施す事によって、670ppmまで向上させることができた。なお、上記実施例は、大気中にて焼成したものであるが、酸素雰囲気中での焼成、ホットプレス焼成であっても同様の効果が得られることを確認した。 The microstructure of the sintered body is composed of fine particles having a particle size of less than 5 μm, intermediate particles having a particle size of 5 μm or more and less than 15 μm, and coarse particles having a particle size of 15 μm or more and 50 μm or less, and containing 3% or more of coarse particles on an area basis Therefore, high electrical characteristics (relative dielectric constant, piezoelectric constant, dielectric loss, electric field induced strain) can be obtained. This is due to the effect of internal stress. As means for obtaining such a microstructure, (1) calcined / ground powder having a composition of (Li, Na, K) (Nb, Ta, Sb) O 3 is added to Mn, Cr, Fe, Co, Ni, Cu It is effective to add an auxiliary mainly containing Zn, and (2) to add a step of keeping at 800 to 950 ° C. in the firing step. By this method, S4000, which was 537 ppm, could be improved up to 621 ppm. Furthermore, it was able to be improved to 670 ppm by performing high temperature polarization treatment. In addition, although the said Example was baked in air | atmosphere, it confirmed that the same effect was acquired even if it baked in oxygen atmosphere and hot press baking.
本発明の圧電材料は、優れた電界誘起歪を示すものであり、圧電素子としてアクチュエータ、センサー等に好適である。 The piezoelectric material of the present invention exhibits excellent electric field induced strain, and is suitable for an actuator, a sensor, etc. as a piezoelectric element.
Claims (7)
(但し、1≦a≦1.05、0.3≦x≦0.7、0.02≦y≦0.1、0≦z≦0.5、及び、0.01≦w≦0.1)
で表される請求項1または2に記載の(Li,Na,K)(Nb,Ta,Sb)O3系圧電材料。 Composition formula: {Li y (Na 1−x K x ) 1−y } a (Nb 1−z−w Ta z Sb w ) O 3
(However, 1 ≦ a ≦ 1.05, 0.3 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.5, and 0.01 ≦ w ≦ 0.1. )
The (Li, Na, K) (Nb, Ta, Sb) O 3 piezoelectric material according to claim 1 or 2 represented by:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289468A JP2009184904A (en) | 2008-01-08 | 2008-11-12 | (Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF |
US12/343,689 US8282854B2 (en) | 2008-01-08 | 2008-12-24 | (Li, Na, K)(Nb, Ta, Sb)O3 based piezoelectric material and manufacturing method thereof |
EP09250008A EP2079118A2 (en) | 2008-01-08 | 2009-01-05 | (Li, Na, K) (Nb, Ta, Sb) O3 based piezoelectric material and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008001115 | 2008-01-08 | ||
JP2008289468A JP2009184904A (en) | 2008-01-08 | 2008-11-12 | (Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009184904A true JP2009184904A (en) | 2009-08-20 |
Family
ID=41068541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008289468A Pending JP2009184904A (en) | 2008-01-08 | 2008-11-12 | (Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009184904A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120443A (en) * | 2007-11-14 | 2009-06-04 | Ngk Insulators Ltd | (Li, Na, K)(Nb, Ta)O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF |
-
2008
- 2008-11-12 JP JP2008289468A patent/JP2009184904A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120443A (en) * | 2007-11-14 | 2009-06-04 | Ngk Insulators Ltd | (Li, Na, K)(Nb, Ta)O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5281786B2 (en) | (Li, Na, K) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof | |
Murakami et al. | High strain (0.4%) Bi (Mg2/3Nb1/3) O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers | |
JP4849338B2 (en) | Piezoelectric ceramic composition | |
JP5214373B2 (en) | Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device | |
EP1990326B1 (en) | Piezoelectric ceramic composition | |
JP2007022854A (en) | Potassium-sodium niobate based lead-free piezoelectric ceramic, and method for producing the same | |
JPWO2007094115A1 (en) | Piezoelectric ceramic composition | |
EP2610233B1 (en) | Piezoelectric ceramic and piezoelectric device | |
JP2013537513A (en) | ceramic | |
US9780296B2 (en) | Ceramic material, method for producing the ceramic material, and electroceramic component comprising the ceramic material | |
Laoratanakul et al. | Phase formation and dielectric properties of bismuth sodium titanate–potassium sodium niobate ceramics | |
JP5011227B2 (en) | (Li, Na, K, Bi) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof | |
Hungría et al. | Nanostructured ceramics of BiScO3–PbTiO3 with tailored grain size by spark plasma sintering | |
JP5281782B2 (en) | (Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method | |
JP2007284281A (en) | Method for manufacturing crystal-oriented ceramic | |
KR101786056B1 (en) | Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same | |
Du et al. | Effects of W2/3Bi1/3 substitute on piezoelectric properties of KNN-based ceramics | |
JP2006124251A (en) | Method for producing crystal-oriented ceramic | |
JP2009184904A (en) | (Li, Na, K) (Nb, Ta, Sb) O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF | |
US8282854B2 (en) | (Li, Na, K)(Nb, Ta, Sb)O3 based piezoelectric material and manufacturing method thereof | |
Kundu et al. | Ba-Zr codoped sodium bismuth titanate by novel alkoxyless wet chemical route: processing and electromechanical behavior | |
JP2011153061A (en) | Method for manufacturing pzt-related piezoelectric material fine powder | |
JP5662731B2 (en) | Piezoelectric ceramic composition | |
Maurya et al. | Structural and Electrical Characterization of Lead‐Free (1‐x)(Na1/2Bi1/2) TiO3‐xBaTiO3 Piezoelectric Ceramics | |
Kaigawa et al. | (Li, Na, K)(Nb, Ta) O 3 based piezoelectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130917 |