JP2009180697A - Analysis plate - Google Patents

Analysis plate Download PDF

Info

Publication number
JP2009180697A
JP2009180697A JP2008022330A JP2008022330A JP2009180697A JP 2009180697 A JP2009180697 A JP 2009180697A JP 2008022330 A JP2008022330 A JP 2008022330A JP 2008022330 A JP2008022330 A JP 2008022330A JP 2009180697 A JP2009180697 A JP 2009180697A
Authority
JP
Japan
Prior art keywords
flow path
channel
analysis plate
chamber
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022330A
Other languages
Japanese (ja)
Inventor
Tomohiro Kijima
知裕 来島
Toshibumi Nanjo
俊文 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008022330A priority Critical patent/JP2009180697A/en
Publication of JP2009180697A publication Critical patent/JP2009180697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis plate having a quantitative chamber for accurately quantitatively determining a biological sample. <P>SOLUTION: This analysis plate is formed of the quantitative chamber that is disposed so as to come into contact with the liquid feed channel for feeding the biological sample and quantitatively determining the biological sample. The quantitative chamber has a partition for separating the liquid feed channel from the quantitative chamber in the center section, and connection channels for connecting the liquid feed channel to the quantitative chamber at both ends of the partition. The width of the connection channels is narrower than that of the liquid feed channel coming into contact with the partition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、DNAやタンパクその他の生体試料を緩衝剤中で移動させ、その輸送反応を検出して生体試料を判別する分析プレートに関する。   The present invention relates to an analysis plate for discriminating a biological sample by moving a DNA, protein or other biological sample in a buffer and detecting its transport reaction.

一般的な生体試料にはDNAがあり、このDNAに関しては、現在地球上に同じSNPs(single nucleotide polymorphismの略で「1塩基多型」と一般に訳された、遺伝子における1暗号(1塩基)の違いの総称である。)を持つ人間は絶対に存在しない事から個人の完全な特定ができるなどで注目されている。現在SNPsを調べる方法としては、DNAの塩基配列を端から直接読んでいくシーケンシング(塩基配列の決定)が最も一般的に用いられている。そして、前記シーケンシングを行う方法としては、いくつかの報告があるが、もっとも一般的に行われているのは、ジデオキシシーケリング(Sanger法)である。なお、シーケンシングは、このSanger法を含め何れの方法においても、分離能の高い変性ポリアクリルアミドゲル電気泳動か、キャピラリー電気泳動によって1塩基長の長さの違いを分離・識別する技術が基になって成り立っている。   A common biological sample is DNA, and for this DNA, currently the same SNPs (short for single nucleotide polymorphism, generally translated as “single nucleotide polymorphism”), one code (one base) in a gene. It is a collective term for differences.) Since there is absolutely no human being, it has attracted attention because it can completely identify an individual. Currently, as a method for examining SNPs, sequencing (determination of base sequence) in which the base sequence of DNA is directly read from the end is most commonly used. There are several reports on the sequencing method, but the most common method is dideoxy sequencing (Sanger method). Sequencing is based on a technique that separates and identifies the difference in length of one base length by denaturing polyacrylamide gel electrophoresis with high resolution or capillary electrophoresis in any method including the Sanger method. This is true.

このキャピラリー電気泳動を用いたSNPs用流路の構成として図7(a)に示すように、流路パターンは、分析プレート28の重心30を中心とした同心円上に形成されている。分析プレート28の外形は8センチ四方の正方形で4角のうち3角はRが設けられ、残りの1角は面取りされている。次に図7(b)に示すように、試料が流れる経路には試料注入部5、流路14、チャンバー13、流路16、送液流路17A、送液流路17B、流路18、流路19、試料保持部15、バッファ部21、定量チャンバー22、第一の接続流路24A、第二の接続流路24Bで構成されている。   As shown in FIG. 7A, the flow path pattern is formed on concentric circles with the center of gravity 30 of the analysis plate 28 as the center of the flow path for SNPs using this capillary electrophoresis. The outer shape of the analysis plate 28 is an 8 cm square, three of the four corners are provided with R, and the remaining one is chamfered. Next, as shown in FIG. 7B, the sample flow path includes the sample injection section 5, the flow path 14, the chamber 13, the flow path 16, the liquid supply flow path 17A, the liquid supply flow path 17B, the flow path 18, The flow path 19, the sample holding section 15, the buffer section 21, the quantitative chamber 22, the first connection flow path 24 </ b> A, and the second connection flow path 24 </ b> B are configured.

次にSNPsの測定方法として、モータ等に分析プレート28を固定し、重心30を軸に2000rpmで回転させる(第1の回転)。ピペッターなどで3μl充填されたDNAコンジュゲート注入部内のDNAコンジュゲート32は正電極部6と負電極部7へそれぞれ7割程度まで充填され、流路8を満たし定量チャンバー22まで移動する。正電極部6と負電極部7内に存在するDNAコンジュゲート32の液面高さと定量チャンバー22の液面高さは、重心30を中心とする同一円上となる。同様に1μl充填されたDNA試料注入部5内のDNA試料27は流路14を通りチャンバー部13さらには流路16、流路18を通り外周側に位置する空気抜き用の穴のない試料保持部15まで達する。   Next, as a method of measuring SNPs, the analysis plate 28 is fixed to a motor or the like, and rotated at 2000 rpm around the center of gravity 30 (first rotation). The DNA conjugate 32 in the DNA conjugate injection part filled with 3 μl with a pipetter or the like is filled to the positive electrode part 6 and the negative electrode part 7 up to about 70% respectively, fills the flow path 8 and moves to the quantitative chamber 22. The liquid level height of the DNA conjugate 32 existing in the positive electrode part 6 and the negative electrode part 7 and the liquid level height of the quantitative chamber 22 are on the same circle with the center of gravity 30 as the center. Similarly, the DNA sample 27 in the DNA sample injection section 5 filled with 1 μl passes through the flow path 14, passes through the chamber section 13, the flow path 16, and the flow path 18, and is a sample holding section without an air vent hole. Reach up to 15.

試料保持部15内に充填されたDNA試料27と加圧された空気が充填した状態となる。試料保持部15内の加圧された空気は、回転中のみこのような遠心力と加圧力とが平衡となった状態を維持する。次にDNAコンジュゲート32とDNA試料27の移動が停止した状態で回転を急停止させる。すると試料保持部15のDNA試料27は空気の圧力により流路18、送液流路17A、第一の接続流路24Aを通り定量チャンバー22および送液流路17B、バッファ部21まで達する(試料充填処理)。   It will be in the state filled with the DNA sample 27 with which the sample holding | maintenance part 15 was filled, and the pressurized air. The pressurized air in the sample holder 15 maintains a state where such centrifugal force and applied pressure are in equilibrium only during rotation. Next, the rotation is suddenly stopped while the movement of the DNA conjugate 32 and the DNA sample 27 is stopped. Then, the DNA sample 27 in the sample holder 15 passes through the flow path 18, the liquid supply flow path 17 A, and the first connection flow path 24 A due to the pressure of air and reaches the quantitative chamber 22, the liquid supply flow path 17 B, and the buffer section 21 (sample) Filling process).

特に定量チャンバー22では、検査に必要な量が充填されたDNAコンジュゲート32と接することになる。次に、分析プレート28を中速にて数秒間もう一度回転させ(第2の回転)定量チャンバー22内に特定の量を定量する。この時減速を緩やかにすることが重要である。送液流路17A、B及び送液流路25に充填されていた余分なDNA試料27はチャンバー部13へと排除され、定量チャンバー22にはDNA試料27が定量される。定量したDNA試料27は他DNA試料27に対して電気的にも絶縁されている(例えば、特許文献1参照。)。   In particular, the quantitative chamber 22 comes into contact with the DNA conjugate 32 filled with an amount necessary for the examination. Next, the analysis plate 28 is rotated again for a few seconds at a medium speed (second rotation), and a specific amount is quantified in the quantification chamber 22. At this time, it is important to moderate the deceleration. The excess DNA sample 27 filled in the liquid supply channels 17A and 17B and the liquid supply channel 25 is excluded to the chamber unit 13, and the DNA sample 27 is quantified in the quantitative chamber 22. The quantified DNA sample 27 is electrically insulated from other DNA samples 27 (see, for example, Patent Document 1).

次に送液流路17A、17B、定量チャンバー22を拡大した図8を示す。上述した調査方法の中で、空気の圧力によりDNA試料27を定量チャンバー22まで導入する際、送液流路17Aを通過し、送液流路25と定量チャンバー22に導入した後、送液流路17Bを満たす。またDNA試料27が定量チャンバー22内に導入された後、定量チャンバー22以外の送液流路17A、B内にある余分なDNA試料27は、第2の回転により、流路18及び流路19に戻される。この時、定量チャンバー22から前記送液流路17AへDNA試料27が流出してしまうのを防ぐために隔壁23を設けている。これにより一定量のDNA試料27を定量チャンバー22内に確保することが出来る(例えば、特許文献2参照。)。
特開2006−220531号公報 特開2006−153562号公報
Next, FIG. 8 in which the liquid supply channels 17A and 17B and the quantitative chamber 22 are enlarged is shown. In the investigation method described above, when the DNA sample 27 is introduced into the quantitative chamber 22 by air pressure, the DNA sample 27 passes through the liquid supply channel 17A and is introduced into the liquid supply channel 25 and the quantitative chamber 22, and then the liquid supply flow. Fill road 17B. In addition, after the DNA sample 27 is introduced into the quantitative chamber 22, the extra DNA sample 27 in the liquid supply flow paths 17 </ b> A and B other than the quantitative chamber 22 is transferred to the flow path 18 and the flow path 19 by the second rotation. Returned to At this time, a partition wall 23 is provided in order to prevent the DNA sample 27 from flowing out from the quantitative chamber 22 to the liquid feeding channel 17A. As a result, a certain amount of DNA sample 27 can be secured in the quantitative chamber 22 (see, for example, Patent Document 2).
JP 2006-220531 A JP 2006-153562 A

前記従来の構成では、隔壁を設けることで定量チャンバー内にDNA試料を定量することが出来たが、流路内部の壁面が親水状態であると、定量チャンバー内で保持するべきDNA試料の一部をチャンバー部に移送させてしまい定量できないという課題を有していた。   In the conventional configuration, the DNA sample can be quantified in the quantification chamber by providing the partition wall. However, if the wall surface inside the flow path is in a hydrophilic state, a part of the DNA sample to be held in the quantification chamber. Has been transferred to the chamber portion and cannot be quantified.

本発明は、前記従来の課題を解決するもので、生体試料を正確に定量出来る定量チャンバーを持つ分析プレートを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and an object thereof is to provide an analysis plate having a quantitative chamber capable of accurately quantifying a biological sample.

前記従来の課題を解決するために、本発明の分析プレートは、生体試料を送液するための送液流路に接するように設けられた前記生体試料を定量するための定量チャンバーとからなる分析プレートにおいて、前記定量チャンバーは、その中央部で前記送液流路と前記定量チャンバーとを隔てるための隔壁と前記隔壁の両端部に前記送液流路と前記定量チャンバーとを接続するための接続流路とを持ち、前記接続流路の幅が前記隔壁に接する前記送液流路の幅より狭いことを特徴としたものである。   In order to solve the above-mentioned conventional problems, the analysis plate of the present invention is an analysis comprising a quantitative chamber for quantifying the biological sample provided so as to be in contact with a liquid supply channel for supplying the biological sample. In the plate, the metering chamber has a partition for separating the liquid feeding channel and the metering chamber at a central portion thereof, and a connection for connecting the liquid feeding channel and the metering chamber to both ends of the partition. And the width of the connection flow path is narrower than the width of the liquid supply flow path in contact with the partition wall.

本発明の分析プレートによれば、隔壁を挟んで定量チャンバーの反対側の送液流路の幅を第二の接続流路より広く設けることで、定量チャンバーに一定量のDNA試料を保持しつつ、余分なDNA試料のみを排除することが出来る。   According to the analysis plate of the present invention, a fixed amount of DNA sample is held in the quantitative chamber by providing the width of the liquid supply channel on the opposite side of the quantitative chamber across the partition wall as compared with the second connection channel. Only the extra DNA sample can be excluded.

以下に、本発明の分析プレートの実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of the analysis plate of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1から図6においてに本発明の実施の形態1における分析プレート28について説明する。
(Embodiment 1)
The analysis plate 28 according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1(a)に、本実施の形態1における分析プレート28を示す。分析プレート28は、その表面に溝が形成されており、この面にフィルム26を貼付することで分析プレート28として使用する。溝は流路パターン1で構成された流路やチャンバーであり、流路内に導入されたDNA試料27は分析プレート28を回転させた際の遠心力によって先の流路へと移送する。   FIG. 1A shows the analysis plate 28 according to the first embodiment. The analysis plate 28 has grooves formed on the surface thereof, and is used as the analysis plate 28 by sticking the film 26 on this surface. The groove is a flow path or a chamber constituted by the flow path pattern 1, and the DNA sample 27 introduced into the flow path is transferred to the previous flow path by the centrifugal force when the analysis plate 28 is rotated.

図1(b)は、分析プレート28に形成される流路パターン1を拡大したものである。図1(b)において緩衝剤注入口2は緩衝剤であるDNAコンジュゲート32を注入する緩衝剤注入口2、緩衝剤注入部3は注入された緩衝剤を一旦保持するための緩衝剤注入部3、試料注入口4はDNA試料27を注入するための試料注入口4、試料注入部5は注入されたDNA試料27を一旦保持するための試料注入部5である。正電極の挿入部6、負電極の挿入部7は、流路8を介して接続されており、さらには流路9、10により緩衝剤注入部3ともそれぞれ接続されている。チャンバー部13は流路14により試料注入部5と接続されている。また15は試料保持部であり流路16と第2の流路18によりチャンバー部13と接続されている。また流路18には送液流路17Aと流路19とも接続している。   FIG. 1B is an enlarged view of the flow path pattern 1 formed on the analysis plate 28. In FIG. 1B, the buffer injection port 2 is a buffer injection port 2 for injecting a DNA conjugate 32 as a buffer, and the buffer injection unit 3 is a buffer injection unit for temporarily holding the injected buffer. 3. The sample injection port 4 is a sample injection port 4 for injecting a DNA sample 27, and the sample injection unit 5 is a sample injection unit 5 for temporarily holding the injected DNA sample 27. The positive electrode insertion portion 6 and the negative electrode insertion portion 7 are connected via a flow path 8, and are further connected to the buffer injection part 3 by flow paths 9 and 10, respectively. The chamber part 13 is connected to the sample injection part 5 by a flow path 14. Reference numeral 15 denotes a sample holding unit which is connected to the chamber unit 13 by a flow channel 16 and a second flow channel 18. Further, the liquid flow path 17 </ b> A and the flow path 19 are also connected to the flow path 18.

バッファ部21、送液流路17A、17B、流路18、流路19により定量チャンバー22、第一の接続流路24A、第二の接続流路24B、送液流路25とそれぞれ接続されており、更に試料注入部5とバッファ部21とを繋ぐ流路20によってバッファ部21の空気抜きが可能となる。定量チャンバー22と送液流路25が接続する部分に隔壁23を設けることで第一の接続流路24A、第二の接続流路24Bは形成される。緩衝剤注入部3、流路9、流路10、正電極部6、負電極部7、流路8は閉じられた流路となっており、この閉じられた流路を緩衝剤が流れ、緩衝剤用の流路として構成している。   The buffer unit 21, the liquid supply channels 17A and 17B, the channel 18 and the channel 19 are connected to the quantitative chamber 22, the first connection channel 24A, the second connection channel 24B and the liquid supply channel 25, respectively. Further, the buffer section 21 can be vented by the flow path 20 connecting the sample injection section 5 and the buffer section 21. The first connection channel 24A and the second connection channel 24B are formed by providing the partition wall 23 at a portion where the fixed amount chamber 22 and the liquid supply channel 25 are connected. The buffer injection part 3, the flow path 9, the flow path 10, the positive electrode part 6, the negative electrode part 7 and the flow path 8 are closed flow paths, and the buffer flows through the closed flow paths, It is configured as a flow path for the buffer.

また、試料注入部5、流路14、チャンバー部13、流路16、送液流路17A、17B、流路18、流路19、試料保持部15、流路20、バッファ部21、定量チャンバー22、隔壁23、第一の接続流路24A、第二の接続流路24B、送液流路25も閉じられた流路なっており、DNA試料用の流路として構成している。DNA試料27が通過する流路とDNAコンジュゲート32が通過する流路とは定量チャンバー22で合流し、この定量チャンバー22で定量されたDNA試料27が測定に供せられる。   Further, the sample injection unit 5, the channel 14, the chamber unit 13, the channel 16, the liquid supply channels 17A and 17B, the channel 18, the channel 19, the sample holding unit 15, the channel 20, the buffer unit 21, and the quantitative chamber 22, the partition wall 23, the first connection channel 24A, the second connection channel 24B, and the liquid feed channel 25 are also closed channels, and are configured as channels for DNA samples. The flow path through which the DNA sample 27 passes and the flow path through which the DNA conjugate 32 passes merge in the quantitative chamber 22, and the DNA sample 27 quantified in the quantitative chamber 22 is used for measurement.

流路パターン1を構成する壁面には、疎水処理を施されている。疎水処理を施すことでチャンバーから流路、流路からチャンバーへ毛細管力による試料液の導入を防ぎ、遠心力などの外力を利用して流路内を進ませることができるため検査に支障をきたすことなく運用できる。疎水処理には生分解性の疎水性ポリエステルを高温高圧水で処理する方法などがある。   The wall surface constituting the flow path pattern 1 is subjected to a hydrophobic treatment. Hydrophobic treatment prevents sample liquid from being introduced by capillary force from the chamber to the flow channel, and from the flow channel to the chamber, and can be advanced through the flow channel using external force such as centrifugal force, which hinders inspection. It can be operated without any problems. Hydrophobic treatment includes a method of treating biodegradable hydrophobic polyester with high-temperature and high-pressure water.

図2に本発明の実施の形態1における定量チャンバー22を含む送液流路25の拡大図について示す。これは図1において定量チャンバー22とその定量チャンバー22に接続した送液流路25、送液流路17A、17B、隔壁23、第一の接続流路24A、第二の接続流路24Bを拡大したものである。送液流路17A、Bは試料充填処理の際は、送液流路17Aから17Bへ、また定量保持部22内に定量する際は、送液流路17Bから17AへDNA試料27を搬送する役割を持つ。隔壁23は定量チャンバー22内に保持されるDNA試料27を定量するために設けたものである。この隔壁23を挟んで定量チャンバー22の反対に第二の接続流路24Bの幅より広い幅を有する送液流路25を設けている。これは定量チャンバー22に定量されるべきDNA試料27が第2の回転により排除されるのを防ぐためであり、これにより第2の回転後、送液流路17A、17B、送液流路25内の余分なDNA試料27のみを排除することができる。   FIG. 2 shows an enlarged view of the liquid feeding flow path 25 including the metering chamber 22 in Embodiment 1 of the present invention. This is an enlarged view of the fixed quantity chamber 22 and the liquid supply flow path 25, the liquid supply flow paths 17A and 17B, the partition wall 23, the first connection flow path 24A, and the second connection flow path 24B connected to the fixed measurement chamber 22 in FIG. It is a thing. The liquid supply channels 17A and B carry the DNA sample 27 from the liquid supply channels 17A to 17B during the sample filling process, and when the amount is quantified in the quantitative holding unit 22, from the liquid supply channels 17B to 17A. Have a role. The partition wall 23 is provided for quantifying the DNA sample 27 held in the quantification chamber 22. A liquid feed channel 25 having a width wider than the width of the second connection channel 24B is provided opposite to the quantitative chamber 22 with the partition wall 23 interposed therebetween. This is to prevent the DNA sample 27 to be quantified in the quantification chamber 22 from being excluded by the second rotation, and thus the liquid supply channels 17A and 17B and the liquid supply channel 25 after the second rotation. Only the extra DNA sample 27 can be excluded.

本実施例にて使用した分析プレート28の詳細を図3に示す。図3(a)、(b)に本発明の実施の形態1の分析プレート28における送液流路17A、17Bと定量チャンバー22の近傍の断面A−A'について示す。図3(b)は右側が流路形成面である。斜線でハッチングした部分が分析プレート28である。図3(a)に示すように、送液流路17A、17Bと送液流路25の幅は0.1mmとし、定量チャンバーの幅は0.3mmとしている。また第一の接続流路24A、第二の接続流路24Bの幅は0.15mmとして、送液流路25の幅が第二の接続流路24Bよりも広くなるよう設定している。図3(b)に示すように、これらの流路の深さは共に0.08mmとしている。本実施例の送液流路25の幅は、回転中心側に試料注入口4及び試料注入部5が配置されているため1mm以下とする。しかし導入されるDNA試料27の量によって送液流路25の幅は適宜変更することが可能である。   Details of the analysis plate 28 used in this example are shown in FIG. FIGS. 3A and 3B show a cross section AA ′ in the vicinity of the liquid supply channels 17A and 17B and the quantitative chamber 22 in the analysis plate 28 according to Embodiment 1 of the present invention. In FIG. 3B, the right side is a flow path forming surface. The hatched portion is the analysis plate 28. As shown in FIG. 3A, the widths of the liquid feeding channels 17A and 17B and the liquid feeding channel 25 are 0.1 mm, and the width of the quantitative chamber is 0.3 mm. The width of the first connection channel 24A and the second connection channel 24B is set to 0.15 mm, and the width of the liquid supply channel 25 is set to be wider than that of the second connection channel 24B. As shown in FIG. 3B, the depths of these flow paths are both 0.08 mm. The width of the liquid feeding flow path 25 of the present embodiment is set to 1 mm or less because the sample injection port 4 and the sample injection part 5 are arranged on the rotation center side. However, the width of the liquid flow path 25 can be changed as appropriate depending on the amount of the DNA sample 27 to be introduced.

図4に第2の回転時に定量チャンバー近傍に働く力について示す。図4(a)には分析プレート28の表面が疎水状態において第2の回転中に見られる力の状態について、図4(b)には分析プレート28の表面が親水状態において第2の回転中に見られる力の状態について示す。分析プレート28が疎水状態であれば、液体はファンデルワース力により球状になろうとする力も大きい。よって送液流路17A、Bの幅が第一の接続流路24A、第二の接続流路24Bの幅より狭くても遠心力で外周に押し出す力と慣性力で円周方向に流す力が働くことで定量チャンバー22内に保持するDNA試料27と送液流路17Aを通るDNA試料27に分断される。しかし分析プレート28が親水状態であれば、液体は毛細管力が働き壁を伝うような流れになる。   FIG. 4 shows the force acting in the vicinity of the quantitative chamber during the second rotation. FIG. 4A shows the state of the force observed during the second rotation when the surface of the analysis plate 28 is in the hydrophobic state, and FIG. 4B shows the state of the second rotation when the surface of the analysis plate 28 is in the hydrophilic state. The state of the force seen in is shown. If the analysis plate 28 is in a hydrophobic state, the liquid also has a large force to become spherical due to van der Waals force. Therefore, even if the widths of the liquid supply flow channels 17A and B are narrower than the widths of the first connection flow channel 24A and the second connection flow channel 24B, the force that pushes out to the outer periphery by centrifugal force and the force that flows in the circumferential direction by inertia force By working, it is divided into a DNA sample 27 held in the quantitative chamber 22 and a DNA sample 27 passing through the liquid feeding flow path 17A. However, if the analysis plate 28 is in a hydrophilic state, the liquid flows in such a way that the capillary force acts on the wall.

毛細管力が働くことでDNAサンプル27は細い流路内を流れようとするが、回転による慣性力でDNAサンプル27は送液流路17Bから17Aへ、遠心力で定量チャンバー22の方向へ流れようとする。この時、流路幅の狭い送液流路17A、Bよりも流路幅の広い第一の接続流路24A、第二の接続流路24B内を優先的に流れてしまう。よって隔壁23を設けていても定量チャンバー22内のDNA試料27は送液流路17Bより押し出されるように排除されてしまう。そこで第一の接続流路24A、第二の接続流路24B部分に第一の接続流路24A、第二の接続流路24Bよりも広い流路を確保する必要があるため隔壁23を挟んで定量チャンバー22の反対側に第2の接続流路24Bより幅の広い送液流路25を設けた。   The capillary force acts to cause the DNA sample 27 to flow in the narrow flow path, but the DNA sample 27 flows from the liquid feed flow path 17B to 17A by the inertial force due to rotation, and flows in the direction of the quantitative chamber 22 by the centrifugal force. And At this time, the fluid flows preferentially in the first connection channel 24A and the second connection channel 24B having a wider channel width than the liquid feeding channels 17A and B having a narrow channel width. Therefore, even if the partition wall 23 is provided, the DNA sample 27 in the quantitative chamber 22 is excluded so as to be pushed out from the liquid feeding channel 17B. Therefore, it is necessary to secure a wider flow path than the first connection flow path 24A and the second connection flow path 24B in the first connection flow path 24A and the second connection flow path 24B. On the opposite side of the quantitative chamber 22, a liquid feeding passage 25 having a width wider than that of the second connection passage 24 </ b> B was provided.

図5に、本発明の分析プレート28における広い幅を有する送液流路25を設けたことによる効果を示す。図5(a)は第二の接続流路24Bの幅よりも広い送液流路25を持つ場合、図5(b)は第二の接続流路24Bの幅よりも狭い送液流路25を持つ場合について示したものである。どちらも分析プレート28の表面は親水状態において実施している。また図5(a)、(b)には共通した(1)〜(3)までの流れの変化について示している。(1)は定量チャンバー22へDNA試料27を充填した状態、(2)は第2の回転によりDNA試料27を定量している状態、(3)は第2の回転を停止した状態について示している。   In FIG. 5, the effect by having provided the liquid feeding flow path 25 which has the wide width in the analysis plate 28 of this invention is shown. FIG. 5A shows a case where the liquid connection flow path 25 is wider than the width of the second connection flow path 24B. FIG. 5B shows a liquid supply flow path 25 which is narrower than the width of the second connection flow path 24B. This is the case with In both cases, the surface of the analysis plate 28 is in a hydrophilic state. 5 (a) and 5 (b) show the common flow changes (1) to (3). (1) shows a state in which the DNA sample 27 is filled in the quantitative chamber 22, (2) shows a state in which the DNA sample 27 is quantified by the second rotation, and (3) shows a state in which the second rotation is stopped. Yes.

図5(b)の(3)は、定量チャンバー22内のDNA試料27を除去している状態を示す。これは、余分なDNA試料27が隔壁23の上の送液流路25を通過せずに定量チャンバー22内を通過したために起こる。すなわち、分析プレート28の表面が親水状態で、且つ、隔壁23の上部の送液流路25の幅が接続流路24Bの幅より狭いため、回転による遠心力、慣性力の影響で流れやすい幅の広い第2の接続流路24Bを通過したことが原因である。   FIG. 5B (3) shows a state in which the DNA sample 27 in the quantitative chamber 22 is removed. This occurs because the extra DNA sample 27 has passed through the quantitative chamber 22 without passing through the liquid feeding channel 25 on the partition wall 23. That is, since the surface of the analysis plate 28 is in a hydrophilic state and the width of the liquid feeding flow path 25 above the partition wall 23 is narrower than the width of the connection flow path 24B, the width easily flows due to the centrifugal force and inertial force due to rotation. This is because the second connection channel 24B having a large width is passed.

次に図5(a)の(3)は、定量チャンバー22内のDNA試料27が除去されずに定量された状態を示す。これは、送液流路17A、17B及び送液流路25に滞留している余分なDNA試料27は、送液流路25内を通過したために起こる。したがって、送液流路25の幅が接続流路24Bの幅よりも広ければ、分析プレート28の表面が親水状態の場合でも、定量チャンバー22でDNA試料27が定量出来ることを示している。   Next, (3) in FIG. 5A shows a state in which the DNA sample 27 in the quantitative chamber 22 is quantified without being removed. This occurs because excess DNA sample 27 staying in the liquid supply channels 17A and 17B and the liquid supply channel 25 has passed through the liquid supply channel 25. Therefore, if the width of the liquid supply channel 25 is wider than the width of the connection channel 24B, it indicates that the DNA sample 27 can be quantified in the quantification chamber 22 even when the surface of the analysis plate 28 is in a hydrophilic state.

図6に送液流路25の類似形状について示す。図6には送液流路25の形状が半円弧の場合について示す。図のような形状でも第一の接続流路24A、第二の接続流路24Bより送液流路25の幅を広く設けることで定量チャンバー22近傍のDNA試料27は排除され、定量チャンバー22内にのみDNA試料27を保持し、その効果を確認することが出来た。   FIG. 6 shows a similar shape of the liquid feeding passage 25. FIG. 6 shows a case where the shape of the liquid supply passage 25 is a semicircular arc. Even in the shape as shown in the figure, by providing a wider width of the liquid supply flow path 25 than the first connection flow path 24A and the second connection flow path 24B, the DNA sample 27 in the vicinity of the quantitative chamber 22 is eliminated, It was possible to hold the DNA sample 27 only to confirm the effect.

以上のように、本実施の形態1によれば、第2の回転後、遠心力により送液流路17A、17Bに残る余分なDNA試料27のみを排除し、定量チャンバー22に特定量のDNA試料27を正確に定量させることが出来る。   As described above, according to the first embodiment, after the second rotation, only the extra DNA sample 27 remaining in the liquid feeding channels 17A and 17B is removed by centrifugal force, and a specific amount of DNA is placed in the quantification chamber 22. The sample 27 can be accurately quantified.

本発明の分析プレートは、DNA試料等の生体試料の判別を行う遺伝子解析装置などとして有用である。   The analysis plate of the present invention is useful as a gene analyzer for discriminating biological samples such as DNA samples.

本発明の実施の形態1における分析プレートの流路パターン図Flow path pattern diagram of analysis plate in Embodiment 1 of the present invention 本発明の実施の形態1における定量チャンバーを含む送液流路部の斜視図The perspective view of the liquid feeding flow path part containing the fixed_quantity | quantitative_assay chamber in Embodiment 1 of this invention. 本発明の実施の形態1における分析プレートの送液流路の有無における流路パターンを示す図The figure which shows the flow path pattern in the presence or absence of the liquid feeding flow path of the analysis plate in Embodiment 1 of this invention. 本発明の実施の形態1における第2の回転時に送液流路部近傍にかかる力について示す図The figure shown about the force applied to the liquid feeding flow path vicinity at the time of the 2nd rotation in Embodiment 1 of this invention 本発明の実施の形態1の分析プレートにおける流路とチャンバーの近傍の断面図Sectional drawing of the vicinity of the flow path and chamber in the analysis plate of Embodiment 1 of this invention 本発明の実施の形態1における送液流路の類似形状を示す図The figure which shows the similar shape of the liquid feeding flow path in Embodiment 1 of this invention 従来例の分析プレートの構成を示す図Diagram showing the configuration of a conventional analysis plate 従来例の分析プレートの構成を示す図Diagram showing the configuration of a conventional analysis plate

符号の説明Explanation of symbols

1 流路パターン
2 緩衝剤注入口
3 緩衝剤注入部
4 試料注入口
5 試料注入部
6 正電極部
7 負電極部
8 流路
9 流路
10 流路
11 流路
12 流路
13 チャンバー部
14 流路
15 試料保持部
16 流路
17A 送液流路
17B 送液流路
18 流路
19 流路
20 流路
21 バッファ部
22 定量チャンバー
23 隔壁
24A 第1の接続流路
24B 第2の接続流路
25 送液流路
26 フィルム
27 DNA試料
28 分析プレート
29 回転部固定用穴
30 プレート重心
31 位置決め穴
32 DNAコンジュゲート
DESCRIPTION OF SYMBOLS 1 Channel pattern 2 Buffering agent inlet 3 Buffering agent injection part 4 Sample injection port 5 Sample injection part 6 Positive electrode part 7 Negative electrode part 8 Channel 9 Channel 10 Channel 11 Channel 12 Channel 12 Channel 13 Chamber part 14 Flow Path 15 Sample holding section 16 Flow path 17A Liquid feed flow path 17B Liquid feed flow path 18 Flow path 19 Flow path 20 Flow path 21 Buffer section 22 Metering chamber 23 Bulkhead 24A First connection flow path 24B Second connection flow path 25 Flow path 26 Film 27 DNA sample 28 Analysis plate 29 Hole for fixing rotating part 30 Plate center of gravity 31 Positioning hole 32 DNA conjugate

Claims (7)

生体試料を送液するための送液流路に接するように設けられた前記生体試料を定量するための定量チャンバーとからなる分析プレートにおいて、
前記定量チャンバーは、その中央部で前記送液流路と前記定量チャンバーとを隔てるための隔壁と前記隔壁の両端部に前記送液流路と前記定量チャンバーとを接続するための接続流路とを持ち、
前記接続流路の幅が前記隔壁に接する前記送液流路の幅より狭い分析プレート。
In an analysis plate comprising a quantitative chamber for quantifying the biological sample provided so as to be in contact with a liquid supply flow path for supplying a biological sample,
The metering chamber has a partition for separating the liquid feeding channel and the metering chamber at a central portion thereof, and a connection channel for connecting the liquid feeding channel and the metering chamber to both ends of the partition. Have
An analysis plate in which the width of the connection channel is narrower than the width of the liquid supply channel in contact with the partition wall.
前記接続流路は、前記送液流路に最初に送液される生体試料の送液方向に対して最初に開口されるものを第一の接続流路とし、片方を第二の接続流路とする請求項1に記載の分析プレート。 The connection channel is a first connection channel that is first opened with respect to the liquid feeding direction of the biological sample that is first fed to the solution feeding channel, and one of the connection channels is a second connection channel. The analysis plate according to claim 1. 前記第二の接続流路の幅が前記隔壁に接する前記送液流路の幅より狭い請求項2に分析プレート。 The analysis plate according to claim 2, wherein a width of the second connection channel is narrower than a width of the liquid supply channel in contact with the partition wall. 前記送液流路と前記定量チャンバーの内壁は、疎水処理されている請求項1に記載の分析プレート。 The analysis plate according to claim 1, wherein the liquid flow path and the inner wall of the quantitative chamber are subjected to a hydrophobic treatment. 前記分析プレートは、回転可能となるように回転軸を設けている請求項1に記載の分析プレート。 The analysis plate according to claim 1, wherein the analysis plate is provided with a rotation shaft so as to be rotatable. 前記回転軸は、前記定量チャンバーの隔壁から前記送液流路の方向に設けられている請求項5に記載の分析プレート。 The analysis plate according to claim 5, wherein the rotation shaft is provided in a direction from the partition wall of the quantitative chamber to the liquid supply flow path. 前記回転軸は、前記分析プレートを回転することにより前記生体試料を前記送液流路に送液するような位置に設けられている請求項5に記載の分析プレート。 The analysis plate according to claim 5, wherein the rotation shaft is provided at a position where the biological sample is supplied to the liquid supply channel by rotating the analysis plate.
JP2008022330A 2008-02-01 2008-02-01 Analysis plate Pending JP2009180697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022330A JP2009180697A (en) 2008-02-01 2008-02-01 Analysis plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022330A JP2009180697A (en) 2008-02-01 2008-02-01 Analysis plate

Publications (1)

Publication Number Publication Date
JP2009180697A true JP2009180697A (en) 2009-08-13

Family

ID=41034778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022330A Pending JP2009180697A (en) 2008-02-01 2008-02-01 Analysis plate

Country Status (1)

Country Link
JP (1) JP2009180697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system

Similar Documents

Publication Publication Date Title
JP6968544B2 (en) Background lowering agents and their use
JP4249983B2 (en) Analysis equipment
JP2009180697A (en) Analysis plate
US20080314746A1 (en) Analyzer
JP6130306B2 (en) Rapid quantification of biomolecules and methods in selectively functionalized nanofluidic biosensors
JP6229175B2 (en) Inspection device and inspection method for biological material
JP7192032B2 (en) Nucleic acid detection and quantification method, chip, assay kit, nucleic acid detection and quantification device and program
JP2009136220A (en) Biological sample reaction chip, biological sample reactor, and method for biological sample reaction
Segerink et al. Nanofluidics in point of care applications
Wydallis et al. Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array
US20090126568A1 (en) Method for removing intra-microchannel bubbles and intra-microchannel dissolving and dispersing method
Choi et al. Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis
US10101296B2 (en) Mini-gel comb
CA2266930C (en) Device for optical and electrochemical measurements in microliter size samples
JP2009121860A (en) Biological sample determining plate and biological sample transfer method
JP7253045B2 (en) Biopolymer analyzer and biopolymer analysis method
BR112012012787B1 (en) biosensor for the detection of diffusion of fluorescent biomolecules, arrangement, assembly and method for the detection and measurement of diffusion of fluorescent biomolecules
JP4366523B2 (en) Electrophoresis chip and sample analysis method using the same
JP4483608B2 (en) Fluorescence analyzer
EP3074533A1 (en) Metod and device for accelerated surface-based reactions
JPWO2009008128A1 (en) Liquid feeding device and liquid feeding method
JP4216846B2 (en) Electrodes for electrochemical measurements and electrochemical measurement methods
US8062502B2 (en) Arrangement and method for detecting small substance concentrations
JP4723891B2 (en) Hybridization cartridge, hybridization apparatus, and hybridization method
JP5268402B2 (en) Quantitative device