JP2009180669A - Air-fuel ratio sensor - Google Patents

Air-fuel ratio sensor Download PDF

Info

Publication number
JP2009180669A
JP2009180669A JP2008021364A JP2008021364A JP2009180669A JP 2009180669 A JP2009180669 A JP 2009180669A JP 2008021364 A JP2008021364 A JP 2008021364A JP 2008021364 A JP2008021364 A JP 2008021364A JP 2009180669 A JP2009180669 A JP 2009180669A
Authority
JP
Japan
Prior art keywords
exhaust
solid electrolyte
side electrode
electrolyte body
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008021364A
Other languages
Japanese (ja)
Other versions
JP4998828B2 (en
Inventor
Keiichiro Aoki
圭一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008021364A priority Critical patent/JP4998828B2/en
Publication of JP2009180669A publication Critical patent/JP2009180669A/en
Application granted granted Critical
Publication of JP4998828B2 publication Critical patent/JP4998828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a responsiveness is decreased when a catalyst layer is formed on the surface of a sensor element to improve the detection accuracy of an air-fuel ratio sensor. <P>SOLUTION: This air-fuel ratio sensor comprises: a solid electrolyte 12 having a first surface 12a on which sensor element section 11 faces the atmosphere side and a second surface 12b on which it faces the exhaust side; an atmosphere-side electrode 14 arranged on the first surface 12a of the solid electrolyte 12; an exhaust side electrode 15 arranged on the second surface 12b so as to face the atmosphere-side electrode 14 with respect to the solid electrolyte 12; a diffusion resistive layer 16 formed so as to cover exhaust side electrode 15 and the second surface 12b of the solid electrolyte 12; and a catalyst layer 18 formed on the surface of the diffusion resistive layer 16 except for a region 16c for introducing exhaust air to the exhaust side electrode 15 via the diffusion resistive layer 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気中の酸素濃度に基づいて内燃機関に供給された空気と燃料との割合である空燃比を検出するための空燃比センサに関する。   The present invention relates to an air-fuel ratio sensor for detecting an air-fuel ratio that is a ratio of air and fuel supplied to an internal combustion engine based on oxygen concentration in exhaust gas.

車両に搭載された内燃機関から排出される排気中に含まれる有害物質に関する排出規制の強化に伴い、排気中の酸素濃度を検出する酸素センサや、内燃機関に対する吸気と燃料との割合を検出する空燃比センサなどの検出精度の更なる向上が検討されている。その対策の一つとして、排気側に臨むセンサ素子の表面に触媒層を形成するようにした技術が特許文献1などで提案されている。この触媒層は、酸素センサの検出精度の低下の原因となる水素ガスを無害な酸化化合物へと変化させ、これによって酸素センサの検出精度の低下を阻止し得るようにしたものである。   With the tightening of emission regulations regarding harmful substances contained in exhaust gas discharged from internal combustion engines mounted on vehicles, oxygen sensors that detect the oxygen concentration in exhaust gas and the ratio of intake air to fuel for internal combustion engines Further improvements in detection accuracy of air-fuel ratio sensors and the like are being studied. As one of countermeasures, Patent Document 1 proposes a technique in which a catalyst layer is formed on the surface of a sensor element facing the exhaust side. This catalyst layer is configured to change the hydrogen gas that causes a decrease in the detection accuracy of the oxygen sensor into a harmless oxide compound, thereby preventing a decrease in the detection accuracy of the oxygen sensor.

特開2002−181769号公報JP 2002-181769 A

特許文献1に開示された技術を空燃比センサに適用した場合、空燃比センサの拡散抵抗層の表面が触媒層にて覆われた状態となるため、拡散抵抗層を通過するガス(排気)の平衡化を図ることが可能となる。しかも、空燃比センサの検出作業に悪影響を与える可能性のある排気中の水素分子や炭化水素,一酸化炭素,窒素酸化物が無害化されるため、信頼性の高い安定した検出を行うことができる。反面、電極の反対側に位置する拡散抵抗層の表面領域が触媒層によって覆われているため、この部分で触媒反応が起こる結果、検出の応答性が低下してしまう欠点も有する。   When the technique disclosed in Patent Document 1 is applied to an air-fuel ratio sensor, the surface of the diffusion resistance layer of the air-fuel ratio sensor is covered with a catalyst layer, so that the gas (exhaust gas) passing through the diffusion resistance layer Equilibration can be achieved. In addition, since hydrogen molecules, hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas that may adversely affect the detection work of the air-fuel ratio sensor are rendered harmless, reliable and stable detection can be performed. it can. On the other hand, since the surface region of the diffusion resistance layer located on the opposite side of the electrode is covered with the catalyst layer, a catalytic reaction occurs in this portion, resulting in a decrease in detection responsiveness.

本発明の目的は、応答性の低下をもたらすことなく、検出精度を向上させ得る空燃比センサを提供することにある。   An object of the present invention is to provide an air-fuel ratio sensor capable of improving detection accuracy without causing a decrease in responsiveness.

本発明の第1の形態は、大気側に臨む第1の面および排気側に臨む第2の面を有する固体電解質体と、この固体電解質体の第1の面に配される大気側電極と、前記固体電解質体を挟んで前記大気側電極と対向するように前記第2の面に配される排気側電極と、この排気側電極および前記固体電解質体の第2の面を覆うように形成される拡散抵抗層と、この拡散抵抗層を介して排気を前記排気側電極へ導くための領域を除いて当該拡散抵抗層の表面に形成される触媒層とを具えたセンサ素子部を有することを特徴とする空燃比センサにある。   According to a first aspect of the present invention, there is provided a solid electrolyte body having a first surface facing the atmosphere side and a second surface facing the exhaust side, and an atmosphere side electrode disposed on the first surface of the solid electrolyte body; An exhaust-side electrode disposed on the second surface so as to face the atmosphere-side electrode across the solid electrolyte body, and to cover the exhaust-side electrode and the second surface of the solid electrolyte body And a sensor element unit including a catalyst layer formed on the surface of the diffusion resistance layer except for a region for guiding exhaust gas to the exhaust-side electrode through the diffusion resistance layer. The air-fuel ratio sensor is characterized by the following.

本発明においては、排気を排気側電極へ導くための領域が触媒層によって覆われておらず、ここでは触媒反応が起こらない。排気は、これを排気側電極へ導くための領域から拡散抵抗層を通って排気側電極に到達する。   In the present invention, the region for guiding the exhaust to the exhaust side electrode is not covered by the catalyst layer, and no catalytic reaction occurs here. Exhaust gas reaches the exhaust side electrode through the diffusion resistance layer from the region for guiding it to the exhaust side electrode.

本発明の第1の形態による空燃比センサにおいて、固体電解質体は先端が閉じた筒状をなすものであってよい。   In the air-fuel ratio sensor according to the first aspect of the present invention, the solid electrolyte body may have a cylindrical shape with a closed tip.

本発明の第2の形態は、第1の面および排気側に臨む第2の面を有する固体電解質体と、この固体電解質体と一体に形成され、当該固体電解質体の前記第1の面が大気側に臨むように前記第1の面を排気側に対して遮蔽する遮蔽部材と、この遮蔽部材によって囲まれた前記固体電解質体の第1の面に配される大気側電極と、前記固体電解質体を挟んで前記大気側電極と対向するように前記第2の面に配される排気側電極と、この排気側電極と前記固体電解質体の第2の面とを覆うように形成される拡散抵抗層と、排気を前記排気側電極へ導くための領域を除いて前記拡散抵抗層の表面を覆うように形成されるマスキング層と、前記固体電解質体および前記遮蔽部材および前記マスキング層の表面を覆うように形成される触媒層とを具えたセンサ素子部を有することを特徴とする空燃比センサにある。   According to a second aspect of the present invention, a solid electrolyte body having a first surface and a second surface facing the exhaust side, and the solid electrolyte body are formed integrally with the first surface of the solid electrolyte body. A shielding member that shields the first surface from the exhaust side so as to face the atmosphere side; an atmosphere-side electrode disposed on the first surface of the solid electrolyte body surrounded by the shielding member; and the solid An exhaust side electrode disposed on the second surface so as to face the atmosphere side electrode across the electrolyte body, and the exhaust side electrode and the second surface of the solid electrolyte body are covered. A diffusion resistance layer; a masking layer formed so as to cover a surface of the diffusion resistance layer excluding a region for guiding exhaust gas to the exhaust side electrode; and surfaces of the solid electrolyte body, the shielding member, and the masking layer With a catalyst layer formed to cover In the air-fuel ratio sensor, characterized in that it comprises an element portion.

本発明においても先の第1の形態と同様に、排気を排気側電極へ導くための領域が触媒層によって覆われておらず、ここでは触媒反応が起こらない。排気は、マスキング層で覆われていない拡散抵抗層の領域から、これを通って排気側電極に到達することとなる。   Also in the present invention, as in the first embodiment, the region for guiding the exhaust to the exhaust side electrode is not covered by the catalyst layer, and no catalytic reaction occurs here. Exhaust gas reaches from the region of the diffusion resistance layer not covered with the masking layer to the exhaust electrode through this region.

本発明の第2の形態による空燃比センサにおいて、固体電解質体が平板状をなすものであってよい。   In the air-fuel ratio sensor according to the second aspect of the present invention, the solid electrolyte body may have a flat plate shape.

本発明の第1または第2の形態による空燃比センサにおいて、触媒層が排気中の水素ガスの酸化化合物への酸化を促進させるためのものであることが好ましい。   In the air-fuel ratio sensor according to the first or second aspect of the present invention, it is preferable that the catalyst layer is for accelerating the oxidation of hydrogen gas in the exhaust to an oxidized compound.

固体電解質体の第2の面に臨むように配され、センサ素子部を加熱するためのヒータをさらに具えることができる。   The heater may be further provided so as to face the second surface of the solid electrolyte body and for heating the sensor element portion.

内部が排気側と連通する連通孔を形成した外側ケーシングと、この外側ケーシングの内側に収容されて当該外側ケーシングとの間に画成された空隙に連通する連通孔を形成した内側ケーシングとをさらに具え、センサ素子部が内側ケーシング内に収容されているものであってよい。   An outer casing having a communication hole that communicates with the exhaust side, and an inner casing that is accommodated inside the outer casing and that communicates with a gap defined between the outer casing and the outer casing. The sensor element part may be accommodated in the inner casing.

本発明の空燃比センサによると、拡散抵抗層を介して排気を排気側電極へ導くための領域を除いて拡散抵抗層の表面に触媒層を形成したので、空燃比センサによる検出に悪影響を与える可能性のある水素ガスを無害な酸化化合物に変えることができる。この結果、空燃比センサによる検出精度およびその信頼性を共に高めることができる。また、排気を排気側電極へ導くための拡散抵抗層の領域から、この拡散抵抗層を介して排気側電極へと導くことが可能となり、空燃比センサの応答性の低下を抑え、触媒層を形成しない従来のものと同程度の応答性を保つことができる。しかも、高価な触媒層をセンサ素子の表面全域に形成する必要がなくなり、貴重な触媒材料の使用量を抑制することができる。   According to the air-fuel ratio sensor of the present invention, since the catalyst layer is formed on the surface of the diffusion resistance layer except for the region for guiding the exhaust gas to the exhaust side electrode via the diffusion resistance layer, the detection by the air-fuel ratio sensor is adversely affected. Potential hydrogen gas can be turned into harmless oxide compounds. As a result, both the detection accuracy by the air-fuel ratio sensor and its reliability can be improved. In addition, it becomes possible to guide the exhaust gas from the diffusion resistance layer region for guiding exhaust gas to the exhaust side electrode to the exhaust side electrode through this diffusion resistance layer, and suppress the deterioration of the response of the air-fuel ratio sensor, The same level of responsiveness as a conventional one not formed can be maintained. In addition, it is not necessary to form an expensive catalyst layer over the entire surface of the sensor element, and the amount of valuable catalyst material used can be suppressed.

内部が排気側と連通する連通孔を形成した外側ケーシングと、この外側ケーシングの内側に収容されて当該外側ケーシングとの間に画成された空隙に連通する連通孔を形成した内側ケーシングとをさらに具え、センサ素子部が内側ケーシング内に収容されている場合、次のような効果を得ることができる。すなわち、排気が外側ケーシングと内側ケーシングとの間の空隙を通って内側ケーシング内に流入する間に、この排気がより平衡化することとなり、空燃比センサによる検出精度およびその信頼性をさらに高めることができる。   An outer casing having a communication hole that communicates with the exhaust side, and an inner casing that is accommodated inside the outer casing and that communicates with a gap defined between the outer casing and the outer casing. In the case where the sensor element portion is accommodated in the inner casing, the following effects can be obtained. That is, while the exhaust gas flows into the inner casing through the gap between the outer casing and the inner casing, the exhaust gas becomes more balanced, and the detection accuracy by the air-fuel ratio sensor and its reliability are further improved. Can do.

本発明による空燃比センサを積層型のものに応用した実施形態について、図1〜図10を参照しながら詳細に説明する。しかしながら、本発明はこのような実施形態のみに限らず、必要に応じてチューブ型のものに適用させたり、本発明の精神に帰属する他の任意の技術にも応用することができる。   An embodiment in which an air-fuel ratio sensor according to the present invention is applied to a stacked type will be described in detail with reference to FIGS. However, the present invention is not limited to such an embodiment, but can be applied to a tube type as needed, or can be applied to any other technique belonging to the spirit of the present invention.

本実施形態における空燃比センサのセンサ素子部の外観を図1に示し、その断面構造を図2に示し、そのIII−III矢視断面構造およびIV−IV矢視断面構造を図3および図4にそれぞれ示す。すなわち、本実施形態における空燃比センサの先端側を構成するセンサ素子部11は、細長い板状をなす固体電解質体12と、遮蔽部材13と、大気側電極14と、排気側電極15と、拡散抵抗層16と、マスキング層17と、触媒層18と、ヒータ19とを具えている。   The external appearance of the sensor element part of the air-fuel ratio sensor in this embodiment is shown in FIG. 1, its cross-sectional structure is shown in FIG. 2, its III-III arrow cross-sectional structure and IV-IV arrow cross-sectional structure are shown in FIGS. Respectively. That is, the sensor element portion 11 constituting the tip side of the air-fuel ratio sensor in the present embodiment includes a solid electrolyte body 12, a shielding member 13, an atmosphere-side electrode 14, an exhaust-side electrode 15, and a diffusion plate. A resistance layer 16, a masking layer 17, a catalyst layer 18, and a heater 19 are provided.

ジルコニアなどのセラミックスにて形成される固体電解質体12は、大気側に連通する第1の面12aおよび排気側に臨む第2の面12bを有する。   The solid electrolyte body 12 formed of ceramics such as zirconia has a first surface 12a that communicates with the atmosphere side and a second surface 12b that faces the exhaust side.

遮蔽部材13は、固体電解質体12と一体に形成され、固体電解質体12の第1の面12aが大気側に臨むように第1の面12aを排気側に対して遮蔽する。換言すれば、遮蔽部材13は基端側が大気側に連通する大気連通路20と、この大気連通路20の末端に連通して大気側電極14を収容するチャンバ21とを固体電解質体12の第1の面12aとの間に画成する。本実施形態における遮蔽部材13は、固体電解質体12と同じジルコニアなどのセラミックスにて形成されているが、多孔質である必要性はない。   The shielding member 13 is formed integrally with the solid electrolyte body 12, and shields the first surface 12a from the exhaust side so that the first surface 12a of the solid electrolyte body 12 faces the atmosphere side. In other words, the shielding member 13 includes an atmosphere communication path 20 whose base end side communicates with the atmosphere side, and a chamber 21 that communicates with the end of the atmosphere communication path 20 and accommodates the atmosphere side electrode 14. It is defined between the first surface 12a. Although the shielding member 13 in the present embodiment is formed of the same ceramic as the solid electrolyte body 12 such as zirconia, it is not necessary to be porous.

白金などで形成される大気側電極14は、遮蔽部材13との間に画成されたチャンバ21に臨む固体電解質体12の第1の面12aにそのリード線22と共に配される。   The atmosphere side electrode 14 formed of platinum or the like is disposed together with the lead wire 22 on the first surface 12 a of the solid electrolyte body 12 facing the chamber 21 defined between the shielding member 13.

大気側電極14と同様に、白金などで形成される排気側電極15は、固体電解質体12を挟んで大気側電極14と対向するように固体電解質体12の第2の面12bにそのリード線23と共に配される。   Similarly to the atmosphere side electrode 14, the exhaust side electrode 15 formed of platinum or the like has its lead wire on the second surface 12 b of the solid electrolyte body 12 so as to face the atmosphere side electrode 14 with the solid electrolyte body 12 interposed therebetween. 23.

排気流路内を流れる排気の流速に拘らず、排気側電極15に到達する排気中の酸素分子の通過速度をほぼ一定に調整するための拡散抵抗層16は、排気側電極15と固体電解質体12の第2の面12bとを覆うように形成されている。本実施形態における拡散抵抗層16は、その長手方向に対して直角な断面形状が台形をなし、その上底、すなわち短辺を画成する面16aに先のマスキング層17が接合され、下底、すなわち長辺を画成する面16bが固体電解質体12の第2の面12bに接合される。排気中の酸素分子は、一対の斜辺を画成する面16cから排気側電極15へと導かれるようになっている。この拡散抵抗層16は、酸素分子を通過させるための多孔質体であることが有効であり、本実施形態では固体電解質体12と同じジルコニアなどのセラミックスにて形成している。   Regardless of the flow rate of the exhaust gas flowing in the exhaust flow path, the diffusion resistance layer 16 for adjusting the passage speed of oxygen molecules in the exhaust gas reaching the exhaust side electrode 15 to be substantially constant includes the exhaust side electrode 15 and the solid electrolyte body. It is formed so as to cover the 12 second surfaces 12b. In the present embodiment, the diffusion resistance layer 16 has a trapezoidal cross-sectional shape perpendicular to the longitudinal direction, and the masking layer 17 is bonded to the upper base, that is, the surface 16a defining the short side. That is, the surface 16 b that defines the long side is joined to the second surface 12 b of the solid electrolyte body 12. Oxygen molecules in the exhaust are guided to the exhaust-side electrode 15 from the surfaces 16c that define a pair of hypotenuses. It is effective that the diffusion resistance layer 16 is a porous body for allowing oxygen molecules to pass through. In the present embodiment, the diffusion resistance layer 16 is formed of the same ceramic as the solid electrolyte body 12 such as zirconia.

アルミナなどのセラミックスにて形成されて気体の通過を阻止するためのマスキング層17は、上述したように台形断面を有する拡散抵抗層16の短辺を画成する面16aに形成されている。つまり、排気を排気側電極15へ導くための領域、すなわち固体電解質体12の一対の斜辺を画成する面16cにはマスキング層17が形成されていない。   The masking layer 17 that is formed of ceramics such as alumina and prevents the passage of gas is formed on the surface 16a that defines the short side of the diffusion resistance layer 16 having a trapezoidal cross section as described above. That is, the masking layer 17 is not formed in the region for guiding the exhaust to the exhaust-side electrode 15, that is, the surface 16 c defining the pair of oblique sides of the solid electrolyte body 12.

白金−ロジウムなどで形成される触媒層18は、外側に露出する固体電解質体12および遮蔽部材13およびマスキング層17の表面を覆うように形成され、マスキング層17と同様に台形断面を有する拡散抵抗層16の一対の斜辺を画成する面16cには触媒層18が形成されない。周知のように、排気中に炭素や炭素化合物あるいは窒素酸化物や硫黄酸化物などが含まれる場合、これらが反応し合って水素ガスが発生し、この水素ガスが空燃比センサによる検出の際にその検出誤差の原因となる。触媒層18は、その触媒機能によって排気中の水素ガスの無害な酸化化合物への変化を促進させるためのものである。   The catalyst layer 18 formed of platinum-rhodium or the like is formed so as to cover the surfaces of the solid electrolyte body 12 exposed to the outside, the shielding member 13, and the masking layer 17, and has a trapezoidal cross section like the masking layer 17. The catalyst layer 18 is not formed on the surface 16c defining the pair of hypotenuses of the layer 16. As is well known, when carbon, carbon compounds, nitrogen oxides or sulfur oxides are contained in the exhaust gas, these react with each other to generate hydrogen gas, which is detected by the air-fuel ratio sensor. This causes a detection error. The catalyst layer 18 is for accelerating the change of hydrogen gas in the exhaust gas into a harmless oxide compound by its catalytic function.

ヒータ19は、固体電解質体12の第2の面12bに臨むように配され、低温状態にあるセンサ素子部11をこれが正常に機能する温度へと迅速に昇温させるためのものである。本実施形態においては、大気側電極14と対向するようにヒータ19をその給電線24と共に遮蔽部材13内に埋設しているが、このヒータ19を第1の面12aに臨む先のチャンバ21に配することも可能である。   The heater 19 is disposed so as to face the second surface 12b of the solid electrolyte body 12, and is used to quickly raise the temperature of the sensor element unit 11 in a low temperature state to a temperature at which it normally functions. In the present embodiment, the heater 19 is embedded in the shielding member 13 together with the power supply line 24 so as to face the atmosphere side electrode 14, but the heater 19 is placed in the chamber 21 that faces the first surface 12a. It is also possible to arrange them.

本実施形態におけるセンサ素子部11は、外側ケーシング25と内側ケーシング26とからなる二重構造のケーシング内に収容される。内燃機関などの排気通路内に臨むように配される外側ケーシング25には、その内部と排気通路とを連通する複数の連通孔25aが形成されている。内側ケーシング26も同様に、外側ケーシング25との間に画成された環状の空隙27と、内側ケーシング26の内部とを連通する複数の連通孔26aが形成されている。本実施形態では、外側ケーシング25に形成された連通孔25aと、内側ケーシング26に形成された連通孔26aとは、これらがほぼ180度隔てて対向するような位置に偏在して形成されている。これにより、センサ素子部11が収容された内側ケーシング26の内部に導かれる排気の平衡化を効率よく行うことができる。   The sensor element unit 11 in the present embodiment is accommodated in a double-structure casing including an outer casing 25 and an inner casing 26. A plurality of communication holes 25a are formed in the outer casing 25 disposed so as to face an exhaust passage of an internal combustion engine or the like so as to communicate the inside with the exhaust passage. Similarly, the inner casing 26 is formed with a plurality of communication holes 26 a that communicate with the annular gap 27 defined between the inner casing 26 and the inner casing 26. In the present embodiment, the communication hole 25a formed in the outer casing 25 and the communication hole 26a formed in the inner casing 26 are formed unevenly at positions where they face each other at an interval of approximately 180 degrees. . Thereby, it is possible to efficiently balance the exhaust led to the inside of the inner casing 26 in which the sensor element unit 11 is accommodated.

なお、上述したセンサ素子部11以外の空燃比センサの基本的な構造は、特開2003−202316号公報などに開示された既知のものと同じであってよい。   The basic structure of the air-fuel ratio sensor other than the sensor element unit 11 described above may be the same as the known structure disclosed in Japanese Patent Application Laid-Open No. 2003-202316.

従って、この空燃比センサを内燃機関の排気管の途中に装着した場合、この排気管に形成された排気通路内を流れる排気は、その一部が外側ケーシング25の連通孔25aから外側ケーシング25と内側ケーシング26との間の環状の空隙27内に導かれ、さらにこの空隙27から内側ケーシング26の連通孔26aを通って内側ケーシング26内に流入することとなる。このようにして平衡化された状態となって内側ケーシング26内に流入する排気の空燃比がセンサ素子部11により検出される。この場合、空燃比センサによる検出誤差となる排気中の水素ガスが触媒層18により酸化化合物となって無害化され、信頼性の高い検出結果を得ることができる。また、排気側電極15には触媒層18のない拡散抵抗層16の一対の斜辺を画成する面16cから排気が直接導かれることとなり、その検出に伴う応答遅れを阻止することができる。   Therefore, when this air-fuel ratio sensor is mounted in the middle of the exhaust pipe of the internal combustion engine, a part of the exhaust flowing in the exhaust passage formed in the exhaust pipe is communicated with the outer casing 25 from the communication hole 25a of the outer casing 25. The air is guided into an annular gap 27 between the inner casing 26 and further flows from the gap 27 into the inner casing 26 through the communication hole 26 a of the inner casing 26. The air / fuel ratio of the exhaust gas flowing into the inner casing 26 in a balanced state is detected by the sensor element unit 11. In this case, hydrogen gas in the exhaust gas, which is a detection error by the air-fuel ratio sensor, is rendered harmless by the catalyst layer 18 as an oxidized compound, and a highly reliable detection result can be obtained. Further, exhaust gas is directly guided to the exhaust-side electrode 15 from the surfaces 16c defining the pair of oblique sides of the diffusion resistance layer 16 without the catalyst layer 18, and the response delay accompanying the detection can be prevented.

なお、内側ケーシング26内に流入した排気は、外側ケーシング25および内側ケーシング26の先端に形成した図示しない排出孔からベンチュリ効果により排気通路内に吸い出されるようになっている。   The exhaust gas that has flowed into the inner casing 26 is sucked into the exhaust passage by the venturi effect from the outer casing 25 and a discharge hole (not shown) formed at the tip of the inner casing 26.

上述した実施形態では、細長い板状をなす固体電解質体12を用いた積層型の空燃比センサについて説明したが、前述したように先端が閉じた筒状をなす固体電解質体12を用いた、いわゆるチューブ(コップ)型の空燃比センサにも本発明を適用することができる。   In the above-described embodiment, the laminated air-fuel ratio sensor using the solid electrolyte body 12 having an elongated plate shape has been described. However, as described above, a so-called solid electrolyte body 12 having a cylindrical shape with a closed tip is used. The present invention can also be applied to a tube (cup) type air-fuel ratio sensor.

このような本発明による空燃比センサの他の実施形態の断面構造を図5に示すが、先の実施形態と同一機能の要素にはこれと同一符号を記すに止め、重複する説明は省略するものとする。すなわち、本実施形態における空燃比センサのセンサ素子部11は、先端が閉じた筒状をなし、大気側に臨む第1の面、すなわち内周面12aと、排気側に臨む第2の面、すなわち外周面12bとを有する固体電解質体12を具えている。環状をなす大気側電極14は、固体電解質体12の内周面にそのリード線22と共に配されている。環状をなす排気側電極15は、固体電解質体12を挟んで大気側電極14と対向するように固体電解質体12の外周面にそのリード線23と共に配される。拡散抵抗層16は、排気側電極15を含めて固体電解質体12の外周面を覆うように形成されている。触媒層18は、拡散抵抗層16を介して排気を排気側電極15へ導くための領域を除いて拡散抵抗層16の表面に形成されている。本実施形態における排気を排気側電極15へ導くための領域は、拡散抵抗層16の外周面が排気側電極15と対向するような環状の領域16dである。給電線24が組み込まれたヒータ19は、大気側電極14と対向するように固体電解質体12の内部に収容され、このセンサ素子部11を加熱する。   FIG. 5 shows a cross-sectional structure of another embodiment of the air-fuel ratio sensor according to the present invention. Elements having the same functions as those of the previous embodiment are designated by the same reference numerals, and redundant description is omitted. Shall. That is, the sensor element portion 11 of the air-fuel ratio sensor in the present embodiment has a cylindrical shape with a closed tip, and has a first surface facing the atmosphere side, that is, an inner peripheral surface 12a and a second surface facing the exhaust side, That is, the solid electrolyte body 12 having the outer peripheral surface 12b is provided. The annular atmosphere-side electrode 14 is disposed along with the lead wire 22 on the inner peripheral surface of the solid electrolyte body 12. The exhaust-side electrode 15 having an annular shape is disposed together with the lead wires 23 on the outer peripheral surface of the solid electrolyte body 12 so as to face the atmosphere-side electrode 14 with the solid electrolyte body 12 interposed therebetween. The diffusion resistance layer 16 is formed so as to cover the outer peripheral surface of the solid electrolyte body 12 including the exhaust-side electrode 15. The catalyst layer 18 is formed on the surface of the diffusion resistance layer 16 except for a region for guiding exhaust gas to the exhaust side electrode 15 via the diffusion resistance layer 16. The region for guiding the exhaust gas to the exhaust side electrode 15 in the present embodiment is an annular region 16 d where the outer peripheral surface of the diffusion resistance layer 16 faces the exhaust side electrode 15. The heater 19 in which the power supply line 24 is incorporated is accommodated in the solid electrolyte body 12 so as to face the atmosphere side electrode 14 and heats the sensor element unit 11.

従って、内燃機関の排気通路内を流れる排気は、その一部が外側ケーシング25の連通孔25aから外側ケーシング25と内側ケーシング26との間の環状の空隙27内に導かれ、さらにこの空隙27から内側ケーシング26の連通孔26aを通って内側ケーシング26内に流入する。このようにして平衡化された状態となって内側ケーシング26内に流入する排気は、センサ素子部11によりその空燃比が検出されることとなる。この場合も先の実施形態と同様に、空燃比センサによる検出誤差となる排気中の水素ガスが触媒層18により水素酸化物となって無害化され、信頼性の高い検出結果を得ることができる。また、排気側電極15には触媒層18のない拡散抵抗層16の環状の領域16dから排気が導かれることとなり、その検出に伴う応答遅れを阻止することができる。   Accordingly, a part of the exhaust gas flowing in the exhaust passage of the internal combustion engine is guided into the annular gap 27 between the outer casing 25 and the inner casing 26 from the communication hole 25 a of the outer casing 25, and from this gap 27. It flows into the inner casing 26 through the communication hole 26 a of the inner casing 26. Thus, the air-fuel ratio of the exhaust gas flowing into the inner casing 26 in a balanced state is detected by the sensor element unit 11. In this case as well, as in the previous embodiment, hydrogen gas in the exhaust gas, which becomes a detection error by the air-fuel ratio sensor, is rendered harmless by the catalyst layer 18 and is rendered harmless, and a highly reliable detection result can be obtained. . Further, the exhaust gas is guided to the exhaust side electrode 15 from the annular region 16d of the diffusion resistance layer 16 without the catalyst layer 18, and the response delay accompanying the detection can be prevented.

なお、本発明はその特許請求の範囲に記載された事項のみから解釈されるべきものであり、上述した実施形態においても、本発明の概念に包含されるあらゆる変更や修正が記載した事項以外に可能である。つまり、上述した実施形態におけるすべての事項は、本発明を限定するためのものではなく、本発明とは直接的に関係のないあらゆる構成を含め、その用途や目的などに応じて任意に変更し得るものである。   It should be noted that the present invention should be construed only from the matters described in the claims, and in the above-described embodiment, all the changes and modifications included in the concept of the present invention are other than those described. Is possible. That is, all matters in the above-described embodiment are not intended to limit the present invention, and include any configuration not directly related to the present invention. To get.

本発明による空燃比センサを積層型のものに適用した一実施形態におけるセンサ素子の部分の外観を表す立体投影図である。It is a three-dimensional projection figure showing the external appearance of the part of the sensor element in one Embodiment which applied the air-fuel ratio sensor by this invention to the laminated type thing. 図1に示した空燃比センサの断面図である。It is sectional drawing of the air fuel ratio sensor shown in FIG. 図2中のIII−III矢視断面図である。FIG. 3 is a cross-sectional view taken along arrow III-III in FIG. 2. 図2中のIV−IV矢視断面図である。It is IV-IV arrow sectional drawing in FIG. 本発明による空燃比センサをチューブ型のものに適用した一実施形態におけるセンサ素子の部分の断面図である。It is sectional drawing of the part of the sensor element in one Embodiment which applied the air fuel ratio sensor by this invention to a tube type thing.

符号の説明Explanation of symbols

11 センサ素子部
12 固体電解質体
12a 第1の面
12b 第2の面
13 遮蔽部材
14 大気側電極
15 排気側電極
16 拡散抵抗層
16a 短辺を画成する面
16b 長辺を画成する面
16c 斜辺を画成する面
16d 環状の領域
17 マスキング層
18 触媒層
19 ヒータ
20 大気連通路
21 チャンバ
22,23 リード線
24 給電線
25 外側ケーシング
25a 連通孔
26 内側ケーシング
26a 連通孔
27 空隙
DESCRIPTION OF SYMBOLS 11 Sensor element part 12 Solid electrolyte body 12a 1st surface 12b 2nd surface 13 Shielding member 14 Atmosphere side electrode 15 Exhaust side electrode 16 Diffusion resistance layer 16a Surface which defines short side 16b Surface which defines long side 16c Surface defining the oblique side 16d Annular region 17 Masking layer 18 Catalyst layer 19 Heater 20 Atmospheric communication path 21 Chamber 22, 23 Lead wire 24 Feed line 25 Outer casing 25a Communication hole 26 Inner casing 26a Communication hole 27 Gap

Claims (3)

大気側に臨む第1の面および排気側に臨む第2の面を有する固体電解質体と、
この固体電解質体の第1の面に配される大気側電極と、
前記固体電解質体を挟んで前記大気側電極と対向するように前記第2の面に配される排気側電極と、
この排気側電極および前記固体電解質体の第2の面を覆うように形成される拡散抵抗層と、
この拡散抵抗層を介して排気を前記排気側電極へ導くための領域を除いて当該拡散抵抗層の表面に形成される触媒層と
を具えたセンサ素子部を有することを特徴とする空燃比センサ。
A solid electrolyte body having a first surface facing the atmosphere side and a second surface facing the exhaust side;
An atmosphere-side electrode disposed on the first surface of the solid electrolyte body;
An exhaust-side electrode disposed on the second surface so as to face the atmosphere-side electrode across the solid electrolyte body;
A diffusion resistance layer formed so as to cover the exhaust-side electrode and the second surface of the solid electrolyte body;
An air-fuel ratio sensor comprising a sensor element portion including a catalyst layer formed on the surface of the diffusion resistance layer except for a region for guiding exhaust gas to the exhaust side electrode through the diffusion resistance layer .
第1の面および排気側に臨む第2の面を有する固体電解質体と、
この固体電解質体と一体に形成され、当該固体電解質体の前記第1の面が大気側に臨むように前記第1の面を排気側に対して遮蔽する遮蔽部材と、
この遮蔽部材によって囲まれた前記固体電解質体の第1の面に配される大気側電極と、
前記固体電解質体を挟んで前記大気側電極と対向するように前記第2の面に配される排気側電極と、
この排気側電極と前記固体電解質体の第2の面とを覆うように形成される拡散抵抗層と、
排気を前記排気側電極へ導くための領域を除いて前記拡散抵抗層の表面を覆うように形成されるマスキング層と、
前記固体電解質体および前記遮蔽部材および前記マスキング層の表面を覆うように形成される触媒層と
を具えたセンサ素子部を有することを特徴とする空燃比センサ。
A solid electrolyte body having a first surface and a second surface facing the exhaust side;
A shielding member that is integrally formed with the solid electrolyte body and shields the first surface from the exhaust side so that the first surface of the solid electrolyte body faces the atmosphere;
An atmosphere-side electrode disposed on the first surface of the solid electrolyte body surrounded by the shielding member;
An exhaust-side electrode disposed on the second surface so as to face the atmosphere-side electrode across the solid electrolyte body;
A diffusion resistance layer formed so as to cover the exhaust-side electrode and the second surface of the solid electrolyte body;
A masking layer formed so as to cover the surface of the diffusion resistance layer except for a region for guiding exhaust to the exhaust side electrode;
An air-fuel ratio sensor comprising: a sensor element portion including: the solid electrolyte body, the shielding member, and a catalyst layer formed so as to cover surfaces of the masking layer.
内部が排気側と連通する連通孔を形成した外側ケーシングと、
この外側ケーシングの内側に収容されて当該外側ケーシングとの間に画成された空隙に連通する連通孔を形成した内側ケーシングと
をさらに具え、前記センサ素子部が前記内側ケーシング内に収容されていることを特徴とする請求項1または請求項2に記載の空燃比センサ。
An outer casing having a communication hole that communicates with the exhaust side inside;
An inner casing which is accommodated inside the outer casing and has a communication hole communicating with a gap defined between the outer casing and the sensor element portion is accommodated in the inner casing. The air-fuel ratio sensor according to claim 1 or 2, characterized by the above.
JP2008021364A 2008-01-31 2008-01-31 Air-fuel ratio sensor Expired - Fee Related JP4998828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021364A JP4998828B2 (en) 2008-01-31 2008-01-31 Air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021364A JP4998828B2 (en) 2008-01-31 2008-01-31 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JP2009180669A true JP2009180669A (en) 2009-08-13
JP4998828B2 JP4998828B2 (en) 2012-08-15

Family

ID=41034753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021364A Expired - Fee Related JP4998828B2 (en) 2008-01-31 2008-01-31 Air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP4998828B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098674A1 (en) 2011-01-21 2012-07-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2014025726A (en) * 2012-07-24 2014-02-06 Mitsubishi Motors Corp Protective cover structure for gas sensor
WO2016002793A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor
CN108693215A (en) * 2017-03-31 2018-10-23 日本碍子株式会社 Gas sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191772A (en) * 2000-12-25 2002-07-10 Sanyo Product Co Ltd Game ball anti-returning member and method for preventing static electricity of anti-returning piece
JP2003107047A (en) * 2001-10-01 2003-04-09 Denso Corp Gas-concentration detecting element
JP2006322389A (en) * 2005-05-19 2006-11-30 Toyota Motor Corp Catalyst degrading prevention device
JP2007155605A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust gas sensor system
JP2007218894A (en) * 2006-01-23 2007-08-30 Denso Corp Gas sensor element
JP2007248351A (en) * 2006-03-17 2007-09-27 Denso Corp Gas sensor element and its manufacturing method
JP2009128273A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Air/fuel ratio sensor and internal combustion engine control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191772A (en) * 2000-12-25 2002-07-10 Sanyo Product Co Ltd Game ball anti-returning member and method for preventing static electricity of anti-returning piece
JP2003107047A (en) * 2001-10-01 2003-04-09 Denso Corp Gas-concentration detecting element
JP2006322389A (en) * 2005-05-19 2006-11-30 Toyota Motor Corp Catalyst degrading prevention device
JP2007155605A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust gas sensor system
JP2007218894A (en) * 2006-01-23 2007-08-30 Denso Corp Gas sensor element
JP2007248351A (en) * 2006-03-17 2007-09-27 Denso Corp Gas sensor element and its manufacturing method
JP2009128273A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Air/fuel ratio sensor and internal combustion engine control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098674A1 (en) 2011-01-21 2012-07-26 トヨタ自動車株式会社 Control device for internal combustion engine
US8943799B2 (en) 2011-01-21 2015-02-03 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2014025726A (en) * 2012-07-24 2014-02-06 Mitsubishi Motors Corp Protective cover structure for gas sensor
WO2016002793A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor
JP2016027312A (en) * 2014-06-30 2016-02-18 株式会社デンソー Gas sensor
CN108693215A (en) * 2017-03-31 2018-10-23 日本碍子株式会社 Gas sensor

Also Published As

Publication number Publication date
JP4998828B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5416686B2 (en) Multi gas sensor
JP6744231B2 (en) Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system
US9658133B2 (en) Multigas sensor and multigas sensor device
JP6061790B2 (en) Oxidation catalyst deterioration diagnosis device
JP3648063B2 (en) Gas sensor, gas sensor system using the same, and method of manufacturing gas sensor
JP4788707B2 (en) Air-fuel ratio sensor and control device for internal combustion engine
JP6311686B2 (en) Multi gas detector
JP6346524B2 (en) Gas sensor and method for forming gas inlet in gas sensor
JP5215500B2 (en) Multi-gas sensor and gas sensor control device
JP2009013967A (en) Hydrogen detection device, and abnormality judgement device for internal combustion engine
JP2009540334A (en) Ammonia sensor with heterogeneous electrodes
US5985118A (en) Solid electrolyte gas concentration detector
EP2803990B1 (en) Hydrocarbon gas sensor
JP3560316B2 (en) Gas sensor, method of manufacturing the same, and gas sensor system
JP2009150719A (en) Nox sensor
JP3566089B2 (en) Gas sensor, gas sensor system using the same, and method of manufacturing gas sensor
JP4998828B2 (en) Air-fuel ratio sensor
US20220113280A1 (en) Gas sensor
JP2003149199A (en) Gas sensor
JP2011038953A (en) Gas sensor
JP2015102384A (en) Oxygen sensor element
JP4739716B2 (en) Sensor element
JP2005180419A (en) Sensor device for exhaust gas of internal combustion engine and method of operating the same
JP2006337205A (en) Gas sensor
JP2011149732A (en) METHOD FOR MANUFACTURING NOx SENSOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120503

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees