JP2009184486A - Brake device for two-wheeled vehicle - Google Patents

Brake device for two-wheeled vehicle Download PDF

Info

Publication number
JP2009184486A
JP2009184486A JP2008026076A JP2008026076A JP2009184486A JP 2009184486 A JP2009184486 A JP 2009184486A JP 2008026076 A JP2008026076 A JP 2008026076A JP 2008026076 A JP2008026076 A JP 2008026076A JP 2009184486 A JP2009184486 A JP 2009184486A
Authority
JP
Japan
Prior art keywords
rear wheel
deceleration
deviation
vehicle body
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008026076A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
旭 渡辺
Atsushi Matsuoka
淳 松岡
Wataru Yokoyama
渉 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008026076A priority Critical patent/JP2009184486A/en
Publication of JP2009184486A publication Critical patent/JP2009184486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brake device for a two-wheeled vehicle enhancing determination accuracy of floating up of a rear wheel. <P>SOLUTION: The brake device for the two-wheeled vehicle has a braking force giving means for giving braking force to a front wheel of the two-wheeled vehicle; a rear wheel deceleration calculation means for calculating deceleration of a rear wheel of the two-wheeled vehicle; a vehicle body deceleration calculation means for calculating or presuming vehicle deceleration of the two-wheeled vehicle; a deviation calculation means for calculating deviation of the vehicle body deceleration and the rear wheel deceleration when braking force is given only to the front wheel; a deviation integration means for calculating an integration value of the deviation; and a rear wheel floating up determination means for performing determination of floating up of the rear wheel when the deviation integration value exceeds a threshold value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二輪車用ブレーキ装置による後輪浮き上がり防止制御に関する。   The present invention relates to rear wheel lifting prevention control by a two-wheeled vehicle brake device.

従来、二輪車用ブレーキ装置にあっては、車体減速度および後輪車輪速の減速度を演算し、この後輪減速度が車体減速度に対し所定量分低い場合に後輪浮き上がり判定を行っている。
特開平5−201317号公報
Conventionally, in a motorcycle brake device, the vehicle body deceleration and the rear wheel speed deceleration are calculated, and when the rear wheel deceleration is lower than the vehicle body deceleration by a predetermined amount, the rear wheel lift determination is performed. Yes.
JP-A-5-201317

しかしながら上記従来技術にあっては、単に車体と後輪の減速度同士の比較によって後輪浮き上がり判定を行っているため、エンジン等のノイズにより判定精度が低下するという問題があった。また、クラッチが締結されていると後輪減速度が低下しにくく、実際には後輪が浮き上がっているにもかかわらず浮き上がりと判定されないおそれがある。   However, in the above prior art, since the determination of the rear wheel lift is made simply by comparing the deceleration of the vehicle body and the rear wheel, there is a problem that the determination accuracy is lowered due to noise of the engine or the like. Further, when the clutch is engaged, the rear wheel deceleration is unlikely to decrease, and there is a possibility that the rear wheel is not actually determined to be lifted even though the rear wheel is lifted.

本発明は上記問題点に着目してなされたもので、その目的とするところは、後輪浮き上がり判定精度を向上させた二輪車用ブレーキ装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide a two-wheeled vehicle brake device with improved rear wheel lift determination accuracy.

上述の目的を達成するため、本願発明では、二輪車の前輪に対し制動力を付与する制動力付与手段と、前記二輪車の後輪の減速度を算出する後輪減速度算出手段と、前記二輪車の車体減速度を算出または推定する車体減速度算出手段と、前記前輪に対してのみ制動力が付与されている際、前記車体減速度と前記後輪減速度との偏差を算出する偏差算出手段と、前記偏差の積分値を算出する偏差積分手段と、前記偏差積分値が閾値を超えた場合、前記後輪の浮き上がり判定を行う後輪浮き上がり判定手段とを有することとした。   In order to achieve the above-described object, in the present invention, braking force applying means for applying a braking force to the front wheels of the two-wheeled vehicle, rear wheel deceleration calculating means for calculating the deceleration of the rear wheels of the two-wheeled vehicle, Vehicle body deceleration calculating means for calculating or estimating vehicle body deceleration, and deviation calculating means for calculating a deviation between the vehicle body deceleration and the rear wheel deceleration when a braking force is applied only to the front wheels; The deviation integration means for calculating the integral value of the deviation and the rear wheel lift determination means for performing the lift determination of the rear wheel when the deviation integral value exceeds a threshold value are provided.

よって、後輪浮き上がり判定精度を向上させた二輪車用ブレーキ装置を提供できる。   Therefore, it is possible to provide a two-wheeled vehicle brake device with improved rear wheel lift determination accuracy.

以下、本発明の二輪車用ブレーキ装置を実現する最良の形態を、図面に示す実施例に基づき説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for realizing a two-wheeled vehicle brake device of the present invention will be described below based on an embodiment shown in the drawings.

[システム構成]
実施例1につき説明する。図1は本願二輪車用ブレーキ装置を適用した二輪車1のシステム図である。前輪マスタシリンダ3はハンドル20に設けられてブレーキレバー2により増圧され、後輪マスタシリンダ5はブレーキペダル4付近に設けられてこのブレーキペダル4により増圧される。
[System configuration]
Example 1 will be described. FIG. 1 is a system diagram of a motorcycle 1 to which the motorcycle brake device of the present application is applied. The front wheel master cylinder 3 is provided on the handle 20 and is pressurized by the brake lever 2, and the rear wheel master cylinder 5 is provided near the brake pedal 4 and is pressurized by the brake pedal 4.

各マスタシリンダ3,5はマスタ側配管6,8により液圧ユニット14に接続する。この液圧ユニット14は前、後輪液圧ユニット14F,14Rを有し、キャリパ側配管7,9を介して前後輪キャリパ10,11内の液圧をそれぞれ独立に制御する。各液圧ユニット14F,14Rはそれぞれコントロールユニット15により協調制御される。   Each of the master cylinders 3 and 5 is connected to the hydraulic unit 14 through master side pipes 6 and 8. The hydraulic unit 14 includes front and rear wheel hydraulic units 14F and 14R, and independently controls the hydraulic pressures in the front and rear wheel calipers 10 and 11 via the caliper side pipes 7 and 9, respectively. The hydraulic units 14F and 14R are coordinated and controlled by the control unit 15, respectively.

前後輪キャリパ10,11は、油圧によりそれぞれ前後輪F,Rに設けられたロータ12,13に制動力を発生させる。各マスタシリンダ3,5が増圧されると各配管6,7および8,9を介してマスタシリンダ圧が各キャリパ10,11に供給される。また、コントロールユニット15の指令により液圧ユニット14F,14Rが駆動されてキャリパ10,11が増圧される。   The front and rear wheel calipers 10 and 11 generate braking force on the rotors 12 and 13 provided on the front and rear wheels F and R, respectively, by hydraulic pressure. When the master cylinders 3 and 5 are increased in pressure, the master cylinder pressure is supplied to the calipers 10 and 11 through the pipes 6, 7 and 8, 9. Further, the hydraulic units 14F and 14R are driven by the command of the control unit 15, and the calipers 10 and 11 are increased in pressure.

前後輪ロータ12,13にはそれぞれ車輪速センサ用のセンサロータ16,18が一体回転可能に設けられている。前後輪F,Rそれぞれの車輪速センサ17,19はこのセンサロータ16,18の回転を検出し、前輪車輪速VWF、後輪車輪速VWRをコントロールユニット15へ出力する。   The front and rear wheel rotors 12 and 13 are respectively provided with sensor rotors 16 and 18 for wheel speed sensors so as to be integrally rotatable. The wheel speed sensors 17 and 19 of the front and rear wheels F and R detect the rotation of the sensor rotors 16 and 18 and output the front wheel speed VWF and the rear wheel speed VWR to the control unit 15.

[油圧回路]
図2は後輪液圧ユニット14Rの油圧回路図である。なお、前輪液圧ユニット14Fも同様であるため後輪液圧ユニット14Rについてのみ説明する。
[Hydraulic circuit]
FIG. 2 is a hydraulic circuit diagram of the rear wheel hydraulic unit 14R. Since the front wheel hydraulic unit 14F is the same, only the rear wheel hydraulic unit 14R will be described.

後輪液圧ユニット14Rは、保持弁100、減圧弁101、ポンプP、モータM、リザーバ103、および油路104〜106を有する。なお、保持弁100、減圧弁101、モータMはそれぞれコントロールユニット15により駆動される。   The rear wheel hydraulic unit 14R includes a holding valve 100, a pressure reducing valve 101, a pump P, a motor M, a reservoir 103, and oil passages 104 to 106. The holding valve 100, the pressure reducing valve 101, and the motor M are driven by the control unit 15, respectively.

ポンプPは油路106上に設けられ、吐出側においてマスタ側配管8と接続し、吸入側においてリザーバ103に接続されてモータMにより駆動される。さらに、ポンプPの吸入側は吸入側油路104と接続し、吐出側は吐出側油路105と接続する。   The pump P is provided on the oil passage 106, is connected to the master side pipe 8 on the discharge side, is connected to the reservoir 103 on the suction side, and is driven by the motor M. Further, the suction side of the pump P is connected to the suction side oil passage 104, and the discharge side is connected to the discharge side oil passage 105.

各油路104,105はそれぞれ接続点107において接続し、この接続点107にはキャリパ側配管9が接続される。吐出側油路105には常開の保持弁100が設けられ、吸入側油路104には常閉の減圧弁101が設けられる。   The oil passages 104 and 105 are connected at a connection point 107, and the caliper side pipe 9 is connected to the connection point 107. The discharge side oil passage 105 is provided with a normally open holding valve 100, and the suction side oil passage 104 is provided with a normally closed pressure reducing valve 101.

(通常ブレーキ時)
通常ブレーキ時には、後輪ブレーキペダル4により後輪マスタシリンダ5が増圧される。その際常閉の減圧弁101は閉弁、モータMは停止されており、これにより配管8、油路106、保持弁100、および吸入側油路105を介してマスタシリンダ圧が後輪キャリパ11へ供給されて後輪Rに制動力が発生する。
(Normal braking)
During normal braking, the rear wheel master cylinder 5 is pressurized by the rear wheel brake pedal 4. At that time, the normally closed pressure reducing valve 101 is closed, and the motor M is stopped, so that the master cylinder pressure is reduced to the rear wheel caliper 11 through the pipe 8, the oil passage 106, the holding valve 100, and the suction side oil passage 105. Braking force is generated on the rear wheel R.

(減圧時)
減圧時には、保持弁100を閉弁、減圧弁101を開弁する。これにより後輪キャリパ11内の作動油がキャリパ側配管9、減圧弁101を介してリザーバ103に蓄積される。リザーバ103内の作動油はポンプPによって汲み出され、油路106およびマスタ側配管7を介して後輪マスタシリンダ5へ戻される。
(At reduced pressure)
At the time of pressure reduction, the holding valve 100 is closed and the pressure reducing valve 101 is opened. As a result, the hydraulic oil in the rear wheel caliper 11 is accumulated in the reservoir 103 via the caliper side pipe 9 and the pressure reducing valve 101. The hydraulic oil in the reservoir 103 is pumped out by the pump P and returned to the rear wheel master cylinder 5 through the oil passage 106 and the master side pipe 7.

(保持時)
保持時には保持弁100および減圧弁101をともに閉弁し、後輪キャリパ11内の液圧を保持する。
(When holding)
At the time of holding, both the holding valve 100 and the pressure reducing valve 101 are closed, and the hydraulic pressure in the rear wheel caliper 11 is held.

[後輪浮き上がり判定制御]
ノイズ等の影響を抑制するため、本願では車体減速度VIDと後輪減速度VWRDの偏差をとり、この偏差VIRDを積分し、偏差VIRDの積分値VIRIを求める。この積分値VIRIに閾値SVIRIを設けて後輪浮き上がりを判定する。
[Rear wheel lifting judgment control]
In order to suppress the influence of noise and the like, in the present application, the deviation between the vehicle body deceleration VID and the rear wheel deceleration VWRD is taken, and the deviation VIRD is integrated to obtain an integrated value VIRI of the deviation VIRD. A threshold value SVIRI is provided for the integrated value VARI to determine the rear wheel lift.

(メインフロー)
図3は後輪浮き上がり判定のメインフローである。
ステップS1では推定車体速VI、車体減速度VIDを演算し、ステップS2へ移行する。実施例1では制動力が小さいものとして前輪車輪速VWFを推定車体速VIとし、その微分値を車体減速度VIDとする。
(Main flow)
FIG. 3 is a main flow for determining the rear wheel lift.
In step S1, the estimated vehicle speed VI and vehicle deceleration VID are calculated, and the process proceeds to step S2. In the first embodiment, it is assumed that the braking force is small, the front wheel speed VWF is the estimated vehicle speed VI, and the differential value is the vehicle deceleration VID.

なお、前輪制動力が大きい場合は前輪ロックの可能性がある。そのため、コントロールユニット15によってアンチスキッド制御を実行し、アンチスキッド制御による減圧後の加速状態から増圧による減速状態に至るまでの時間を検出する。また、加速状態から減速状態に移行する際の後輪車輪速VWRの変化量を測定する。この時間および後輪車輪速VWRの変化量に基づき車体減速度VIDを推定することとしてもよい。   If the front wheel braking force is large, there is a possibility of front wheel lock. Therefore, the anti-skid control is executed by the control unit 15, and the time from the acceleration state after the pressure reduction by the anti-skid control to the deceleration state by the pressure increase is detected. Further, the amount of change in the rear wheel speed VWR when shifting from the acceleration state to the deceleration state is measured. The vehicle body deceleration VID may be estimated based on this time and the amount of change in the rear wheel speed VWR.

ステップS2では後輪車輪速VWRに基づき後輪減速度VWRDを演算し、ステップS3へ移行する。   In step S2, a rear wheel deceleration VWRD is calculated based on the rear wheel speed VWR, and the process proceeds to step S3.

ステップS3では車体減速度VID、後輪減速度偏差VIRD、偏差積分値VIRIを演算し、ステップS4へ移行する。   In step S3, the vehicle body deceleration VID, the rear wheel deceleration deviation VIRD, and the deviation integral value VIRI are calculated, and the process proceeds to step S4.

ステップS4では偏差積分値VIRIの閾値SVIRIを演算し、ステップS5へ移行する(図6、図7で後述)。   In step S4, a threshold value SVIRI of the deviation integral value VARI is calculated, and the process proceeds to step S5 (described later in FIGS. 6 and 7).

ステップS5では閾値SVIRIに基づき後輪浮き上がり判定を行い、前輪Fの減圧を行って制御を終了する。   In step S5, the rear wheel lift determination is performed based on the threshold value SVIRI, the front wheel F is decompressed, and the control is terminated.

(偏差積分値演算フロー)
図4は偏差積分値VIRIの演算フローである。
(Deviation integral value calculation flow)
FIG. 4 is a calculation flow of the deviation integral value VARI.

ステップS31では車体減速度VIDが所定値以上であるかどうかが判断され、YESであればステップS32へ移行し、NOであればステップS34へ移行する。
後輪浮き上がりは減速度VIDが高い状況下で発生するため、車体減速度VIDが所定値以下であれば演算および判定を省略するものである。
In step S31, it is determined whether the vehicle body deceleration VID is equal to or greater than a predetermined value. If YES, the process proceeds to step S32, and if NO, the process proceeds to step S34.
Since the rear wheel lift occurs under a situation where the deceleration VID is high, calculation and determination are omitted if the vehicle body deceleration VID is equal to or less than a predetermined value.

ステップ32では車体減速度VIと後輪減速度VWRDの偏差VIRDを演算し、ステップS33へ移行する。
偏差VIRD=車体減速度VID−後輪減速度VWRD
In step 32, a deviation VIRD between the vehicle body deceleration VI and the rear wheel deceleration VWRD is calculated, and the process proceeds to step S33.
Deviation VIRD = vehicle deceleration VID−rear wheel deceleration VWRD

ステップS33では偏差VIRDに偏差積分値VIRIの前回値を加算して偏差積分値VIRIの今回値とし、制御を終了する。   In step S33, the previous value of the deviation integral value VIRI is added to the deviation VIRD to obtain the current value of the deviation integral value VIRI, and the control is terminated.

ステップS34では偏差積分値VIRI=0とし、制御を終了する。   In step S34, the deviation integral value VIRI = 0 is set, and the control is terminated.

[重心移動と後輪浮き上がりの関係]
図5は、二輪車1と乗員の重心と後輪浮き上がりの関係を示す図である。なお、実施例1では前輪Fのみ制動力が付与されているものとする。二輪車1の重心をB、乗員の重心をR、BとRの合成重心をO'とする。また、二輪車1の重量をmb、乗員の体重をmrとすると、二輪車1と乗員を合わせた荷重m=mb+mrが合成重心O'に作用する。
[Relationship between center of gravity movement and rear wheel lift]
FIG. 5 is a diagram showing the relationship between the two-wheeled vehicle 1 and the center of gravity of the occupant and the rear wheel lift. In the first embodiment, it is assumed that the braking force is applied only to the front wheel F. The center of gravity of the motorcycle 1 is B, the center of gravity of the occupant is R, and the combined center of B and R is O ′. Further, when the weight of the motorcycle 1 is mb and the weight of the occupant is mr, a load m = mb + mr including the two-wheel vehicle 1 and the occupant acts on the combined center of gravity O ′.

二輪車にあっては、車体重心と乗員の重心の合成重心O'に作用する重力と減速度の関係で後輪浮き上がり時の挙動が定まる。加速時には合成重心O'に対し後ろ向きの力が働くためウイリー傾向となり、減速時には合成重心O'に前向きの力が働くため後輪が浮き上がりやすくなる。   In a two-wheeled vehicle, the behavior when the rear wheel is lifted is determined by the relationship between gravity and deceleration acting on the combined center of gravity O ′ of the center of gravity of the vehicle body and the center of gravity of the passenger. During acceleration, a backward force is applied to the combined center of gravity O ′, and thus a wheelie tendency occurs. During deceleration, a forward force is applied to the combined center of gravity O ′, so that the rear wheels are easily lifted.

減速時には、合成重心O'に対し前輪Fの接地点Oを中心として前輪F側へ回転するモーメントMが作用する。このため合成重心O'がモーメントMに沿って前上方に移動するほど後輪浮き上がりが発生しやすく、モーメントMに沿って後下方に移動するほど後輪は浮き上がりにくくなる。   During deceleration, a moment M that rotates toward the front wheel F about the ground contact point O of the front wheel F acts on the combined center of gravity O ′. For this reason, the rear wheel rises more easily as the composite center of gravity O ′ moves forward and upward along the moment M, and the rear wheel becomes more difficult to lift as it moves rearward and downward along the moment M.

したがって、従来例のように合成重心O'の位置が移動した場合であっても一律に同様の制御を適用した場合、後輪浮き上がり判定精度が低くなってしまう。   Therefore, even when the position of the combined center of gravity O ′ is moved as in the conventional example, when the same control is applied uniformly, the accuracy of the rear wheel lifting determination is lowered.

このため本願では、図4のフローにおいて車体減速度VIDと後輪減速度VWRDの偏差VIRDを積分し、この積分値VIRIにより浮き上がり判定を行う際、閾値SVIRIに上限値と下限値を設け(図8参照)、この上限値と下限値の範囲内で閾値SVIRIを可変とする。   Therefore, in the present application, when the deviation VIRD between the vehicle body deceleration VID and the rear wheel deceleration VWRD is integrated in the flow of FIG. 4 and the lift determination is performed based on the integrated value VARI, an upper limit value and a lower limit value are provided for the threshold value SVIRI (FIG. 8), the threshold value SVIRI is variable within the range between the upper limit value and the lower limit value.

(閾値SVIRIの設定)
閾値SVIRIの設定は、合成重心O'に作用するモーメントMによって可変とする。なお、モーメントMを導出するため、前輪F側を正とし、接地点Oと合成重心O'を結ぶO−O'直線と路面との角度をθとし、合成重心O'においてO−O'直線と直交方向に作用する力Tを求める。
(Threshold SVIRI setting)
The setting of the threshold value SVIRI is variable depending on the moment M acting on the composite gravity center O ′. In order to derive the moment M, the front wheel F side is positive, the angle between the OO ′ straight line connecting the ground contact point O and the composite centroid O ′ and the road surface is θ, and the OO ′ straight line at the composite centroid O ′. And the force T acting in the orthogonal direction is obtained.

重力加速度をg、二輪車1の減速度をaとすると、減速時において合成重心O'に作用する力Tは
T=masinθ−mgcosθ
である。
If the acceleration of gravity is g and the deceleration of the motorcycle 1 is a, the force T acting on the composite center of gravity O ′ during deceleration is T = masin θ−mg cos θ
It is.

したがって、接地点Oを原点および回転中心とし、座標(X,Y)の合成重心O'に作用するモーメントMは
M=(X +Y 1/2・T
=(X +Y 1/2・(masinθ−mgcosθ)
なお、O−O'直線と路面とがなす角θは、合成重心O'の座標(X,Y)を用いて以下の式で表される。
θ=tan(Y/X−1
Therefore, with the contact point O as the origin and the center of rotation, the moment M acting on the combined center of gravity O ′ of the coordinates (X G , Y G ) is M = (X G 2 + Y G 2 ) 1/2 · T
= (X G 2 + Y G 2 ) 1/2 · (masin θ-mg cos θ)
The angle θ formed by the OO ′ straight line and the road surface is expressed by the following equation using the coordinates (X G , Y G ) of the combined centroid O ′.
θ = tan (Y G / X G ) −1

モーメントMが正であれば、合成重心O'に対して前上方側に力が作用するため二輪車1は後輪浮き上がり傾向となる。二輪車1の車重をほぼ一定とすれば、乗員の体重mrの変化に対するモーメントMの特性を調べることで浮き上がり傾向の変化を把握することが可能である。   If the moment M is positive, the force acts on the front upper side with respect to the composite center of gravity O ′, and therefore the two-wheeled vehicle 1 tends to lift the rear wheel. If the weight of the two-wheeled vehicle 1 is substantially constant, it is possible to grasp the change in the lifting tendency by examining the characteristics of the moment M with respect to the change in the weight mr of the occupant.

図6は乗員の体重mrの変化に対するモーメントMの特性線図である。前輪F側への回転を正とする。乗員体重mrの20kgごとの変化をそれぞれ示す。体重mrが大きくなるほど合成重心O'が接地点Oから遠ざかるため(図5参照)、合成重心O'の座標(X,Y)が原点Oから遠ざかり、モーメントMのアームが大きくなる。 FIG. 6 is a characteristic diagram of the moment M with respect to a change in the passenger's weight mr. The rotation toward the front wheel F is positive. The change for every 20 kg of the occupant weight mr is shown. As the body weight mr increases, the combined center of gravity O ′ moves away from the ground contact point O (see FIG. 5), so the coordinates (X G , Y G ) of the combined center of gravity O ′ move away from the origin O, and the arm of moment M increases.

そのため同一の車体減速度VIDであっても、体重mrが大きければモーメントMの特性線は正方向にシフトし、体重mrが小さければモーメントMのアームが短くなってモーメントMの特性線は負方向にシフトする。特性線が負の領域であればモーメントMは後下方向きとなり、後輪浮き上がりのおそれはないが、正の場合はモーメントMが前上方向きとなって後輪浮き上がりのおそれがある。   Therefore, even if the vehicle body deceleration VID is the same, the characteristic line of the moment M shifts in the positive direction when the weight mr is large, and the arm of the moment M becomes short and the characteristic line of the moment M is negative when the weight mr is small. Shift to. If the characteristic line is a negative region, the moment M is directed rearwardly and there is no fear of lifting the rear wheel. However, if the characteristic line is positive, the moment M is directed forwardly upward and the rear wheel may be lifted.

想定される乗員の体重mrが40kg≦mr≦100kgの範囲内にあると仮定した場合、車体減速度VIDが大きく、VID≧RLIFTMX(減速度最大値)であれば確実に後輪浮き上がり傾向となる。一方、車体減速度VIDが小さく、VID≦RLIFTMN(減速度最小値)であれば確実にモーメントMは負となり、後輪浮き上がりのおそれはない。   Assuming that the assumed passenger's weight mr is within the range of 40 kg ≦ mr ≦ 100 kg, the vehicle body deceleration VID is large, and if VID ≧ RLIFTMX (maximum deceleration value), the rear wheel will surely rise. . On the other hand, if the vehicle body deceleration VID is small and VID ≦ RLIFTMN (minimum deceleration value), the moment M is surely negative, and there is no fear of lifting the rear wheel.

したがって、RLIFTMN≦VID≦RLIFTMXであれば、乗員体重mrによって後輪浮き上がり特性に差異が生じるため閾値SVIRIを可変とする(図7参照)。なお、閾値SVIRIの算出は図7のようにマップを用いてもよいし、演算式を用いてもよい。   Therefore, if RLIFTMN ≦ VID ≦ RLIFTMX, a difference occurs in the rear wheel lifting characteristics depending on the occupant weight mr, so that the threshold value SVIRI is made variable (see FIG. 7). The threshold value SVIRI may be calculated using a map as shown in FIG. 7 or an arithmetic expression.

図7は乗員体重mrを40kg≦mr≦100kgと仮定した場合の車体減速度VIDに対する偏差積分値VIRIのマップである。偏差積分値VIRIの閾値SVIRIを用いて後輪浮き上がり判定を行う際、車体減速度VIDが高ければ高いほど、閾値SVIRIを低く設定する(図1:ステップS4)。閾値SVIRIを低くすれば浮き上がり判定されやすくなり、乗員の体重mrが大きい場合であっても、確実に後輪浮き上がりを防止する。   FIG. 7 is a map of the deviation integrated value VIRI with respect to the vehicle body deceleration VID when the occupant weight mr is assumed to be 40 kg ≦ mr ≦ 100 kg. When the rear wheel lift determination is performed using the threshold value SVIRI of the deviation integral value VARI, the higher the vehicle body deceleration VID is, the lower the threshold value SVIRI is set (FIG. 1: step S4). Decreasing the threshold value SVIRI facilitates the determination of lifting, and reliably prevents the rear wheel from lifting even when the passenger's weight mr is large.

[後輪浮き上がり判定フロー]
図8は後輪浮き上がり判定フローである。図3のステップ5に相当する。
[Rear wheel lifting judgment flow]
FIG. 8 is a rear wheel lifting determination flow. This corresponds to step 5 in FIG.

ステップS51では偏差積分値VIRI≧閾値SVIRIであるかどうかが判断され、YESであればステップS52へ移行し、NOであれば制御を終了する。   In step S51, it is determined whether or not deviation integral value VIRI ≧ threshold value SVIRI. If YES, the process proceeds to step S52, and if NO, the control is terminated.

ステップS52では後輪浮き上がりと判定し、制御を終了する。   In step S52, it is determined that the rear wheel is lifted, and the control is terminated.

[後輪浮き上がり判定の経時変化]
図9は前輪Fのみ制動力付与時における後輪浮き上がり判定のタイムチャートである。なお、乗員体重mrは100kgとする。
[Change with time of rear wheel lifting judgment]
FIG. 9 is a time chart for determining the rear-wheel lift when the braking force is applied only to the front wheel F. The occupant weight mr is 100 kg.

(時刻t1)
時刻t1において後輪減速度VWDRが所定値RFTVIDを超過し、車体減速度VIDと後輪減速度VWDRの偏差VIRDが算出される(ステップS31→S32)。この時点では車体減速度VIDはRLIFTMN(減速度最小値)以下である。
(Time t1)
At time t1, the rear wheel deceleration VWDR exceeds a predetermined value RFTVID, and a deviation VIRD between the vehicle body deceleration VID and the rear wheel deceleration VWDR is calculated (steps S31 → S32). At this time, the vehicle body deceleration VID is equal to or less than RLIFTMN (minimum deceleration value).

(時刻t2)
時刻t2において車体減速度VID≧RLIFTMN(減速度最小値)となり、図7に基づき閾値SVIRIの値が減少する。閾値SVIRIは最大値SVIRIHから徐々に減少する。
(Time t2)
At time t2, the vehicle body deceleration VID ≧ RLIFTMN (minimum deceleration value), and the value of the threshold value SVRI decreases based on FIG. The threshold value SVIRI gradually decreases from the maximum value SVIRIH.

(時刻t3)
時刻t3においてRLIFTMX(減速度最大値)≦車体減速度VIDとなり、閾値SVIRIは最小値SVIRILに固定される。同時にmr=100kgにおける特性線(図6参照)においてモーメントMが正となり、後輪Rが浮き始める。
後輪Rは非制動状態であるため空転し、車体減速度VIDと後輪減速度VWDRの偏差VIRDが大きくなって偏差積分値VIRIが上昇する。
(Time t3)
At time t3, RLIFTMX (maximum deceleration value) ≦ vehicle body deceleration VID, and the threshold value SVIRI is fixed to the minimum value SVILIL. At the same time, the moment M becomes positive on the characteristic line at mr = 100 kg (see FIG. 6), and the rear wheel R starts to float.
Since the rear wheel R is in the non-braking state, the rear wheel R idles, and the deviation VIRD between the vehicle body deceleration VID and the rear wheel deceleration VWDR increases, and the deviation integral value VARI increases.

(時刻t4)
時刻4において偏差積分値VIRIが閾値SVIRILを上回り、後輪浮き上がりと判定される。
(Time t4)
At time 4, the deviation integral value VIRI exceeds the threshold value SVIRIL, and it is determined that the rear wheel is lifted.

[実施例1の効果]
(1)二輪車1の前輪Fに対し制動力を付与する前輪キャリパ10(制動力付与手段)と、
二輪車1の後輪Rの減速度VWRDを算出する後輪減速度算出手段と(ステップS2)、
二輪車1の車体減速度VIDを算出または推定する車体減速度算出手段(ステップS1)と、
前輪Fに対してのみ制動力が付与されている際、車体減速度VIDと後輪減速度VWRDとの偏差VIRDを算出する偏差算出手段(ステップS32)と、
偏差VIRDの積分値VIRIを算出する偏差積分手段(ステップS33)と、
偏差積分値VIRIが閾値SVIRIを超えた場合、後輪Rの浮き上がり判定を行う後輪浮き上がり判定手段(ステップS51)を有することとした。
[Effect of Example 1]
(1) a front wheel caliper 10 (braking force applying means) for applying a braking force to the front wheel F of the motorcycle 1;
Rear wheel deceleration calculating means for calculating the deceleration VWRD of the rear wheel R of the motorcycle 1 (step S2);
Vehicle body deceleration calculation means (step S1) for calculating or estimating the vehicle body deceleration VID of the motorcycle 1;
Deviation calculating means (step S32) for calculating a deviation VIRD between the vehicle body deceleration VID and the rear wheel deceleration VWRD when a braking force is applied only to the front wheel F;
Deviation integration means (step S33) for calculating the integrated value VIRI of the deviation VIRD;
When the deviation integrated value VARI exceeds the threshold value SVIRI, the rear wheel lift determination means (step S51) for performing the lift determination of the rear wheel R is provided.

これにより、エンジン等のノイズの影響を抑制し、後輪浮き上がり判定精度を向上させた二輪車用ブレーキ装置を提供することができる。   As a result, it is possible to provide a two-wheeled vehicle brake device that suppresses the influence of noise from the engine or the like and improves the accuracy of the rear wheel lifting determination.

(2)偏差積分手段は、偏差VIRDを所定時間ごとに加算することにより、積分値VIRIを算出することとした。これにより、簡易な演算で積分値VIRIを算出することができる。   (2) The deviation integrating means calculates the integrated value VIRI by adding the deviation VIRD every predetermined time. Thereby, the integral value VIRI can be calculated by a simple calculation.

(3)後輪浮き上がり判定がなされた場合、前輪Fの制動力を減少させることとした(ステップS5)。これにより速やかに後輪の接地を回復することができる。   (3) When the rear wheel lifting determination is made, the braking force of the front wheel F is reduced (step S5). As a result, the ground contact of the rear wheel can be quickly recovered.

(4)閾値SVIRIは、車体減速度VIDに応じて可変とすることとした。これにより、乗員体重mrが変化して後輪浮き上がり時の挙動が変化した場合であっても、制御精度を確保することができる。   (4) The threshold value SVIRI is made variable according to the vehicle body deceleration VID. Thereby, even when the occupant weight mr is changed and the behavior when the rear wheel is lifted is changed, the control accuracy can be ensured.

(5)二輪車1の前後輪Rの車輪速を検出する車輪速センサと、
車輪速に基づき、二輪車1の推定車体減速度VIDを演算する車体減速度推定部(ステップS1)と、
車輪速に基づき、後輪Rの減速度を演算する後輪減速度算出部(ステップ2)と、
推定車体減速度VIDおよび後輪減速度VWRDに基づき、後輪Rの浮き上がり判定を行う後輪浮き上がり判定部(ステップS51)を備え、
後輪浮き上がり判定部は、
前輪Fに対してのみ制動力が付与されている際、車体減速度VIDと後輪減速度VWRDとの偏差VIRDを算出する偏差算出部(ステップS32)と、
偏差VIRDを所定時間ごとに加算する加算部(ステップS33)を有し、
偏差VIRDが閾値を上回った場合、後輪Rの浮き上がり判定を行うこととした。
(5) a wheel speed sensor for detecting the wheel speeds of the front and rear wheels R of the motorcycle 1;
A vehicle body deceleration estimation unit (step S1) for calculating an estimated vehicle body deceleration VID of the two-wheeled vehicle 1 based on the wheel speed;
A rear wheel deceleration calculation unit (step 2) for calculating the deceleration of the rear wheel R based on the wheel speed;
A rear wheel lift determination unit (step S51) that performs the lift determination of the rear wheel R based on the estimated vehicle body deceleration VID and the rear wheel deceleration VWRD;
The rear wheel lifting judgment part
A deviation calculating unit (step S32) for calculating a deviation VIRD between the vehicle body deceleration VID and the rear wheel deceleration VWRD when a braking force is applied only to the front wheels F;
An adder (step S33) for adding the deviation VIRD every predetermined time;
When the deviation VIRD exceeds the threshold value, the rear wheel R is lifted up.

これにより、上記(1)〜(4)と同様の効果を得ることができる。   Thereby, the same effect as said (1)-(4) can be acquired.

実施例2につき説明する。基本構成は実施例1と同様である。実施例2では、後輪浮き上がり時に後輪Rと駆動系とが締結状態にある場合について示す。   Example 2 will be described. The basic configuration is the same as that of the first embodiment. In the second embodiment, a case where the rear wheel R and the drive system are in a fastening state when the rear wheel is lifted will be described.

クラッチが締結状態にある場合は後輪Rにエンジントルクが入力されるが、後輪浮き上がり時にクラッチが締結されている場合、エンジン振動によって後輪車輪速VWRが振動的になる。このため後輪減速度VWRDも振動し、従来例のように車体減速度VIDとの偏差VIRDを用いるだけでは後輪浮き上がり判定精度が悪化する。   When the clutch is in the engaged state, engine torque is input to the rear wheel R. However, when the clutch is engaged when the rear wheel is lifted, the rear wheel speed VWR is vibrated by engine vibration. For this reason, the rear wheel deceleration VWRD also vibrates, and the rear wheel lift determination accuracy deteriorates only by using the deviation VIRD from the vehicle body deceleration VID as in the conventional example.

本願では偏差VIRDの積分値VIRIを用いて後輪浮き上がり判定を行うため、後輪減速度VWRDおよび偏差VIRDが振動した場合であっても後輪浮き上がり判定精度が確保される。   In the present application, since the rear wheel lift determination is performed using the integrated value VIRI of the deviation VIRD, the rear wheel lift determination accuracy is ensured even when the rear wheel deceleration VWRD and the deviation VIRD vibrate.

[実施例2における後輪浮き上がり判定の経時変化]
図10は、実施例2における後輪浮き上がり判定のタイムチャートである。クラッチ締結状態にあるため、後輪車輪速VWR、後輪減速度VWRD、および偏差VIRDはいずれもエンジンにより振動している。
[Change with time of rear wheel lifting determination in Example 2]
FIG. 10 is a time chart for determining the rear wheel lift in the second embodiment. Since the clutch is engaged, the rear wheel speed VWR, the rear wheel deceleration VWRD, and the deviation VIRD are all vibrated by the engine.

(時刻t5〜t7)
実施例1(図9)の時刻t1〜t3と同様である。
(Time t5 to t7)
It is the same as that of the time t1-t3 of Example 1 (FIG. 9).

(時刻t8)
時刻t8において偏差積分値VIRIが閾値SVIRILを上回り、後輪浮き上がりと判定される。偏差積分値VIRIは振動しながらも増加傾向にあるため閾値SVIRILを用いて判断することが可能である。
(Time t8)
At time t8, the deviation integral value VIRI exceeds the threshold value SVIRIL, and it is determined that the rear wheel is lifted. Since the deviation integral value VIRI tends to increase while oscillating, it can be determined using the threshold value SVILIL.

[実施例2の効果]
実施例2にあっても、実施例1と同様の効果を得ることができる。
[Effect of Example 2]
Even in the second embodiment, the same effect as in the first embodiment can be obtained.

実施例3につき説明する。実施例1では乗員体重mrの変化に応じたモーメントMの特性線(図6)を用いたが、実施例3では乗員の体重は一定とし、乗車位置に応じた特性線を用いる点で異なる。   Example 3 will be described. In the first embodiment, the characteristic line (FIG. 6) of the moment M corresponding to the change in the occupant weight mr is used. However, in the third embodiment, the weight of the occupant is constant and the characteristic line corresponding to the boarding position is used.

図11は乗車位置の変化に対するモーメントMの特性線図である。基準位置に対し、乗員の乗車位置が前輪F側にずれた場合を正、後輪R側にずれた場合を負とする。乗車位置が前輪F側にずれた場合、図5の乗員重心Rおよび合成重心O'も前輪F側にずれる。そのため後輪Rの荷重が減少して後輪浮き上がりが発生しやすくなる。乗車位置が後輪R側にずれた場合は後輪荷重が増加するため、後輪浮き上がりは発生しにくい。   FIG. 11 is a characteristic diagram of the moment M with respect to changes in the boarding position. A case where the occupant's boarding position shifts to the front wheel F side with respect to the reference position is positive, and a case where the passenger shifts to the rear wheel R side is negative. When the boarding position is shifted to the front wheel F side, the occupant's center of gravity R and the combined center of gravity O ′ of FIG. 5 are also shifted to the front wheel F side. Therefore, the load on the rear wheel R is reduced, and the rear wheel is likely to lift. When the boarding position shifts to the rear wheel R side, the rear wheel load increases, so that the rear wheel lift hardly occurs.

したがって、乗車位置が基準から±0.1mの範囲内で0.05mごとの特性線を用い、乗車位置−0.1mの特性線でモーメントM>0となる減速度を最大値RLFTMXとし、+0.1mの特性線でモーメントM>0となる減速度を最小値RLFTMNとする。この最大値RLFTMX、最小値RLFTMNを用い、図7に基づいて閾値SVIRIを可変とする。   Therefore, a characteristic line for each 0.05 m is used within the range of the boarding position within ± 0.1 m from the reference, and the deceleration at which the moment M> 0 in the boarding position −0.1 m characteristic line is the maximum value RLFTMX, and +0 The deceleration at which moment M> 0 in the characteristic line of 1 m is set to the minimum value RLFTMN. Using the maximum value RLFTMX and the minimum value RLFTMN, the threshold value SVIRI is made variable based on FIG.

[実施例3の効果]
実施例3にあっても、実施例1と同様の効果を得ることができる。実施例1の乗員体重mrと実施例3の乗車位置の特性線を適宜組み合わせることとしてもよい。
[Effect of Example 3]
Even in the third embodiment, the same effect as in the first embodiment can be obtained. The passenger weight mr of the first embodiment and the characteristic line of the boarding position of the third embodiment may be appropriately combined.

[他の実施例]
以上、本発明を実施するための最良の形態を実施例に基づいて説明してきたが、本発明の具体的な構成は各実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
[Other embodiments]
The best mode for carrying out the present invention has been described based on the embodiments. However, the specific configuration of the present invention is not limited to each embodiment, and the scope of the invention is not deviated. Design changes and the like are included in the present invention.

本願二輪車用ブレーキ装置を適用した二輪車1のシステム図である。1 is a system diagram of a motorcycle 1 to which a brake device for a motorcycle according to the present application is applied. 後輪液圧ユニット14Rの油圧回路図である。FIG. 4 is a hydraulic circuit diagram of a rear wheel hydraulic unit 14R. 後輪浮き上がり判定のメインフローである。It is a main flow of rear wheel lifting determination. 偏差積分値VIRIの演算フローである。It is a calculation flow of deviation integrated value VIRI. 二輪車1と乗員の重心と後輪浮き上がりの関係を示す図である。It is a figure which shows the relationship between the two-wheeled vehicle, the center of gravity of a passenger | crew, and the rear-wheel lift. 実施例1における乗員体重mrの変化に対するモーメントMの特性線図である。6 is a characteristic diagram of a moment M with respect to a change in passenger weight mr in Example 1. FIG. 車体減速度VIDに対する偏差積分値VIRIのマップである。It is a map of deviation integrated value VIRI with respect to vehicle body deceleration VID. 後輪浮き上がり判定フローである。It is a rear wheel lifting determination flow. 実施例1おける後輪浮き上がり判定のタイムチャートである。6 is a time chart for determination of rear wheel lifting in the first embodiment. 実施例2における後輪浮き上がり判定のタイムチャートである。7 is a time chart for determination of rear wheel lifting in the second embodiment. 実施例3における乗車位置の変化に対するモーメントMの特性線図である。FIG. 10 is a characteristic diagram of a moment M with respect to a change in boarding position in the third embodiment.

符号の説明Explanation of symbols

1 二輪車1
10 前輪キャリパ(制動力付与手段)
F 前輪
R 後輪
1 motorcycle 1
10 Front wheel caliper (braking force applying means)
F Front wheel R Rear wheel

Claims (5)

二輪車の前輪に対し制動力を付与する制動力付与手段と、
前記二輪車の後輪の減速度を算出する後輪減速度算出手段と、
前記二輪車の車体減速度を算出または推定する車体減速度算出手段と、
前記前輪に対してのみ制動力が付与されている際、前記車体減速度と前記後輪減速度との偏差を算出する偏差算出手段と、
前記偏差の積分値を算出する偏差積分手段と、
前記偏差積分値が閾値を超えた場合、前記後輪の浮き上がり判定を行う後輪浮き上がり判定手段と
を有することを特徴とする二輪車用ブレーキ装置。
Braking force applying means for applying a braking force to the front wheel of the motorcycle;
Rear wheel deceleration calculating means for calculating the deceleration of the rear wheel of the motorcycle;
Vehicle body deceleration calculating means for calculating or estimating the vehicle body deceleration of the motorcycle;
A deviation calculating means for calculating a deviation between the vehicle body deceleration and the rear wheel deceleration when a braking force is applied only to the front wheels;
Deviation integration means for calculating an integrated value of the deviation;
A two-wheeled vehicle brake device, comprising: a rear wheel lift determination unit that performs a lift determination of the rear wheel when the deviation integrated value exceeds a threshold value.
前記偏差積分手段は、前記偏差を所定時間ごとに加算することにより、前記積分値を算出すること
を有することを特徴とする二輪車用ブレーキ装置。
The two-wheeled vehicle brake device, wherein the deviation integrating means calculates the integrated value by adding the deviation every predetermined time.
請求項1または請求項2に記載の二輪車用ブレーキ装置において、
前記後輪浮き上がり判定がなされた場合、前記前輪の制動力を減少させること
を特徴とする二輪車用ブレーキ装置。
The brake device for a motorcycle according to claim 1 or 2,
The brake device for a two-wheeled vehicle, wherein the braking force of the front wheel is reduced when the rear wheel lifting determination is made.
請求項1ないし請求項3のいずれか1項に記載の二輪車用ブレーキ装置において、
前記閾値は、前記車体減速度に応じて可変とすること
を特徴とする二輪車用ブレーキ装置。
The brake device for a motorcycle according to any one of claims 1 to 3,
The brake device for a motorcycle, wherein the threshold value is variable according to the vehicle body deceleration.
二輪車の前後輪の車輪速を検出する車輪速センサと、
前記車輪速に基づき、前記二輪車の推定車体減速度を演算する車体減速度推定部と、
前記車輪速に基づき、前記後輪の減速度を演算する後輪減速度算出部と、
前記推定車体減速度および前記後輪減速度に基づき、前記後輪の浮き上がり判定を行う後輪浮き上がり判定部と
を備え、
前記後輪浮き上がり判定部は、
前記前輪に対してのみ制動力が付与されている際、前記車体減速度と前記後輪減速度との偏差を算出する偏差算出部と、
前記偏差を所定時間ごとに加算する加算部と
を有し、
前記偏差が閾値を上回った場合、前記後輪の浮き上がり判定を行うこと
を特徴とする二輪車用ブレーキ装置。
A wheel speed sensor for detecting the wheel speed of the front and rear wheels of the motorcycle;
A vehicle body deceleration estimation unit that calculates an estimated vehicle body deceleration of the motorcycle based on the wheel speed;
A rear wheel deceleration calculation unit that calculates the deceleration of the rear wheel based on the wheel speed;
A rear wheel lift determination unit for determining the lift of the rear wheel based on the estimated vehicle body deceleration and the rear wheel deceleration,
The rear wheel lifting judgment unit
A deviation calculating unit that calculates a deviation between the vehicle body deceleration and the rear wheel deceleration when a braking force is applied only to the front wheels;
An adder for adding the deviation every predetermined time;
The two-wheeled vehicle brake device, wherein when the deviation exceeds a threshold value, the lifting determination of the rear wheel is performed.
JP2008026076A 2008-02-06 2008-02-06 Brake device for two-wheeled vehicle Pending JP2009184486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026076A JP2009184486A (en) 2008-02-06 2008-02-06 Brake device for two-wheeled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026076A JP2009184486A (en) 2008-02-06 2008-02-06 Brake device for two-wheeled vehicle

Publications (1)

Publication Number Publication Date
JP2009184486A true JP2009184486A (en) 2009-08-20

Family

ID=41068202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026076A Pending JP2009184486A (en) 2008-02-06 2008-02-06 Brake device for two-wheeled vehicle

Country Status (1)

Country Link
JP (1) JP2009184486A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144656A (en) * 2013-01-25 2014-08-14 Nissin Kogyo Co Ltd Brake control device for handlebar vehicle
EP2907711A1 (en) * 2014-02-18 2015-08-19 Honda Motor Co., Ltd. Vehicle rear wheel lift tendency judgment device
WO2020003974A1 (en) * 2018-06-29 2020-01-02 本田技研工業株式会社 Clutch control device for saddle-ridden vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201317A (en) * 1991-10-18 1993-08-10 Fag Kugelfischer Georg Schaefer & Kgaa Method and device to adjust braking force of motorcycle
JPH05254417A (en) * 1992-01-10 1993-10-05 Fag Kugelfischer Georg Schaefer & Kgaa Method of regulating braking force of motorcycle
JPH101040A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Rear wheel unloading detection device, rear wheel unloading inhibition device and rear wheel dynamic load prediction device
JPH10129441A (en) * 1996-10-30 1998-05-19 Aisin Seiki Co Ltd Vehicle motion control device
JP2007269290A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Brake controller for motorcycle
JP2007326412A (en) * 2006-06-06 2007-12-20 Nissin Kogyo Co Ltd Brake control device for motorcycle
JP2008001126A (en) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd Device for judging friction condition of tire, automobile, and method for judging friction condition of tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201317A (en) * 1991-10-18 1993-08-10 Fag Kugelfischer Georg Schaefer & Kgaa Method and device to adjust braking force of motorcycle
JPH05254417A (en) * 1992-01-10 1993-10-05 Fag Kugelfischer Georg Schaefer & Kgaa Method of regulating braking force of motorcycle
JPH101040A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Rear wheel unloading detection device, rear wheel unloading inhibition device and rear wheel dynamic load prediction device
JPH10129441A (en) * 1996-10-30 1998-05-19 Aisin Seiki Co Ltd Vehicle motion control device
JP2007269290A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Brake controller for motorcycle
JP2007326412A (en) * 2006-06-06 2007-12-20 Nissin Kogyo Co Ltd Brake control device for motorcycle
JP2008001126A (en) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd Device for judging friction condition of tire, automobile, and method for judging friction condition of tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144656A (en) * 2013-01-25 2014-08-14 Nissin Kogyo Co Ltd Brake control device for handlebar vehicle
US9233670B2 (en) 2013-01-25 2016-01-12 Nissin Kogyo Co., Ltd. Bar-handle vehicle brake control apparatus
EP2907711A1 (en) * 2014-02-18 2015-08-19 Honda Motor Co., Ltd. Vehicle rear wheel lift tendency judgment device
JP2015151068A (en) * 2014-02-18 2015-08-24 本田技研工業株式会社 Rear wheel lift inclination determination device for vehicle
US9561785B2 (en) 2014-02-18 2017-02-07 Honda Motor Co., Ltd. Vehicle rear wheel lift tendency judgment device
WO2020003974A1 (en) * 2018-06-29 2020-01-02 本田技研工業株式会社 Clutch control device for saddle-ridden vehicle
JPWO2020003974A1 (en) * 2018-06-29 2021-04-22 本田技研工業株式会社 Clutch control device for saddle-mounted vehicles
JP7075996B2 (en) 2018-06-29 2022-05-26 本田技研工業株式会社 Clutch control device for saddle-riding vehicles

Similar Documents

Publication Publication Date Title
JP6262202B2 (en) Brake control device and straddle-type vehicle equipped with the same
US8725360B2 (en) Traction control device
JP6957647B2 (en) Saddle-riding vehicle
JP5695496B2 (en) Brake control device for vehicle
JP6842568B2 (en) Brake device for saddle-riding vehicles
JP5887284B2 (en) Brake control device for bar handle vehicle
JP2007269290A (en) Brake controller for motorcycle
US10668903B2 (en) Vehicle body behavior control device and method of controlling behavior of vehicle body
JP2018197070A (en) Vehicle control device
JPWO2010113308A1 (en) Brake control device
JP7168684B2 (en) Control device and control method
JP2009184486A (en) Brake device for two-wheeled vehicle
JP2009241742A (en) Lateral acceleration deriving method and deriving device, and bar handle vehicle brake controller
EP2106980B1 (en) Deriving method and deriving apparatus of lateral acceleration, and bar handle vehicle brake controller
JP2014019374A (en) Brake control device for motor cycles
JP6606115B2 (en) Brake hydraulic pressure control device for bar handle vehicle
JP4686291B2 (en) Lateral acceleration calculation method and lateral acceleration calculation apparatus
JP4436287B2 (en) Brake hydraulic pressure control device for vehicles
JP4580301B2 (en) Estimated lateral acceleration calculation method and estimated lateral acceleration calculation device
JP4602186B2 (en) Brake hydraulic pressure control device for vehicles
JP2011157038A (en) Brake/drive force control device for vehicle
JP7173890B2 (en) Vehicle brake control device
JP6453034B2 (en) Control method of interlocking brake system and interlocking brake system
JP7125901B2 (en) Vehicle brake control device
JP6798911B2 (en) Brake fluid pressure control device for bar handle vehicles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20090924

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090924

A621 Written request for application examination

Effective date: 20100311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426