JP2009183991A - Laser machining device - Google Patents

Laser machining device Download PDF

Info

Publication number
JP2009183991A
JP2009183991A JP2008028071A JP2008028071A JP2009183991A JP 2009183991 A JP2009183991 A JP 2009183991A JP 2008028071 A JP2008028071 A JP 2008028071A JP 2008028071 A JP2008028071 A JP 2008028071A JP 2009183991 A JP2009183991 A JP 2009183991A
Authority
JP
Japan
Prior art keywords
light
workpiece
objective lens
laser
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028071A
Other languages
Japanese (ja)
Other versions
JP5164001B2 (en
Inventor
Michinobu Mizumura
通伸 水村
Yuji Saito
雄二 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2008028071A priority Critical patent/JP5164001B2/en
Publication of JP2009183991A publication Critical patent/JP2009183991A/en
Application granted granted Critical
Publication of JP5164001B2 publication Critical patent/JP5164001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve working efficiency of laser machining and to improve machining accuracy. <P>SOLUTION: A laser machining device is provided with a luminous flux regulating means 3 for regulating the luminous flux cross section shape of a laser beam L1 emitted from a laser beam source 2 by a shape regulating part 12 and emitting it, and an objective lens 4 arranged opposite to a workpiece 11, which is machined with the laser beam L1, and condensing the laser beam L1 on the workpiece 11. Further, the laser machining device is provided with: a pinhole member 6, which is provided on optical paths branched from an optical path proceeding to the luminous flux regulating means 3 from the objective lens 4, and in which a plurality of pinholes is formed; a white light source 7 for applying white light L2 to the pinhole member 6; a photographing means 8, which is provided above optical paths branched from an optical path proceeding to the pinhole member 6 from the objective lens 4 and provided with a plurality of light receiving elements to receive reflection light L3 of the white light L2, which is past the pinholes and reflected from the workpiece 11; and a displacement means 10 for displacing the distance between the objective lens 4 and the workpiece 11. Thereby, measurement of minute heights is enabled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ光を照射して被加工物を加工するレーザ加工装置に関し、詳しくは、レーザ加工の作業能率の向上及び加工精度の向上を図ろうとするレーザ加工装置に係るものである。   The present invention relates to a laser processing apparatus that processes a workpiece by irradiating a laser beam, and particularly relates to a laser processing apparatus that attempts to improve the working efficiency and processing accuracy of laser processing.

従来のレーザ加工装置は、レーザ光源から放射されたレーザ光の光束断面形状を所定形状に規制して射出するスリットと、上記レーザ光が照射される被加工物と対向して設けられレーザ光を上記被加工物上に集光する対物レンズと、上記スリットと対物レンズとの間の光路上に設けられ対物レンズと組み合わされて被加工物上にスリットの像を結像させる結像レンズ、上記対物レンズを通して被加工物表面を観察する撮像手段と、を備えたものとなっていた(例えば、特許文献1参照)。
特開2006−13343号公報
A conventional laser processing apparatus is provided with a slit that emits a laser beam emitted from a laser light source while regulating the cross-sectional shape of the light beam to a predetermined shape, and a workpiece that is irradiated with the laser beam. An objective lens that focuses light on the workpiece, and an imaging lens that is provided on an optical path between the slit and the objective lens to form an image of the slit on the workpiece in combination with the objective lens, And an imaging means for observing the surface of the workpiece through the objective lens (see, for example, Patent Document 1).
JP 2006-13343 A

しかし、このような従来のレーザ加工装置は、被加工物にレーザ光を照射して加工するというレーザ加工の単独機能しか有しなかったため、例えば被加工物に対する加工量を測定しながらレーザ加工を行うことができなかった。したがって、加工精度を向上することができなかった。   However, since such a conventional laser processing apparatus has only a single function of laser processing for processing by irradiating the workpiece with laser light, for example, laser processing is performed while measuring the processing amount for the workpiece. Could not do. Therefore, machining accuracy could not be improved.

また、被加工物上の異常突起の除去やパターン修正作業においては、先ず、別に備えた微小高さ測定装置を使用して異常突起又はパターン上の異物の位置情報及び異常突起や異物の高さ情報を取得し、その後、上記被加工物をレーザ加工装置に移し変えて上記位置情報及び高さ情報に基づいてレーザ加工し、異常突起又は異物の除去をするという手順を実行することになる。したがって、作業能率が悪かった。   Also, in removing abnormal protrusions on the workpiece and pattern correction work, first, the position information of the abnormal protrusions or foreign matter on the pattern and the height of the abnormal protrusions or foreign objects are measured using a separate minute height measuring device. Information is acquired, and then the workpiece is transferred to a laser processing apparatus, laser processing is performed based on the position information and height information, and abnormal protrusions or foreign matters are removed. Therefore, work efficiency was bad.

そこで、本発明は、このような問題点に対処し、レーザ加工の作業能率の向上及び加工精度の向上を図ろうとするレーザ加工装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a laser processing apparatus that addresses such problems and intends to improve the working efficiency and processing accuracy of laser processing.

上記目的を達成するために、第1の発明によるレーザ加工装置は、レーザ光源から放射されたレーザ光の光束断面形状を形状規制部で規制して射出する光束規制手段と、前記レーザ光により加工される被加工物と対向して設けられ前記レーザ光を前記被加工物上に集光する対物レンズと、を備えたレーザ加工装置であって、前記対物レンズから前記光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材と、前記ピンホール部材に計測光を照射する計測用光源と、前記対物レンズから前記ピンホール部材に向かう光路が分岐された光路上に設けられ、複数の受光素子を備えて前記ピンホールを通過した計測光の前記被加工物からの反射光を受光する撮像手段と、前記対物レンズと前記被加工物との間の距離を変位させる変位手段と、を備えて微小高さの測定を可能にしたものである。   In order to achieve the above object, a laser processing apparatus according to a first aspect of the present invention includes a light beam restricting means for restricting and emitting a light beam cross-sectional shape of laser light emitted from a laser light source by a shape restricting portion, and processing using the laser light. An objective lens provided opposite to the workpiece to be collected and condensing the laser beam on the workpiece, wherein an optical path from the objective lens toward the light beam restricting means is provided A pinhole member provided on the branched optical path and formed with a plurality of pinholes, a measurement light source for irradiating the pinhole member with measurement light, and an optical path from the objective lens toward the pinhole member are branched An imaging means that is provided on the optical path and receives a reflected light from the workpiece of the measurement light that includes a plurality of light receiving elements and passes through the pinhole, the objective lens, and the workpiece Provided with a displacement means for displacing the distance between those that enables measurement of very small height.

このような構成により、対物レンズから光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材に計測用光源で計測光を照射し、対物レンズからピンホール部材に向かう光路が分岐された光路上に設けられ複数の受光素子を備えた撮像手段でピンホール部材を通過した計測光の被加工物からの反射光を受光し、変位手段で対物レンズと被加工物との間の距離を変位させて微小高さを測定し、レーザ光源からレーザ光を放射し、光束規制手段の形状規制部でレーザ光の光束断面形状を規制して射出し、このレーザ光を対物レンズで被加工物上に集光して被加工物をレーザ加工する。   With such a configuration, the measurement light source irradiates the measurement light to the pinhole member provided on the optical path where the optical path from the objective lens to the light beam restricting means is branched and forms a plurality of pinholes. The reflected light from the workpiece of the measurement light that has passed through the pinhole member is received by the imaging means provided on the optical path where the optical path toward the member is branched and provided with a plurality of light receiving elements. Displace the distance between the workpiece and measure the minute height, radiate laser light from the laser light source, and control the laser beam cross-sectional shape emitted by the shape restricting part of the light beam restricting means, and emit this laser. Light is focused on the workpiece with an objective lens to laser process the workpiece.

また、第2の発明によるレーザ加工装置は、レーザ光源から放射されたレーザ光の光束断面形状を形状規制部で規制して射出する光束規制手段と、前記レーザ光により加工される被加工物と対向して設けられ前記レーザ光を前記被加工物上に集光する対物レンズと、前記光束規制手段と前記対物レンズとの間の光路上に設けられ前記対物レンズと組み合わされて前記被加工物上に前記形状規制部の像を結像させる結像レンズと、を備えたレーザ加工装置であって、前記結像レンズから前記光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材と、前記ピンホール部材に計測光を照射する計測用光源と、前記結像レンズから前記ピンホール部材に向かう光路が分岐された光路上に設けられ、複数の受光素子を備えて前記ピンホールを通過した計測光の前記被加工物からの反射光を受光する撮像手段と、前記結像レンズをその光軸方向に変位させる変位手段と、を備えて微小高さの測定を可能にしたものである。   The laser processing apparatus according to the second aspect of the present invention includes a light beam restricting means for restricting and emitting a light beam cross-sectional shape of laser light emitted from a laser light source by a shape restricting portion, and a workpiece processed by the laser light, An objective lens that is provided oppositely and condenses the laser beam on the workpiece, and is provided on an optical path between the light beam restricting means and the objective lens, and is combined with the objective lens to form the workpiece. An image forming lens for forming an image of the shape restricting portion on the optical processing device, and a plurality of optical processing paths provided on a branched optical path from the image forming lens toward the light beam restricting means. A pinhole member in which a pinhole is formed, a measurement light source for irradiating the pinhole member with measurement light, and an optical path branched from an optical path from the imaging lens toward the pinhole member. An imaging unit that includes a light receiving element and receives reflected light from the workpiece of the measurement light that has passed through the pinhole, and a displacement unit that displaces the imaging lens in the optical axis direction. It is possible to measure the length.

このような構成により、結像レンズから光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材に計測用光源で計測光を照射し、結像レンズからピンホール部材に向かう光路が分岐された光路上に設けられ複数の受光素子を備えた撮像手段でピンホール部材を通過した計測光の被加工物からの反射光を受光し、変位手段で結像レンズをその光軸方向に変位させて微小高さを測定し、レーザ光源からレーザ光を放射し、光束規制手段の形状規制部でレーザ光の光束断面形状を規制して射出し、対物レンズと結像レンズとを組み合わせて被加工物上に形状規制部の像を結像させ、被加工物をレーザ加工する。   With such a configuration, the measurement light source irradiates the measurement light to the pinhole member provided on the optical path where the optical path from the imaging lens to the light beam restricting means is branched and formed with a plurality of pinholes, and from the imaging lens. The reflected light from the workpiece of measurement light that has passed through the pinhole member is received by the imaging means provided on the optical path branched from the optical path toward the pinhole member, and imaged by the displacement means The lens is displaced in the direction of its optical axis, the minute height is measured, the laser light is emitted from the laser light source, and the cross-sectional shape of the laser beam is regulated and emitted by the shape regulating unit of the beam regulating means. In combination with an imaging lens, an image of the shape restricting portion is formed on the workpiece, and the workpiece is laser processed.

さらに、前記光束規制手段は、平面内をスライド可能な複数の部材を組み合わせて構成され、該複数の部材により囲まれた開口部を前記形状規制部としたものである。これにより、平面内をスライド可能な複数の部材によって囲まれた開口部でレーザ光の光束断面形状を規制する。   Furthermore, the luminous flux regulating means is configured by combining a plurality of members that can slide in a plane, and an opening surrounded by the plurality of members is used as the shape regulating portion. Thereby, the light beam cross-sectional shape of the laser light is regulated by the opening surrounded by the plurality of members that can slide in the plane.

そして、前記光束規制手段は、個別に回動可能な複数のマイクロミラーをマトリクス状に並べて構成され、該複数のマイクロミラーを前記形状規制部としたものである。これにより、マトリクス状に並べられた複数のマイクロミラーを個別に回動してレーザ光の光束断面形状を規制する。   The light flux restricting means is configured by arranging a plurality of individually rotatable micromirrors in a matrix, and the plurality of micromirrors serve as the shape restricting portion. As a result, the plurality of micromirrors arranged in a matrix are individually rotated to regulate the cross-sectional shape of the laser beam.

また、前記ピンホール部材は、透明な基板上に複数のピンホールを所定間隔でマトリクス状に形成したものである。これにより、透明な基板上に所定間隔でマトリクス状に形成された複数のピンホールで計測光を通過させる。   The pinhole member is formed by forming a plurality of pinholes in a matrix at predetermined intervals on a transparent substrate. Thereby, measurement light is allowed to pass through a plurality of pinholes formed in a matrix at predetermined intervals on a transparent substrate.

そして、前記ピンホール部材は、複数のピンホールを螺旋状に形成したニッポウディスクである。これにより、ニッポウディスクに螺旋状に形成された複数のピンホールで計測光を通過させる。   The pinhole member is a Nippon disc having a plurality of pinholes formed in a spiral shape. Thereby, measurement light is allowed to pass through a plurality of pinholes spirally formed on the Nippon disc.

請求項1に係る発明によれば、レーザ加工装置に微小高さ測定機能を備えたことにより、例えば被加工物に対する加工量を測定しながらレーザ加工を行うことができ、加工精度を向上することができる。また、例えば、被加工物上の異常突起の除去やパターン上の異物の除去作業においては、異常突起や異物の検出と異常突起の除去又は異物の除去作業とを同じ工程において実行することができ、作業能率を向上することができる。   According to the first aspect of the present invention, by providing the laser processing apparatus with the minute height measurement function, for example, laser processing can be performed while measuring the processing amount on the workpiece, and processing accuracy is improved. Can do. Further, for example, in the removal of abnormal protrusions on a workpiece or the removal of foreign matters on a pattern, the detection of abnormal protrusions and foreign matters and the removal of abnormal protrusions or the removal of foreign matters can be performed in the same process. , Work efficiency can be improved.

また、請求項2に係る発明によれば、レーザ加工装置に微小高さ測定機能を備えたことにより、例えば被加工物に対する加工量を測定しながらレーザ加工を行うことができ、加工精度を向上することができる。また、例えば、被加工物上の異常突起の除去やパターン上の異物の除去作業においては、異常突起や異物の検出と異常突起の除去又は異物の除去作業とを同じ工程において実行することができ、作業能率を向上することができる。さらに、結像レンズを変位させて微小高さを測定するようにしているので、結像レンズの慣性モーメントを小さくすることができ、高さ測定精度を向上することができる。   Further, according to the invention according to claim 2, by providing the laser processing apparatus with the minute height measurement function, for example, laser processing can be performed while measuring the processing amount for the workpiece, and the processing accuracy is improved. can do. Further, for example, in the removal of abnormal protrusions on a workpiece or the removal of foreign matters on a pattern, the detection of abnormal protrusions and foreign matters and the removal of abnormal protrusions or the removal of foreign matters can be performed in the same process. , Work efficiency can be improved. Furthermore, since the minute height is measured by displacing the imaging lens, the moment of inertia of the imaging lens can be reduced, and the height measurement accuracy can be improved.

さらに、請求項3に係る発明によれば、光束規制手段の構成が簡単であり、装置の製造コストを低減することができる。   Furthermore, according to the invention which concerns on Claim 3, the structure of a light beam control means is simple, and it can reduce the manufacturing cost of an apparatus.

そして、請求項4に係る発明によれば、光束断面形状を任意に設定することができ、被加工物に任意の形状のレーザ加工を施すことができる。   According to the fourth aspect of the present invention, the cross-sectional shape of the light beam can be arbitrarily set, and laser processing of any shape can be performed on the workpiece.

また、請求項5に係る発明によれば、微小高さの測定が簡便になり、装置の製造コストを低減することができる。   Moreover, according to the invention which concerns on Claim 5, the measurement of micro height becomes simple and it can reduce the manufacturing cost of an apparatus.

そして、請求項6に係る発明によれば、観察領域内の高さ測定をより緻密に行うことができる。   And according to the invention which concerns on Claim 6, the height measurement in an observation area | region can be performed more precisely.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザ加工装置の実施形態を示す正面図である。このレーザ加工装置は、レーザ光を照射して被加工物を加工するもので、ステージ1と、レーザ光源2と、光束規制手段3と、対物レンズ4と、結像レンズ5と、ピンホール部材6と、白色光源7と、撮像手段8と、照明光源9と、変位手段10と、からなる。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a front view showing an embodiment of a laser processing apparatus according to the present invention. This laser processing apparatus processes a workpiece by irradiating a laser beam, and includes a stage 1, a laser light source 2, a light beam restricting means 3, an objective lens 4, an imaging lens 5, and a pinhole member. 6, a white light source 7, an imaging unit 8, an illumination light source 9, and a displacement unit 10.

上記ステージ1は、上面に被加工物11を載置して水平面内をXY方向に移動させるものであり、図示省略のモータ及びギア等を組み合わせた駆動手段によって移動するようになっている。なお、Y方向は、図1において奥行き方向である。   The stage 1 is configured to place the workpiece 11 on the upper surface and move it in the XY direction in the horizontal plane, and is moved by a driving means that combines a motor, a gear, etc. (not shown). The Y direction is the depth direction in FIG.

上記ステージ1の上方には、レーザ光源2が設けられている。このレーザ光源2は、レーザ光を放射し、被加工物11に照射して該被加工物11を加工するものであり、例えば532nm又は355nmの波長のレーザ光を放射するパルスレーザである。   A laser light source 2 is provided above the stage 1. The laser light source 2 emits a laser beam and irradiates the workpiece 11 to process the workpiece 11. For example, the laser light source 2 is a pulse laser that emits a laser beam having a wavelength of 532 nm or 355 nm.

上記レーザ光源2から放射されるレーザ光L1の放射方向前方には、光束規制手段3が設けられている。この光束規制手段3は、被加工物11に照射されるレーザ光L1の光束断面形状を形状規制部12で加工形状に対応した形状に規制して射出するものであり、例えば平面内をスライド可能な複数の部材を組み合わせて構成されている。その構成の具体的一例は、図2に示すように、平面内をX方向にスライドすると共に上記平面内を矢印A,B方向に回動する一対の第1の部材13と、その上方に配設されY方向にスライドすると共に上記平面内を矢印C,D方向に回動する一対の第2の部材14と、から成り、上記一対の第1の部材13及び第2の部材14によって囲まれた開口部を上記形状規制部12としている。   A light beam restricting means 3 is provided in front of the laser light L1 emitted from the laser light source 2 in the emission direction. The light beam restricting means 3 emits the light beam cross-sectional shape of the laser light L1 irradiated to the workpiece 11 while the shape restricting portion 12 restricts the light beam to a shape corresponding to the processed shape, and can be slid within a plane, for example. A plurality of members are combined. As shown in FIG. 2, a specific example of the configuration includes a pair of first members 13 that slide in the X direction in the plane and rotate in the directions of arrows A and B in the plane, and are arranged above the pair. And a pair of second members 14 that slide in the Y direction and rotate in the directions of arrows C and D, and are surrounded by the pair of first members 13 and the second member 14. The opened opening is used as the shape restricting portion 12.

上記光束規制手段3とステージ1とを結ぶ光軸上にて、ステージ1に載置された被加工物11に対向して対物レンズ4が設けられている。この対物レンズ4は、光束規制手段3により光束断面形状が規制されたレーザ光L1を被加工物11上に集光するものであり、ステージ1の面に平行に移動可能とされたレンズホルダー15に着脱可能に保持された倍率の異なる複数種の対物レンズ4a〜4dからなっている。   An objective lens 4 is provided on the optical axis connecting the luminous flux regulating means 3 and the stage 1 so as to face the workpiece 11 placed on the stage 1. This objective lens 4 condenses the laser beam L1 whose beam cross-sectional shape is regulated by the beam regulating means 3 on the workpiece 11, and a lens holder 15 that is movable parallel to the surface of the stage 1. It consists of a plurality of types of objective lenses 4a to 4d having different magnifications that are detachably held.

上記光束規制手段3と対物レンズ4との間の光路上には、結像レンズ5が設けられている。この結像レンズ5は、対物レンズ4と組み合わされて被加工物11上に光束規制手段3の形状規制部12の像を結像させるものである。   An imaging lens 5 is provided on the optical path between the light flux regulating means 3 and the objective lens 4. The image forming lens 5 is combined with the objective lens 4 to form an image of the shape restricting portion 12 of the light beam restricting means 3 on the workpiece 11.

上記結像レンズ5から光束規制手段3に向かう光路がビームスプリッタ19によって分岐された光路上には、ピンホール部材6が設けられている。このピンホール部材6は、図3に示すように、複数のピンホールを所定間隔でマトリクス状に形成したもので、例えば、透明な基板17上に形成されたクロム(Cr)等の不透明膜18をエッチングして複数のピンホール16を形成したピンホールマスクである。なお、ピンホール16の配列ピッチは、後述の撮像手段8の受光素子の配列ピッチの略整数倍となるようにするとよい。さらに、ピンホールの配列ピッチは、隣接するピンホール16を通過した光の被加工物11からの反射光が撮像手段8の受光面上で干渉しないように、十分に広くするとよい。そして、各ピンホール16は、それぞれ撮像手段8の各受光素子と1対1の対応関係を成すように位置合わせされるとよい。   A pinhole member 6 is provided on the optical path where the optical path from the imaging lens 5 toward the light beam restricting means 3 is branched by the beam splitter 19. As shown in FIG. 3, the pinhole member 6 is formed by forming a plurality of pinholes in a matrix at predetermined intervals. For example, the pinhole member 6 is an opaque film 18 such as chromium (Cr) formed on a transparent substrate 17. Is a pinhole mask in which a plurality of pinholes 16 are formed by etching. It should be noted that the arrangement pitch of the pinholes 16 is preferably set to be approximately an integral multiple of the arrangement pitch of the light receiving elements of the imaging means 8 described later. Furthermore, the arrangement pitch of the pinholes should be sufficiently wide so that the reflected light from the workpiece 11 of the light that has passed through the adjacent pinholes 16 does not interfere on the light receiving surface of the imaging means 8. Each pinhole 16 may be aligned so as to have a one-to-one correspondence with each light receiving element of the imaging unit 8.

上記ピンホール部材6の背後には、計測用光源としての白色光源7が設けられている。この白色光源7は、ピンホール部材6に白色光(計測光)L2を照射するもので、キセノンランプ、超高圧水銀ランプ、白色レーザ光源、白色LED等である。   Behind the pinhole member 6 is provided a white light source 7 as a measurement light source. The white light source 7 irradiates the pinhole member 6 with white light (measurement light) L2, and is a xenon lamp, an ultrahigh pressure mercury lamp, a white laser light source, a white LED, or the like.

上記結像レンズ5からピンホール部材6に向かう光路がビームスプリッタ20によって分岐された光路上には、撮像手段8が設けられている。この撮像手段8は、複数の受光素子をマトリクス状に備えて被加工物11上の二次元画像を撮像するものであり、微小高さを測定する際には、上記ピンホール部材6のピンホール16を通過した白色光L2の被加工物11からの反射光L3の輝度を検出する検出手段として機能する、例えばCCDカメラやCMOSカメラ等である。   An imaging unit 8 is provided on the optical path where the optical path from the imaging lens 5 toward the pinhole member 6 is branched by the beam splitter 20. The image pickup means 8 is provided with a plurality of light receiving elements in a matrix and picks up a two-dimensional image on the workpiece 11. When measuring a minute height, the pinhole of the pinhole member 6 is used. For example, a CCD camera or a CMOS camera functions as detection means for detecting the brightness of the reflected light L3 from the workpiece 11 of the white light L2 that has passed through 16.

上記対物レンズ4から結像レンズ5に向かう光路がビームスプリッタ21によって分岐された光路上には、照明光源9が設けられている。この照明光源9は、被加工物11上に照明光L4を照射して撮像手段8による被加工物11表面の撮像を可能にさせるものであり、ハロゲンランプ等である。   An illumination light source 9 is provided on the optical path where the optical path from the objective lens 4 toward the imaging lens 5 is branched by the beam splitter 21. The illumination light source 9 irradiates the workpiece 11 with illumination light L4 to enable the imaging unit 8 to image the surface of the workpiece 11 and is a halogen lamp or the like.

上記レーザ光源2、光束規制手段3、対物レンズ4、結像レンズ5、ピンホール部材6、白色光源7、撮像手段8、及び照明光源9を含む光学系の本体部を上下動可能に変位手段10が設けられている。この変位手段10は、光学系本体部を所定の移動範囲内を下方から上方に向かって、又は上方から下方に向かって所定速度で移動させて、対物レンズ4と被加工物11との間隔を変位させるもので、例えばモータとギア等を組み合わせて構成されている。   Displacement means for vertically moving the main body of the optical system including the laser light source 2, the light beam restricting means 3, the objective lens 4, the imaging lens 5, the pinhole member 6, the white light source 7, the imaging means 8, and the illumination light source 9. 10 is provided. The displacing means 10 moves the optical system main body part within a predetermined movement range from below to above or from above to below at a predetermined speed, so that the distance between the objective lens 4 and the workpiece 11 is increased. For example, a combination of a motor and a gear is used.

なお、上記光学系において、光束規制手段3の形状規制部12の位置、ピンホール部材6のピンホール16の形成位置及び撮像手段8の受光面の位置は、それぞれ対物レンズ4の結像位置に対して共役の関係となるようにされている。また、図1において、符号22はレンズホルダー15をX方向に移動させるためのモータ、符号23はモータ23に連結されて回転しレンズホルダー15をX方向に移動させるボールネジ、符号24はレンズホルダー15をY方向に移動させるためのモータ、符号25は全反射ミラー、及び符号26は撮像手段8による撮像領域内を均一に照明するフィールドレンズである。   In the above optical system, the position of the shape restricting portion 12 of the light flux restricting means 3, the position where the pinhole 16 of the pinhole member 6 is formed, and the position of the light receiving surface of the imaging means 8 are respectively at the imaging position of the objective lens 4. On the other hand, it has a conjugate relationship. In FIG. 1, reference numeral 22 is a motor for moving the lens holder 15 in the X direction, reference numeral 23 is a ball screw connected to the motor 23 and rotated to move the lens holder 15 in the X direction, and reference numeral 24 is the lens holder 15. A reference numeral 25 denotes a total reflection mirror, and reference numeral 26 denotes a field lens that uniformly illuminates the imaging area of the imaging means 8.

次に、このように構成されたレーザ加工装置の動作及びレーザ加工について、図4及び図5を参照して説明する。なお、以下の説明においては、被加工物11がカラーフィルタ基板の場合について述べる。
先ず、ステップS1においては、カラーフィルタ基板がレーザ加工装置のステージ1上に載置される。そして、装置の起動スイッチが投入されて、照明光源9が点灯する。これにより、照明光L4が対物レンズ4を介してカラーフィルタ基板面に照射する。また、同時に撮像手段8がON駆動してカラーフィルタ基板表面を撮像する。このとき、レーザ光源2及び白色光源7は消灯されたままである。また、対物レンズ4としては、低倍率の対物レンズ4a〜4cのいずれかが選択されている。
Next, the operation and laser processing of the laser processing apparatus configured as described above will be described with reference to FIGS. In the following description, the case where the workpiece 11 is a color filter substrate will be described.
First, in step S1, the color filter substrate is placed on the stage 1 of the laser processing apparatus. Then, the start switch of the apparatus is turned on, and the illumination light source 9 is turned on. As a result, the illumination light L4 irradiates the color filter substrate surface via the objective lens 4. At the same time, the imaging means 8 is turned on to image the surface of the color filter substrate. At this time, the laser light source 2 and the white light source 7 remain off. In addition, as the objective lens 4, any one of the low-magnification objective lenses 4a to 4c is selected.

ステップS2においては、変位手段10がON駆動して光学系本体部を上下動し、撮像手段8で撮像されるカラーフィルタ基板のパターンの画像が鮮明となるようにオートフォーカス調整がなされる。このとき、撮像手段8による撮像画像は、図示省略のモニター画面に表示される。   In step S2, the displacing means 10 is turned ON to move the optical system main body up and down, and the autofocus adjustment is performed so that the color filter substrate pattern image picked up by the image pickup means 8 becomes clear. At this time, the image captured by the imaging unit 8 is displayed on a monitor screen (not shown).

ステップS3においては、撮像手段8により撮像されたカラーフィルタ基板のパターン画像に対して公知のパターンマッチング法が適用され、パターンの欠陥、例えばパターン上に付着した異物が検出される。ここで、パターン欠陥が検出されない(“NO”判定)ときには、ステップS4に進んでステージ1が所定方向に所定量だけ移動されて次の観察領域が選択される。   In step S3, a known pattern matching method is applied to the pattern image of the color filter substrate picked up by the image pickup means 8 to detect a pattern defect, for example, a foreign substance attached on the pattern. Here, when the pattern defect is not detected ("NO" determination), the process proceeds to step S4, the stage 1 is moved by a predetermined amount in a predetermined direction, and the next observation area is selected.

一方、ステップS3において、パターン欠陥が検出されると(“YES”判定)、ステップS5に進んで、ステージ1がX,Y方向に移動されて欠陥部(異物27)(図5参照)が対物レンズ4の視野Fの中心に位置付けられる。   On the other hand, if a pattern defect is detected in step S3 ("YES" determination), the process proceeds to step S5, the stage 1 is moved in the X and Y directions, and the defect (foreign material 27) (see FIG. 5) is the objective. It is positioned at the center of the field of view F of the lens 4.

そして、ステップS6において、モータ22が駆動されてレンズホルダー15がX方向に移動され、高倍率の対物レンズ4dに交換される。また、対物レンズ4dの光軸と光学系本体部の光軸とがずれている場合には、さらに、モータ24が駆動されてレンズホルダー15がY方向に移動され、光軸合わせがなされる。   In step S6, the motor 22 is driven to move the lens holder 15 in the X direction, and is replaced with a high-magnification objective lens 4d. When the optical axis of the objective lens 4d and the optical axis of the optical system main body are shifted, the motor 24 is further driven to move the lens holder 15 in the Y direction, and the optical axes are aligned.

対物レンズ4が高倍率の対物レンズ4dに交換されると、変位手段10が再度ON駆動して光学系本体部を上下動し、撮像手段8で撮像されるカラーフィルタ基板のパターンの画像が鮮明となるようにオートフォーカス調整がなされる(図5(a)参照)。   When the objective lens 4 is replaced with a high-magnification objective lens 4d, the displacement means 10 is turned ON again to move the optical system main body up and down, and the color filter substrate pattern image picked up by the image pickup means 8 is clear. The autofocus adjustment is performed so that (see FIG. 5A).

ステップS7においては、照明光源9が消灯され、白色光源7が点灯される。これにより、白色光源7から放射した白色光L2は、ピンホール部材6の複数のピンホール16を通過し、対物レンズ4を介してカラーフィルタ基板上に照射する。そして、カラーフィルタ基板上に上記ピンホール16に対応する複数の測定点28を指定する(図5(b)参照)。さらに、各測定点28からの反射光L3は、対物レンズ4を通って白色光源7側に戻り、ビームスプリッタ20で反射されて撮像手段8に入射する。   In step S7, the illumination light source 9 is turned off and the white light source 7 is turned on. As a result, the white light L2 emitted from the white light source 7 passes through the plurality of pinholes 16 of the pinhole member 6 and is irradiated onto the color filter substrate via the objective lens 4. Then, a plurality of measurement points 28 corresponding to the pinhole 16 are specified on the color filter substrate (see FIG. 5B). Further, the reflected light L 3 from each measurement point 28 returns to the white light source 7 side through the objective lens 4, is reflected by the beam splitter 20, and enters the imaging unit 8.

ステップS8においては、高さ測定が開始される。即ち、上記反射光L3の輝度が撮像手段8の受光素子によって検出され、その輝度情報が反射光を受光した受光素子毎に図示省略の記憶部の対応領域に保存される。同時に、このときの変位手段10の高さ情報が変位手段10に備えられた位置センサーによって検出され、上記輝度情報に関連付けて記憶部に保存される。   In step S8, height measurement is started. That is, the luminance of the reflected light L3 is detected by the light receiving element of the imaging means 8, and the luminance information is stored in a corresponding area of a storage unit (not shown) for each light receiving element that has received the reflected light. At the same time, the height information of the displacement means 10 at this time is detected by a position sensor provided in the displacement means 10 and stored in the storage unit in association with the luminance information.

続いて、変位手段10がON駆動して、光学系本体部を所定速度で例えば上方に移動する。このとき、複数のピンホール16を通過した白色光L2のカラーフィルタ基板からの反射光L3が撮像手段8の複数の受光素子によって受光され、所定の時間間隔で上記反射光L3の輝度が検出される。同時に、変位手段10の高さ情報が変位手段10の位置センサーの出力に基づいて上記輝度の検出に同期して取得される。そして、これら輝度情報及び高さ情報は、互いに関連付けられて受光素子毎に記憶部に保存される。   Subsequently, the displacing means 10 is turned ON to move the optical system main body upward, for example, at a predetermined speed. At this time, the reflected light L3 from the color filter substrate of the white light L2 that has passed through the plurality of pinholes 16 is received by the plurality of light receiving elements of the imaging means 8, and the luminance of the reflected light L3 is detected at predetermined time intervals. The At the same time, the height information of the displacement means 10 is acquired in synchronization with the detection of the luminance based on the output of the position sensor of the displacement means 10. The luminance information and the height information are associated with each other and stored in the storage unit for each light receiving element.

具体的には、輝度情報が所定時間間隔で入力される度に、新たに入力された輝度情報が記憶部に保存されている一つ前の輝度情報と比較される。そして、この新たな輝度情報が一つ前の輝度情報を上回ると、記憶部に保存された輝度情報が更新される。同時に、高さ情報も更新される。一方、輝度情報の更新が予め設定された複数回だけ行われないときには、上記保存された輝度情報を最大輝度として検出し、最後に輝度情報の更新が行われたときの高さ情報をその測定点の高さとして保存する。   Specifically, every time the luminance information is input at a predetermined time interval, the newly input luminance information is compared with the previous luminance information stored in the storage unit. When the new luminance information exceeds the previous luminance information, the luminance information stored in the storage unit is updated. At the same time, the height information is updated. On the other hand, when the brightness information is not updated a plurality of times set in advance, the stored brightness information is detected as the maximum brightness, and the height information when the brightness information is last updated is measured. Save as point height.

なお、本発明においては、カラーフィルタ基板の任意の一つの測定点28からの反射光L3は、撮像手段8の複数の受光素子によって受光される。しかし、各受光素子は個別に輝度情報を出力するため、上記複数の受光素子のうち高さ測定時に最も強い輝度を検出した受光素子を上記測定点28に対応した受光素子として扱えばよい。   In the present invention, the reflected light L3 from any one measurement point 28 on the color filter substrate is received by a plurality of light receiving elements of the imaging means 8. However, since each light receiving element individually outputs luminance information, the light receiving element that has detected the strongest luminance during height measurement among the plurality of light receiving elements may be handled as the light receiving element corresponding to the measurement point 28.

ステップS9において、全ての測定点28の高さ測定が終了すると(“YES”判定)、ステップS10に進んで白色光源7が消灯される。同時に、変位手段10を駆動して光学系本体部の高さを所定の高さに合わせる。この高さは、照射するレーザ光のパワーに依存し、例えばカラーフィルタ基板のパターン表面、異物27の頂点、又はその中間高さ位置等であり、実験により決められる。   In step S9, when the height measurement of all the measurement points 28 is completed ("YES" determination), the process proceeds to step S10 and the white light source 7 is turned off. At the same time, the displacement means 10 is driven to adjust the height of the optical system body to a predetermined height. This height depends on the power of the laser beam to be irradiated, and is, for example, the pattern surface of the color filter substrate, the apex of the foreign material 27, or the intermediate height position thereof, and is determined by experiments.

続いて、レーザ照射による異物27の除去段階に移る。この場合、先ず、ステップS11において、照明光源9が点灯され、異物27を含む欠陥パターンの画像が撮像手段8により撮像される。   Then, it moves to the removal stage of the foreign material 27 by laser irradiation. In this case, first, in step S <b> 11, the illumination light source 9 is turned on, and an image of a defect pattern including the foreign material 27 is captured by the imaging unit 8.

ステップS12においては、光束規制手段3の第1の部材13及び第2の部材14を動かして形状規制部12の大きさが上記異物27の大きさに合わされる。この動作は、例えば、第1の部材13及び第2の部材14の動きに連動して変わり上記形状規制部12に対応した窓29をモニター画面上に表示させ、該窓29内に上記異物27が納まるように第1の部材13及び第2の部材14の位置を手動調整する(図5(c)参照)。又は、撮像手段8により撮像された画像のコントラストの差から異物27の輪郭を検出し、それに基づいて異物27のX,Y方向の最大幅(対物レンズ4の倍率を考慮した幅)を算出し、光束規制手段3の形状規制部12のX,Y方向の幅が上記算出されたX,Y方向の幅と一致するように第1の部材13及び第2の部材14の位置を自動調整するようにしてもよい。なお、上記窓29は、第1の部材13及び第2の部材14に位置センサーを備え、該位置センサーの出力を利用して生成することができる。   In step S12, the first member 13 and the second member 14 of the light beam restricting means 3 are moved so that the size of the shape restricting portion 12 matches the size of the foreign matter 27. This operation is changed in conjunction with the movement of the first member 13 and the second member 14, for example, and a window 29 corresponding to the shape restricting portion 12 is displayed on the monitor screen, and the foreign matter 27 is displayed in the window 29. The positions of the first member 13 and the second member 14 are manually adjusted so as to be accommodated (see FIG. 5C). Alternatively, the contour of the foreign material 27 is detected from the contrast difference between the images captured by the imaging means 8 and the maximum width in the X and Y directions of the foreign material 27 (the width considering the magnification of the objective lens 4) is calculated based on the detected contour. The positions of the first member 13 and the second member 14 are automatically adjusted so that the widths in the X and Y directions of the shape restricting portion 12 of the light flux restricting means 3 coincide with the calculated widths in the X and Y directions. You may do it. Note that the window 29 can be generated by providing a position sensor on the first member 13 and the second member 14 and using an output of the position sensor.

ステップS13においては、レーザ光源2がON駆動され、レーザ光L1が予め設定されたパワー、又は異物27の高さに応じて自動設定されたパワーで所定時間だけ照射される。これにより、異物27がレーザ光L1の熱により瞬時にガス化されて除去される(図5(d)参照)。   In step S <b> 13, the laser light source 2 is turned on, and the laser light L <b> 1 is irradiated for a predetermined time with a preset power or a power automatically set according to the height of the foreign material 27. Thereby, the foreign material 27 is instantaneously gasified and removed by the heat of the laser beam L1 (see FIG. 5D).

ステップS14においては、基板表面がモニターにより観察され、異物27の除去状態が確認される。そして、ステップS15において、モータ22を駆動し、レンズホルダー15を移動して対物レンズ4を低倍率の対物レンズ4a〜4cのいずれかに交換した後、ステップS4に進んで、ステージ1をX,Y方向に移動してカラーフィルタ基板の観察領域を次の領域まで移動する。このようにして、次の観察領域において、ステップS1〜S14が実行される。   In step S14, the substrate surface is observed by a monitor, and the removal state of the foreign matter 27 is confirmed. In step S15, the motor 22 is driven and the lens holder 15 is moved to replace the objective lens 4 with one of the low-magnification objective lenses 4a to 4c. Then, the process proceeds to step S4, where the stage 1 is moved to X, Moving in the Y direction, the observation area of the color filter substrate is moved to the next area. In this way, steps S1 to S14 are executed in the next observation region.

ステップS14において、異物27の除去状態を確認した後、上述と同様にして、高さ測定を再度行ってもよい。この場合、例えば、異物27が取りきれず、許容範囲を超えた高さが検出されたときには、レーザ光の照射を再度行うとよい。   In step S14, after confirming the removal state of the foreign matter 27, the height may be measured again in the same manner as described above. In this case, for example, when the foreign matter 27 cannot be completely removed and a height exceeding the allowable range is detected, the laser light irradiation may be performed again.

なお、以上の説明においては、カラーフィルタ基板の欠陥修正、特に異物27の除去について述べたが、本発明はこれに限られず、被加工物11に所定の深さの凹部を形成する場合にも適用することができる。この場合、被加工物11に対する加工量(加工深さ)を測定しながらレーザ加工を行うことにより、加工精度を向上することができる。   In the above description, the defect correction of the color filter substrate, particularly the removal of the foreign matter 27 has been described. However, the present invention is not limited to this, and the present invention is also applicable to the case where a recess having a predetermined depth is formed on the workpiece 11. Can be applied. In this case, the processing accuracy can be improved by performing laser processing while measuring the processing amount (processing depth) for the workpiece 11.

また、上記実施形態においては、高さ測定を行う際に、光学系本体部を上下方向に移動して対物レンズ4と被加工物11との間の距離を変位させる場合について説明したが、本発明はこれに限られず、ステージ1を上下方向に移動してもよく、又は結像レンズ5をその光軸方向に変位させてもよい。   In the above-described embodiment, the case where the distance between the objective lens 4 and the workpiece 11 is displaced by moving the optical system main body in the vertical direction when performing height measurement has been described. The invention is not limited to this, and the stage 1 may be moved in the vertical direction, or the imaging lens 5 may be displaced in the optical axis direction.

さらに、以上の実施形態においては、ピンホール部材6、白色光源7及び撮像手段8を結像レンズ5から光束規制手段3に向かう光路が分岐された光路上に設ける場合について説明したが、本発明はこれに限られず、上記各構成要素を対物レンズ4から結像レンズ5に向かう光路が分岐された光路上に設けてもよい。この場合も、光束規制手段3の形状規制部12の位置、ピンホール部材6のピンホール16の形成位置及び撮像手段8の受光面の位置は、それぞれ対物レンズ4の結像位置に対して共役の関係となるように構成される。   Furthermore, in the above embodiment, the case where the pinhole member 6, the white light source 7, and the imaging unit 8 are provided on the optical path branched from the optical path from the imaging lens 5 to the light beam regulating unit 3 has been described. However, the present invention is not limited to this, and each of the above components may be provided on an optical path branched from the optical path from the objective lens 4 toward the imaging lens 5. Also in this case, the position of the shape restricting portion 12 of the light flux restricting means 3, the position where the pinhole 16 of the pinhole member 6 is formed, and the position of the light receiving surface of the imaging means 8 are respectively conjugate with the imaging position of the objective lens 4. It is comprised so that it may become a relationship.

また、上記実施形態においては、計測用光源が白色光源7の場合について説明したが、本発明はこれに限定されず、例えば赤、緑、青の単色光を放射するレーザ光源又はLED等であってもよく、又は白色光源7と上記レーザ光源等とをスイッチで切り換えて使用できるようにしてもよい。   In the above embodiment, the case where the measurement light source is the white light source 7 has been described. However, the present invention is not limited to this. For example, the measurement light source may be a laser light source or LED that emits red, green, and blue monochromatic light. Alternatively, the white light source 7 and the laser light source or the like may be switched using a switch.

さらに、上記実施形態においては、光束規制手段3が平面内をスライド可能な複数の部材を組み合わせて構成したものである場合について説明したが、本発明はこれに限られず、光束規制手段3は、個別に傾動可能な複数のマイクロミラーをマトリクス状に並べたマイクロミラーデバイスであってもよい。これにより、レーザ光の光束断面形状を加工形状に合わせて任意に設定することができる。   Furthermore, in the said embodiment, although the case where the light beam restriction | limiting means 3 was comprised combining the several member which can slide in a plane was demonstrated, this invention is not limited to this, The light flux restriction | limiting means 3 is It may be a micromirror device in which a plurality of individually tiltable micromirrors are arranged in a matrix. Thereby, the light beam cross-sectional shape of a laser beam can be arbitrarily set according to a processing shape.

そして、上記実施形態においては、ピンホール部材6が透明な基板上に複数のピンホール16を所定間隔でマトリクス状に形成したものである場合について説明したが、本発明はこれに限られず、ピンホール部材6は、複数のピンホールを螺旋状に形成したニッポウディスクであってもよい。この場合、ニッポウディスクを所定速度で回転させることにより、観察領域内の高さ測定をより緻密に行うことができる。   In the above embodiment, the case where the pinhole member 6 is formed by forming a plurality of pinholes 16 in a matrix at a predetermined interval on a transparent substrate has been described. However, the present invention is not limited to this, The hole member 6 may be a Nippon disc having a plurality of pinholes formed in a spiral shape. In this case, the height in the observation region can be measured more precisely by rotating the Nippon disc at a predetermined speed.

本発明によるレーザ加工装置の実施形態を示す正面図である。It is a front view which shows embodiment of the laser processing apparatus by this invention. 上記レーザ加工装置において使用される光束規制手段の一構成例を示す平面図である。It is a top view which shows one structural example of the light beam control means used in the said laser processing apparatus. 上記レーザ加工装置において使用されるピンホール部材の一構成例を示す平面図である。It is a top view which shows one structural example of the pinhole member used in the said laser processing apparatus. 上記レーザ加工装置によるレーザ加工について説明するフローチャートである。It is a flowchart explaining the laser processing by the said laser processing apparatus. 上記レーザ加工装置によるレーザ加工について示す説明図である。It is explanatory drawing shown about the laser processing by the said laser processing apparatus.

符号の説明Explanation of symbols

2…レーザ光源
3…光束規制手段
4…対物レンズ
5…結像レンズ
6…ピンホール板
7…白色光源(計測用光源)
8…撮像手段
10…変位手段
11…被加工物
12…形状規制部
L1…レーザ光
L2…白色光(計測光)
L3…反射光
DESCRIPTION OF SYMBOLS 2 ... Laser light source 3 ... Light beam control means 4 ... Objective lens 5 ... Imaging lens 6 ... Pinhole plate 7 ... White light source (light source for measurement)
DESCRIPTION OF SYMBOLS 8 ... Imaging means 10 ... Displacement means 11 ... Workpiece 12 ... Shape control part L1 ... Laser light L2 ... White light (measurement light)
L3 ... Reflected light

Claims (6)

レーザ光源から放射されたレーザ光の光束断面形状を形状規制部で規制して射出する光束規制手段と、前記レーザ光により加工される被加工物と対向して設けられ前記レーザ光を前記被加工物上に集光する対物レンズと、を備えたレーザ加工装置であって、
前記対物レンズから前記光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材と、
前記ピンホール部材に計測光を照射する計測用光源と、
前記対物レンズから前記ピンホール部材に向かう光路が分岐された光路上に設けられ、複数の受光素子を備えて前記ピンホールを通過した計測光の前記被加工物からの反射光を受光する撮像手段と、
前記対物レンズと前記被加工物との間の距離を変位させる変位手段と、
を備えて微小高さの測定を可能にしたことを特徴とするレーザ加工装置。
A light beam restricting means for restricting and emitting a light beam cross-sectional shape of the laser light emitted from the laser light source by a shape restricting portion, and a workpiece to be processed by the laser light. A laser processing apparatus comprising an objective lens for focusing on an object,
A pinhole member provided on an optical path branched from an optical path from the objective lens toward the luminous flux regulating means, and forming a plurality of pinholes;
A light source for measurement that irradiates the pinhole member with measurement light;
An imaging unit that is provided on a branched optical path from the objective lens to the pinhole member, and that receives a reflected light from the workpiece of the measurement light that has passed through the pinhole and includes a plurality of light receiving elements. When,
A displacement means for displacing a distance between the objective lens and the workpiece;
A laser processing apparatus characterized in that a minute height can be measured.
レーザ光源から放射されたレーザ光の光束断面形状を形状規制部で規制して射出する光束規制手段と、前記レーザ光により加工される被加工物と対向して設けられ前記レーザ光を前記被加工物上に集光する対物レンズと、前記光束規制手段と前記対物レンズとの間の光路上に設けられ前記対物レンズと組み合わされて前記被加工物上に前記形状規制部の像を結像させる結像レンズと、を備えたレーザ加工装置であって、
前記結像レンズから前記光束規制手段に向かう光路が分岐された光路上に設けられ複数のピンホールを形成したピンホール部材と、
前記ピンホール部材に計測光を照射する計測用光源と、
前記結像レンズから前記ピンホール部材に向かう光路が分岐された光路上に設けられ、複数の受光素子を備えて前記ピンホールを通過した計測光の前記被加工物からの反射光を受光する撮像手段と、
前記結像レンズをその光軸方向に変位させる変位手段と、
を備えて微小高さの測定を可能にしたことを特徴とするレーザ加工装置。
A light beam restricting means for restricting and emitting a light beam cross-sectional shape of the laser light emitted from the laser light source by a shape restricting portion, and a workpiece to be processed by the laser light. An objective lens for focusing on an object, and an image of the shape restricting portion is formed on the workpiece in combination with the objective lens provided on an optical path between the light flux regulating means and the objective lens. A laser processing apparatus comprising an imaging lens,
A pinhole member provided on an optical path branched from an optical path from the imaging lens toward the light flux regulating means, and forming a plurality of pinholes;
A light source for measurement that irradiates the pinhole member with measurement light;
Imaging that is provided on a branched optical path from the imaging lens toward the pinhole member and that receives a reflected light from the workpiece of the measurement light that has passed through the pinhole with a plurality of light receiving elements. Means,
Displacement means for displacing the imaging lens in the optical axis direction;
A laser processing apparatus characterized in that a minute height can be measured.
前記光束規制手段は、平面内をスライド可能な複数の部材を組み合わせて構成され、該複数の部材により囲まれた開口部を前記形状規制部としたことを特徴とする請求項1又は2記載のレーザ加工装置。   The said light beam control means is comprised combining the several member which can be slid within the plane, The opening part enclosed by this several member was made into the said shape control part, The Claim 1 or 2 characterized by the above-mentioned. Laser processing equipment. 前記光束規制手段は、個別に回動可能な複数のマイクロミラーをマトリクス状に並べて構成され、該複数のマイクロミラーを前記形状規制部としたことを特徴とする請求項1又は2記載のレーザ加工装置。   3. The laser processing according to claim 1, wherein the light beam restricting means is configured by arranging a plurality of individually rotatable micromirrors in a matrix, and the plurality of micromirrors are used as the shape restricting portion. apparatus. 前記ピンホール部材は、透明な基板上に複数のピンホールを所定間隔でマトリクス状に形成したものであることを特徴とする請求項1〜4のいずれか1項に記載のレーザ加工装置。   The laser processing apparatus according to any one of claims 1 to 4, wherein the pinhole member is formed by forming a plurality of pinholes in a matrix at predetermined intervals on a transparent substrate. 前記ピンホール部材は、複数のピンホールを螺旋状に形成したニッポウディスクであることを特徴とする請求項1〜4のいずれか1項に記載のレーザ加工装置。   The laser processing apparatus according to any one of claims 1 to 4, wherein the pinhole member is a Nippon disk in which a plurality of pinholes are formed in a spiral shape.
JP2008028071A 2008-02-07 2008-02-07 Laser processing equipment Active JP5164001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028071A JP5164001B2 (en) 2008-02-07 2008-02-07 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028071A JP5164001B2 (en) 2008-02-07 2008-02-07 Laser processing equipment

Publications (2)

Publication Number Publication Date
JP2009183991A true JP2009183991A (en) 2009-08-20
JP5164001B2 JP5164001B2 (en) 2013-03-13

Family

ID=41067799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028071A Active JP5164001B2 (en) 2008-02-07 2008-02-07 Laser processing equipment

Country Status (1)

Country Link
JP (1) JP5164001B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261246B1 (en) * 2011-08-17 2013-05-07 (주)에이앤아이 Light system with linear polarization conversion device for laser repair process of flat display panel
KR101261248B1 (en) * 2011-08-17 2013-05-07 (주)에이앤아이 Light system with circular or elliptical polarization conversion device for laser repair process of flat display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329919A (en) * 1998-05-12 1999-11-30 Canon Inc Position detector and manufacture of device using this position detector
JP2005103581A (en) * 2003-09-29 2005-04-21 Olympus Corp Repair method and device therefor
JP2005186100A (en) * 2003-12-25 2005-07-14 V Technology Co Ltd Laser beam machining apparatus
JP2006007295A (en) * 2004-06-28 2006-01-12 Ntn Corp Fine pattern correction device and method for correcting defect of fine pattern
JP2006122982A (en) * 2004-10-29 2006-05-18 Tokyo Electron Ltd Laser processing apparatus and method
JP2007292590A (en) * 2006-04-25 2007-11-08 Nikon Corp Confocal optical system and height-measuring apparatus using the same
JP2007304058A (en) * 2006-05-15 2007-11-22 V Technology Co Ltd Micro height measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329919A (en) * 1998-05-12 1999-11-30 Canon Inc Position detector and manufacture of device using this position detector
JP2005103581A (en) * 2003-09-29 2005-04-21 Olympus Corp Repair method and device therefor
JP2005186100A (en) * 2003-12-25 2005-07-14 V Technology Co Ltd Laser beam machining apparatus
JP2006007295A (en) * 2004-06-28 2006-01-12 Ntn Corp Fine pattern correction device and method for correcting defect of fine pattern
JP2006122982A (en) * 2004-10-29 2006-05-18 Tokyo Electron Ltd Laser processing apparatus and method
JP2007292590A (en) * 2006-04-25 2007-11-08 Nikon Corp Confocal optical system and height-measuring apparatus using the same
JP2007304058A (en) * 2006-05-15 2007-11-22 V Technology Co Ltd Micro height measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261246B1 (en) * 2011-08-17 2013-05-07 (주)에이앤아이 Light system with linear polarization conversion device for laser repair process of flat display panel
KR101261248B1 (en) * 2011-08-17 2013-05-07 (주)에이앤아이 Light system with circular or elliptical polarization conversion device for laser repair process of flat display panel

Also Published As

Publication number Publication date
JP5164001B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2006038439A1 (en) Observation apparatus with focus position control mechanism
KR101368167B1 (en) Repair device and repair method
JP2017167535A (en) Light field microscope and illumination method
JP2005128493A5 (en)
TWI567374B (en) Defect observation device and laser processing apparatus including the same
JP2009056507A (en) Laser machining apparatus
JP2009168964A (en) Confocal microscope
JP5164001B2 (en) Laser processing equipment
JP2006215259A (en) Microscope system, observation method and observation program
JP2006220578A (en) Surface inspecting apparatus
JP7173641B2 (en) LASER REPAIR AND INSPECTION METHOD FOR DISPLAY DEVICE PANEL AND REPAIR AND INSPECTION APPARATUS SUITABLE FOR THE SAME
JP2009053485A (en) Automatic focusing device, automatic focusing method, and measuring device
JP5120814B2 (en) Pattern forming method and pattern forming apparatus
JP5164002B2 (en) Laser processing equipment
JP4220571B1 (en) Minute height measuring device
JP5145698B2 (en) Microscope focus detection apparatus and microscope having the same
JP2018194634A (en) Light field microscope
JP2011254027A (en) Exposure device
JP2010008458A (en) Optical measuring instrument and pattern formed on projection plate
JP2017161740A (en) Light field microscope
WO2020036250A1 (en) Laser processing device
JP2005077857A (en) Microscope with two or more focal points, laser machining device provided with microscope, and laser machining method using device
JP2003185591A (en) Surface inspection device and method therefor
JP2002277729A (en) Device and method for automatic focusing of microscope
JP2002341234A (en) Automatic focusing device for microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250