JP2009183283A - METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN - Google Patents

METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN Download PDF

Info

Publication number
JP2009183283A
JP2009183283A JP2009004310A JP2009004310A JP2009183283A JP 2009183283 A JP2009183283 A JP 2009183283A JP 2009004310 A JP2009004310 A JP 2009004310A JP 2009004310 A JP2009004310 A JP 2009004310A JP 2009183283 A JP2009183283 A JP 2009183283A
Authority
JP
Japan
Prior art keywords
gene
yeast
disruption
strain
growth ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004310A
Other languages
Japanese (ja)
Inventor
Hiroko Abe
博子 安部
Yasuko Fujita
康子 藤田
Kenichi Nakayama
賢一 仲山
Yasunori Chiba
靖典 千葉
Yoshifumi Chikami
芳文 地神
Tsuneshi Fujitani
典志 藤谷
Nobuetsu Katagiri
伸悦 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Neo Morgan Laboratory Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Neo Morgan Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Neo Morgan Laboratory Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009004310A priority Critical patent/JP2009183283A/en
Publication of JP2009183283A publication Critical patent/JP2009183283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a microorganism having recovered proliferation potency which has been decreased by gene disruption or gene mutation. <P>SOLUTION: Disclosed is the method for producing a microorganism having recovered proliferation potency which has been decreased by gene disruption or gene mutation, wherein the method includes a step of introducing a gene having a gluconeogenesis-promoting ability into the microorganism having proliferation potency having decreased by gene disruption or gene mutation, and the gene having a gluconeogenesis-promoting ability is one or more genes selected from the group consisting of CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1 and ADH2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,特定の遺伝子を強制発現させることで,遺伝子破壊又は遺伝子変異により損なわれた増殖能を回復した微生物の製造方法などに関する。より詳しく説明すると,本発明は,CAT8などの糖新生を亢進する遺伝子を強制発現させることにより,糖鎖合成遺伝子破壊酵母株又は糖鎖合成遺伝子変異酵母株などの増殖能を回復した微生物の製造方法などに関する。   The present invention relates to a method for producing a microorganism in which the growth ability impaired by gene disruption or gene mutation is recovered by forcibly expressing a specific gene. More specifically, the present invention relates to the production of a microorganism whose growth ability has been restored, such as a glycosynthetic gene-disrupted yeast strain or a glycosynthetic gene-mutated yeast strain by forcibly expressing a gene that promotes gluconeogenesis such as CAT8. For methods.

組換えタンパク質へ糖鎖を付加する技術は,医薬原料となる糖タンパク質の開発・生産において極めて重要な課題である。抗体医薬などの糖タンパク質性医薬は,多くの疾患治療薬として需要が拡大している。しかしながら,従来の動物培養細胞を利用した糖タンパク質医薬の製造では,高いコストと,血清成分に対する安全性確保が必要とされること,ヒト生体内と同等あるいは均一な糖鎖を付加することが困難であるなどの問題がある。そこで動物細胞にかわり,医薬品原料として高品質な糖タンパク質を,安全かつ安価に供給するシステムを備えた代替宿主の開発が望まれる。その社会的ニーズに応えるために,糖タンパク質を効率よく生産することができる宿主の開発が世界中の多くのグループによって試みられている。   The technology for adding sugar chains to recombinant proteins is an extremely important issue in the development and production of glycoproteins that are used as pharmaceutical raw materials. Demand for glycoprotein drugs such as antibody drugs is increasing as a therapeutic agent for many diseases. However, conventional production of glycoprotein drugs using cultured animal cells requires high cost and safety for serum components, and it is difficult to add sugar chains that are equivalent or uniform to those in the human body. There are problems such as. Therefore, the development of an alternative host equipped with a system for supplying high-quality glycoproteins as a raw material for pharmaceuticals in a safe and inexpensive manner instead of animal cells is desired. In order to meet such social needs, many groups around the world have attempted to develop a host capable of efficiently producing glycoproteins.

酵母は,有用糖タンパク質を生産するための優れた宿主である。たとえば,GlycoFi社(S. R. Hamilton et al., Science, 2006)は,メタノール資化性酵母(Pichia pastoris)において,ヒト型糖鎖生産株を開発している。また,産総研グループ(Y. Chiba et al., JBC, 1998)は,出芽酵母(Saccharomyces cerevisiae)において,ヒト型糖鎖生産株を開発している。酵母は,遺伝子操作などの分子生物学的手法を駆使できるばかりでなく,増殖速度が速いことから大量培養系へ容易にスケールアップでき,動物培養細胞系のタンパク質生産系に比べ,低コストにタンパク質を生産できる。   Yeast is an excellent host for producing useful glycoproteins. For example, GlycoFi (SR Hamilton et al., Science, 2006) has developed a human sugar chain producing strain in methanol-utilizing yeast (Pichia pastoris). In addition, the AIST group (Y. Chiba et al., JBC, 1998) is developing human-type sugar chain producing strains in Saccharomyces cerevisiae. Yeast can not only make full use of molecular biological techniques such as gene manipulation, but also can be easily scaled up to a large-scale culture system because of its high growth rate, and protein can be produced at a lower cost than protein production systems using animal culture cells. Can produce.

特に,国際公開WO01/014522号パンフレット(下記特許文献1を参照)には,och1破壊(Δoch1),mnn1破壊(Δmnn1)及びmnn4破壊(Δmnn4)を有する三重破壊株が開示されている。すなわち,国際公開WO01/014522号パンフレットには,酵母に特異的な外糖鎖の生合成に関与する遺伝子のうち,初発の延長付加反応を行うα−1,6マンノシルトランスフェラーゼをコードする遺伝子(OCH1),糖鎖の非還元末端にマンノースを付加するα−1,3マンノシルトランスフェラーゼをコードする遺伝子(MNN1),及びマンノース−1−リン酸の付加を制御する遺伝子(MNN4)の機能を破壊するか,又はそれらの遺伝子に何らかの変異を導入した酵母変異株が開示されている。これらの酵母株は,哺乳類型の糖鎖を含有する糖タンパク質の産生に優れるので,医薬品の開発などに有用であると考えられる。   In particular, a pamphlet having an och1 disruption (Δoch1), an mnn1 disruption (Δmnn1), and an mnn4 disruption (Δmnn4) is disclosed in International Publication WO01 / 014522 (see Patent Document 1 below). That is, in the international publication WO01 / 014522, among genes involved in the biosynthesis of an outer sugar chain specific to yeast, a gene encoding an α-1,6 mannosyltransferase (OCH1 ), Whether the function of the gene encoding Mn-1, mannoseyltransferase that adds mannose to the non-reducing end of the sugar chain (MNN1), and the gene controlling the addition of mannose-1-phosphate (MNN4) are destroyed? , Or yeast mutants in which any mutations are introduced into these genes are disclosed. Since these yeast strains are excellent in the production of glycoproteins containing mammalian sugar chains, they are considered useful for the development of pharmaceuticals.

この技術によって開発されたヒト型糖タンパク質生産酵母株は,酵母型糖鎖の付加を避けるために,酵母の糖鎖合成関連遺伝子群の破壊の影響を受けて,高温度感受性(ts性)と増殖能の低下を示す(B. Choi et al., PNAS, 2003)。この酵母は,野生型酵母に比べ増殖能やタンパク質生産能が著しく低いばかりでなく,多様性に富んだ糖鎖を合成するためのさらなる遺伝子改変を加えることができず,糖鎖の多様性に対応することができない。   In order to avoid the addition of yeast-type sugar chains, human-type glycoprotein-producing yeast strains developed by this technology are affected by the disruption of yeast sugar chain synthesis-related genes, and have high temperature sensitivity (ts property). Shows a decrease in proliferative capacity (B. Choi et al., PNAS, 2003). This yeast not only has a significantly lower ability to grow and produce proteins than wild-type yeasts, but also cannot be further modified to synthesize a variety of sugar chains. I can't respond.

ところで,多糖類の一種であるβ−グルカンは,体内の感染細胞やガン細胞を攻撃するマクロファージや,NK細胞,T細胞,キラーT細胞を活性化させ,免疫力・抵抗力を増強させる作用を有することが知られている。この免疫増強作用により,身体の中に侵入した細菌や異物の排除能が高まり,仮に感染したとしても発病を抑制する抵抗力が得られる。また,このように免疫力が高まることにより,アレルギー反応を鎮め,ガンなどの腫瘍を抑える効果も期待でき,実際にさまざまな臨床試験によって抗腫瘍性などが明らかにされている。さらには,血糖値の低下,利尿作用,血圧調整,血中コレステロールと中性脂肪値の低下といった効果も得られる。   By the way, β-glucan, which is a kind of polysaccharide, activates macrophages, NK cells, T cells, and killer T cells that attack infected cells and cancer cells in the body, and enhances immunity and resistance. It is known to have. This immunity-enhancing effect increases the ability to eliminate bacteria and foreign substances that have entered the body, and even if it is infected, it has the ability to suppress disease. In addition, such an increase in immunity can be expected to suppress allergic reactions and suppress tumors such as cancer. Actually, various clinical studies have revealed antitumor properties. Furthermore, effects such as a decrease in blood glucose level, diuretic action, blood pressure adjustment, and a decrease in blood cholesterol and triglyceride levels can be obtained.

酵母(特にパン酵母)は,古くから発酵食品などに用いられており,食品として極めて安全である。パン酵母は,細胞壁中に通常約45%程度のβ−グルカンを含むため,免疫増強効果にターゲットを絞った健康補助食品として商品化されている。パン酵母のβ−グルカンは,主に細胞壁から抽出することによって利用されている。パン酵母由来のβ−グルカンは,既にザイモサンとして米国で医薬品として販売されている。   Yeast (especially baker's yeast) has long been used as a fermented food and is extremely safe as a food. Since baker's yeast normally contains about 45% β-glucan in the cell wall, it has been commercialized as a health supplement targeted at an immune enhancing effect. Baker's yeast β-glucan is mainly used by extracting it from the cell wall. Β-glucan derived from baker's yeast has already been sold as a pharmaceutical product in the United States as zymosan.

酵母の細胞壁からより多くのβ−グルカンを取得するためには,酵母を大量に培養することが必要となる。また培養後は,β−グルカンの高効率な抽出作業が必要となるが,この操作は特別な技術を要するため容易ではない。よって,このような行程をできるだけ省略化し,より一層簡便かつ安価に酵母由来β−グルカンを生産し得る方法の開発が望まれている。   In order to obtain more β-glucan from the cell wall of yeast, it is necessary to culture a large amount of yeast. In addition, after culture, high-efficiency extraction of β-glucan is required, but this operation is not easy because it requires special techniques. Therefore, development of a method capable of producing such yeast-derived β-glucan by omitting such a process as much as possible and further easily and inexpensively is desired.

国際公開WO01/014522号パンフレットInternational Publication WO01 / 014522 Pamphlet

本発明は,遺伝子破壊又は遺伝子変異により増殖能などが低下した微生物の増殖能を回復させる,微生物の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a microorganism that recovers the growth ability of a microorganism whose growth ability has decreased due to gene disruption or gene mutation.

本発明は,糖鎖合成遺伝子破壊又は糖鎖合成遺伝子変異により増殖能が低下した出芽酵母などの増殖能を回復させる,酵母の製造方法を提供することを目的とする。また,本発明は,そのようにして増殖能を回復させる遺伝子を含有するプラスミド,増殖能が回復した酵母,増殖能が回復した酵母を用いたβ−グルカンの製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a yeast that recovers the growth ability of a budding yeast or the like whose growth ability has been reduced by disruption of a sugar chain synthesis gene or mutation of a sugar chain synthesis gene. Another object of the present invention is to provide a method for producing β-glucan using such a plasmid containing a gene that restores growth ability, yeast that has been restored to growth ability, and yeast that has been restored to growth ability. To do.

本発明は,上記のような増殖能が回復した酵母を用いた哺乳類型糖鎖を有する糖タンパク質の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a glycoprotein having a mammalian sugar chain, using a yeast whose growth ability has been recovered as described above.

本発明は,基本的には,遺伝子破壊又は遺伝子変異により増殖能などが低下した微生物に対して,CAT8遺伝子などを導入することで糖新生系を亢進させ,遺伝子破壊又は遺伝子変異により低下した機能を回復させることができるという,実施例に基づくものである。   The present invention basically enhances the gluconeogenic system by introducing a CAT8 gene or the like into a microorganism whose growth ability has been reduced by gene disruption or gene mutation, and has a function reduced by gene disruption or gene mutation. It is based on the embodiment that can be recovered.

具体的に説明すると,本発明者らは,以下の参考例に示される出芽酵母遺伝子破壊株TIY20及び,そのTIY20に不均衡変異導入法により変異を導入したYAB100及びYAB101を得た。TIY20は,ヒト様高マンノース型糖鎖を作るように改変された出芽酵母遺伝子破壊株である。そして,TIY20は,遺伝子破壊により,温度感受性が見られ,薬剤感受性となり,さらに増殖能が低下していた。一方,YAB100及びYAB101は,遺伝子破壊により損なわれた機能を回復した。この機能の回復には何らかの遺伝子に変異が入ったために引き起こされたと考えられる。そこで,TIY20と,YAB100およびYAB101のマイクロアレイによる網羅的遺伝子発現解析を行うことで,TIY20よりもYAB100,又はYAB101において発現が上昇する遺伝子を網羅的に調べた。その結果,24遺伝子が,TIY20と比べ3倍以上の発現が誘導されていた。   Specifically, the present inventors obtained the budding yeast gene disruption strain TIY20 shown in the following reference examples, and YAB100 and YAB101 in which mutations were introduced into the TIY20 by an unbalanced mutation introduction method. TIY20 is a budding yeast gene-disrupted strain that has been modified to produce a human-like high mannose-type sugar chain. TIY20 was temperature-sensitive due to gene disruption, became drug-sensitive, and further had a reduced proliferation ability. On the other hand, YAB100 and YAB101 recovered the function impaired by gene disruption. This restoration of function is thought to be caused by a mutation in some gene. Therefore, exhaustive gene expression analysis using TIY20 and YAB100 and YAB101 microarrays was performed to comprehensively examine genes whose expression in YAB100 or YAB101 is higher than that of TIY20. As a result, the expression of 24 genes was induced more than 3 times that of TIY20.

V. Haurieらの文献(V. Haurie et al., 2001, JBC, 276, 76‐85)に示されるとおり,この24遺伝子のうち9遺伝子が糖新生に関する遺伝子であり,それら9遺伝子はCAT8転写因子の下流で発現誘導されるものである。そこで,CAT8遺伝子をTIY20内で強制発現させ,CAT8下流の遺伝子群の発現を誘導させた。その結果,TIY20の増殖能の低下および薬剤感受性を回復させることに成功した。よって,糖新生に関与する遺伝子を導入して,糖新生系を亢進させることにより,遺伝子破壊などにより損なわれた機能を回復させることができると考えられる。   V. As shown in Haurie et al. (V. Haurie et al., 2001, JBC, 276, 76-85), 9 of these 24 genes are genes related to gluconeogenesis, and these 9 genes are CAT8 transcription factors. Expression is induced downstream. Therefore, the CAT8 gene was forcibly expressed in TIY20 to induce the expression of genes downstream of CAT8. As a result, we succeeded in recovering the decrease in proliferative ability and drug sensitivity of TIY20. Therefore, by introducing a gene involved in gluconeogenesis and enhancing the gluconeogenesis system, it is considered that the function impaired by gene disruption can be recovered.

なお,実施例において,β−グルカンを多量に生産でき,哺乳類型糖鎖を有する糖タンパク質を産生できる出芽酵母の遺伝子破壊株の増殖能などを回復できることが実証されたので,本発明はそのような方法により製造された酵母や,その酵母を用いた糖タンパク質の製造方法や,その酵母を用いたβ−グルカンの製造方法なども提供できる。   In the examples, it was demonstrated that β-glucan can be produced in large quantities, and the ability of a budding yeast gene-disrupted strain capable of producing glycoproteins having mammalian sugar chains can be recovered. Yeast produced by a simple method, a method for producing glycoprotein using the yeast, a method for producing β-glucan using the yeast, and the like can also be provided.

具体的には,上記課題は,以下の発明により解決できる。
本発明の第1の側面は,遺伝子破壊又は遺伝子変異により増殖能が低下した微生物に,糖新生を促進する機能を有する遺伝子を導入する工程を含み,前記糖新生を促進する機能を有する遺伝子は,{CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2}からなる群から選ばれる1又は2以上の遺伝子である,遺伝子破壊又は遺伝子変異により低下した増殖能を回復した微生物の製造方法に関する。
Specifically, the above problem can be solved by the following invention.
The first aspect of the present invention includes a step of introducing a gene having a function of promoting gluconeogenesis into a microorganism whose growth ability has been reduced by gene disruption or gene mutation, and the gene having a function of promoting gluconeogenesis is , {CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2}, one or more genes selected from the group consisting of, recovered from the reduced proliferation ability due to gene disruption or gene mutation The present invention relates to a method for producing a microorganism.

このように遺伝子破壊又は遺伝子変異により増殖能が低下した微生物に対して,糖新生を促進する機能を有する遺伝子を導入することで,遺伝子破壊又は遺伝子変異により低下した機能を回復した微生物を製造することができるようになる。   In this way, by introducing a gene having a function of promoting gluconeogenesis into a microorganism whose growth ability has been reduced by gene disruption or gene mutation, a microorganism having a function reduced by gene disruption or gene mutation is recovered. Will be able to.

本発明の第1の側面の好ましい態様は,前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,遺伝子破壊又は遺伝子変異により増殖能が低下した酵母である,上記に記載の製造方法である。この利用態様における酵母として出芽酵母,分裂酵母,又はメタノール資化性酵母があげられる。酵母は遺伝子操作などが容易であるため,微生物として,酵母を用いることで,遺伝子破壊又は遺伝子変異により低下した増殖能を回復した酵母を容易に製造することができるようになる。   A preferred embodiment of the first aspect of the present invention is the production method as described above, wherein the microorganism whose growth ability is reduced by gene disruption or gene mutation is a yeast whose growth ability is reduced by gene disruption or gene mutation. . Examples of yeast in this utilization mode include budding yeast, fission yeast, or methanol-assimilating yeast. Since yeast is easy to genetically manipulate, it is possible to easily produce yeast that has recovered the growth ability reduced by gene disruption or gene mutation by using yeast as a microorganism.

本発明の第1の側面の好ましい態様は,前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,遺伝子破壊又は遺伝子変異により増殖能が低下した出芽酵母である,上記に記載の製造方法である。この利用態様における微生物として,出芽酵母の遺伝子破壊株があげられる。   In a preferred embodiment of the first aspect of the present invention, the microorganism whose growth ability is reduced by gene disruption or gene mutation is a budding yeast whose growth ability is reduced by gene disruption or gene mutation. is there. Examples of microorganisms in this utilization mode include budding yeast gene-disrupted strains.

具体的には,前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,{och1破壊,mnn1破壊,mnn4破壊,及びalg3破壊}からなる群から選ばれるひとつ又は2つ以上の破壊を有するか,又はoch1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株である,上記に記載の製造方法である。これにより,哺乳類型糖タンパク質を効率よく産生する出芽酵母を製造することができる。   Specifically, does the microorganism whose proliferation ability is reduced by the gene disruption or gene mutation have one or more disruptions selected from the group consisting of {och1 disruption, mnn1 disruption, mnn4 disruption, and arg3 disruption}? Or a budding yeast gene-disrupted strain having och1 disruption, mnn1 disruption, and mnn4 disruption. Thereby, the budding yeast which produces a mammalian glycoprotein efficiently can be manufactured.

本発明の第1の側面の好ましい態様は,前記糖新生を促進する機能を有する遺伝子は,CAT8であり,前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,och1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株である,上記に記載の製造方法である。後述する実施例により実証されたとおり,増殖能が低下したoch1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株に,CAT8遺伝子を導入することにより,増殖能を回復することができる。   In a preferred embodiment of the first aspect of the present invention, the gene having a function of promoting gluconeogenesis is CAT8, and the microorganism whose growth ability is reduced by the gene disruption or gene mutation is och1 disruption, mnn1 disruption, and It is the manufacturing method as described above, which is a gene disrupted strain of budding yeast having mnn4 disruption. As demonstrated by the examples described later, the proliferative ability can be restored by introducing the CAT8 gene into a budding yeast gene-disrupted strain having och1 disruption, mnn1 disruption, and mnn4 disruption with reduced proliferative ability. .

本発明の第2の側面は,上記の酵母の製造方法により,増殖能を回復した酵母を得る工程を含む,糖タンパク質の製造方法に関する。本発明の好ましい態様は,上記のいずれかに記載の製造方法により,増殖能を回復した出芽酵母を得る工程を含む,糖タンパク質の製造方法である。   The second aspect of the present invention relates to a method for producing a glycoprotein, comprising a step of obtaining a yeast whose growth ability has been recovered by the above-described yeast production method. A preferred embodiment of the present invention is a method for producing a glycoprotein, comprising a step of obtaining a budding yeast whose growth ability has been recovered by any of the production methods described above.

酵母は,有用糖タンパク質を生産するための優れた宿主であるので,遺伝子破壊又は遺伝子変異により低下した増殖能を回復した酵母を用いることで,大量培養系へのスケールアップが容易になり,有用糖タンパク質を効率よく生産することができるようになる。   Since yeast is an excellent host for producing useful glycoproteins, it is easy to scale up to a large-scale culture system by using yeast that has recovered the growth ability reduced by gene disruption or gene mutation. The glycoprotein can be produced efficiently.

{och1破壊,mnn1破壊,mnn4破壊,及びalg3破壊}からなる群から選ばれるひとつ又は2つ以上の破壊を有する出芽酵母の遺伝子破壊株,特にoch1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株は,哺乳類型の糖鎖を含有する糖タンパク質の生産に優れるので,遺伝子破壊により低下した増殖能を回復させることで,高品質な糖タンパク質を効率よく生産することができるようになる。   {A budding yeast gene-disrupted strain having one or more disruptions selected from the group consisting of {och1 disruption, mnn1 disruption, mnn4 disruption, and alg3 disruption}, particularly a budding yeast having och1 disruption, mnn1 disruption, and mnn4 disruption Since the gene-disrupted strains are excellent in producing glycoproteins containing mammalian sugar chains, it is possible to efficiently produce high-quality glycoproteins by recovering the growth ability reduced by gene disruption. Become.

さらに後述する実施例により実証されたとおり,糖新生を促進する機能を有する遺伝子として,CAT8を導入した出芽酵母の遺伝子破壊株は,増殖能を回復することができる。実施例に記載の出芽酵母の遺伝子破壊株は,哺乳類型糖タンパク質を作るように改変された株である。よって,その増殖能を回復させることで,容易に効率よく糖タンパク質を生産することができるようになる。   Furthermore, as demonstrated by the examples described later, a budding yeast gene-disrupted strain into which CAT8 has been introduced as a gene having a function of promoting gluconeogenesis can recover the growth ability. The budding yeast gene-disrupted strain described in the Examples is a strain modified to produce a mammalian glycoprotein. Therefore, glycoproteins can be easily and efficiently produced by restoring their growth ability.

本発明の第3の側面は,上記の酵母の製造方法により,増殖能を回復した酵母を得る工程を含む,β−グルカンの製造方法に関する。本発明の好ましい態様は,上記のいずれかに記載の製造方法により,増殖能を回復した出芽酵母を得る工程を含む,β−グルカンの製造方法である。β−グルカンは,主に酵母の細胞壁から抽出される。糖鎖合成遺伝子を破壊あるいは変異により機能しないようにすることにより,酵母細胞壁中のβ−グルカンの含有量が増加する。さらに,糖鎖遺伝子破壊株の増殖能を回復させることで,その効率が増す。よって,増殖能を回復した酵母を用いることで,効率よくβ−グルカンを製造することができるようになる。   The 3rd side surface of this invention is related with the manufacturing method of (beta) -glucan including the process of obtaining the yeast which recovered the growth ability with said yeast manufacturing method. A preferred embodiment of the present invention is a method for producing β-glucan, which comprises a step of obtaining a budding yeast whose growth ability has been recovered by any of the production methods described above. β-glucan is mainly extracted from the cell wall of yeast. By making the glycosynthetic gene nonfunctional by disruption or mutation, the content of β-glucan in the yeast cell wall increases. Furthermore, by restoring the growth ability of the sugar chain gene-disrupted strain, its efficiency increases. Therefore, β-glucan can be efficiently produced by using yeast whose growth ability has been recovered.

本発明の第4の側面は,糖新生を促進する機能を有する遺伝子が導入された,och1破壊,mnn1破壊,及びmnn4破壊を有する酵母の遺伝子破壊株であって,前記糖新生を促進する機能を有する遺伝子は,{CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2}からなる群から選ばれる1又は2以上の遺伝子である酵母の遺伝子破壊株に関する。具体的には,前記糖新生を促進する機能を有する遺伝子として,CAT8遺伝子が導入された,上記に記載の酵母の遺伝子破壊株である。この利用態様の酵母として,出芽酵母があげられる。   The fourth aspect of the present invention is a yeast gene disruption strain having och1 disruption, mnn1 disruption, and mnn4 disruption, into which a gene having a function of promoting gluconeogenesis has been introduced, the function of promoting the gluconeogenesis The gene having the above-mentioned gene relates to a yeast gene disruption strain that is one or more genes selected from the group consisting of {CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2}. Specifically, the gene-disrupted strain of yeast described above, into which a CAT8 gene has been introduced as a gene having a function of promoting gluconeogenesis. A budding yeast is mentioned as a yeast of this utilization aspect.

本発明の第5の側面は,糖鎖合成遺伝子破壊酵母株又は糖鎖合成遺伝子変異酵母株の,高温感受性を回避するため,又は薬剤感受性を低下させるために用いられる,CAT8遺伝子を含有するプラスミドに関する。後述する実施例に実証されたとおり,このプラスミドを用いることで,遺伝子破壊酵母株または遺伝子変異酵母株の高温感受性を回避することができ,また薬剤感受性を低下させることができるようになる。   A fifth aspect of the present invention relates to a plasmid containing a CAT8 gene, which is used to avoid high temperature sensitivity or to reduce drug sensitivity of a sugar chain synthesis gene disrupted yeast strain or a sugar chain synthesis gene mutant yeast strain. About. As demonstrated in the examples described later, by using this plasmid, the high temperature sensitivity of the gene-disrupted yeast strain or the gene mutant yeast strain can be avoided, and the drug sensitivity can be reduced.

具体的な酵母として,独立行政法人産業技術総合研究所特許生物寄託センターに受託番号「FERM AP−21445」として寄託されている酵母があげられる。この酵母は,出芽酵母遺伝子破壊株にCAT8遺伝子を含有するプラスミドを導入し,増殖能が回復したものである。この増殖能が回復した酵母を用いることで,効率的に糖タンパク質又はβ−グルカンを製造することができるようになる。   As a specific yeast, yeast deposited under the accession number “FERM AP-21445” at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology. This yeast is obtained by introducing a plasmid containing the CAT8 gene into a budding yeast gene-disrupted strain and recovering its growth ability. By using this yeast whose growth ability has been recovered, glycoproteins or β-glucan can be efficiently produced.

本発明によれば,遺伝子破壊又は遺伝子変異により増殖能などが低下した微生物の増殖能を回復させる,微生物の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of microorganisms which recovers the growth ability of the microorganisms which the growth ability etc. fell by gene disruption or gene mutation can be provided.

本発明によれば,糖鎖合成遺伝子破壊又は糖鎖合成遺伝子変異により増殖能が低下した出芽酵母などの酵母の増殖能を回復させる,酵母の製造方法を提供することができる。また,本発明によれば,そのようにして増殖能を回復させた遺伝子を含有するプラスミド,増殖能が回復した酵母,増殖能が回復した酵母を用いたβ−グルカンの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of yeast which recovers the growth ability of yeasts, such as budding yeast with which the growth ability fell by sugar chain synthesis gene disruption or sugar chain synthesis gene mutation, can be provided. In addition, according to the present invention, there are provided a plasmid containing a gene whose growth ability has been restored as described above, a yeast whose growth ability has been restored, and a method for producing β-glucan using the yeast whose growth ability has been restored. Can do.

本発明によれば,上記のような増殖性を回復した酵母の製造方法を用いた哺乳類型糖鎖を有する糖タンパク質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the glycoprotein which has a mammalian type sugar chain using the yeast manufacturing method which recovered the above proliferative properties can be provided.

図1は,図面に替わるアガロースゲル電気泳動写真である。FIG. 1 is an agarose gel electrophoresis photograph replacing the drawing. 図2は,図面に替わるアガロースゲル電気泳動写真である。FIG. 2 is an agarose gel electrophoresis photograph replacing the drawing. 図3は,図面に替わる合成培地(ウラシル欠損)および同培地にハイグロマイシンを添加したプレートの写真である。FIG. 3 is a photograph of a synthetic medium (uracil deficient) instead of the drawing and a plate with hygromycin added to the same medium. 図4は,図面に替わる合成培地および合成培地にハイグロマイシンを添加したプレートの写真である。FIG. 4 is a photograph of a synthetic medium replaced with a drawing and a plate with hygromycin added to the synthetic medium. 図5は,N−結合型糖鎖長を調べるための図面に替わるSDSゲル電気泳動写真である。FIG. 5 is an SDS gel electrophoresis photograph replacing the drawing for examining the N-linked sugar chain length. 図6は,KID3−22株(−)とKID08−08−1株(+)細胞内でのO.minutaCAT8遺伝子の強制発現の結果を示す図面に替わるアガロース電気泳動の写真である。FIG. 6 shows O.D. in KID3-22 strain (−) and KID08-08-1 strain (+) cells. It is the photograph of the agarose electrophoresis replaced with drawing which shows the result of forced expression of minutaCAT8 gene. CAT8強制発現によるKID3−22が示す高温感受性の回復を示す図面に替わる写真である。It is the photograph replaced with drawing which shows recovery | restoration of the high temperature sensitivity which KID3-22 by CAT8 forced expression shows.

以下,本発明の実施の形態を説明する。本発明の第1の側面は,遺伝子破壊又は遺伝子変異により増殖能が低下した微生物に,糖新生を促進する機能を有する遺伝子を導入する工程を含み,前記糖新生を促進する機能を有する遺伝子は,CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2からなる群から選ばれる1又は2以上の遺伝子である,遺伝子変異により低下した増殖能を回復した微生物の製造方法に関する。   Embodiments of the present invention will be described below. The first aspect of the present invention includes a step of introducing a gene having a function of promoting gluconeogenesis into a microorganism whose growth ability has been reduced by gene disruption or gene mutation, and the gene having a function of promoting gluconeogenesis is , CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2 are one or more genes selected from the group consisting of one or more genes, and a method for producing a microorganism that has recovered its growth ability reduced by gene mutation About.

「遺伝子破壊又は遺伝子変異により増殖能が低下した微生物」としては,酵母があげられ,出芽酵母,分裂酵母,又はメタノール資化性酵母があげられ,酵母の遺伝子変異株又は遺伝子破壊株があげられる。具体的な,「遺伝子破壊又は遺伝子変異により増殖能が低下した微生物」として,出芽酵母の遺伝子破壊株が好ましい。出芽酵母の遺伝子破壊株として,{och1破壊,mnn1破壊,mnn4破壊,及びalg3破壊}からなる群から選ばれるひとつ又は2つ以上の破壊を有する株があげられる。また,出芽酵母の遺伝子破壊株として,och1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株があげられる。具体的には,後述するTIY19株,又はTIY20株などの遺伝子破壊株があげられる。「遺伝子破壊又は遺伝子変異により増殖能が低下した微生物」として,上記の遺伝子破壊株であって,哺乳類型糖鎖を有する糖タンパク質又はβグルカンを高収率に産生する酵母が好ましい。   Examples of “microorganisms whose growth ability is reduced by gene disruption or gene mutation” include yeast, budding yeast, fission yeast, or methanol-assimilating yeast, and yeast gene mutants or gene disruption strains. . Specifically, a gene disrupted strain of Saccharomyces cerevisiae is preferable as the “microorganism whose growth ability is reduced by gene disruption or gene mutation”. Examples of the budding yeast gene-disrupted strain include strains having one or more disruptions selected from the group consisting of {och1 disruption, mnn1 disruption, mnn4 disruption, and alg3 disruption}. Examples of the budding yeast gene-disrupted strain include a budding yeast gene-disrupted strain having och1 disruption, mnn1 disruption, and mnn4 disruption. Specifically, gene disruption strains such as TIY19 strain or TIY20 strain described later can be mentioned. As the “microorganism whose growth ability is reduced by gene disruption or gene mutation”, yeast that produces the glycoprotein or β-glucan having a mammalian sugar chain in a high yield is preferable.

先に説明したとおり,以下の参考例において,TIY20とYAB100およびYAB101のマイクロアレイによる網羅的遺伝子発現解析を行うことで,TIY20よりもYAB100,又はYAB101にて発現が上昇する遺伝子を網羅的にリストアップした。その結果,24遺伝子が,TIY20と比べ3倍以上の発現誘導を示した。V. Haurieらの文献(V. Haurie et al., 2001, JBC, 276, 76‐85)に示されるとおり,この24遺伝子のうち9遺伝子が糖新生に関する遺伝子であり,それら9遺伝子はCAT8転写因子の下流で発現誘導されるものである。そこで,CAT8遺伝子をTIY20内で強制発現させ,CAT8下流の遺伝子群の発現を誘導させた。その結果,TIY20の増殖能の低下および薬剤感受性を回復させることに成功した。よって,糖新生に関与する遺伝子を導入して,糖新生系を亢進させることにより,遺伝子破壊などにより損なわれた機能を回復させることができると考えられる。   As described above, in the following reference examples, comprehensive gene expression analysis by TIY20, YAB100, and YAB101 microarrays is performed to comprehensively list genes whose expression is increased in YAB100 or YAB101 compared to TIY20. did. As a result, 24 genes showed expression induction more than 3 times compared with TIY20. V. As shown in Haurie et al. (V. Haurie et al., 2001, JBC, 276, 76-85), 9 of these 24 genes are genes related to gluconeogenesis, and these 9 genes are CAT8 transcription factors. Expression is induced downstream. Therefore, the CAT8 gene was forcibly expressed in TIY20 to induce the expression of genes downstream of CAT8. As a result, we succeeded in recovering the decrease in proliferative ability and drug sensitivity of TIY20. Therefore, by introducing a gene involved in gluconeogenesis and enhancing the gluconeogenesis system, it is considered that the function impaired by gene disruption can be recovered.

具体的な「糖新生を促進する機能を有する遺伝子」として,CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2のうちいずれか1つ又は2つ以上があげられる。「糖新生を促進する機能を有する遺伝子を導入する方法」は,たとえば,それらの遺伝子を公知の方法により遺伝子導入する方法があげられる。「糖新生を促進する機能を有する遺伝子を導入する方法」として,具体的には,CAT8を含むプラスミドを用いて形質転換する方法があげられる。   Specific “genes having a function of promoting gluconeogenesis” include any one or more of CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2. Examples of the “method for introducing genes having a function of promoting gluconeogenesis” include a method for introducing these genes by a known method. Specific examples of the “method of introducing a gene having a function of promoting gluconeogenesis” include a method of transformation using a plasmid containing CAT8.

このように糖新生を促進する機能を有する遺伝子を導入することにより,糖新生系を亢進させることができる。すなわち,本発明においては,遺伝子破壊又は遺伝子変異により増殖能が低下した微生物に対し,糖新生系を亢進させることにより,遺伝子破壊又は遺伝子変異により低下した増殖能を回復させることができる。   Thus, by introducing a gene having a function of promoting gluconeogenesis, the gluconeogenesis system can be enhanced. That is, in the present invention, the growth ability reduced by gene disruption or gene mutation can be recovered by enhancing the gluconeogenic system for microorganisms whose growth ability has been lowered by gene disruption or gene mutation.

また,「糖新生を促進する機能を有する遺伝子」を含有するプラスミド(好ましくは,CAT8遺伝子を含有するプラスミド)は,糖鎖合成遺伝子破壊酵母株又は糖鎖合成遺伝子変異酵母株の,高温感受性を回避するため,又は薬剤感受性を回復させるため有効に用いることができる。このようなプラスミドは,公知の方法に従って容易に製造することができる。そして,このプラスミドを用いて,「糖新生を促進する機能を有する遺伝子」を増幅し,形質転換することによって,温度感受性が緩和し,又は薬剤感受性が回復し,増殖能が回復した酵母株を得ることができる。   In addition, a plasmid containing “a gene having a function of promoting gluconeogenesis” (preferably a plasmid containing a CAT8 gene) has a high temperature sensitivity of a sugar chain synthetic gene disrupted yeast strain or a sugar chain synthetic gene mutant yeast strain. It can be used effectively to avoid or restore drug sensitivity. Such a plasmid can be easily produced according to a known method. Then, by using this plasmid to amplify and transform a “gene having a function of promoting gluconeogenesis”, a yeast strain whose temperature sensitivity has been reduced or drug sensitivity has been recovered and growth ability has been recovered has been recovered. Obtainable.

本発明に用いる酵母は,一般的に酵母とよばれるものであれば特に限定されず,出芽酵母,分裂酵母などを適宜用いることができる。代表的な酵母として,サッカロミセス科(Saccharomycetaceae),又はシゾサッカロミセス科(Schizosaccharomycetaceae),に属するものがあげられる。より具体的な酵母として,真核生物のモデル生物として汎用されており,出芽酵母の一種であるサッカロミセス・セレビシエ(Saccharomyces cerevisiae),及び分裂酵母の一種であるシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)があげられる。本発明に用い得る他の酵母としては,例えば,黒酵母(Aureobasidium pullulans)があげられる。   The yeast used in the present invention is not particularly limited as long as it is generally called yeast, and budding yeast, fission yeast, and the like can be appropriately used. Typical yeasts include those belonging to the family Saccharomycesaceae or Schizosaccharomycesaceae. More specific yeasts are widely used as eukaryotic model organisms, and include Saccharomyces cerevisiae, a kind of budding yeast, and Schizosaccharomyces pombe, a kind of fission yeast. can give. Examples of other yeast that can be used in the present invention include black yeast (Aureobasidium pullulans).

なお,本発明における酵母として,メタノール資化性酵母を用いても良い。具体的なメタノール資化性酵母として,ピキア・パストリス(Pichia pastoris),オガタエ・ミニュータOgataea minuta),カンジダ・ボイジニ(Candida boidinni),ピキア・メタノリカ(Pichia methanolica),またはハンセヌラ・ポリモルファ(Hansenula polymorpha)があげられる。これらの中では,Pichia pastoris,又はOgataea minutaが,好ましいメタノール資化性酵母である。また,Pichia pastorisについては,例えば,Wouter Vercken et al., Applied and Environmental Microbiology, Vol. 70, No.5,2004,pp2639−2646に記載されている。   In addition, you may use methanol assimilation yeast as yeast in this invention. Specific examples of methanol-assimilating yeast include Pichia pastoris, Ogataae minata, Candida boyinini, Pichia methanolica, or morseola. can give. Among these, Pichia pastoris or Ogataea minuta is a preferred methanol-assimilating yeast. For Pichia pastoris, see, for example, Water Verken et al. , Applied and Environmental Microbiology, Vol. 70, no. 5, 2004, pp 2639-2646.

メタノール資化性酵母O.minutaでは,och1破壊およびalg3破壊を有する二重破壊株(Δoch1Δalg3)が報告されている。O.minutaのΔoch1Δalg3二重破壊株は生育が悪く,浸透圧調整下のみで生育し,凝集性が高いなど出芽酵母糖鎖遺伝子破壊株と同様な表現型を示す。O.minutaには出芽酵母同様にCAT8遺伝子が存在する。後述する実施例で示されたとおり,O.minuta糖鎖遺伝子破壊株などメタノール資化性酵母においてもCAT8遺伝子などの糖新生を促進する機能を有する遺伝子を強制発現させることによって,遺伝子破壊又は遺伝子変異により惹起される表現型を回復させることができる。   Methanol-utilizing yeast In minuta, a double disruption strain (Δoch1Δalg3) having och1 disruption and alg3 disruption has been reported. O. The minuta Δoch1Δalg3 double disruption strain has poor growth, grows only under osmotic pressure control, and exhibits a phenotype similar to that of the budding yeast sugar chain gene disruption strain. O. Minuta has a CAT8 gene as in budding yeast. As shown in Examples described later, O.D. In a methanol-utilizing yeast such as a minuta sugar chain gene disruption strain, a phenotype caused by gene disruption or gene mutation can be recovered by forcibly expressing a gene having a function of promoting gluconeogenesis such as CAT8 gene. it can.

本発明で用いられる酵母として,実施例で実証された出芽酵母が好ましいが,本発明は特に出芽酵母に限定されず,分裂酵母やメタノール資化性酵母など,酵母全般に広く適用できる。特に,分裂酵母については,参考例に示したとおり,出芽酵母と同様に不均衡変異導入法により,糖鎖欠損株について増殖能及び高温感受性(ts性)を回復させることに成功している。分裂酵母については,出芽酵母と同様,所定の遺伝子を破壊することで,糖鎖へのマンノースの付加を効果的に防止し,哺乳類型の糖鎖を有する糖タンパク質を産生できることが知られている(Takehiko Yoko−o et al., FEBS Letters 489(2001)75−80;Clinton E. Ballow et al., Proc. Natl. Acad. Sci. USA Vol.91.pp9327−9331,1994;Naotaka Tanaka et al.,Biochemical and Biophysical Research Communications 330(2005)813−820;Sandra Fanchiotti et al.,Journal of Cell Biology, Vol. 143, No.3, 1988,pp625−636,特開2001−161376号公報)。   Although the budding yeast demonstrated in the Example is preferable as the yeast used in the present invention, the present invention is not particularly limited to the budding yeast, and can be widely applied to all yeasts such as fission yeast and methanol-assimilating yeast. In particular, for fission yeast, as shown in the reference example, the growth ability and high-temperature sensitivity (ts property) of the sugar chain-deficient strain have been successfully recovered by imbalanced mutagenesis as in the case of budding yeast. For fission yeast, it is known that, like budding yeast, disruption of a specific gene can effectively prevent the addition of mannose to sugar chains and produce glycoproteins having mammalian sugar chains. (Takehiko Yoko-o et al., FEBS Letters 489 (2001) 75-80; Clinton E. Ballow et al., Proc. Natl. Acad. Sci. USA Vol. 91. , Biochemical and Biophysical Research Communications 330 (2005) 813-820; Sandra Fanchitti et al., Journal of Cell Biology, Vol. 143, No. 3, 1988, pp 625-636, JP 2001-161376).

本発明に用いる酵母の遺伝子破壊株は,野生型酵母における何らかの遺伝子を破壊した株であれば特に限定されない。何らかの遺伝子を破壊した株は,一般的に野生型酵母に比べて,高温耐性や増殖性などが低下する。以下,具体的な遺伝子破壊株を説明する。   The yeast gene-disrupted strain used in the present invention is not particularly limited as long as it is a strain in which some gene in wild-type yeast is disrupted. A strain in which any gene is disrupted generally has a lower resistance to high temperature and proliferation than wild-type yeast. A specific gene disruption strain will be described below.

特許第3091851号公報には,OCH1遺伝子破壊株(Δoch1)であって,さらにmnn1破壊を有する二重破壊株(Δoch1 Δmnn1)が開示されている(例えば,同公報の実施例1を参照)。すなわち,本発明に用いる酵母の遺伝子破壊株が二重破壊株(Δoch1 Δmnn1)である場合,そのような二重破壊株は,同公報に記載の方法に従って得ればよい。そして,同公報によれば,そのような二重破壊株を用いれば,ヒトなど哺乳類細胞の生産する高マンノースと同一のコア型糖鎖,あるいはこの糖鎖構造をもつ高マンノース型糖タンパク質を多量かつ純度よく生産することができるとされている。本発明の酵母の製造方法において,この二重破壊株を用いれば,高温感受性を回避し,増殖性などが回復されるので,効果的に哺乳類細胞の生産する高マンノースと同一のコア型糖鎖などを産生できると考えられる。   Japanese Patent No. 3091851 discloses an OCH1 gene disruption strain (Δoch1), and further a double disruption strain (Δoch1 Δmnn1) having a mnn1 disruption (for example, see Example 1 of the publication). That is, when the yeast gene disruption strain used in the present invention is a double disruption strain (Δoch1 Δmnn1), such a double disruption strain may be obtained according to the method described in the publication. According to the publication, if such a double-disrupted strain is used, a high amount of a high-mannose glycoprotein having the same core-type sugar chain as that produced by mammalian cells such as humans or this sugar chain structure is produced in a large amount. And it is said that it can be produced with high purity. In the method for producing yeast of the present invention, if this double disruption strain is used, high temperature sensitivity is avoided and the growth property is restored, so that the same core type sugar chain as high mannose produced by mammalian cells is effectively obtained. And so on.

特許第3091851号公報には,och1破壊,mnn1破壊,及びmnn6破壊を持つ三重破壊株(Δoch1 Δmnn1 Δmnn6)が開示されている(例えば,同公報の実施例1を参照)。すなわち,本発明に用いる酵母の遺伝子破壊株が三重破壊株(Δoch1 Δmnn1 Δmnn6)などである場合,それらの株は,同公報に記載の方法に従って得ればよい。そして,同公報によれば,そのような三重破壊株などを用いることで,ヒトなど哺乳類細胞の生産する高マンノースと同一のコア型糖鎖,あるいはこの糖鎖構造をもつ高マンノース型糖タンパク質を多量かつ純度よく生産することができるとされている。本発明の酵母の製造方法において,これらの株を用いれば,高温感受性を回避し,増殖性などが回復されるので,効果的に哺乳類細胞の生産する高マンノースと同一のコア型糖鎖などを産生できると考えられる。さらに,同公報に開示された技術に従って,OCH1遺伝子及びMNN1遺伝子を破壊した二重破壊株を得ることができる。   Japanese Patent No. 3091851 discloses a triple disruption strain (Δoch1 Δmnn1 Δmnn6) having och1 disruption, mnn1 disruption, and mnn6 disruption (for example, see Example 1 of the publication). That is, when the yeast gene disruption strain used in the present invention is a triple disruption strain (Δoch1 Δmnn1 Δmnn6) or the like, those strains may be obtained according to the method described in the publication. According to the publication, by using such a triple disruption strain, a high-mannose glycoprotein having the same core type sugar chain as this human mannose produced by mammalian cells such as humans or this sugar chain structure can be obtained. It is said that it can be produced in large quantities and with high purity. In the yeast production method of the present invention, if these strains are used, high temperature sensitivity is avoided and proliferative properties are restored, so that the same core type sugar chain as high mannose produced by mammalian cells can be effectively obtained. It can be produced. Furthermore, according to the technique disclosed in the publication, a double disrupted strain in which the OCH1 gene and the MNN1 gene are disrupted can be obtained.

また,特開平9−266792号公報には,Δoch1 Δmnn1破壊の他に,MNN4遺伝子及びKRE2遺伝子の機能を破壊した四重破壊株が開示されている。同公報に開示されるように,たとえば,接合型の異なる変異株や遺伝子破壊株を接合させて,生成する2倍体細胞を窒素源を欠乏させた胞子形成培地[例えば,F.Sherman,Methods in Enzymology,vol.194,p.17(1991)参照]に移すことにより,減数分裂させ,これによって生成する4つの胞子を顕微鏡下で個別に分離し,その表現型を調べることにより,様々な変異株又は破壊株を作成することができる。   JP-A-9-266792 discloses a quadruple disruption strain in which the functions of the MNN4 gene and the KRE2 gene are disrupted in addition to the Δoch1 Δmnn1 disruption. As disclosed in the publication, for example, a sporulation medium in which mutant strains and gene disruption strains having different mating types are joined together to produce diploid cells lacking a nitrogen source [for example, F. Sherman, Methods in Enzymology, vol. 194, p. 17 (1991)] to create various mutant or disrupted strains by meiosis, separating the four spores produced thereby individually under a microscope and examining their phenotypes. Can do.

国際公開WO01/014522号パンフレット(特許文献1)には,och1破壊(Δoch1),mnn1破壊(Δmnn1)及びmnn4破壊(Δmnn4)を有する三重破壊株が開示されている。すなわち,酵母に特異的な外糖鎖の生合成に関与する遺伝子のうち,初発の延長付加反応を行うα−1,6マンノシルトランスフェラーゼをコードする遺伝子(OCH1),糖鎖の非還元末端にマンノースを付加するα−1,3マンノシルトランスフェラーゼをコードする遺伝子(MNN1),及びマンノース−1−リン酸の付加を制御する遺伝子(MNN4)の機能を破壊した遺伝子破壊酵母株が開示されている。本発明の実施例で用いたTIY20は,同文献に開示されるTIY19とmatが異なるものであって,同じクローンから四分子分析によって得られるものである。四分子分析については,例えば,Dan Burkeら(大矢禎一ら訳,酵母遺伝子実験マニュアル,丸善株式会社平成14年12月10日発行)などに記載される方法に従って行うことができる。   Internationally published WO 01/014522 (Patent Document 1) discloses a triple disruption strain having och1 disruption (Δoch1), mnn1 disruption (Δmnn1) and mnn4 disruption (Δmnn4). That is, among genes involved in the biosynthesis of an outer sugar chain specific to yeast, a gene (OCH1) encoding α-1,6 mannosyltransferase that performs the first extended addition reaction, mannose at the non-reducing end of the sugar chain Disclosed is a gene-disrupted yeast strain in which the function of the gene (MNN1) encoding α-1,3 mannosyltransferase that adds mannose and the gene (MNN4) that controls addition of mannose-1-phosphate is disrupted. TIY20 used in the examples of the present invention has a mat different from that of TIY19 disclosed in the literature, and is obtained from the same clone by four-molecule analysis. Tetramolecular analysis can be performed, for example, according to a method described in Dan Burke et al. (Translated by Junichi Ohya et al., Yeast Genetic Experiment Manual, published on Mar. 10, 2002).

国際公開WO01/014522号パンフレット(特許文献1)には,och1破壊,mnn1破壊,mnn4破壊及びalg3破壊を含む破壊を導入した出芽酵母破壊株が開示される他,OCH1遺伝子,MNN1遺伝子,MNN4遺伝子及びALG3遺伝子を破壊した出芽酵母の遺伝子破壊株が開示されている。また,同公報においては,それらの遺伝子破壊による変異形質の他に,ura3変異,his3変異,leu3変異,leu2変異,ade2変異,trp1変異,及びcan1変異からなる群から選ばれる栄養要求性変異形質を有する酵母変異株が開示されている。同公報によれば,これらの変異株は栄養要求性選択マーカーを用いた外来遺伝子の導入が容易に可能であり,これらの変異株を用いることで,哺乳類型の糖鎖あるいは哺乳類型の糖鎖を有する糖タンパク質を多量かつ純度よく製造できることが開示されている。よって,本発明の酵母の製造方法において,同公報に開示される変異株を用いれば,増殖性などが回復されるので,効果的に哺乳類型の糖タンパク質などを製造できると考えられる。さらに,このようにして増殖性などが回復された変異株は,β−グルカンを高効率に産生すると考えられる。   International Publication WO01 / 014522 (Patent Document 1) discloses a budding yeast disruption strain into which disruption including och1 disruption, mnn1 disruption, mnn4 disruption and alg3 disruption is introduced, as well as OCH1 gene, MNN1 gene, MNN4 gene And a gene-disrupted strain of Saccharomyces cerevisiae in which the ALG3 gene is disrupted. In addition, in this publication, in addition to the mutant traits resulting from gene disruption, an auxotrophic mutant trait selected from the group consisting of ura3 mutation, his3 mutation, leu3 mutation, leu2 mutation, ade2 mutation, trp1 mutation, and can1 mutation. A yeast mutant strain having According to the publication, these mutant strains can easily introduce foreign genes using an auxotrophic selection marker. By using these mutant strains, mammalian sugar chains or mammalian sugar chains can be obtained. It is disclosed that a glycoprotein having a large amount can be produced with high purity. Therefore, in the method for producing yeast of the present invention, if the mutant strain disclosed in the publication is used, the proliferative ability and the like are recovered, so that it is considered that mammalian glycoproteins can be produced effectively. Furthermore, it is considered that the mutant strains whose growth properties have been restored in this way produce β-glucan with high efficiency.

よって,例えば,酵母の遺伝子破壊株又は遺伝子変異株などの遺伝子機能欠損株として,{och1破壊,mnn1破壊,mnn4破壊,及びalg3破壊}からなる群から選ばれるひとつ又は2つ以上の破壊を有する株であるか,又は{och1変異,mnn1変異,mnn4変異,及びalg3変異}からなる群から選ばれるひとつ又は2つ以上の変異を有する株であるものがあげられる。特定の遺伝子機能の欠損が遺伝子の破壊による遺伝子破壊株のみならず,遺伝子の変異による遺伝子変異株においても,上記と同様の問題がある。よって,本発明の方法により,実施例で実証された遺伝子破壊株のみならず,遺伝子変異株にも効果的に用いることができる。より具体的な株として,och1破壊,mnn1破壊,及びmnn4破壊を有する酵母株があげられる。「och1破壊,mnn1破壊,及びmnn4破壊を有する」とは,och1破壊,mnn1破壊,及びmnn4破壊を有するほかに,他の遺伝子破壊を有していてもよく,さらに他の変異が導入されていてもよい。och1破壊,mnn1破壊,及びmnn4破壊を有する酵母の遺伝子破壊株として,och1破壊,mnn1破壊,及びmnn4破壊のみの遺伝子破壊を有する三重破壊株であってもよい。本発明によれば,高温感受性を回避又は増殖性を回復した酵母を得ることができ,それによりβ−グルカンや糖タンパク質を高効率に産生させることができる。遺伝子破壊株又は遺伝子変異株などの遺伝子機能欠損株の中では,och1破壊のみ又はoch1破壊とその他の遺伝子破壊を有する酵母の遺伝子破壊株を好ましく用いることができる。なお,特開2001−161376号公報には,分裂酵母の糖転移酵素遺伝子och1+の機能を失わせた分裂酵母のoch1破壊株(Δoch1)が開示されている。本発明は,酵母の遺伝子破壊株として,分裂酵母のoch1破壊株(Δoch1)を用いてもよい。よって,例えば酵母として分裂酵母を用いた場合であっても,och1破壊のみ又はoch1破壊とその他の遺伝子破壊を有する遺伝子破壊株を好ましく用いることができる。   Therefore, for example, as a gene function-deficient strain such as a yeast gene disruption strain or a gene mutation strain, it has one or more disruptions selected from the group consisting of {och1 disruption, mnn1 disruption, mnn4 disruption, and alg3 disruption} Or a strain having one or more mutations selected from the group consisting of {och1 mutation, mnn1 mutation, mnn4 mutation, and arg3 mutation}. Not only a gene-disrupted strain caused by gene disruption but also a gene-mutated strain caused by gene mutation has a problem similar to the above. Therefore, the method of the present invention can be effectively used not only for the gene-disrupted strains demonstrated in the Examples but also for gene mutant strains. More specific strains include yeast strains that have och1 disruption, mnn1 disruption, and mnn4 disruption. “Having och1 disruption, mnn1 disruption, and mnn4 disruption” means having other gene disruption in addition to och1 disruption, mnn1 disruption, and mnn4 disruption, and introducing other mutations. May be. The yeast gene disruption strain having och1 disruption, mnn1 disruption, and mnn4 disruption may be a triple disruption strain having only och1 disruption, mnn1 disruption, and mnn4 disruption gene disruption. According to the present invention, it is possible to obtain a yeast that avoids high-temperature sensitivity or recovers its growth ability, and thereby can produce β-glucan and glycoprotein with high efficiency. Among gene function-deficient strains such as gene disruption strains and gene mutant strains, yeast gene disruption strains having only och1 disruption or och1 disruption and other gene disruptions can be preferably used. JP 2001-161376 discloses an och1 disruption strain (Δoch1) of fission yeast that has lost the function of the glycosyltransferase gene och1 + of fission yeast. In the present invention, an och1 disruption strain (Δoch1) of fission yeast may be used as a gene disruption strain of yeast. Therefore, for example, even when fission yeast is used as the yeast, a gene-disrupted strain having only och1 disruption or och1 disruption and other gene disruptions can be preferably used.

本発明は,基本的には,上記した特定の遺伝子を酵母などの微生物内で強制発現させる。特定の遺伝子を酵母内で発現させるために,上流にプロモーターを,下流にターミネーターを挿入して発現カセットを構築し,これを発現ベクターに導入すればよい。また,その遺伝子を導入する発現ベクターにプロモーターとターミネーターが既に存在する場合は,発現カセットを構築することなく,そのプロモーターとターミネーターを利用してその間に当該融合遺伝子のみを導入すればよい。   In the present invention, basically, the specific gene described above is forcibly expressed in a microorganism such as yeast. In order to express a specific gene in yeast, an expression cassette is constructed by inserting a promoter upstream and a terminator downstream, and this is introduced into an expression vector. If the promoter and terminator are already present in the expression vector into which the gene is introduced, only the fusion gene may be introduced between the promoter and the terminator without constructing the expression cassette.

発現カセット中のプロモーターは,酵母発現系で一般に使用され,形質転換酵母菌内で導入した融合遺伝子を発現させることができるプロモーターであれば特に限定はないが,例えば,PGK,GAP,TPI,GAL1,GAL10,ADH2,PHO5,及びCUP1などがあげられ,これらの中ではGAPプロモーターが好ましい。   The promoter in the expression cassette is not particularly limited as long as it is a promoter that is generally used in a yeast expression system and can express a fusion gene introduced into a transformed yeast. For example, PGK, GAP, TPI, GAL1 , GAL10, ADH2, PHO5, and CUP1, among which GAP promoter is preferable.

一方,ターミネーターは,酵母発現系で一般に使用され,導入した融合遺伝子の下流に存在させて転写終結が可能とするものであればよく,例えば,ADH1,TDH1,TFF,及びTRP5などがあげられる。   On the other hand, the terminator is generally used in yeast expression systems, and any terminator may be used as long as it is present downstream of the introduced fusion gene to enable transcription termination, and examples thereof include ADH1, TDH1, TFF, and TRP5.

発現カセットを導入する発現ベクターとして,酵母発現系で一般に使用されるものであれば特に限定はない。具体的な発現ベクターとして,大腸菌由来のプラスミド(例,pBR322,pBR325,pUC12,及びpUC13),枯草菌由来のプラスミド(例,pUB110,pTP5,及びpC194),酵母由来のプラスミド(例,pSH19,及びpSH15),λファージなどのバクテリオファージ,レトロウイルス,ワクシニアウイルスなどの動物ウイルス,並びにバキュロウイルスなどの昆虫病原ウイルスなどを用いることができるが,酵母由来のプラスミドが好適に使用されうる。   The expression vector for introducing the expression cassette is not particularly limited as long as it is generally used in yeast expression systems. As specific expression vectors, plasmids derived from E. coli (eg, pBR322, pBR325, pUC12, and pUC13), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, and pC194), plasmids derived from yeast (eg, pSH19, and pSH15), bacteriophages such as λ phage, animal viruses such as retrovirus and vaccinia virus, and insect pathogenic viruses such as baculovirus can be used, and yeast-derived plasmids can be preferably used.

酵母の形質転換に利用されるプラスミドは,酵母の形質転換に用いることができるプラスミドであれば特に限定されないが,例えば,YEpと略される酵母エピソーム型プラスミド(yeast episome plasmid),YRpと略される酵母自己複製型プラスミド(yeast replicating plasmid)などがあげられる。酵母エピソーム型プラスミドベクターは,酵母の本来もつ2μプラスミドの配列を含んでおり,その複製起点を利用して宿主酵母細胞内で複製できるようにしたベクターである。本発明で使用する酵母エピソーム型発現ベクターは,酵母の2μプラスミド配列の少なくともARS配列を含んでおり,かつ宿主酵母菌体内において染色体外で増殖することができるものが好ましい。具体的なプラスミドとして,YEp51,pYES2,YEp351,YEp352及びpREPなどがあげられる。   The plasmid used for yeast transformation is not particularly limited as long as it is a plasmid that can be used for yeast transformation, for example, yeast episome plasmid abbreviated as YEp, abbreviated as YRp. Yeast self-replicating plasmid (yeast replicating plasmid) and the like. The yeast episomal plasmid vector is a vector that contains the 2μ plasmid sequence inherent in yeast and can be replicated in host yeast cells using its origin of replication. The yeast episomal expression vector used in the present invention preferably contains at least the ARS sequence of the yeast 2μ plasmid sequence and can be propagated extrachromosomally in the host yeast. Specific plasmids include YEp51, pYES2, YEp351, YEp352 and pREP.

上記の酵母エピソーム型発現ベクターは,組換え大腸菌でのサブクローニングを行えるように,大腸菌体内部で増殖できるシャトルベクターである方が好ましく,またアンピシリン耐性遺伝子等選択マーカー遺伝子を含むものがさらに好ましい。また,該発現ベクターは,組換え酵母を作成した際に,栄養要求性や薬剤耐性によって酵母クローンを選抜できる,マーカー遺伝子を含む。マーカー遺伝子としては,例えば,HIS3,TRP1,LEU2,URA3,ADE2,CAN1,SUC2,LYS2,及びCUP1などがあげられる(大島泰治編著,生物化学実験法39,酵母分子遺伝学実験法,119−144 (1996))。これらはあくまで例示であり,遺伝子導入の宿主とする酵母菌株の遺伝子型に応じて適宜選択すればよい。上述した融合遺伝子発現プラスミドの構築に関する一連の手法は,後記実施例の記載を参照して,あるいは慣用の技術により当業者が適宜実施することができる。   The yeast episomal expression vector is preferably a shuttle vector that can be propagated inside the Escherichia coli so that subcloning can be performed in recombinant Escherichia coli, and more preferably includes a selection marker gene such as an ampicillin resistance gene. The expression vector also contains a marker gene that allows selection of yeast clones by auxotrophy or drug resistance when recombinant yeast is produced. Examples of the marker gene include HIS3, TRP1, LEU2, URA3, ADE2, CAN1, SUC2, LYS2, and CUP1 (edited by Taiji Oshima, Biochemical Experimental Method 39, Yeast Molecular Genetics Experimental Method, 119-144). (1996)). These are merely examples, and may be appropriately selected according to the genotype of the yeast strain used as the host for gene transfer. A series of techniques relating to the construction of the above-described fusion gene expression plasmid can be appropriately carried out by those skilled in the art with reference to the description in Examples below or by conventional techniques.

発現ベクターには,プロモーター,エンハンサー,スプライシングシグナル,ポリA付加シグナル,選択マーカー,SV40複製オリジン,タグをコードするDNAなどを付加してもよい。また,発現ベクターは,融合タンパク質発現ベクターであってもよい。市販されている融合タンパク質発現ベクターとして,pGEXシリーズ(アマシャムファルマシアバイオテク社),pET CBD Fusion System 34b−38b(Novagen社),pET Dsb Fusion Systems 39b and 40b(Novagen社),及びpET GST Fusion System 41 and 42(Novagen社)などがあげられる。   A promoter, enhancer, splicing signal, poly A addition signal, selection marker, SV40 replication origin, DNA encoding a tag, and the like may be added to the expression vector. The expression vector may be a fusion protein expression vector. Commercially available fusion protein expression vectors include pGEX series (Amersham Pharmacia Biotech), pET CBD Fusion System 34b-38b (Novagen), pET Dsb Fusion Systems 39b and 40b (Novagen), and pET GST Fst GST 42 (Novagen).

本発明において,遺伝子発現ベクターにて形質転換させる宿主酵母としては,サッカロミセス属,カンジダ属に属する酵母を用いるものがあげられるが,特に限定はされない。サッカロミセス属の酵母としては,例えば,Saccharomyces cerevisiae KK4株,Y334株,Inv−Sc1株,及びW303株があげられる。   In the present invention, examples of host yeast transformed with the gene expression vector include those using yeast belonging to the genus Saccharomyces and Candida, but are not particularly limited. Examples of Saccharomyces yeasts include Saccharomyces cerevisiae KK4 strain, Y334 strain, Inv-Sc1 strain, and W303 strain.

融合遺伝子発現ベクターにて酵母を形質転換するには,公知の方法を適宜用いればよい。融合遺伝子発現ベクターにて酵母を形質転換する方法として,例えば,以下の方法があげられる。リン酸リチウムで処理し,DNAとPEGを加えてインキュベートする方法や,エレクトロポレーション法などの公知の方法を利用できる(Becker and Guarente, Methods Enzymol., 194, 182−187(1991))。また,細胞壁を酵素で消化したスフェロプラスト細胞をPEGとDNAとを,二塩化カルシウムなどに由来するカルシウムイオンの存在下でインキュベートするスフェロプラスト法(Hinnen et al., Proc.Natl.Acad.Sci.USA,75:1929(1978))や,DNAを表面に付着させた粒子を細胞に照射することにより形質転換を行う方法(Fox T.D.et.al.,1988.Plasmids can stably transform yeast mitochondria lacking endogeneous mtDNA.Proc.Nat.Acad.Sci.85:7288−7292)を用いてもよい。   In order to transform yeast with a fusion gene expression vector, a known method may be appropriately used. Examples of methods for transforming yeast with a fusion gene expression vector include the following methods. A known method such as treatment with lithium phosphate, addition of DNA and PEG and incubation, or electroporation can be used (Becker and Guarente, Methods Enzymol., 194, 182-187 (1991)). In addition, spheroplast cells in which cell walls have been digested with enzymes are incubated with PEG and DNA in the presence of calcium ions derived from calcium dichloride or the like (Hinen et al., Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), and a method of performing transformation by irradiating cells with DNA-attached particles (Fox TD et al., 1988. Plasmid can stable transform). yeast mitochondria racking endogeneous mtDNA.Proc.Nat.Acad.Sci.85: 7288-7292) may be used.

対数増殖期の酵母細胞を,該酵母細胞に導入する遺伝子およびポリエチレングリコールを含有する溶液中で維持する工程を含む酵母の形質転換方法(特許3682530号)であってもよい。   A yeast transformation method (Japanese Patent No. 3682530) including a step of maintaining a logarithmically growing yeast cell in a solution containing a gene to be introduced into the yeast cell and polyethylene glycol may be used.

形質転換酵母のスクリーニングのために,適当な選択マーカーを用いてもよい。一例として,宿主細胞の染色体DNA上の代謝に関与する遺伝子を用いるものがあげられる。すなわち,染色体DNA上の上記遺伝子を突然変異等の適当な手段により機能しないような宿主細胞を用い,相当する正常な遺伝子を含む発現ベクターを形質転換することにより,正常な代謝遺伝子を含む形質転換細胞のみを増殖させてスクリーニングできる物が好ましい。具体的には上記したようなURA3,LEU2等広く用いられている選択マーカー遺伝子を発現ベクターに接続する。染色体組み込み型タイプ(YIpタイプ)の場合にもこれらの遺伝子はスクリーニングのマーカーとなる。   An appropriate selection marker may be used for screening for transformed yeast. An example is one that uses a gene involved in metabolism on the chromosomal DNA of the host cell. That is, by using a host cell that does not function the above gene on the chromosomal DNA by appropriate means such as mutation, and transforming an expression vector containing the corresponding normal gene, Those which can be screened by growing only cells are preferred. Specifically, a selection marker gene that is widely used such as URA3 and LEU2 as described above is connected to an expression vector. In the case of the chromosomal integration type (YIp type), these genes also serve as screening markers.

形質転換された形質転換酵母は公知の方法にしたがって培養すればよい。具体的には,培地5mlで一晩培養し,20ml,50ml,100mlとスケールアップを繰り返し,約一週間程度の期間,酵母が分裂できる状態で培養を繰り返す。形質転換酵母の培養方法は,酵母の培養に用いられる通常の方法に従って行うことができる。培地として,酵母が資化し得る炭素源,窒素源,無機塩類等を含有し,形質転換体の培養を効率的に行える培地を用いればよく,具体的には,YPD培地,YPG培地,YPDG培地,YPAD培地,グルコース合成最小培地(SD),ヨウ素添加最小培地(SMM),Hartwellの完全培地(HC),GAL発酵試験培地,又は胞子形成培地などを適宜用いることができる。また,例えば,Difco社から供給される各種の培地成分を添加し,かつプラスミドの複製・保持に必要なマーカーによって供給可能となるアミノ酸を除いた合成培地(炭素源,窒素源,無機塩類,アミノ酸,ビタミン等を含む)等を利用できる(Sherman,Methods Enzymol.,194,3−57(1991))。   The transformed yeast transformed may be cultured according to a known method. Specifically, it is cultured overnight in 5 ml of medium, repeatedly scaled up to 20 ml, 50 ml, and 100 ml, and the culture is repeated in a state where yeast can be divided for a period of about one week. The method for culturing the transformed yeast can be carried out according to the usual method used for culturing yeast. As the medium, a medium containing a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by yeast and capable of efficiently cultivating the transformant may be used. Specifically, YPD medium, YPG medium, YPDG medium YPAD medium, glucose synthesis minimum medium (SD), iodine-added minimum medium (SMM), Hartwell complete medium (HC), GAL fermentation test medium, sporulation medium, or the like can be used as appropriate. In addition, for example, a synthetic medium (carbon source, nitrogen source, inorganic salt, amino acid) added with various medium components supplied by Difco and excluding amino acids that can be supplied by markers necessary for plasmid replication and maintenance. , Vitamins and the like) (Sherman, Methods Enzymol., 194, 3-57 (1991)).

培地のpHは,6〜8に調節することが適当である。pHの調整は,無機又は有機の酸,アルカリ溶液,尿素,炭酸カルシウム,アンモニアなどの添加量を制御することにより行えばよい。培養は,28〜32℃,好ましくは30℃で,1日から1ヶ月,たとえば,1日以上3日以下,又は約一週間(たとえば,5日〜10日),常法に従い,通気や攪拌を適宜加えつつ行えばよい。特に,TIY20株を効率よく培養するためにKCl及びソルビトールを加え30℃で培養することが望ましいが,穏やかな選択圧を加えるために,KCl及びソルビトールを加えない培地にて培養を行ってもよい。また,穏やかな選択圧を得るために,31℃〜35℃(又は32℃〜33℃)など30℃に比べ少し高い温度で培養してもよい。   It is appropriate to adjust the pH of the medium to 6-8. The pH may be adjusted by controlling the amount of inorganic or organic acid, alkali solution, urea, calcium carbonate, ammonia or the like added. The culture is performed at 28 to 32 ° C., preferably 30 ° C., for 1 to 1 month, for example, 1 day to 3 days or less, or about one week (for example, 5 days to 10 days) according to a conventional method. May be carried out while appropriately adding. In particular, it is desirable to add KCl and sorbitol and culture at 30 ° C. in order to efficiently culture the TIY20 strain. However, in order to apply a gentle selection pressure, the culture may be performed in a medium to which KCl and sorbitol are not added. . In order to obtain a gentle selection pressure, the culture may be performed at a temperature slightly higher than 30 ° C. such as 31 ° C. to 35 ° C. (or 32 ° C. to 33 ° C.).

増殖性を回復した酵母
増殖性を回復した酵母は,上記した製造方法により製造された酵母を意味する。そして,具体的には,哺乳類型糖鎖を有する糖タンパク質を産生する出芽酵母,分裂酵母,又はメタノール資化性酵母などがあげられる。より具体的には,公知の遺伝子破壊株,又は公知の遺伝子破壊株から公知の方法に従って製造しうる遺伝子破壊株において,特定の遺伝子を導入することにより得られる酵母などがあげられる。
Yeast that has recovered its growth ability Yeast that has recovered its growth ability means a yeast produced by the above-described production method. Specific examples include budding yeast, fission yeast, or methanol-assimilating yeast that produce glycoproteins having mammalian sugar chains. More specifically, a yeast obtained by introducing a specific gene in a known gene-disrupted strain or a gene-disrupted strain that can be produced from a known gene-disrupted strain according to a known method is exemplified.

哺乳類型糖鎖を有する糖タンパク質
本明細書における糖タンパク質として,哺乳類型糖鎖を有する糖タンパク質があげられる。哺乳類型糖鎖を有する糖タンパク質は,上記した公知の遺伝子破壊株などによって産生されるものであればよく,遺伝子破壊株から糖タンパク質を単離・精製する方法も,本明細書に記載したいずれかの文献に開示される方法又は公知の方法を適宜用いればよい。例えば,培養が終了した後に,細胞を遠心分離により回収し,水系緩衝液に懸濁する。その後,超音波破砕機,フレンチプレス,ホモジナイザー,ダイノミルなどを適宜用いて細胞を破砕し,無細胞抽出液を得る。そのようにして得られた無細胞抽出液を遠心分離して上清を得て,その上清から糖タンパク質を抽出すればよい。タンパク質を抽出する方法として,溶媒抽出法,硫安などによる塩析法,有機溶媒による沈殿法,ジエチルアミノエチル−セファロースなどのレジンを用いた陰イオン交換クロマトグラフィー法,アフィニティークロマトグラフィー法などがあげられる。
Glycoprotein having a mammalian sugar chain Examples of glycoproteins in the present specification include glycoproteins having a mammalian sugar chain. Any glycoprotein having a mammalian sugar chain may be produced by the above-mentioned known gene disruption strains, and any method described in this specification may be used for isolating and purifying glycoproteins from gene disruption strains. A method disclosed in these documents or a known method may be appropriately used. For example, after the culture is completed, the cells are collected by centrifugation and suspended in an aqueous buffer solution. Thereafter, the cells are crushed using an ultrasonic crusher, a French press, a homogenizer, a dynomill or the like as appropriate to obtain a cell-free extract. The cell-free extract thus obtained may be centrifuged to obtain a supernatant, and glycoproteins may be extracted from the supernatant. Examples of protein extraction methods include solvent extraction methods, salting out methods such as ammonium sulfate, precipitation methods using organic solvents, anion exchange chromatography methods using resins such as diethylaminoethyl-sepharose, and affinity chromatography methods.

本明細書において,Manはマンノース,GlcNAcはN−アセチルグルコサミンを示す。またアスタリスク(*)は,リン酸化可能部位を示す。具体的な哺乳類型糖鎖を有する糖タンパク質として,下記式(I),又は(II)で示されるオリゴ糖鎖をアスパラギン結合型糖鎖として有する糖タンパク質があげられる。   In the present specification, Man represents mannose, and GlcNAc represents N-acetylglucosamine. An asterisk (*) indicates a site capable of phosphorylation. Specific examples of glycoproteins having mammalian sugar chains include glycoproteins having an oligosaccharide chain represented by the following formula (I) or (II) as an asparagine-linked sugar chain.

Figure 2009183283
Figure 2009183283

β−グルカンを高効率に産生する酵母
β−グルカンを高効率に産生する酵母は,増殖性を回復した酵母と同様に,上記した製造方法により製造された酵母があげられる。β−グルカンを高効率に産生する酵母の例として,β−グルカンを高効率に産生する出芽酵母,分裂酵母,又はメタノール資化性酵母などがあげられる。より具体的には,公知の遺伝子破壊株,又は公知の遺伝子破壊株から公知の方法に従って製造しうる遺伝子破壊株において,所定の遺伝子を強制発現することにより得られる酵母などがあげられる。
Yeasts that produce β-glucan with high efficiency Examples of yeasts that produce β-glucan with high efficiency include yeasts produced by the production method described above, as well as yeasts that have recovered their growth potential. Examples of yeasts that produce β-glucan with high efficiency include budding yeast, fission yeast, or methanol-assimilating yeast that produce β-glucan with high efficiency. More specifically, a yeast obtained by forcibly expressing a predetermined gene in a known gene-disrupted strain or a gene-disrupted strain that can be produced from a known gene-disrupted strain according to a known method can be mentioned.

β−グルカン
β−グルカンは,上記した公知の遺伝子破壊株によって産生されるものであればよい。例えば,具体的なβ−グルカンの種類として,β−1,3−D−グルカン及びβ−1,6/1,3−Dグルカンがあげられる。遺伝子破壊株から(特に酵母細胞壁から)β−グルカンを単離・精製する方法として,公知の方法を適宜用いることができる。例えば,培養が終了した後に,得られた培養物(細胞)を遠心分離により回収し,水系緩衝液に懸濁する。次いで,超音波破砕機,ボルテックスミキサー,フレンチプレス,ホモジナイザー,ダイノミルなどを適宜用いて細胞を破砕し,細胞破砕液を得る。得られた細胞破砕液を遠心分離してペレット(細胞壁含む)を回収する(再懸濁,遠心分離,ペレット回収は適当回数繰り返す。抽出は,たとえば,Magnelli P. et al., Analytical Biochemistry 301. 136‐150 (2002)に記載の方法を用いて行うことができる。
[beta] -glucan [beta] -glucan may be any one produced by the aforementioned known gene disruption strain. For example, specific β-glucan types include β-1,3-D-glucan and β-1,6 / 1,3-D glucan. As a method for isolating and purifying β-glucan from a gene-disrupted strain (particularly from a yeast cell wall), a known method can be appropriately used. For example, after the culture is completed, the obtained culture (cell) is collected by centrifugation and suspended in an aqueous buffer solution. Next, the cells are crushed using an ultrasonic crusher, a vortex mixer, a French press, a homogenizer, a dyno mill or the like as appropriate to obtain a cell lysate. The resulting cell lysate is centrifuged to collect pellets (including cell walls) (resuspension, centrifugation, and pellet recovery are repeated as appropriate. Extraction is performed, for example, by Magnelli P. et al., Analytical Biochemistry 301.). 136-150 (2002).

寄託株の説明
後述する参考例で得られたYAB100株は,平成18年7月11日から独立行政法人産業技術総合研究所 特許生物寄託センターに,受託番号:FERM P−20955として寄託されている。
後述する参考例で得られたYAB101株は,平成18年7月11日から独立行政法人産業技術総合研究所 特許生物寄託センターに,受託番号:FERM P−20956として寄託されている。
後述する参考例で得られたC2−11株は,平成18年12月27日から独立行政法人産業技術総合研究所 特許生物寄託センターに,受託番号:FERM P−21145として寄託されている。
後述する実施例で得られたTIY<CAT8株は,平成18年12月27日から独立行政法人産業技術総合研究所 特許生物寄託センターに,受託番号:FERM AP−21445として寄託されている。
後述する実施例で得られたKID08−08−1株は,平成21年1月8日から独立行政法人産業技術総合研究所 特許生物寄託センターに,受託番号:FERM AP−21757として寄託されている。
Description of deposited strain The YAB100 strain obtained in the reference example described below has been deposited with the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as of July 11, 2006 under the deposit number: FERM P-20955. .
YAB101 strain obtained in a reference example to be described later has been deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as an accession number: FERM P-20956 since July 11, 2006.
The C2-11 strain obtained in a reference example to be described later has been deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as of December 27, 2006 under the accession number: FERM P-21145.
The TIY <CAT8 strain obtained in the examples described later has been deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as a deposit number: FERM AP-21445 since December 27, 2006.
KID08-08-1 obtained in the examples described later has been deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as of January 8, 2009 under the accession number: FERM AP-21757. .

参考例1.変異型pol3DNA断片を導入したプラスミドpAB100の産生
以下のようにして変異型pol3DNA断片を出芽酵母強制発現用マルチコピーベクターYEP352GAP2のSacI−SalIサイトにクローニングし,プラスミドpAB100を構築した。Pol3のアミノ酸配列は配列番号15に示され,Pol3をコードするDNAの塩基配列は配列番号16に示されるが,本実施例で得られたpol3−01変異遺伝子は配列番号16における962番目の塩基がAからCに置換され,968番目の塩基がAからCに置換されたものである。すなわち,配列番号16で示される塩基配列の961番目から969番目までの塩基配列によってコードされるアミノ酸残基が,DIEからAIAに置換されるような変異を導入した。このようにして得られたpol3−01のアミノ酸配列を配列番号17に示し,pol3−01変異遺伝子をコードするDNAの塩基配列を配列番号18に示す。
Reference Example 1 Production of Plasmid pAB100 Introducing Mutant Pol3 DNA Fragment The plasmid pAB100 was constructed by cloning the mutant pol3 DNA fragment into the SacI-SalI site of the multicopy vector YEP352GAP2 for budding yeast as follows. The amino acid sequence of Pol3 is shown in SEQ ID NO: 15, and the base sequence of DNA encoding Pol3 is shown in SEQ ID NO: 16, but the pol3-01 mutant gene obtained in this example is the 962nd base in SEQ ID NO: 16. Is substituted from A to C, and the 968th base is substituted from A to C. That is, a mutation was introduced such that the amino acid residue encoded by the base sequence from the 961st to the 969th base sequence of SEQ ID NO: 16 was replaced from DIE to AIA. The amino acid sequence of pol3-01 thus obtained is shown in SEQ ID NO: 17, and the base sequence of the DNA encoding the pol3-01 mutant gene is shown in SEQ ID NO: 18.

具体的に説明すると,天然のミューテーターとして知られているAMY128−1株(MATαpol3−01,ura3−52,leu2−1,lys1−1,ade2−1,his1−7,hom3−10,trp1−289)のゲノムをテンプレートに用いて,PCR反応(フォワードプライマー:5’−AGCTCGAGCTC(SacI)ATGAGTGAAAAAAGATCCCTTCCCATG−3’(配列番号1),リバースプライマー:5’−GCATCGCGGCCGC(NotI)TTACCATTTGCTTAATTGTTCTAC−3’(配列番号2))にてpol3−01変異遺伝子を増幅し,その増幅断片をpYES2ベクターのSacI−NotIサイトにクローニングした(得られたプラスミドをpYES2−pol3−01と命名した。)。さらに,GAPDHプロモーターの支配下でpol3−01変異遺伝子が発現できるように,pYES2−Pol3−01からpol3−01変異遺伝子を制限酵素SacIとXhoIにて消化し,YEp352GAP−IIベクターのSacI−SalI siteにクローニングした(このようにして得られたプラスミドをpAB100と命名した。)。   Specifically, the AMY128-1 strain (MATαpol3-01, ura3-52, leu2-1, lys1-1, ade2-1, his1-7, hom3-10, trp1- known as a natural mutator) 289) as a template, PCR reaction (forward primer: 5′-AGCTCGAGTCTC (SacI) ATGAGTGAAAAAGAATCCCTTCCCCATG-3 ′ (SEQ ID NO: 1), reverse primer: 5′-GCATCGCGCCGC (NotI) TTACCATTGTCTAATTGTTCCT No. 3 2)), the pol3-01 mutant gene was amplified, and the amplified fragment was cloned into the SacI-NotI site of the pYES2 vector (the resulting plasmid was pYE). Was named 2-pol3-01.). Further, the pol3-01 mutant gene is digested with restriction enzymes SacI and XhoI so that the pol3-01 mutant gene can be expressed under the control of the GAPDH promoter, and the SacI-SalI site of the YEp352GAP-II vector is digested. (The plasmid thus obtained was named pAB100).

糖鎖改変株の高温耐性株の取得
出芽酵母(Saccharomyces cerevisiae)糖鎖改変株TIY20(matα och1::hisG mnn1::hisG mnn4::hisG)に,上記のようにして得られたプラスミドpAB100を形質転換した。TIY20は,国際公開WO01/014522号パンフレット(特許文献1)に開示されるTIY19と同じクローンから四分子分析によって得た。得られた形質転換体(TIY20/pAB100)を,より多くの変異を入れるために出芽酵母用合成培地SD−U(6.7g Yeast nitrogen base without amino acids (Difco laboratories),20g グルコース,0.77g CMS−URA(Sunrise Science Products)(液体)に,できるだけ多く分裂できるように条件を制御して培養した。これらの菌の中から高温耐性株を得るために,SD−U固形培地に蒔いてから37℃で3日培養し,生えてきたコロニーを釣菌した。得られた株からpAB100を脱落させるために完全培地YPAD(10g Yeast extract(Difco laboratories),20g peptone(Difco),0.2g硫酸アデニン(Sigma),20gGlucose/1L)にストリークした後,培養し,シングルコロニーを20個ずつ回収した。これらのコロニーのうちSD−U培地で生えることができないコロニーを取得した。
Acquisition of a high-temperature resistant strain of a sugar chain-modified strain Saccharomyces cerevisiae sugar chain-modified strain TIY20 (matα och1 :: hisG mnn1 :: hisG mnn4 :: hisG) is transformed with the plasmid pAB100 obtained as described above Converted. TIY20 was obtained by four-molecule analysis from the same clone as TIY19 disclosed in International Publication WO01 / 014522 (Patent Document 1). The obtained transformant (TIY20 / pAB100) was added to a budding yeast synthetic medium SD-U (6.7 g Yeast nitrogen base with amino acids) (Difco laboratories), 20 g glucose, 0.77 g. CMS-URA (Sunrise Science Products) (liquid) was cultured under controlled conditions so that it could divide as much as possible. Culturing was carried out at 37 ° C. for 3 days, and the colonies that had grown were caught, and in order to remove pAB100 from the obtained strain, complete medium YPAD (10 g Yeast extract (Difco laboratories), 20 g peptone (Dito) fco), 0.2 g adenine sulfate (Sigma), 20 g Glucose / 1 L), and then cultured to collect 20 single colonies each of which obtain colonies that cannot grow on the SD-U medium. did.

参考例2.酵母内タンパク質インベルターゼに付加される糖鎖長の解析
参考例1で得られた9株(C15,C27,C28,C30,C3−20,C4−1,C3−3−1,C3−7−2,及びC3−3−9)のN−結合型糖鎖長を調べるために酵母内で作られるインベルターゼに付加されるN−結合型糖鎖長を以下の方法にて調べた。それぞれの株を5mlのYPADで培養後,5mlのYPSuc(10g Yeast extract(Difcolaboratories),20gのpeptone(Difco),10gのsucrose/1L)で3時間以上培養し,菌を回収した。回収した菌は50μlのSDS−PAGEサンプルバッファー(15%Glycerol,0.125M Tris−HCl(pH6.8),2mM PMSF,3%SDS,0.1%Bromophenol blue,1%2−mercaptoethanol)とグラスビーズを加えてボルテックスにて破砕した。15,000回転で5分間遠心分離した後,上清5μlずつを5%SDS−PAGEにて電気泳動(100V,3時間)した。ゲルを反応液(3.4g sucrose,3ml 3M Na−acetate/100ml)に移し,30分37℃でインキュベーションした後,脱イオン水にて2回洗浄した。染色液(2g NaOH,50mg triphenyltetrazoliumchloride/50ml)に移し,発色するまで煮込んだ。その結果,得られた9株のインベルターゼに付加されるN−結合型糖鎖は親株であるTIY20と同じ糖鎖長をもつことが分かった。
Reference Example 2 Analysis of sugar chain length added to protein invertase in yeast 9 strains obtained in Reference Example 1 (C15, C27, C28, C30, C3-20, C4-1, C3-3-1, C3-7-2 In order to examine the N-linked sugar chain length of C3-3-9), the N-linked sugar chain length added to the invertase produced in yeast was examined by the following method. Each strain was cultured in 5 ml of YPAD and then cultured in 5 ml of YPSuc (10 g Yeast extract (Difcolaboratories), 20 g of peptone (Difco), 10 g of sucrose / 1 L) for 3 hours or more, and the bacteria were collected. The collected bacteria were 50 μl of SDS-PAGE sample buffer (15% Glycerol, 0.125 M Tris-HCl (pH 6.8), 2 mM PMSF, 3% SDS, 0.1% Bromophenol blue, 1% 2-mercaptoethanol) and glass. Beads were added and vortexed. After centrifuging at 15,000 rpm for 5 minutes, 5 μl of each supernatant was electrophoresed on 5% SDS-PAGE (100 V, 3 hours). The gel was transferred to a reaction solution (3.4 g sucrose, 3 ml 3M Na-acetate / 100 ml), incubated at 37 ° C. for 30 minutes, and then washed twice with deionized water. Transferred to staining solution (2 g NaOH, 50 mg triphenyltetrazole chloride / 50 ml) and boiled until color developed. As a result, it was found that the N-linked sugar chains added to the 9 strains of invertase obtained had the same sugar chain length as the parent strain TIY20.

生育の回復効率の解析
次に,参考例1で得られた株の成長回復効率を解析した。5mlのYPADで30℃にて培養を行った後,OD600が0.1となるように10mlのYPADに移し,30℃あるいは37℃にて培養した。タイムポイントごとに菌を回収しOD600を調べた。その結果,解析を行った9株のうち,C4−1とC3−20は30℃での成長割合がTIY20よりも上回ったことがわかる。また,37℃ではTIY20はほとんど増殖できないにもかかわらず,C4−1(YAB100),C3−20(YAB101)では増殖能が回復したことがわかる。
Analysis of Growth Recovery Efficiency Next, the growth recovery efficiency of the strain obtained in Reference Example 1 was analyzed. After culturing with 5 ml of YPAD at 30 ° C., it was transferred to 10 ml of YPAD so that OD600 was 0.1, and cultured at 30 ° C. or 37 ° C. Bacteria were collected at each time point and examined for OD600. As a result, it can be seen that among the nine strains analyzed, C4-1 and C3-20 have a higher growth rate at 30 ° C. than TIY20. It can also be seen that TIY20 hardly grew at 37 ° C., but C4-1 (YAB100) and C3-20 (YAB101) recovered the growth ability.

参考例3.糖鎖構造解析
参考例1で得られた株におけるマンノタンパク質の糖鎖構造を解析した。50mlで培養した菌を回収し,水で洗浄後,100mMのクエン酸バッファー(pH7.0)8mlに懸濁し,121℃にて2時間オートクレーブした。遠心にて上清を回収し,24mlの冷エタノールを添加し,−20℃にて30分静置後,遠心して沈殿を回収した。水に懸濁後,3mg/mlになるようにタンパク溶液を調整し,そのうち5μl GlycopeptidaseF(タカラバイオ社製4450)にて処理した。37℃17時間インキュベーション後100μlとなるように水を加え,フェノール・クロロホルム・イソアミルアルコール(25・24・1)を加えて良く攪拌し,遠心にて上清を回収した(フェノールクロロホルム抽出)。回収した液にクロロホルムを加えて攪拌後,遠心して上清を回収し(クロロホルム抽出),ドライアップした。ドライアップしたサンプルにPyridylamination manual kit(タカラバイオ社製4480)にてピリジルアミノ化した後,7回のフェノールクロロホルム抽出に供し余分な試薬を除去した。クロロホルム抽出を行った後,上清をドライアップし,水に溶解後,HPLC(島津社製Class−VP,カラム,TOSOH TSK−GEL AMIDE−80(φ4.6mm×250mm),流速,1ml/min,検出,320nm(励起),400nm(蛍光),バッファーA,アセトニトリル,バッファーB,200mM TEAA(バッファーの濃度を上げて各糖を溶出),バッファーBのグラジエント条件,0−40分,30→60%,40−50分,30%)にて糖鎖構造を解析した。その結果,野生株W303−1Bでは,様々な数のマンノースが付加していることが分かった。一方,得られた株の全てにおいて,親株であるTIY20と同じマンノース8個からなる糖鎖構造を示すピークがメインピークとして観察された。このことは,実施例における変異株が,いわゆる哺乳類型の糖鎖を有していることを示す。
Reference Example 3. Sugar chain structure analysis The sugar chain structure of the mannoprotein in the strain obtained in Reference Example 1 was analyzed. Bacteria cultured in 50 ml were collected, washed with water, suspended in 8 ml of 100 mM citrate buffer (pH 7.0), and autoclaved at 121 ° C. for 2 hours. The supernatant was collected by centrifugation, 24 ml of cold ethanol was added, and the mixture was allowed to stand at −20 ° C. for 30 minutes, and then centrifuged to collect the precipitate. After suspending in water, the protein solution was adjusted to 3 mg / ml, and treated with 5 μl Glycopeptidase F (4450 manufactured by Takara Bio Inc.). After incubation at 37 ° C. for 17 hours, water was added to 100 μl, phenol / chloroform / isoamyl alcohol (25/24/1) was added and stirred well, and the supernatant was collected by centrifugation (phenol chloroform extraction). Chloroform was added to the collected liquid, stirred, and centrifuged to collect the supernatant (chloroform extraction) and dried up. After the pyridylamination was performed on the dried-up sample using Pyridylamine manual kit (4480, manufactured by Takara Bio Inc.), it was subjected to seven phenol chloroform extractions to remove excess reagents. After chloroform extraction, the supernatant was dried up, dissolved in water, HPLC (Class-VP manufactured by Shimadzu Corp., column, TOSOH TSK-GEL AMIDE-80 (φ4.6 mm × 250 mm), flow rate, 1 ml / min. , Detection, 320 nm (excitation), 400 nm (fluorescence), buffer A, acetonitrile, buffer B, 200 mM TEAA (elution of each sugar by increasing the buffer concentration), buffer B gradient conditions, 0-40 minutes, 30 → 60 %, 40-50 minutes, 30%). As a result, it was found that various numbers of mannose were added in the wild strain W303-1B. On the other hand, in all of the obtained strains, a peak showing a sugar chain structure consisting of the same eight mannoses as the parent strain TIY20 was observed as a main peak. This indicates that the mutant strain in the example has a so-called mammalian sugar chain.

参考例4.キチナーゼ解析
参考例1で得られた株から分泌されるタンパク質の分泌効率を解析した。40mlで培養した菌の上清に40mgのwet chitin(Sigma)を加え,4℃で一晩攪拌した。遠心してキチン回収後,PBSで3回洗浄した。100μlのSDS−PAGEサンプルバッファーに懸濁し,100℃にて10分処理した後,10μlをSDS−PAGEしConA−biotin(生化学工業)にてレクチンブロットした。検出はStreptavidin−HRP(生化学工業)にて検出した。検出用試薬として,Immobilon Western Chemiluminescent HRP Substrate(Millipore)を用い,検出装置として富士フィルムLAS1000を用いた。その結果,TIY20では分泌効率が野生型株の約50%にも拘らず,得られた株において分泌効率が回復することがわかる。とりわけ,C4−1及びC3−20では分泌効率が野生型株と同等までに回復した。そこで,得られた株C4−1をYAB100,C3−20をYAB101とし特許微生物寄託した。
Reference Example 4 Chitinase analysis The secretion efficiency of the protein secreted from the strain obtained in Reference Example 1 was analyzed. 40 mg wet chitin (Sigma) was added to the supernatant of the bacteria cultured in 40 ml and stirred overnight at 4 ° C. The chitin was collected by centrifugation and washed 3 times with PBS. After suspending in 100 μl SDS-PAGE sample buffer and treating at 100 ° C. for 10 minutes, 10 μl was subjected to SDS-PAGE and lectin blotted with ConA-biotin (Seikagaku Corporation). Detection was performed by Streptavidin-HRP (Seikagaku Corporation). Immobilon Western Chemiluminescent HRP Substrate (Millipore) was used as a detection reagent, and Fuji Film LAS1000 was used as a detection device. As a result, it can be seen that in TIY20, although the secretion efficiency is about 50% of the wild type strain, the secretion efficiency is recovered in the obtained strain. In particular, in C4-1 and C3-20, the secretion efficiency recovered to the same level as the wild type strain. Therefore, the obtained strain C4-1 was deposited as YAB100, and C3-20 as YAB101.

参考例5.α−ガラクトシダーゼA活性測定(外来遺伝子の発現能検証)
ヒトα−ガラクトシダーゼA遺伝子をGAPDHプロモーターの下流に連結した発現カセットを有するベクター(pRS4−GAP−αGalA)(Chiba,Y.et al.,Glycobiology,12,821−828,2002)をC4−1(YAB100),C3−20,C3−7−2,及びC27にそれぞれ形質転換した。得られた形質転換体を培養した後,その培養液(菌も含む)を酵素源とした。基質として5mMの4−MU−α−galactopyranosideを用いて,37℃において30分反応後,200μlの反応停止液(0.2Mのグリシンバッファー(pH10.7))を入れることによって停止させた。蛍光用マイクロプレートリーダー(コロナ社製MTP−32,Ex:365nm,Em:450nm)で測定を行った。その結果,TIY20株は,α−ガラクトシダーゼが失活するのに対し,C3−20,C3−7−2及びC4−1(YAB100)は,良好なα−ガラクトシダーゼA活性を示し,特にC3−20及びC3−7−2は,野生型W303−1Bよりも高いα−ガラクトシダーゼA活性を示すことがわかる。
Reference Example 5 α-Galactosidase A activity measurement (verification of foreign gene expression)
A vector (pRS4-GAP-αGalA) (Chiba, Y. et al., Glycobiology, 12, 821-828, 2002) having an expression cassette in which the human α-galactosidase A gene is linked downstream of the GAPDH promoter is C4-1 ( YAB100), C3-20, C3-7-2, and C27, respectively. After culturing the obtained transformant, the culture solution (including bacteria) was used as an enzyme source. After 5 minutes of reaction at 37 ° C. using 5 mM 4-MU-α-galactopyranoside as a substrate, the reaction was stopped by adding 200 μl of a reaction stop solution (0.2 M glycine buffer (pH 10.7)). The measurement was performed using a microplate reader for fluorescence (MTP-32, Ex: 365 nm, Em: 450 nm, manufactured by Corona). As a result, in the TIY20 strain, α-galactosidase was inactivated, whereas C3-20, C3-7-2 and C4-1 (YAB100) showed good α-galactosidase A activity, particularly C3-20. And C3-7-2 show higher α-galactosidase A activity than wild type W303-1B.

参考例6.酵母細胞壁の単糖分析
参考例1で得られた酵母C4−1(YAB100)およびC3−7−2を,5mlのYPD,30℃で15時間,振盪培養した後,菌を遠心分離(4000回転 5分)することにより回収し,1mlの10mM Tris−HClバッファー (pH7.5,1mM PMSF)に懸濁し遠心分離(4000回転5分)することにより菌体を回収した。この操作を,3回行うことにより菌体を洗浄した。上記Tris−HClバッファー0.1mlに再懸濁しガラスビーズを液面まで加え−20℃で1時間保存した。ボルテックスミキサーにより細胞を破砕した後,細胞破砕液のみを回収し,遠心分離(1000g,10分)によってペレットを回収した。ペレット(細胞壁)は1mlの1M NaClに懸濁し,遠心分離した。この操作を3回繰り返すことにより,ペレットを洗浄した。次に,1mlの1mM PMSFで3回洗浄した。0.2mlの1mM PMSFに再懸濁した。
Reference Example 6 Monosaccharide analysis of yeast cell wall Yeast C4-1 (YAB100) and C3-7-2 obtained in Reference Example 1 were shake-cultured at 5 ° C. for 15 hours at 30 ° C., and then the bacteria were centrifuged (4000 rotations). The cells were collected by suspending in 1 ml of 10 mM Tris-HCl buffer (pH 7.5, 1 mM PMSF) and centrifuging (4000 rpm for 5 minutes). The cells were washed by performing this operation three times. The suspension was resuspended in 0.1 ml of the above Tris-HCl buffer, glass beads were added to the liquid surface, and the mixture was stored at -20 ° C for 1 hour. After disrupting the cells with a vortex mixer, only the cell disruption solution was recovered, and the pellet was recovered by centrifugation (1000 g, 10 minutes). The pellet (cell wall) was suspended in 1 ml of 1M NaCl and centrifuged. This operation was repeated three times to wash the pellet. Next, it was washed 3 times with 1 ml of 1 mM PMSF. Resuspended in 0.2 ml 1 mM PMSF.

50μlの細胞壁懸濁液に50μlの滅菌超純水を加え,100μlの4M TFAを加え100℃で4時間インキュベーションした。減圧乾燥器にて溶媒を完全に蒸発させた後,100μlの0.2M酢酸アンモニウムと10μlの酢酸を加えて,室温にて30分インキュベーションした。減圧乾燥器にて乾燥した後,100μlの0.2M酢酸アンモニウムと10μlの酢酸を加えて,室温にて30分インキュベーションした。PAチューブに懸濁液を移し乾燥した。PAラベルはPA Labeling Kit (PALSTATION Pyridylamination Reagent Kit 単糖分析用 (TaKaRa))を用いて行った。HPLCはカラム:TSK−GEL SUGAR AX タイプ(TOSHO),溶媒:0.7M ホウ酸カリウム(pH9.0):アセトニトリル=9:1,65℃,流速:0.3ml/minで行った。単糖の組成比はピークの面積比から算出した。WTにおけるグルコースの割合(約45%)に比べ,TIY20株におけるグルコースの割合は約80%と高いものであったが,C4−1(YAB100)株およびC3−7−2株はさらに高いグルコースの割合(90%以上)を示した。グルコースの割合が約80%を超えるようなβ−グルカン含有割合の高い酵母を作製することは,技術的にも非常に困難であると考えられていたが,さらに約10%以上もグルコースの割合が向上したものであった。   50 μl of sterile ultrapure water was added to 50 μl of the cell wall suspension, 100 μl of 4M TFA was added, and the mixture was incubated at 100 ° C. for 4 hours. After completely evaporating the solvent in a vacuum dryer, 100 μl of 0.2 M ammonium acetate and 10 μl of acetic acid were added and incubated at room temperature for 30 minutes. After drying in a vacuum dryer, 100 μl of 0.2M ammonium acetate and 10 μl of acetic acid were added and incubated at room temperature for 30 minutes. The suspension was transferred to a PA tube and dried. The PA labeling was performed using a PA Labeling Kit (PALSTATION Pyridylation Reagent Kit for monosaccharide analysis (TaKaRa)). HPLC was performed with column: TSK-GEL SUGAR AX type (TOSHO), solvent: 0.7 M potassium borate (pH 9.0): acetonitrile = 9: 1, 65 ° C., flow rate: 0.3 ml / min. The composition ratio of monosaccharides was calculated from the peak area ratio. The percentage of glucose in TIY20 strain was as high as about 80% compared to the percentage of glucose in WT (about 45%), but C4-1 (YAB100) and C3-7-2 strains had higher glucose levels. The ratio (90% or more) is shown. Although it was considered technically very difficult to produce a yeast with a high β-glucan content ratio such that the glucose ratio exceeded about 80%, the ratio of glucose was more than about 10%. Was improved.

次に実施例を挙げて本発明を詳細に説明するが,本発明はこれらに限定されるものではない。
1.YAB100株で発現が誘導される遺伝子の探索
遺伝子破壊株である出芽酵母(Saccharomyces cerevisiae)TIY20株は,温度感受性を示し,増殖性に乏しい。一方,上記の参考例のとおり,このTIY20株のDNAポリメラーゼ変異を利用した不均衡変異導入法を利用して変異を導入することによって得られたYAB100株は,増殖性などを回復した。そこで,YAB100株における増殖遅延などの表現型を回復する原因遺伝子を探索するために,YAB100,TIY20および野生型株であるW303−1B株との遺伝子の発現比較解析をマイクロアレイにて解析した。
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
1. The Saccharomyces cerevisiae TIY20 strain, which is a gene disruption strain for searching for a gene whose expression is induced in the YAB100 strain, exhibits temperature sensitivity and poor growth. On the other hand, as described in the above Reference Example, the YAB100 strain obtained by introducing the mutation using the unbalanced mutation introducing method using the DNA polymerase mutation of the TIY20 strain recovered the growth ability. Therefore, in order to search for a causative gene that restores a phenotype such as growth delay in the YAB100 strain, gene expression comparison analysis with YAB100, TIY20 and the wild type strain W303-1B was analyzed with a microarray.

YAB100,TIY20,W303−1B株を,5ml YPAD液体培地にて30℃,15時間振盪前培養した。これらの培養液からYAB100はOD600=2.4U,TIY20はOD600=5U,W303−1B=0.3U分をYPAD液体培地10mlに加え,34℃にて15時間振盪培養した。これらの菌体をすべて回収し,滅菌水にて菌体を洗浄後,200μlのセパゾール(ナカライテスク株式会社)とガラスビーズを加え,激しくボルテックスすることにより菌体を破砕した。菌体破砕液を新しいチューブに移した後,800μlのセパゾールを加え,撹拌後,室温にて5分静置した。200μlのクロロホルムを加えて転倒混和し,室温で3分間静置後,4℃,12,000gで15分間遠心分離した。水相を別のチューブへ移し,500μlのイソプロパノールを加え,混和し10分室温にて静置した。4℃,12,000×gで5分間遠心し,上清を除いた。ペレットに75%エタノールを加え,洗浄後,エタノールを捨て,10分乾燥させた後,200μlのDEPEC処理水に溶かした。さらに,同量のフェノール:クロロホルム:イソアミルアルコール=50:48:2を加え,混和後,15,000gで5分間,室温にて遠心分離した。水相を新しいチューブに移し,2.5倍量の100%エタノールと1/10量の3M LiClを加え,−80℃にて30分静置した後,4℃,15,000gで15分間遠心した。上清を捨て,ペレットを70%エタノールにて洗浄し,よく乾燥させた後,100μlの滅菌ミリQ水に溶かした。ゲノムDNAの混入を防ぐために,上記で得たRNAサンプルの30μlに5μlのDNaseI反応バッファー(インビトロジェンDeoxyribonuclease I, Amplification Grade)および,2μlのDNAase I, Amp grade(インビトロジェン),13μlのミリQ水を加え,23℃にて15分間静置した。4μlの25mM EDTAを加え,65℃にて10分加熱後,同量のフェノール:クロロホルム:イソアミルアルコール=50:48:2を加え,混和後,15,000×gで5分間,室温にて遠心分離した。水相を新しいチューブに移し,2.5倍量の100%エタノールと1/10量の3M LiClを加え,−80℃にて30分静置した後,4℃,15,000×gで15分間遠心した。上清を捨て,ペレットを70%エタノールにて洗浄し,よく乾燥させた後,30μlの滅菌ミリQ水に溶かした。これらのRNAサンプルをアジレント社製マイクロアレイ受託解析サービス(北海道システムサイエンス株式会社)にてマイクロアレイ解析を行った。W303−1BのRNAはCy5,TIY20およびYAB100のRNAはCy3にて蛍光ラベルし,YeastオリゴDNAマイクロアレイにハイブリダイズし,Agilent Technologies Microarray Scannerを用いて10μmの解像度でスキャンした。   YAB100, TIY20, and W303-1B strains were cultured in a 5 ml YPAD liquid medium at 30 ° C. for 15 hours before shaking. From these cultures, YAB100 was added at OD600 = 2.4 U, TIY20 was added at OD600 = 5 U, W303-1B = 0.3 U to 10 ml of YPAD liquid medium, and cultured with shaking at 34 ° C. for 15 hours. All of these cells were collected, washed with sterilized water, 200 μl of Sepazole (Nacalai Tesque) and glass beads were added, and the cells were crushed by vortexing vigorously. After transferring the cell disruption solution to a new tube, 800 μl of Sepazole was added, and after stirring, the mixture was allowed to stand at room temperature for 5 minutes. 200 μl of chloroform was added and mixed by inversion, left standing at room temperature for 3 minutes, and then centrifuged at 12,000 g for 15 minutes at 4 ° C. The aqueous phase was transferred to another tube, 500 μl of isopropanol was added, mixed and allowed to stand at room temperature for 10 minutes. The supernatant was removed by centrifugation at 12,000 × g for 5 minutes at 4 ° C. 75% ethanol was added to the pellet. After washing, the ethanol was discarded, dried for 10 minutes, and dissolved in 200 μl of DEPEC-treated water. Further, the same amount of phenol: chloroform: isoamyl alcohol = 50: 48: 2 was added, and after mixing, the mixture was centrifuged at 15,000 g for 5 minutes at room temperature. Transfer the aqueous phase to a new tube, add 2.5 volumes of 100% ethanol and 1/10 volume of 3M LiCl, allow to stand at −80 ° C. for 30 minutes, and then centrifuge at 4 ° C., 15,000 g for 15 minutes. did. The supernatant was discarded, the pellet was washed with 70% ethanol, dried well, and then dissolved in 100 μl of sterile milliQ water. To prevent genomic DNA contamination, 5 μl of DNase I reaction buffer (Invitrogen Deoxyribonuclease I, Amplification Grade), 2 μl of DNAase I, Amp grade (Invitrogen), and 13 μl of MilliQ water are added to 30 μl of the RNA sample obtained above. And left at 23 ° C. for 15 minutes. Add 4 μl of 25 mM EDTA, heat at 65 ° C. for 10 minutes, add the same amount of phenol: chloroform: isoamyl alcohol = 50: 48: 2, mix, and centrifuge at 15,000 × g for 5 minutes at room temperature. separated. The aqueous phase was transferred to a new tube, 2.5 volumes of 100% ethanol and 1/10 volume of 3M LiCl were added, allowed to stand at −80 ° C. for 30 minutes, then 15 ° C. at 4 ° C., 15,000 × g. Centrifuge for minutes. The supernatant was discarded, the pellet was washed with 70% ethanol, dried well, and then dissolved in 30 μl of sterile milliQ water. These RNA samples were subjected to microarray analysis using a contracted microarray analysis service (Hokkaido System Science Co., Ltd.) manufactured by Agilent. The W303-1B RNA was fluorescently labeled with Cy5, TIY20, and YAB100 RNA with Cy3, hybridized to the Yeast oligo DNA microarray, and scanned with an Agilent Technologies Microarray Scanner at 10 μm resolution.

YAB100とTIY20のmRNAの発現比較において,表1に列挙された遺伝子の発現がYAB100株およびYAB101株において転写誘導されていることが分かった。これらの遺伝子群が実際にYAB100株において発現誘導されているかどうか確かめるために,上記と同様の手法にて得たmRNAを鋳型として,上記遺伝子の発現を逆転写PCR反応にて確認した。逆転写PCR反応にはMLS1フォワードプライマー:5’−CCTGTCATCGGAGGGGTGTTCATGC−3’(配列番号3),リバースプライマー: 5’−GGGCACACATCCAGAGCCTCTGAGCC−3’(配列番号4),ICL2フォワードプライマー:5’−CACCAATTGTCGCTGATGCAGACGC−3’(配列番号5),リバースプライマー:5’−CTTGCTTATTTGACAGGGCTGATC−3’(配列番号6),PCL1フォワードプライマー:5’−CGCCAGTAACGGATGAC−3’(配列番号7),リバースプライマー:5’−GTACCTAGCCCAGTGC−3’(配列番号8),YOX1フォワードプライマー:5’−CACCACTCTCTGCAGCG−3’(配列番号9),リバースプライマー:5’−GGTGTGGATGAGCGCC−3’(配列番号10)を用いた。   In the expression comparison of YAB100 and TIY20 mRNA, it was found that the expression of the genes listed in Table 1 was transcriptionally induced in the YAB100 strain and the YAB101 strain. In order to confirm whether or not these gene groups were actually induced in the YAB100 strain, the expression of the genes was confirmed by reverse transcription PCR reaction using mRNA obtained by the same method as described above as a template. For reverse transcription PCR reaction, MLS1 forward primer: 5′-CCTGTCCATCGGAGGGGTGTTCATGC-3 ′ (SEQ ID NO: 3), reverse primer: 5′-GGGCACACATCCAGAGCTCTGAGCCC-3 ′ (SEQ ID NO: 4), ICL2 forward primer: 5′-CACCCAATTGTGCGCTGTC-3 (SEQ ID NO: 5), reverse primer: 5′-CTTGCTTATTGACAGGGCTGGATC-3 ′ (SEQ ID NO: 6), PCL1 forward primer: 5′-CGCCAGTAACGGATGAC-3 ′ (SEQ ID NO: 7), reverse primer: 5′-GTACCTAGGCCCAGGC-3 ′ ( SEQ ID NO: 8), YOX1 forward primer: 5′-CACCACTCTCTG AGCG-3 '(SEQ ID NO: 9), reverse primer: 5'-GGTGTGGATGAGCGCC-3' was used (SEQ ID NO: 10).

逆転写PCR反応の反応液を,以下の通りに調製した。
2×反応バッファー:6.25μl
鋳型mRNA 500ng
10μMフォワードプライマー:0.25μl
10μMリバースプライマー:0.25μl
RT/Platinum Taq Mix:0.25μl
滅菌ミリQ水:xμl
トータル50μl
A reaction solution for the reverse transcription PCR reaction was prepared as follows.
2 × reaction buffer: 6.25 μl
Template mRNA 500ng
10 μM forward primer: 0.25 μl
10 μM reverse primer: 0.25 μl
RT / Platinum Taq Mix: 0.25 μl
Sterilized milli-Q water: xμl
50μl total

反応条件はcDNA合成1サイクル(50℃ 30分,94℃ 2分),PCR合成18サイクル(94℃ 15秒,55℃ 30秒,72℃ 1分),1サイクル(72℃ 10分)とした。これら増幅産物の6μlを2.0%アガロースゲルにアプライし,100V 20分で電気泳動(電気泳動バッファー:Trisbase 24.2g,酢酸 5.71ml,EDTA・2Na(2HO)1.86g/500ml)を行った。図1に示したようにICL2,MLS1,PCL1およびYOX1のメッセージはTIY20に比べYAB100において誘導されていることが分かった。図示していないが,TIY20と比べYAB100で発現が上昇した24遺伝子のうち,糖新生に機能する遺伝子の発現を誘導するCat8転写因子によって発現誘導される遺伝子のうち9遺伝子(SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2)がYAB100にて約5〜11倍の発現量で誘導されていることが分かった。さらに,G1サイクリンをコードするPCL1も発現することがわかった。 The reaction conditions were one cycle of cDNA synthesis (50 ° C 30 minutes, 94 ° C 2 minutes), 18 cycles of PCR synthesis (94 ° C 15 seconds, 55 ° C 30 seconds, 72 ° C 1 minute), and 1 cycle (72 ° C 10 minutes). . 6 μl of these amplification products were applied to a 2.0% agarose gel and electrophoresed at 100 V for 20 minutes (electrophoresis buffer: Trisbase 24.2 g, acetic acid 5.71 ml, EDTA · 2Na (2H 2 O) 1.86 g / 500 ml ) As shown in FIG. 1, it was found that messages of ICL2, MLS1, PCL1, and YOX1 were induced in YAB100 compared to TIY20. Although not shown, among 24 genes whose expression is increased by YAB100 compared to TIY20, 9 genes (SFC1, PUT4, MLS1) among genes induced by the Cat8 transcription factor that induces the expression of genes that function in gluconeogenesis , CIT2, FBP1, STL1, ICL1, ACH1, and ADH2) were found to be induced in YAB100 at an expression level of about 5 to 11 times. Furthermore, it was found that PCL1 encoding G1 cyclin is also expressed.

Figure 2009183283
Figure 2009183283

2.CAT8遺伝子を導入したプラスミドYEp352GAP−II−CAT8の構築
Cat8依存的に発現誘導される遺伝子の多くがYAB100内で発現誘導されていることから,TIY20内でCat8を強制発現させることによってTIY20の増殖能の低下,および薬剤感受性などのタンパク生産には不適切な表現型を回復する可能性が考えられた。そこで,CAT8強制発現プラスミドを構築し,TIY20に形質転換した。
以下のようにしてCAT8のDNA断片を出芽酵母強制発現用マルチコピーベクターYEp352GAP−IIのSacI−SmaIサイトにクローニングし,プラスミドYEp352GAP−II−CAT8を構築した。
2. Construction of plasmid YEp352GAP-II-CAT8 into which CAT8 gene has been introduced Since many of the genes induced to induce expression in Cat8 are induced in YAB100, the ability of TIY20 to proliferate by forcibly expressing Cat8 in TIY20 It was possible that phenotypes that are inappropriate for protein production such as decrease in drug sensitivity and drug sensitivity could be recovered. Therefore, a CAT8 forced expression plasmid was constructed and transformed into TIY20.
The DNA fragment of CAT8 was cloned into the SacI-SmaI site of the multicopy vector YEp352GAP-II for forced expression of budding yeast as follows to construct the plasmid YEp352GAP-II-CAT8.

出芽酵母W303−1B株のゲノムDNAを鋳型として,PCR反応にてCAT8断片を増幅した。PCR反応にはフォワードプライマー:5’−GTTTGAGCTC(SacI)ATGGCAAATAATAATTCTGATCGACAAGG−3’(配列番号11),リバースプライマー:5’−GTTTCCCGGG(SmaI)TTATTTGGCGTTTTGCCATTGGAATAAATC−3’(配列番号12)を用いた。得られた増幅断片をTAクローニング用ベクターpCR2.1−TOPO(インビトロジェン社K4500−01)のTAクローニングサイトにクローニングした。本ベクターを制限酵素SacIおよびSmaIにより消化し,得られたCAT8断片をYEp352GAP−IIベクターのSacI−SmaIサイトにクローニングした(このようにして得られたプラスミドをYEp352GAP−II−CAT8と命名した)。このプラスミドはGAPDHプロモーターの支配下でCAT8遺伝子を発現させることができる。   A CAT8 fragment was amplified by PCR reaction using the genomic DNA of Saccharomyces cerevisiae strain W303-1B as a template. For the PCR reaction, forward primer: 5'-GTTTGAGCTCC (SacI) ATGGCAAAATAATATTCTGATCGACAAGG-3 '(SEQ ID NO: 11), reverse primer: 5'-GTTTCCCGGG (SmaI) TTATTGGCGTTTGCCCATTGGAATAATC-3 (sequence No. 11). The obtained amplified fragment was cloned into the TA cloning site of TA cloning vector pCR2.1-TOPO (Invitrogen K4500-01). This vector was digested with restriction enzymes SacI and SmaI, and the resulting CAT8 fragment was cloned into the SacI-SmaI site of the YEp352GAP-II vector (the plasmid thus obtained was named YEp352GAP-II-CAT8). This plasmid can express the CAT8 gene under the control of the GAPDH promoter.

3.CAT8強制発現TIY20株の増殖能および薬剤感受性の回復
上記のようにして得られたプラスミドYEp352GAP−II−CAT8(ウラシルマーカー遺伝子を含む)を,出芽酵母W303−1B株またはTIY20株に形質転換し,各々の形質転換体(WT<CAT8およびTIY<CAT8株)を得た。先に説明したとおり,TIY<CAT8株は,寄託された株である。また,それぞれのコントロール株として,W303−1B株あるいはTIY20株に空のYEp352GAP−IIベクターを導入した株も得た(WT<VecおよびTIY<Vec株)。WT<Vec,WT<CAT8,TIY<Vec,TIY<CAT8株1クローンを5mlのSD−ura+KCl液体培地(6.7g Yeast nitrogen base without amino acids (Difco laboratories), 20gグルコース,0.77g CMS−URA(Sun rise Science Products,0.22gAdenine sulfate/1Lに終濃度が0.3MとなるようにKClを添加)で30℃にて培養し,上記実施例1と同様にしてmRNAを取得した後,逆転写PCRにてCAT8のmRNAの発現を確認した。逆転写PCR反応にはCAT8フォワードプライマー:5’−CACAGTCGCGACCACAG−3’(配列番号13),リバースプライマー:5’−GAAGCCGTGGTGCTGGC−3’(配列番号14),を用いて上記と同様の条件で行った。図2に示したように,CAT8は野生型株,TIY20株において強制発現されていることが分かる。
3. Recovery of growth ability and drug sensitivity of CAT8 forced expression TIY20 strain Plasmid YEp352GAP-II-CAT8 (including uracil marker gene) obtained as described above was transformed into budding yeast strain W303-1B or TIY20 strain, Each transformant (WT <CAT8 and TIY <CAT8 strains) was obtained. As explained above, the strain TIY <CAT8 is a deposited strain. Moreover, the strain which introduce | transduced empty YEp352GAP-II vector into the W303-1B strain or TIY20 strain as each control strain was also obtained (WT <Vec and TIY <Vec strain). WT <Vec, WT <CAT8, TIY <Vec, TIY <CAT8 1 clone of 5 ml of SD-ura + KCl liquid medium (6.7 g Yeast nitrogen base without aminoacids (Difco Laboratories), 7 Glucose) After culturing at 30 ° C. (Sun rise Science Products, 0.22 g Adenine sulfate / 1 L with KCl to a final concentration of 0.3 M) and obtaining mRNA in the same manner as in Example 1 above, The expression of mRNA of CAT8 was confirmed by copying PCR.For reverse transcription PCR reaction, CAT8 forward primer: 5′-CACAGCTCGCACCACAG-3 ′ (SEQ ID NO: 13), reverse primer: 5′-GAAGCCGTGGTGCTGGC-3 ′ (SEQ ID NO: 14) was used under the same conditions as described above, and it was found that CAT8 was forcibly expressed in the wild type strain and the TIY20 strain, as shown in FIG. .

WT<Vec,WT<CAT8,TIY<Vec株,それぞれ1クローン,TIY<CAT8株3クローンを,5mlのSD−ura+KCl液体培地にて培養した。その後,OD600が1.0〜1.0x10−4となるように段階的に希釈した。これらの菌液をSD−ura+KClプレート(上記SD−ura+KClに20g/1L Agarを添加,以下SD−uraプレート)又は5mg/1L ハイグロマイシンBを含むYPADプレート(10g Yeastextract,20g Peptone,20g Glucose,0.2g Adenine,20g Agar/1L,以下「ハイグロマイシンプレート」という)上に6μlずつスポットし,30℃で静置培養した。培養2日後のSD−uraプレート,培養5日後のハイグロマイシンプレートの写真を図3に示す。野生型株W303−1Bが宿主の場合には,CAT8発現株(W303<CAT8)の生育は空ベクター導入株(W303<Vec)よりも若干遅延する傾向が観察された。一方TIY20株が宿主の場合には,CAT8発現株(TIY<CAT8)は,空ベクター導入株(W303<Vec)よりもよく増殖することがわかった(図3a)。さらに,TIY20株へCAT8遺伝子を導入することで,TIY20株が示すハイグロマイシンB感受性が低下することが分かった(図3b)。 WT <Vec, WT <CAT8, TIY <Vec strains, 1 clone each, and TIY <CAT8 strain 3 clones were cultured in 5 ml of SD-ura + KCl liquid medium. Then, OD600 was stepwise diluted to 1.0~1.0x10 -4. These bacterial solutions were added to SD-ura + KCl plate (20 g / 1 L Agar was added to the above SD-ura + KCl, hereinafter referred to as SD-ura plate) or YPAD plate containing 5 mg / 1 L hygromycin B (10 g Yeast extract, 20 g Peptone, 20 g Glucose, 0 6 μl each was spotted on 2 g Adenine, 20 g Agar / 1 L (hereinafter referred to as “hygromycin plate”), and statically cultured at 30 ° C. The photographs of the SD-ura plate after 2 days of culture and the hygromycin plate after 5 days of culture are shown in FIG. When the wild type strain W303-1B was the host, the growth of the CAT8 expression strain (W303 <CAT8) tended to be slightly delayed compared to the empty vector introduced strain (W303 <Vec). On the other hand, when the TIY20 strain was the host, it was found that the CAT8 expression strain (TIY <CAT8) grew better than the empty vector-introduced strain (W303 <Vec) (FIG. 3a). Furthermore, it was found that by introducing the CAT8 gene into the TIY20 strain, the hygromycin B sensitivity exhibited by the TIY20 strain was reduced (FIG. 3b).

4.CAT8発現プラスミドを取り除いたTIY20株の表現型
上記のTIY<CAT8株3クローン(ウラシル非要求性)をYPAD培地で2回継代し,プラスミドを失ってウラシル要求性となった株を選抜・取得した。W303−1B株,TIY20株および上記のベクター除去株を,5mlのSDall+KCl培地(上記SD−ura+KCl培地に20mgUracil/1L)で30℃にて培養した後,OD600が1.0〜1.0x10−4となるように段階希釈した。これらの菌液をSD all+KClプレート(上記SD all+KClに20g/1L Agarを添加,以下SD allプレート)又はハイグロマイシンプレート上に6μlずつスポットし,30℃で静置培養した。培養2日後のSD allプレート,培養5日後のハイグロマイシンプレートの写真を図4に示す。TIY<CAT8株のベクター除去株の生育は,TIY20株よりも若干遅延することがわかった(図4a)。さらに,これらのベクター除去株はTIY20株と同様に強いハイグロマイシンB感受性を示すことがわかった(図4b)。これらの結果より,TIY<CAT8株にみられる生育改善およびハイグロマシンB感受性の低下はCAT8遺伝子の強制発現に起因するものであると考えられた。
4). Phenotype of TIY20 strain from which CAT8 expression plasmid was removed The above-mentioned TIY <CAT8 strain 3 clones (uracil non-requiring) were passaged twice in YPAD medium, and the strain that lost the plasmid and became uracil-requiring was selected and obtained. did. The W303-1B strain, the TIY20 strain and the above-described vector-removed strain were cultured at 30 ° C. in 5 ml of SDall + KCl medium (20 mg Uracil / 1 L in the above SD-ura + KCl medium), and then OD600 was 1.0 to 1.0 × 10 −4. Serial dilution was made so that These bacterial solutions were spotted 6 μl each on an SD all + KCl plate (20 g / 1 L Agar was added to the above SD all + KCl, hereinafter referred to as SD all plate) or hygromycin plate, and statically cultured at 30 ° C. FIG. 4 shows photographs of the SD all plate after 2 days of culture and the hygromycin plate after 5 days of culture. It was found that the growth of the vector-removed strain with TIY <CAT8 was slightly delayed as compared with TIY20 (FIG. 4a). Furthermore, it was found that these vector-removed strains showed strong hygromycin B sensitivity similar to the TIY20 strain (FIG. 4b). From these results, it was considered that the growth improvement and the decrease in hygromachine B sensitivity observed in the strain TIY <CAT8 were caused by forced expression of the CAT8 gene.

5.酵母のインベルターゼに付加される糖鎖長の解析
実施例3で得られた3株(C1,C3,C5)のN結合型糖鎖長を調べるために,酵母内で作られるインベルターゼに付加されるN−結合型糖鎖長を,以下の方法にて調べた。それぞれの株を5mlのYPADで培養後,5mlのYPSuc(10g Yeast extract(Difcolaboratories),20gのpeptone(Difco),10gのsucrose/1L)で3時間以上培養し,菌を回収した。回収した菌は50μlのSDS−PAGEサンプルバッファー(15%Glycerol,0.125M Tris−HCl(pH6.8),2mM PMSF,3%SDS,0.1%Bromophenol blue,1%2−mercaptoethanol)とグラスビーズを加えてボルテックスにて破砕した。15,000×gで5分間遠心分離した後,上清5μlずつを5%SDS−PAGEにて電気泳動(100V,3時間)した。ゲルを反応液(3.4g sucrose,3ml 3M Na−acetate/100ml)に移し,30分37℃でインキュベーションした後,脱イオン水にて2回洗浄した。その後,染色液(2g NaOH,50mg triphenyltetrazoliumchloride/50ml)に移し,発色するまで煮込んだ。その結果を図5に示す。図5は,N−結合型糖鎖長を調べるための図面に替わるSDSゲル電気泳動写真である。図5のレーンは,左から,W303−1B,TIY20,C1,C3およびC5を示す。図5から,得られた3株のインベルターゼに付加されるN−結合型糖鎖は親株であるTIY20と同じ糖鎖長をもつことが分かった。
5. Analysis of sugar chain length added to yeast invertase In order to examine the N-linked sugar chain length of the three strains (C1, C3, C5) obtained in Example 3, it was added to the invertase produced in yeast. The N-linked sugar chain length was examined by the following method. Each strain was cultured in 5 ml of YPAD and then cultured in 5 ml of YPSuc (10 g Yeast extract (Difcolaboratories), 20 g of peptone (Difco), 10 g of sucrose / 1 L) for 3 hours or more, and the bacteria were collected. The collected bacteria were 50 μl of SDS-PAGE sample buffer (15% Glycerol, 0.125 M Tris-HCl (pH 6.8), 2 mM PMSF, 3% SDS, 0.1% Bromophenol blue, 1% 2-mercaptoethanol) and glass. Beads were added and vortexed. After centrifugation at 15,000 × g for 5 minutes, 5 μl of each supernatant was electrophoresed on 5% SDS-PAGE (100 V, 3 hours). The gel was transferred to a reaction solution (3.4 g sucrose, 3 ml 3M Na-acetate / 100 ml), incubated at 37 ° C. for 30 minutes, and then washed twice with deionized water. Then, it moved to the dyeing | staining liquid (2g NaOH, 50mg triphenyltetrazol chloride / 50ml), and boiled until it developed color. The result is shown in FIG. FIG. 5 is an SDS gel electrophoresis photograph replacing the drawing for examining the N-linked sugar chain length. The lanes in FIG. 5 show W303-1B, TIY20, C1, C3, and C5 from the left. From FIG. 5, it was found that the N-linked sugar chain added to the obtained three strains of invertase has the same sugar chain length as TIY20 which is the parent strain.

6.KID08−08−1株細胞内でのO.minutaCAT8遺伝子の強制発現の確認
Ogataea minuta由来CAT8遺伝子は、Ogataea minutaのゲノム上に存在しており、その配列を配列番号19に示す。次にこのCAT8遺伝子をコードする領域について、N末端側1.5kbをコードする領域をプライマーA 5’−CCGGTCGACATGGCACCATCTGGCAGCGAT−3’(配列番号20)とプライマーB 5’−TCAGACAGTACAGCAGCTCCATGGTAGTGA−3’(配列番号21)を用いて、またC末端側1.8kbをコードする領域をプライマーC 5’−TCACTACCATGGAGCTGCTGTACTGTCTGA−3’(配列番号22)とプライマーD 5’−AGCATGCATTCACCACCCGGTCATGGTGCT−3’(配列番号23)を用いて、サブクローン化したCAT8を含む領域を鋳型としPCRで増幅した。
6). KID08-08-1 strain O.D. Confirmation of forced expression of minutaCAT8 gene
The Ogataea minuta- derived CAT8 gene is present on the genome of Ogataea minuta , and its sequence is shown in SEQ ID NO: 19. Next, for the region encoding this CAT8 gene, the region encoding the N-terminal side 1.5 kb was expressed as primer A 5′-CCGGTCGACATGGCACATCATTGGCAGCGAT-3 ′ (SEQ ID NO: 20) and primer B 5′-TCAGACAGTACAGCAGCTCCATGGTAGGTGA-3 ′ (SEQ ID NO: 21 ), And the region encoding 1.8 kb on the C-terminal side using primer C 5′-TCACTACCCATGGAGCTGCTGTACGTCTGA-3 ′ (SEQ ID NO: 22) and primer D 5′-AGCATGCATTCACCACCCGGTCATGGTGCTCT-3 ′ (SEQ ID NO: 23) Amplified by PCR using the subcloned region containing CAT8 as a template.

プライマーAとBにより得られたPCR産物をSalI部位とNcoI部位で切断し、大腸菌のクローニング用プラスミドpRS306(Stratagene社)のSalI/NcoI部位に組み込み、プラスミドpRS306−OmCAT8Nを構築した。またプライマーC(配列番号22)とプライマーD(配列番号23)により得られたPCR産物をNcoI部位とEcoT22I部位で切断し、大腸菌のクローニング用プラスミドpRS306(Stratagene社)のNcoIEcoT22I部位に組み込み、プラスミドpRS306−OmCAT8Cを構築した。次にpRS306−OmCAT8NをSalINcoIにて、pRS306−OmCAT8CをNcoIEcoT22Iでそれぞれ切断し、O.minuta発現用ベクターpOMEGPU1のSalI/EcoT22I部位に組み込み、プラスミドpOMEGPU−OmCAT8を構築した。 The PCR product obtained with primers A and B was digested with SalI and NcoI sites, embedded in the SalI / NcoI sites of plasmid for cloning of E. coli pRS306 (Stratagene Inc.) to construct the plasmid pRS306-OmCAT8N. In addition, the PCR product obtained by primer C (SEQ ID NO: 22) and primer D (SEQ ID NO: 23) was cleaved at the NcoI site and EcoT 22I site, and the NcoI / EcoT 22I site of the plasmid pRS306 (Stratagene) for Escherichia coli was cloned. Incorporation, plasmid pRS306-OmCAT8C was constructed. Next, pRS306-OmCAT8N was cleaved with SalI and NcoI , pRS306-OmCAT8C was cleaved with NcoI and EcoT 22I , respectively, and incorporated into the SalI / EcoT22I site of the O.minuta expression vector pOMEGPU1 to construct plasmid pOMEGPU-OmCAT8.

このプラスミドpOMEGPU−OmCAT8をNotIにて切断後、O.minuta KID3−22株(Δalg3Δoch1)(2005年の日本農芸化学会にて発表)を形質転換した。形質転換はエレクトロポレーション法(PCT/JP03/05464)にて行った。形質転換後、SD−Ura(2%グルコース、0.17%Yeast Nitrogen Base w/o amino acids(Difco社製)、ウラシルをのぞく核酸塩基およびアミノ酸混合物(20−400mg/L)培地にまいて、30℃にて2日間培養し形質転換体を得た。形質転換体をプレートから掻きとり、PCR反応液に懸濁する簡易法PCRにて染色体上への組み込みを確認し、KID08−08−1株とした。 This plasmid pOMEGPU-OmCAT8 was cleaved with NotI and transformed into O. minuta KID3-22 strain ( Δalg3Δoch1 ) (published at the 2005 Agricultural Chemical Society of Japan). Transformation was performed by electroporation (PCT / JP03 / 05464). After transformation, spread in SD-Ura (2% glucose, 0.17% Yeast Nitrogen Base w / o amino acids (manufactured by Difco), uracil, nucleobase and amino acid mixture (20-400 mg / L) medium, A transformant was obtained by culturing for 2 days at 30 ° C. The transformant was scraped from the plate and confirmed to be integrated on the chromosome by a simplified PCR method suspended in a PCR reaction solution, and KID08-08-1. It was a stock.

mRNAのRT−PCR
KID3−22株ならびにKID08−08−1株から、市販のSV TotalRNA Isolation System(プロメガ社)を用いて全RNAを抽出した。得られた全RNA500ngに対し、プライマーC(配列番号22)とプライマーE 5’−TTCCTTCTTGACCGGGGCAGAGCCG−3’(配列番号24)を用いて、逆転写PCRを行なった。
RT-PCR of mRNA
Total RNA was extracted from KID3-22 strain and KID08-08-1 strain using commercially available SV TotalRNA Isolation System (Promega). Reverse transcription PCR was performed on 500 ng of the obtained total RNA using primer C (SEQ ID NO: 22) and primer E 5′-TTCCTCTCTTGACCGGGGCAGAGCCG-3 ′ (SEQ ID NO: 24).

逆転写PCRはOne Step RNA PCR Kit(タカラバイオ社)を用い、プロトコールに従って行なった。反応は50℃−30分、次いで95℃−15分の反応の後、94℃−15秒、65℃−15秒、72℃−1分の反応を25サイクル繰り返した後、電気泳動にて半定量解析を行なった。その結果、KID3−22株(図6中,CAT8(−))ではシグナルがほとんど見られないのに対し、KID08−08−1株(図6中,CAT8(+))ではシグナルが観察されたことから、KID08−08−1株ではCAT8が過剰に発現していることが確認された(図6)。   Reverse transcription PCR was performed using One Step RNA PCR Kit (Takara Bio Inc.) according to the protocol. The reaction was performed at 50 ° C. for 30 minutes, then at 95 ° C. for 15 minutes, followed by 25 cycles of 94 ° C. for 15 seconds, 65 ° C. for 15 seconds, and 72 ° C. for 1 minute. Quantitative analysis was performed. As a result, almost no signal was observed in the KID3-22 strain (CAT8 (−) in FIG. 6), whereas a signal was observed in the KID08-08-1 strain (CAT8 (+) in FIG. 6). From these results, it was confirmed that CAT8 was excessively expressed in the KID08-08-1 strain (FIG. 6).

7.CAT8強制発現によるKID3−22が示す高温度感受性の回復
上記のようにして得られたO.minuta KID3−22株とKID08−08−1株を5mLのYPAD液体培地(10g Yeastextract,20g Peptone,20g Glucose,0.2g Adenine)にて培養した。その後,OD600が1.0〜1.0×10−4となるように段階的に希釈した。これらの菌液をYPADプレート(上記YPADに20g/1L Agarを添加,以下YPADプレート)上に5μlずつスポットし,30℃,33℃,34℃で静置培養した。培養5日後のYPADプレートの写真を図7に示す。KID3−22株へCAT8遺伝子を導入することで,KID3−22株が示す高温度感受性が低下することが分かった(図7)。
7). Recovery of high temperature sensitivity exhibited by KID3-22 by forced expression of CAT8 O.D. obtained as described above . minuta KID3-22 strain and a 5 mL KID08-08-1 strain YPAD liquid culture medium (10g Yeastextract, 20g Peptone, 20g Glucose, 0.2g Adenine) and cultured in. Then, it diluted stepwise so that OD600 might be 1.0-1.0 * 10 < -4 >. These bacterial solutions were spotted 5 μl each on a YPAD plate (20 g / 1 L Agar was added to the above YPAD, hereinafter referred to as a YPAD plate), and statically cultured at 30 ° C., 33 ° C. and 34 ° C. A photograph of the YPAD plate after 5 days in culture is shown in FIG. It was found that the high temperature sensitivity exhibited by the KID3-22 strain was reduced by introducing the CAT8 gene into the KID3-22 strain (FIG. 7).

本発明の増殖性を回復した酵母及びその製造方法は,増殖性及び糖タンパク質産生能に優れた酵母を得ることができ,出芽酵母,分裂酵母及びメタノール資化性酵母のみならず,酵母全般に広く適用することができる。   The yeast having improved growth ability and the method for producing the same according to the present invention can obtain a yeast having excellent growth ability and glycoprotein production ability, and can be applied not only to budding yeast, fission yeast and methanol-utilizing yeast, but also to yeast in general. Can be widely applied.

本発明のβ−グルカンを高効率に産生する酵母及びその製造方法は,従来公知の酵母に比べてよりβ−グルカン産生能に優れた酵母を得ることができ,出芽酵母,分裂酵母及びメタノール資化性酵母のみならず,酵母全般に広く適用することができる。   The yeast that produces β-glucan of the present invention with high efficiency and a method for producing the same can obtain a yeast that is more excellent in β-glucan-producing ability than conventionally known yeasts. It can be widely applied not only to yeasts but also to yeast in general.

本発明は,酵母を用いた糖タンパク質及びβ−グルカンの生産などに効果的に用いることができるため医薬産業において利用されうる。   The present invention can be used in the pharmaceutical industry because it can be effectively used for production of glycoprotein and β-glucan using yeast.

Claims (18)

遺伝子破壊又は遺伝子変異により増殖能が低下した微生物に,糖新生を促進する機能を有する遺伝子を導入する工程を含み,前記糖新生を促進する機能を有する遺伝子は,
{CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2}からなる群から選ばれる1又は2以上の遺伝子である,遺伝子破壊又は遺伝子変異により低下した増殖能を回復した微生物の製造方法。
Including a step of introducing a gene having a function of promoting gluconeogenesis into a microorganism whose growth ability has been reduced by gene disruption or gene mutation, and the gene having a function of promoting gluconeogenesis,
Recovered the growth ability reduced by gene disruption or gene mutation, which is one or more genes selected from the group consisting of {CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2} A method for producing microorganisms.
前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,遺伝子破壊又は遺伝子変異により増殖能が低下した酵母である,請求項1に記載の製造方法。   The production method according to claim 1, wherein the microorganism whose growth ability is reduced by gene disruption or gene mutation is yeast whose growth ability is reduced by gene disruption or gene mutation. 前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,遺伝子破壊又は遺伝子変異により増殖能が低下した出芽酵母,分裂酵母,又はメタノール資化性酵母である,請求項1に記載の製造方法。   The production method according to claim 1, wherein the microorganism whose growth ability is reduced by gene disruption or gene mutation is budding yeast, fission yeast, or methanol-assimilating yeast whose growth ability is reduced by gene destruction or gene mutation. 前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,遺伝子破壊又は遺伝子変異により増殖能が低下した出芽酵母である,請求項1に記載の製造方法。   The production method according to claim 1, wherein the microorganism whose growth ability is reduced by gene disruption or gene mutation is a budding yeast whose growth ability is reduced by gene disruption or gene mutation. 前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,出芽酵母の遺伝子破壊株である,請求項1に記載の製造方法。   The production method according to claim 1, wherein the microorganism whose growth ability is reduced by the gene disruption or gene mutation is a budding yeast gene disruption strain. 前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,
{och1破壊,mnn1破壊,mnn4破壊,及びalg3破壊}からなる群から選ばれるひとつ又は2つ以上の破壊を有する出芽酵母の遺伝子破壊株である,請求項1に記載の製造方法。
Microorganisms whose growth ability is reduced by the gene disruption or gene mutation
The production method according to claim 1, which is a budding yeast gene-disrupted strain having one or more disruptions selected from the group consisting of {och1 disruption, mnn1 disruption, mnn4 disruption, and alg3 disruption}.
前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,
och1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株である,
請求項1に記載の製造方法。
Microorganisms whose growth ability is reduced by the gene disruption or gene mutation
a gene disrupted strain of Saccharomyces cerevisiae having och1 disruption, mnn1 disruption, and mnn4 disruption,
The manufacturing method according to claim 1.
前記糖新生を促進する機能を有する遺伝子は,CAT8であり,前記遺伝子破壊又は遺伝子変異により増殖能が低下した微生物は,och1破壊,mnn1破壊,及びmnn4破壊を有する出芽酵母の遺伝子破壊株である,請求項1に記載の製造方法。   The gene having a function of promoting gluconeogenesis is CAT8, and the microorganism whose growth ability is reduced by the gene disruption or gene mutation is a budding yeast gene disruption strain having och1 disruption, mnn1 disruption, and mnn4 disruption. The manufacturing method according to claim 1. 請求項2に記載の製造方法により,増殖能を回復した酵母を得る工程を含む,糖タンパク質の製造方法。   A method for producing a glycoprotein, comprising a step of obtaining a yeast whose growth ability has been recovered by the production method according to claim 2. 請求項6から請求項8のいずれかに記載された製造方法により,増殖能を回復した出芽酵母を得る工程を含む,糖タンパク質の製造方法。   A method for producing a glycoprotein, comprising a step of obtaining a budding yeast whose growth ability has been recovered by the production method according to any one of claims 6 to 8. 請求項2に記載の製造方法により,増殖能を回復した酵母を得る工程を含む,β−グルカンの製造方法。   The manufacturing method of (beta) -glucan including the process of obtaining the yeast which recovered the growth ability with the manufacturing method of Claim 2. 請求項6から請求項8のいずれかに記載された製造方法により,増殖能を回復した出芽酵母を得る工程を含む,β−グルカンの製造方法。   The manufacturing method of (beta) -glucan including the process of obtaining the budding yeast which recovered the growth ability with the manufacturing method in any one of Claims 6-8. 糖新生を促進する機能を有する遺伝子が導入された,
och1破壊,mnn1破壊,及びmnn4破壊を有する酵母の遺伝子破壊株であって,前記糖新生を促進する機能を有する遺伝子は,
{CAT8,SFC1,PUT4,MLS1,CIT2,FBP1,STL1,ICL1,ACH1,及びADH2}からなる群から選ばれる1又は2以上の遺伝子である酵母の遺伝子破壊株。
A gene having a function of promoting gluconeogenesis was introduced,
A gene-disrupted strain of yeast having och1 disruption, mnn1 disruption, and mnn4 disruption, the gene having a function of promoting gluconeogenesis,
A yeast gene disruption strain that is one or more genes selected from the group consisting of {CAT8, SFC1, PUT4, MLS1, CIT2, FBP1, STL1, ICL1, ACH1, and ADH2}.
前記糖新生を促進する機能を有する遺伝子として,CAT8遺伝子が導入された,請求項13に記載の酵母の遺伝子破壊株。   The yeast gene-disrupted strain according to claim 13, wherein a CAT8 gene is introduced as the gene having a function of promoting gluconeogenesis. 前記酵母は,出芽酵母である,請求項13又は請求項14に記載の酵母の遺伝子破壊株。   The yeast-disrupted strain according to claim 13 or 14, wherein the yeast is a budding yeast. 糖鎖合成遺伝子破壊酵母株又は糖鎖合成遺伝子変異酵母株の,高温感受性を回避するため,又は薬剤感受性を低下させるために用いられる,CAT8遺伝子を含有するプラスミド。   A plasmid containing the CAT8 gene, which is used to avoid high temperature sensitivity or to reduce drug sensitivity of a sugar chain synthetic gene disrupted yeast strain or a sugar chain synthetic gene mutant yeast strain. 独立行政法人産業技術総合研究所特許生物寄託センターに受託番号「FERM AP−21445」として寄託されている酵母。   Yeast deposited under the accession number “FERM AP-21445” at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology. 独立行政法人産業技術総合研究所特許生物寄託センターに受託番号「FERM AP−21757」として寄託されている酵母。   Yeast deposited under the accession number “FERM AP-21757” at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology.
JP2009004310A 2008-01-11 2009-01-13 METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN Pending JP2009183283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004310A JP2009183283A (en) 2008-01-11 2009-01-13 METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008004850 2008-01-11
JP2009004310A JP2009183283A (en) 2008-01-11 2009-01-13 METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN

Publications (1)

Publication Number Publication Date
JP2009183283A true JP2009183283A (en) 2009-08-20

Family

ID=41067244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004310A Pending JP2009183283A (en) 2008-01-11 2009-01-13 METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN

Country Status (1)

Country Link
JP (1) JP2009183283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130357A (en) * 2010-02-25 2012-07-12 Toyama Prefecture Saccharomyces cerevisiae transformant
JP2012152211A (en) * 2011-01-04 2012-08-16 National Institute Of Advanced Industrial Science & Technology Sugar chain-modified yeast and method for producing glycoprotein therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130357A (en) * 2010-02-25 2012-07-12 Toyama Prefecture Saccharomyces cerevisiae transformant
US8741602B2 (en) 2010-02-25 2014-06-03 Toyama Prefecture Method for producing glucuronic acid conjugate using Saccharomyces cerevisiae
JP2012152211A (en) * 2011-01-04 2012-08-16 National Institute Of Advanced Industrial Science & Technology Sugar chain-modified yeast and method for producing glycoprotein therewith

Similar Documents

Publication Publication Date Title
Jigami et al. Mannosylphosphate transfer to yeast mannan
TWI232238B (en) Novel yeast mutant strains and method for preparing glycoprotein with mammalian-typed sugar chains
CN108291213A (en) The yeast strain of expression and heterologous protein secretion at high temperature
EP2111454B1 (en) Genetically modified yeasts for the production of homogeneous glycoproteins
US7803605B2 (en) Breeding method for yeast, yeast and a production method for glycoprotein or beta-glucan
JP2009183283A (en) METHOD FOR PRODUCING MICROORGANISM, METHOD FOR PRODUCING GLYCOPROTEIN AND METHOD FOR PRODUCING beta-GLUCAN
US9017969B2 (en) Sugar-chain modified yeast and method for producing glycoprotein using the same
JP5119466B2 (en) Yeast production method, yeast, and glycoprotein or β-glucan production method
EP2886642B1 (en) Transformant of schizosaccharomyces pombe mutant, and cloning vector
CN115948265A (en) Kluyveromyces marxianus haploid yeast and construction method and application thereof
Stewart et al. Current developments in the genetic manipulation of brewing yeast strains—A review
CN1918297B (en) Hansenula polymorpha gene coding for alpha 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with hansenula polymorpha mutant strain deficient in the same
WO2021213489A1 (en) Method for constructing engineered yeast for glycoprotein preparation and strain thereof
Luu et al. Development of conditional cell lysis mutants of Saccharomyces cerevisiae as production hosts by modulating OCH1 and CHS3 expression
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
KR101412468B1 (en) Mutant Beta-glucosidase with Advanced Activity and Process for Preparing Bio-ethanol Employing the Same
CN110564630A (en) aspergillus ochraceus mutant strain with ochratoxin A gene knockout function and construction and application thereof
JP6647653B2 (en) Mutant filamentous fungus and method for producing substance using the mutant filamentous fungus
WO2012060389A1 (en) Transformant of yeast of genus schizosaccharomyces and method for producing same
TWI730383B (en) Recombinant strain of candida spp., and the preparation process and uses thereof
CN107699508B (en) Method for constructing recombinant saccharomyces cerevisiae to efficiently synthesize glucan
CN102985541B (en) The manufacture method of host, transformant and manufacture method thereof and the heterologous protein containing O-glycosides type sugar chain
Kohda et al. Reconstitution of Artificial Cellulosome on Yeast Surface
Oller et al. Transformation of an Aureobasidium Pullulan Synthetase Gene into Saccharomyces cerevisiae
CN116200410A (en) Glucan synthetase mutant with improved enzyme activity, preparation and drug screening application