JP2009179873A - Method for recovering noble metal and combusting device - Google Patents

Method for recovering noble metal and combusting device Download PDF

Info

Publication number
JP2009179873A
JP2009179873A JP2008022499A JP2008022499A JP2009179873A JP 2009179873 A JP2009179873 A JP 2009179873A JP 2008022499 A JP2008022499 A JP 2008022499A JP 2008022499 A JP2008022499 A JP 2008022499A JP 2009179873 A JP2009179873 A JP 2009179873A
Authority
JP
Japan
Prior art keywords
combustion
activated carbon
noble metal
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008022499A
Other languages
Japanese (ja)
Other versions
JP5688200B2 (en
Inventor
Akihiko Okuda
晃彦 奥田
Kei Sabae
慶 鯖江
Hiroyasu Sato
浩安 佐藤
Takao Usami
隆夫 宇佐美
Koji Shimizu
康次 清水
Katsuhisa Mizuno
克久 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Mino Ceramic Co Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Mino Ceramic Co Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2008022499A priority Critical patent/JP5688200B2/en
Publication of JP2009179873A publication Critical patent/JP2009179873A/en
Application granted granted Critical
Publication of JP5688200B2 publication Critical patent/JP5688200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering noble metals by which combustion efficiency is improved to reduce energy consumption, and further the extraction rate of noble metals can be improved, and to provide a combusting device suitable for improving combustion efficiency. <P>SOLUTION: The method for recovering noble metals includes: a combusting step where activated carbon with noble metals adsorbed therein is combusted to be ashed; and an extraction step where the noble metals are extracted from the ashed matter obtained by the combustion; wherein in the combusting step, the activated carbon is irradiated with microwaves to be combusted, and an oxygen-containing gas is fed to progress the combustion of the activated carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、めっき液等の貴金属を含む廃液から貴金属を回収するための方法、及びその回収方法に用いる燃焼装置に関する。   The present invention relates to a method for recovering a noble metal from a waste liquid containing a noble metal such as a plating solution, and a combustion apparatus used for the recovery method.

貴金属めっきは、各種の装飾品や、電子機器部品等に広く用いられている。貴金属資源を有効活用するため、めっき廃液等の液体状の廃棄物の他、固体状の廃棄物を溶液化した回収液等より、貴金属を回収、精製する方法が用いられている。従来の回収方法としては、貴金属を吸着させた活性炭を、都市ガス、プロパンガス、重油等の燃料を用いて燃焼して灰化させた後、灰化物より貴金属を抽出する方法が知られている。特許文献1には、アントラヒドロキノン化合物を担持した多孔質担体を使用した貴金属の回収方法として、焼却によって捕捉した貴金属を容易に回収できることが記載されている。また、焼却法として、回転焼却炉や、るつぼ型の焼却炉等を採用できることも記載されている。
特開平10−121158号公報
Precious metal plating is widely used for various decorative items, electronic device parts, and the like. In order to make effective use of precious metal resources, a method of recovering and purifying precious metal from a liquid waste such as plating waste liquid or a recovery liquid obtained by converting solid waste into a solution is used. As a conventional recovery method, there is known a method in which activated carbon adsorbed with a noble metal is burned and incinerated using a fuel such as city gas, propane gas or heavy oil, and then the noble metal is extracted from the incinerated product. . Patent Document 1 describes that a precious metal captured by incineration can be easily recovered as a precious metal recovery method using a porous carrier supporting an anthrahydroquinone compound. It is also described that a rotary incinerator or a crucible type incinerator can be adopted as an incineration method.
Japanese Patent Laid-Open No. 10-121158

しかしながら、従来のように、都市ガス等の燃料を用いて活性炭を燃焼させる場合、燃焼工程で大量のエネルギーを消費するものであった。また、使用する燃料の種類によっては、ハロゲン等の有害物質を含む燃焼ガスを発生することがあり、燃焼ガスを除去するため、さらに二次的な高温加熱処理が必要であった。   However, when activated carbon is burned using a fuel such as city gas as in the past, a large amount of energy is consumed in the combustion process. In addition, depending on the type of fuel used, combustion gas containing harmful substances such as halogen may be generated, and in order to remove the combustion gas, further secondary high-temperature heat treatment is necessary.

また、都市ガス等を用いた燃焼方法は、燃焼炉外部からの加熱により焼成するものであり、活性炭の内部まで均一に燃焼を進行させることが困難となり、貴金属の抽出率が低下する場合があった。かかる燃焼方法であっても、燃焼を長時間行うことや、燃焼と抽出とを繰り返し行うことにより、抽出率を向上させることは可能であるが、工程の煩雑化や、消費エネルギーの増大等が問題であった。また、貴金属を含む溶液に活性炭を含浸させると、貴金属は活性炭の細孔内部まで浸透するが、都市ガス等による燃焼工程では、燃焼が進行するに従い、貴金属が活性炭の細孔表面を覆うことがあった。このため、活性炭の細孔内部へ酸素が供給されにくくなり、燃焼の進行が不十分となりやすかった。   In addition, the combustion method using city gas or the like is performed by heating from the outside of the combustion furnace, and it becomes difficult to make the combustion progress uniformly to the inside of the activated carbon, and the extraction rate of the noble metal may decrease. It was. Even with such a combustion method, it is possible to improve the extraction rate by repeating the combustion for a long time or by repeatedly performing the combustion and extraction, but the process becomes complicated and the consumption energy increases. It was a problem. In addition, when activated carbon is impregnated into a solution containing a noble metal, the noble metal penetrates into the pores of the activated carbon. However, in the combustion process using city gas or the like, the noble metal may cover the pore surface of the activated carbon as the combustion proceeds. there were. For this reason, it becomes difficult to supply oxygen into the pores of the activated carbon, and the progress of combustion tends to be insufficient.

そこで、本発明は、燃焼効率を向上させてエネルギー消費を低減し、さらに貴金属の抽出率も向上できる貴金属の回収方法の提供を目的とする。また、燃焼効率向上のために好適な燃焼装置を提供する。   Therefore, an object of the present invention is to provide a precious metal recovery method that can improve combustion efficiency, reduce energy consumption, and improve the extraction rate of precious metals. In addition, a combustion apparatus suitable for improving combustion efficiency is provided.

上記課題を解決するため、本発明者等は、貴金属の回収方法における燃焼工程について鋭意検討し、マイクロ波を用いて活性炭を燃焼させる本発明に想到した。   In order to solve the above-mentioned problems, the present inventors diligently studied the combustion process in the noble metal recovery method and arrived at the present invention in which activated carbon is combusted using microwaves.

すなわち、本発明は、貴金属を吸着した活性炭を燃焼させて灰化する燃焼工程と、燃焼により得られた灰化物から貴金属を抽出する抽出工程と、を有する貴金属の回収方法において、前記燃焼工程は、マイクロ波を照射して活性炭を燃焼させるものであり、酸素含有ガスを供給して活性炭の燃焼を進行させる貴金属の回収方法に関する。   That is, the present invention provides a precious metal recovery method comprising a combustion step of burning activated carbon adsorbed with a precious metal and ashing, and an extraction step of extracting precious metal from an ash obtained by combustion. In addition, the present invention relates to a method for recovering a noble metal, in which activated carbon is burned by irradiating a microwave, and an oxygen-containing gas is supplied to advance combustion of the activated carbon.

本発明では、マイクロ波の照射により活性炭を燃焼させるため、加熱速度が大きくなり、燃焼効率を大幅に向上できる。また、都市ガス等を用いた場合のように、活性炭の内部に吸着した貴金属が燃焼により細孔表面を覆うとの現象も生じにくく、効率良く活性炭を灰化できる。さらに、酸素含有ガスを供給し、活性炭の自己燃焼を利用することにより、燃焼容器内部まで均一に燃焼を進行させることができる。尚、酸素含有ガスとしては空気を使用できるため、有害物質を含む燃焼ガスの発生も低減できる。   In the present invention, since activated carbon is burned by microwave irradiation, the heating rate is increased, and the combustion efficiency can be greatly improved. Moreover, unlike the case of using city gas or the like, the phenomenon that the noble metal adsorbed inside the activated carbon covers the pore surface by combustion hardly occurs, and the activated carbon can be incinerated efficiently. Furthermore, by supplying an oxygen-containing gas and utilizing the self-combustion of activated carbon, the combustion can be uniformly advanced to the inside of the combustion container. In addition, since air can be used as the oxygen-containing gas, generation of combustion gas containing harmful substances can be reduced.

以下、本発明の貴金属回収方法について詳細に説明する。まず、本発明の回収方法では、貴金属を吸着した活性炭を用いる。活性炭に吸着させる貴金属源は、特に限定されず、めっき廃液等の液体状の廃棄物の他、固体状の廃棄物を溶液化した回収液等を使用できる。そして、めっき廃液や回収液等に含まれる貴金属を活性炭に吸着させる方法としては、含浸による方法や、カラムに充填した活性炭中に回収液を通過させる方法等の一般的な方法を利用できる。   Hereinafter, the noble metal recovery method of the present invention will be described in detail. First, in the recovery method of the present invention, activated carbon having adsorbed noble metal is used. The noble metal source to be adsorbed on the activated carbon is not particularly limited, and a liquid waste such as a plating waste liquid or a recovered liquid obtained by dissolving a solid waste can be used. As a method for adsorbing the noble metal contained in the plating waste liquid or the recovery liquid on the activated carbon, a general method such as a method by impregnation or a method of allowing the recovery liquid to pass through the activated carbon packed in the column can be used.

そして、貴金属の吸着した活性炭を、燃焼工程により燃焼して灰化させる。活性炭はマイクロ波を吸収しやすい物質であるため、効率良くマイクロ波を熱エネルギーへ変換できる。燃焼工程において活性炭の燃焼を進行させる酸素含有ガスは、燃焼工程の少なくとも一部の過程で供給されるものであり、燃焼工程初期の燃焼温度を上昇させているときや、目標とする燃焼温度付近まで達したときに供給できる。また、後述するように設定された燃焼温度に達した後にマイクロ波の出力を低下又は停止させ、その際に酸素含有ガスを供給してもよい。更に、マイクロ波の出力及び燃焼温度を監視しつつ、燃焼工程の開始から終了まで継続的に供給しても良い。尚、酸素含有ガスには、圧縮空気を用いることができる。圧縮空気によれば、後述する酸素含有量の調整も容易に行うことができる。圧縮空気は、酸素含有量を21%程度まで高めることができ、モレキュラーシーブ等の吸着剤を用いた場合、酸素含有量60%程度まで高めることもできる。   And the activated carbon which adsorb | sucked the noble metal is burned by a combustion process, and is ashed. Since activated carbon is a substance that easily absorbs microwaves, it can efficiently convert microwaves into heat energy. The oxygen-containing gas that promotes the combustion of activated carbon in the combustion process is supplied during at least a part of the combustion process, and when the combustion temperature at the initial stage of the combustion process is raised or near the target combustion temperature Can be supplied when reaching. Alternatively, the microwave output may be reduced or stopped after reaching a combustion temperature set as described later, and an oxygen-containing gas may be supplied at that time. Furthermore, it may be continuously supplied from the start to the end of the combustion process while monitoring the microwave output and the combustion temperature. Note that compressed air can be used as the oxygen-containing gas. According to the compressed air, the oxygen content described later can be easily adjusted. The compressed air can increase the oxygen content to about 21%, and can also increase the oxygen content to about 60% when an adsorbent such as a molecular sieve is used.

燃焼工程における燃焼炉内の燃焼温度は、500℃〜1100℃の範囲内とすることが好ましい。燃焼温度500℃未満では、燃焼が進行し難く、長時間の燃焼が必要となるため、エネルギー消費量が増大する。1100℃を超えると、回収物中の貴金属が溶融し、その溶融物が回収物中の金属成分や酸化物成分と反応することにより、容器を傷める場合がある。回収物中の貴金属の溶融は、回収する貴金属の融点よりも高い場合に起こるため、燃焼温度は、回収する貴金属の融点より50〜150℃低い温度にすることが好ましい。例えば、回収物に銀が多く含まれる場合には、燃焼温度は850℃以下とすることが好ましい。   The combustion temperature in the combustion furnace in the combustion process is preferably in the range of 500 ° C to 1100 ° C. If the combustion temperature is less than 500 ° C., the combustion is difficult to proceed and the combustion for a long time is required, so that the energy consumption increases. When the temperature exceeds 1100 ° C., the precious metal in the recovered material is melted, and the molten material may be damaged by reacting with the metal component or oxide component in the recovered material. Since the melting of the precious metal in the recovered material occurs when the melting point of the precious metal to be recovered is higher, the combustion temperature is preferably 50 to 150 ° C. lower than the melting point of the precious metal to be recovered. For example, when the collected material contains a large amount of silver, the combustion temperature is preferably 850 ° C. or lower.

燃焼温度は、酸素含有ガスの供給量と、マイクロ波を照射するための出力によって調整することが好ましい。燃焼炉内の温度を上昇させる際は、マイクロ波の出力を約50〜100%とすることが好ましい。特に、100℃近辺までは、廃液中の溶媒の蒸発にエネルギーを要するため、マイクロ波の出力を最大としてもよい。目標とする燃焼温度より200℃低い温度近辺となったら、マイクロ波の出力を約10〜50%に低下させ、若しくは出力を停止してもよい。すなわち、燃焼工程は、マイクロ波を照射した後、燃焼温度が500〜900℃となったときに、マイクロ波の出力を低下又は停止するように行うことができる。マイクロ波の出力を低下させても、活性炭の自己燃焼を利用することにより、上記した燃焼温度を維持できる。これらマイクロ波の出力制御により、エネルギーの過剰消費を削減できる。尚、マイクロ波の出力制御は、制御装置により自動制御する方法や、オン/オフ切替えによる方法等を利用できる。   The combustion temperature is preferably adjusted by the supply amount of the oxygen-containing gas and the output for irradiating the microwave. When raising the temperature in a combustion furnace, it is preferable that the output of a microwave shall be about 50-100%. In particular, up to around 100 ° C., energy is required to evaporate the solvent in the waste liquid, so that the microwave output may be maximized. When the temperature is near 200 ° C. lower than the target combustion temperature, the microwave output may be reduced to about 10 to 50%, or the output may be stopped. That is, the combustion process can be performed so that the microwave output is reduced or stopped when the combustion temperature reaches 500 to 900 ° C. after the microwave irradiation. Even if the output of the microwave is reduced, the combustion temperature described above can be maintained by utilizing the self-combustion of activated carbon. These microwave output controls can reduce excessive energy consumption. For microwave output control, a method of automatic control by a control device, a method of on / off switching, or the like can be used.

また、マイクロ波の出力を調整するとともに、酸素含有ガスの供給量を調整して活性炭の自己燃焼の度合いを制御することで、目標とする燃焼温度を維持できる。酸素含有ガスの供給量が過剰であると、自己燃焼が進行し過ぎて目標とする燃焼温度を超えてしまう場合があり、逆に酸素含有ガスの供給量が少ないと、焼成時間が長く必要となる。尚、酸素供給量は、燃焼する活性炭の量、目標とする燃焼温度、ガス中の酸素含有量に合わせて調整する必要があり、活性炭の量が多くなるほど必要供給量も多くなる。例えば、放熱がない状態で活性炭1kgを焼成させ、燃焼温度780℃とするには酸素含有ガスを500L/min、燃焼温度930℃とするには酸素含有ガスを420L/min供給する。   Further, the target combustion temperature can be maintained by adjusting the microwave output and adjusting the supply amount of the oxygen-containing gas to control the degree of self-combustion of the activated carbon. If the supply amount of the oxygen-containing gas is excessive, self-combustion may proceed excessively and the target combustion temperature may be exceeded. Conversely, if the supply amount of the oxygen-containing gas is small, a longer firing time is required. Become. The oxygen supply amount needs to be adjusted according to the amount of activated carbon to be burned, the target combustion temperature, and the oxygen content in the gas, and the required supply amount increases as the amount of activated carbon increases. For example, 1 kg of activated carbon is calcined in the absence of heat dissipation, and oxygen-containing gas is supplied at 500 L / min for a combustion temperature of 780 ° C., and oxygen-containing gas is supplied at 420 L / min for a combustion temperature of 930 ° C.

尚、燃焼工程の前に、貴金属を吸着した活性炭に含まれる溶媒を蒸発させる工程を行うこともできるが、本発明によれば、別工程として蒸発工程を行わなくとも、燃焼工程において溶媒の蒸発を併せて行うことができる。   Although the step of evaporating the solvent contained in the activated carbon adsorbing the noble metal can be performed before the combustion step, according to the present invention, the evaporation of the solvent in the combustion step can be performed without performing the evaporation step as a separate step. Can also be performed.

上記した燃焼工程により活性炭を灰化させた後、灰化物より貴金属を抽出する。抽出工程は、灰化物を酸又はアルカリにより溶解し、その溶解液より貴金属を抽出して行うことができる。抽出する貴金属は、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウムのうち1種以上であることが好ましい。灰化物の溶解には、硝酸、王水、シアン化アルカリ溶液等を使用でき、回収する貴金属の種類に合わせて利用することが好ましい。例えば、回収する貴金属中に銀が60%以上含まれる場合、硝酸を用いて溶解させることができ、銀の割合が60%未満である場合は、王水を利用できる。また、金と銀とを回収する場合、シアン化物を含むアルカリ溶液で溶解することが好ましい。シアン化物は、金と銀とを選択的に溶解し、他の金属を溶解しにくい傾向にあるため、回収率を向上できる。また、後に貴金属を分離精製する工程も容易になる。尚、溶液の濃度は、硝酸は約30〜70%、王水は酸濃度50%程度、シアン化アルカリは強アルカリのためシアン濃度で数g/L程度のものを利用できる。また、溶解時の液温を高めることで、溶解を促進することもできる。この際、急激な反応や突沸が起こらないよう、反応温度及び酸濃度等を調製することが好ましい。   After the activated carbon is incinerated by the combustion process described above, noble metal is extracted from the incinerated product. The extraction step can be performed by dissolving the ashed product with acid or alkali and extracting the noble metal from the solution. The precious metal to be extracted is preferably one or more of gold, silver, platinum, palladium, rhodium, iridium, and ruthenium. Nitric acid, aqua regia, an alkali cyanide solution, or the like can be used for dissolving the ashed product, and it is preferable to use according to the type of the precious metal to be recovered. For example, when the precious metal to be collected contains 60% or more of silver, it can be dissolved using nitric acid, and when the proportion of silver is less than 60%, aqua regia can be used. Moreover, when collect | recovering gold | metal | money and silver, it is preferable to melt | dissolve with the alkaline solution containing a cyanide. Since cyanide selectively dissolves gold and silver and hardly dissolves other metals, the recovery rate can be improved. Further, the process of separating and purifying the noble metal later becomes easy. The concentration of the solution is about 30 to 70% for nitric acid, about 50% for aqua regia, and about 50% for cyanide, and alkali cyanide is a strong alkali. Moreover, melt | dissolution can also be accelerated | stimulated by raising the liquid temperature at the time of melt | dissolution. At this time, it is preferable to adjust the reaction temperature, acid concentration, and the like so that rapid reaction or bumping does not occur.

そして、本発明の回収方法において使用する燃焼装置としては、酸素含有ガス導入口を有し活性炭を投入して燃焼させる燃焼容器と、該活性炭を加熱するためのマイクロ波を発振するマイクロ波発振器と、該燃焼容器内の燃焼温度を測定する温度センサーと、を備える燃焼装置を用いることができる。本発明の燃焼装置は、マイクロ波により活性炭を燃焼させるために好適であり、酸素含有ガスを供給して、活性炭の内部燃焼を進行させることができる。   And, as a combustion apparatus used in the recovery method of the present invention, a combustion container having an oxygen-containing gas inlet and injecting activated carbon for combustion, a microwave oscillator for oscillating microwaves for heating the activated carbon, And a temperature sensor that measures the combustion temperature in the combustion container. The combustion apparatus of the present invention is suitable for burning activated carbon by microwaves, and can supply oxygen-containing gas to advance internal combustion of activated carbon.

また、燃焼容器は、誘電損失係数が5以下の材料からなることが好ましい。誘電損失係数は、マイクロ波により加熱される物質の発熱のしやすさを表す指標となる値であり、誘電損失係数が大きいほど発熱量が大きく、選択的に加熱されることとなる。このため、誘電損失係数が5以下の材料であれば、マイクロ波を選択的に活性炭の燃焼に利用することができる。尚、黒鉛等の自由空間法測定により測定された誘電損失係数(ε’×tanδ)は、カーボン板が22.6、黒鉛(押出品)が17.7、炭化ケイ素が3.52、アルミナが0.0624、コージェライトが0.046以下である。   The combustion container is preferably made of a material having a dielectric loss coefficient of 5 or less. The dielectric loss coefficient is a value that serves as an index representing the ease of heat generation of a substance heated by microwaves. The larger the dielectric loss coefficient, the larger the heat generation amount, and the more selectively heated. For this reason, if the material has a dielectric loss coefficient of 5 or less, microwaves can be selectively used for combustion of activated carbon. The dielectric loss coefficient (ε ′ × tan δ) measured by free space method measurement for graphite and the like is 22.6 for carbon plate, 17.7 for graphite (extruded product), 3.52 for silicon carbide, and alumina for alumina. 0.0624, cordierite is 0.046 or less.

さらに、燃焼容器は、熱膨張率5.0×10−6−1以下の材料からなることが好ましい。燃焼時において、燃焼容器内に部分的な温度差が生じた場合であっても、熱応力の発生による容器の破損等が生じにくいものとなるからである。熱膨張率の値は、コージェライト−ムライトが4.5×10−6−1、コージェライトが3.0×10−6−1、溶融シリカが1.5×10−6−1、石英が1.2×10−6−1である。 Further, the combustion container is preferably made of a material having a thermal expansion coefficient of 5.0 × 10 −6 K −1 or less. This is because even when a partial temperature difference occurs in the combustion container during combustion, the container is hardly damaged due to the generation of thermal stress. The values of coefficient of thermal expansion are 4.5 × 10 −6 K −1 for cordierite-mullite, 3.0 × 10 −6 K −1 for cordierite, and 1.5 × 10 −6 K −1 for fused silica. Quartz is 1.2 × 10 −6 K −1 .

以上より、燃焼容器としては、炭化ケイ素、アルミナ、コージェライト等のセラミックス材料を用いることが好ましい。これらの材料は、誘電損失係数及び熱膨張率が小さいことに加え、耐熱性にも優れる材料である。また、本発明者等によれば、炭化ケイ素とコージェライトとを、それぞれ燃焼容器として用いた場合、より誘電損失係数の小さいコージェライトを用いた方が、燃焼時間を短縮できることが分かった。   From the above, it is preferable to use a ceramic material such as silicon carbide, alumina, cordierite, etc. as the combustion container. These materials are excellent in heat resistance in addition to having a small dielectric loss coefficient and thermal expansion coefficient. Further, according to the present inventors, it has been found that when silicon carbide and cordierite are each used as a combustion container, the use of cordierite having a smaller dielectric loss coefficient can shorten the combustion time.

燃焼装置には、マイクロ波発振器の出力を、燃焼温度に応じて制御する制御手段を更に備えることが好ましい。マイクロ波の出力により燃焼温度が充分に上昇した後、出力を低下又は停止して、活性炭の内部燃焼により燃焼を進行させることで、エネルギー消費量を削減できる。   It is preferable that the combustion apparatus further includes control means for controlling the output of the microwave oscillator in accordance with the combustion temperature. After the combustion temperature is sufficiently increased by the microwave output, the energy consumption can be reduced by reducing or stopping the output and allowing combustion to proceed by internal combustion of the activated carbon.

また、燃焼装置は、酸素含有ガス導入口に接続され、燃焼温度に応じた流量の酸素含有ガスを供給するガス流量調節手段を更に備えることが好ましい。酸素含有ガスは、燃焼温度の上昇後、活性炭の内部燃焼を持続させるために供給するものであり、酸素含有ガスの供給量により、燃焼温度を調整することができる。   The combustion apparatus preferably further includes a gas flow rate adjusting means connected to the oxygen-containing gas inlet and supplying an oxygen-containing gas having a flow rate corresponding to the combustion temperature. The oxygen-containing gas is supplied to maintain the internal combustion of the activated carbon after the combustion temperature rises, and the combustion temperature can be adjusted by the supply amount of the oxygen-containing gas.

上記したマイクロ波出力及び酸素含有ガスの供給量の調節手段に関し、例として、温度調節手段を備える燃焼装置とした場合について説明する。温度調節手段は、燃焼容器内の燃焼温度を測定する熱電対と接続させ、熱電対からの温度信号を受信するものとする。温度調節手段には、予め好適な燃焼温度の範囲を設定しておくことが好ましい。そして、マイクロ波の出力により燃焼を開始した後、熱電対からの温度信号によって受信した燃焼温度が、予め設定された好適な燃焼温度に達した場合、温度調節手段は、マイクロ波発振機に出力制御信号を送信することで、マイクロ波の出力を制御することができる。また、酸素含有ガスの流量調節手段に対しても、流量制御信号を送信して、ガス供給量を調整することができる。   Regarding the above-described microwave output and oxygen-containing gas supply amount adjusting means, as an example, a description will be given of a case where the combustion apparatus includes a temperature adjusting means. The temperature adjusting means is connected to a thermocouple for measuring the combustion temperature in the combustion vessel and receives a temperature signal from the thermocouple. It is preferable to set a suitable combustion temperature range in advance in the temperature adjusting means. Then, after the combustion is started by the microwave output, when the combustion temperature received by the temperature signal from the thermocouple reaches a preset suitable combustion temperature, the temperature adjusting means outputs to the microwave oscillator By transmitting the control signal, the output of the microwave can be controlled. Also, the flow rate control signal can be transmitted to the flow rate adjusting means for the oxygen-containing gas to adjust the gas supply amount.

また、燃焼容器は、1以上のフィルターを更に備えることが好ましい。フィルターは、燃焼後の活性炭の灰化物の飛散を防止するものであり、燃焼容器中の燃焼ガスを排気する排気経路上に設置することで、貴金属の回収率低下を防止できる。フィルターは、1段でも飛散防止効果を得ることができるが、飛散防止効果を向上するため、複数段設置することが、より好ましい。材質は、アルミナ、コージェライト、ムライト、炭化ケイ素等からなるものとすることができ、ハニカム状等の形状のものを使用できる。フィルターの穴は、灰化物の飛散を防止するため、灰化物の大きさよりも小さなものとすることが好ましいが、目詰まりした灰化物の回収を考慮して、比較的穴の大きいものを複数段設置することもできる。   The combustion container preferably further includes one or more filters. The filter prevents the activated carbon ash from being scattered after combustion, and the filter can be installed on an exhaust path for exhausting the combustion gas in the combustion container to prevent a reduction in the recovery rate of the noble metal. Although the filter can obtain the scattering prevention effect even with one stage, it is more preferable to install a plurality of stages in order to improve the scattering prevention effect. The material can be made of alumina, cordierite, mullite, silicon carbide or the like, and can be in the shape of a honeycomb or the like. The filter hole is preferably smaller than the size of the ash to prevent scattering of the ash, but considering the recovery of clogged ash, multiple holes with relatively large holes are used. It can also be installed.

燃焼容器は、酸素含有ガスの拡散手段を備えることが好ましい。拡散手段としては、例えば、酸素含有ガス導入口の燃焼容器内部側にバッフルを設置して、導入した酸素含有ガスを装置内に拡散させることができる。また、燃焼容器内に活性炭投入のためのハニカム状等の板を設置することも好ましく、バッフルにより拡散させた酸素含有ガスを、板上の活性炭に均一に供給することが可能となる。バッフルには、フィルターと同様の材質、形状のものを使用できる。   The combustion container preferably includes means for diffusing oxygen-containing gas. As the diffusing means, for example, a baffle can be installed on the inside of the combustion container of the oxygen-containing gas inlet, and the introduced oxygen-containing gas can be diffused into the apparatus. It is also preferable to install a honeycomb-like plate for charging activated carbon in the combustion container, and the oxygen-containing gas diffused by the baffle can be uniformly supplied to the activated carbon on the plate. The same material and shape as the filter can be used for the baffle.

以上で説明したように、本発明に係る貴金属の回収方法によれば、燃焼効率を向上させることにより、燃焼に要するエネルギー消費を低減し、貴金属の抽出率も向上させることができる。また、本発明の燃焼装置によれば、より効率的に活性炭を燃焼させることができる。   As described above, according to the noble metal recovery method of the present invention, by improving the combustion efficiency, it is possible to reduce the energy consumption required for combustion and to improve the extraction rate of the noble metal. Moreover, according to the combustion apparatus of this invention, activated carbon can be burned more efficiently.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

[第1実施形態]
図1は、本発明の実施例におけるマイクロ波燃焼装置の概略正面断面図である。図に示すように、金属性チャンバー内に、溶融シリカよりなり、直径400mm、高さ400mmの燃焼容器を設置し、導波管を介してマイクロ波発振器を接続した。マイクロ波発振器としては、周波数2.45GHz、出力1.5kWのものを4台接続し、チャンバーはチタン鋼製とした。このマイクロ波燃焼装置では、制御出力を100%とするとマイクロ波出力が6.0kWとなり、制御出力を50%とするとマイクロ波の出力が3.0kWとなった。また、燃焼容器底部には、直径35mmの酸素含有ガス導入口を設け、送風機、ガス流量調節器と接続した。また、燃焼容器内部には、熱電対を挿入し、活性炭内部の燃焼温度を計測した。尚、本発明において使用されるマイクロ波発振器は、処理量に応じた出力(定格出力)のものを用いることができるが、周波数2〜3GHz、出力0.1〜50kWの範囲のものが通常用いられる。
[First embodiment]
FIG. 1 is a schematic front sectional view of a microwave combustion apparatus in an embodiment of the present invention. As shown in the figure, a combustion chamber made of fused silica and having a diameter of 400 mm and a height of 400 mm was placed in a metallic chamber, and a microwave oscillator was connected via a waveguide. Four microwave oscillators with a frequency of 2.45 GHz and an output of 1.5 kW were connected, and the chamber was made of titanium steel. In this microwave combustion apparatus, when the control output is 100%, the microwave output is 6.0 kW, and when the control output is 50%, the microwave output is 3.0 kW. In addition, an oxygen-containing gas inlet having a diameter of 35 mm was provided at the bottom of the combustion container, and connected to a blower and a gas flow controller. In addition, a thermocouple was inserted inside the combustion container, and the combustion temperature inside the activated carbon was measured. As the microwave oscillator used in the present invention, an output (rated output) corresponding to the processing amount can be used, but one with a frequency of 2 to 3 GHz and an output of 0.1 to 50 kW is usually used. It is done.

燃焼容器内には、導入ガスを拡散させるためのバッフルを設置し、活性炭は、装置内部に設置したハニカム板上に投入した。送風機より供給された酸素含有ガスを、バッフルによって拡散させることにより、ハニカム板上の活性炭に対し、酸素含有ガスを均一に供給できる。バッフルには、一辺70mmの正方形の板に一辺10mm高さ20mmの脚を4本設置したムライト質のものを使用し、ハニカムには、直径1mmの穴が全平面積の15%を占有するコージェライト質のものを使用した。   A baffle for diffusing the introduced gas was installed in the combustion container, and the activated carbon was put on a honeycomb plate installed inside the apparatus. By diffusing the oxygen-containing gas supplied from the blower with the baffle, the oxygen-containing gas can be uniformly supplied to the activated carbon on the honeycomb plate. The baffle is made of mullite with a square plate with a side of 70 mm and four legs with a side of 10 mm and a height of 20 mm. A honeycomb with a 1 mm diameter hole occupies 15% of the total plane area. A light quality one was used.

また、燃焼容器内で燃焼により発生した燃焼ガスを排気する排気経路には、フィルターを設置し、燃焼した灰化物の飛散を防止する構造とした。本実施例では、一辺が1mmの正方形の穴が全平面積の70%を占有するアルミナ質ハニカムからなるフィルターを、4段設置した。   In addition, a filter is installed in the exhaust path for exhausting the combustion gas generated by the combustion in the combustion container so that the burned ash is prevented from scattering. In this example, four stages of filters made of an alumina honeycomb in which a square hole with a side of 1 mm occupies 70% of the total plane area were installed.

実施例1:上記の燃焼装置を用いて、Ag及びPdを吸着した活性炭より、酸素含有ガスとして酸素含有量21%の圧縮空気を供給して、貴金属の回収を行った。Ag及びPdを吸着した活性炭12250gを、燃焼容器内のハニカム板上に投入し、マイクロ波発振器から導波管を通じてチャンバー内にマイクロ波を入射させて、活性炭を燃焼させた。燃焼温度を上昇させる際のマイクロ波の出力は80%とした。燃焼温度が750℃に上昇した後、酸素含有ガスとして空気を400L/minで供給し、燃焼温度が750℃一定になるよう調整した。8時間燃焼させたところ、活性炭を灰化することができた。得られた灰化物より、濃硝酸を用いてAg及びPdの抽出を行った。Agの抽出率は98%、Pdの抽出率は95.5%であった。活性炭に吸着させた貴金属の量に対する貴金属の回収率は99%であった。また、活性炭1kg当たりの燃焼に要した電気消費エネルギーは約500kJであった。 Example 1 : Using the above-mentioned combustion apparatus, the precious metal was recovered by supplying compressed air having an oxygen content of 21% as an oxygen-containing gas from activated carbon that had adsorbed Ag and Pd. Activated carbon was burned by introducing 12250 g of activated carbon adsorbing Ag and Pd onto a honeycomb plate in a combustion vessel and making microwaves enter the chamber through a waveguide from a microwave oscillator. The output of the microwave when raising the combustion temperature was 80%. After the combustion temperature rose to 750 ° C., air was supplied as an oxygen-containing gas at 400 L / min, and the combustion temperature was adjusted to be constant at 750 ° C. After burning for 8 hours, the activated carbon could be incinerated. From the obtained ashed product, Ag and Pd were extracted using concentrated nitric acid. The extraction rate of Ag was 98%, and the extraction rate of Pd was 95.5%. The recovery rate of the precious metal with respect to the amount of the precious metal adsorbed on the activated carbon was 99%. Moreover, the energy consumption required for combustion per kg of activated carbon was about 500 kJ.

実施例2:Ptを吸着した活性炭より貴金属を回収した。実施例1と同様の装置で、燃焼温度を850℃として活性炭を燃焼させたところ、7.5時間で活性炭を灰化することができた。得られた灰化物より、王水を用いてPtの抽出を行ったところ、Ptの抽出率は97.5%であった。活性炭に吸着させた貴金属の量に対する貴金属の回収率は、98%であった。活性炭1kg当たりの燃焼に要した電気消費エネルギーは約520kJであった。 Example 2 : Noble metal was recovered from activated carbon adsorbed with Pt. When activated carbon was burned at a combustion temperature of 850 ° C. using the same apparatus as in Example 1, activated carbon could be ashed in 7.5 hours. When Pt was extracted from the obtained ashed product using aqua regia, the Pt extraction rate was 97.5%. The recovery rate of the noble metal relative to the amount of the noble metal adsorbed on the activated carbon was 98%. Electric energy consumption required for combustion per kg of activated carbon was about 520 kJ.

比較例1:ガス炉を用いてAg及びPdを吸着した活性炭を燃焼させて貴金属の回収を行った。Ag及びPdを吸着した活性炭8520gをステンレス製の燃焼容器に投入し、燃焼温度が750℃で一定になるよう、ガス炉にて活性炭を燃焼させた。15時間燃焼させたところ、一部に未燃焼の活性炭が残存していた。得られた灰化物より、濃硝酸を用いてAg及びPdの抽出を行った。Agの抽出率は94.5%、Pdの抽出率は62.2%であった。活性炭に吸着させた貴金属の量に対する貴金属の回収率は、96%であった。活性炭1kg当たりの燃焼に要した消費エネルギーは約4000kJであった。 Comparative example 1 : The activated carbon which adsorb | sucked Ag and Pd was burned using the gas furnace, and the noble metal was collect | recovered. 8520 g of activated carbon on which Ag and Pd were adsorbed was put into a stainless steel combustion vessel, and the activated carbon was burned in a gas furnace so that the combustion temperature was constant at 750 ° C. When burned for 15 hours, some unburned activated carbon remained. From the obtained ashed product, Ag and Pd were extracted using concentrated nitric acid. The extraction rate of Ag was 94.5%, and the extraction rate of Pd was 62.2%. The recovery rate of the noble metal with respect to the amount of the noble metal adsorbed on the activated carbon was 96%. The energy consumed for combustion per kg of activated carbon was about 4000 kJ.

比較例2:ガス炉を用いてPtを吸着した活性炭を燃焼させて貴金属の回収を行った。燃焼条件は、比較例1と同様とした。15時間燃焼させたところ、一部に未燃焼の活性炭が残存していた。得られた灰化物より、王水を用いてPtの抽出を行った。Ptの抽出率は75.3%であった。活性炭に吸着させた貴金属の量に対する貴金属の回収率は、85%であった。活性炭1kg当たりの燃焼に要した消費エネルギーは約4500kJであった。 Comparative example 2 : The activated carbon which adsorb | sucked Pt was burned using the gas furnace, and the noble metal was collect | recovered. The combustion conditions were the same as in Comparative Example 1. When burned for 15 hours, some unburned activated carbon remained. Pt was extracted from the obtained ashed product using aqua regia. The extraction rate of Pt was 75.3%. The recovery rate of the precious metal with respect to the amount of the precious metal adsorbed on the activated carbon was 85%. The energy consumption required for combustion per kg of activated carbon was about 4500 kJ.

参考例:実施例と同様の燃焼装置により、貴金属を吸着していない活性炭を燃焼させた。貴金属を吸着していない活性炭10000gを、燃焼温度850℃一定として、9時間燃焼させた。燃焼前後において、92%重量が減少し、未燃焼の活性炭が8%残存していた。 Reference Example : Activated carbon not adsorbing noble metal was burned by the same combustion apparatus as in the example. 10000 g of activated carbon not adsorbing noble metal was burned for 9 hours at a constant combustion temperature of 850 ° C. Before and after combustion, the weight decreased by 92%, and 8% of unburned activated carbon remained.

以上より、マイクロ波を用いた実施例の回収方法によれば、ガス炉を用いた比較例の回収方法と比較して、短時間で活性炭を灰化させることができ、燃焼も均一に進行した。また、貴金属の回収率も良好であり、燃焼に要する消費エネルギーが低減できた。また、参考例によると、貴金属を吸着していない活性炭に比べ、貴金属を吸着した活性炭は灰化されやすいことが分かった。これは、活性炭中に貴金属が均一に吸着されているため、マイクロ波を照射した際、貴金属の粒子間で放電エネルギーが発生することや、貴金属と活性炭との酸化触媒効果が生じるためであると考えられる。   From the above, according to the recovery method of the example using the microwave, compared with the recovery method of the comparative example using the gas furnace, the activated carbon can be ashed in a short time, and the combustion progressed uniformly. . Moreover, the recovery rate of precious metals was also good, and the energy consumption required for combustion could be reduced. Further, according to the reference example, it was found that the activated carbon that adsorbed the noble metal was easily ashed compared to the activated carbon that did not adsorb the noble metal. This is because the noble metal is uniformly adsorbed in the activated carbon, so that when it is irradiated with microwaves, discharge energy is generated between the particles of the noble metal, and an oxidation catalytic effect between the noble metal and the activated carbon occurs. Conceivable.

[第2実施形態]
第1実施形態の実施例1と同様の方法において、表1に示すように燃焼温度を変化させて貴金属の回収を行った。
[Second Embodiment]
In the same method as in Example 1 of the first embodiment, the precious metal was recovered by changing the combustion temperature as shown in Table 1.

表1より、燃焼温度が500〜1100℃であると回収率が高く、消費エネルギーも少ないことがわかった。一方、燃焼温度500℃未満では、大量の消費エネルギーを要する傾向となり、1100℃を超えると、貴金属の回収が困難な傾向となった。   From Table 1, it was found that when the combustion temperature was 500 to 1100 ° C., the recovery rate was high and the energy consumption was small. On the other hand, when the combustion temperature is less than 500 ° C., a large amount of energy consumption tends to be required, and when it exceeds 1100 ° C., it becomes difficult to recover the noble metal.

マイクロ波燃焼装置の概略断面図Schematic cross section of microwave combustion device

Claims (14)

貴金属を吸着した活性炭を燃焼させて灰化する燃焼工程と、燃焼により得られた灰化物から貴金属を抽出する抽出工程と、を有する貴金属の回収方法において、
前記燃焼工程は、マイクロ波を照射して活性炭を燃焼させるものであり、酸素含有ガスを供給して活性炭の燃焼を進行させる貴金属の回収方法。
In a method for recovering a noble metal having a combustion step of burning activated carbon adsorbed with a noble metal and ashing, and an extraction step of extracting noble metal from an ash obtained by combustion,
The combustion process is a method for recovering a noble metal, in which activated carbon is burned by irradiating microwaves, and combustion of activated carbon is advanced by supplying an oxygen-containing gas.
燃焼工程は、燃焼温度を500〜1100℃の範囲内として行う請求項1記載の貴金属の回収方法。 The precious metal recovery method according to claim 1, wherein the combustion step is performed at a combustion temperature in a range of 500 to 1100 ° C. 燃焼工程は、燃焼容器内の燃焼温度に応じて、マイクロ波を照射するための出力と酸素含有ガスの供給量とを調節して行う請求項1又は請求項2に記載の貴金属の回収方法。 The precious metal recovery method according to claim 1 or 2, wherein the combustion step is performed by adjusting an output for irradiating microwaves and a supply amount of the oxygen-containing gas in accordance with a combustion temperature in the combustion container. 燃焼工程は、マイクロ波を照射した後、燃焼温度が500〜900℃となったときに、マイクロ波の出力を低下又は停止するようにする請求項1〜3のいずれかに記載の貴金属の回収方法。 The precious metal recovery according to any one of claims 1 to 3, wherein, in the combustion step, the microwave output is reduced or stopped when the combustion temperature reaches 500 to 900 ° C after the microwave irradiation. Method. 抽出工程は、酸又はアルカリにより前記灰化物を溶解し、該溶解液より貴金属を抽出する請求項1〜4のいずれかに記載の貴金属の回収方法。 The extraction step is a method for recovering a noble metal according to any one of claims 1 to 4, wherein the ash is dissolved with an acid or an alkali, and the noble metal is extracted from the solution. 貴金属が、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウムのうち1種以上である請求項1〜5のいずれかに記載の貴金属の回収方法。 The method for recovering a noble metal according to any one of claims 1 to 5, wherein the noble metal is at least one of gold, silver, platinum, palladium, rhodium, iridium, and ruthenium. 貴金属を吸着した活性炭を燃焼させて灰化するための燃焼装置であって、
酸素含有ガス導入口を有し活性炭を投入して燃焼させる燃焼容器と、該活性炭を加熱するためのマイクロ波を発振するマイクロ波発振器と、該燃焼容器内の燃焼温度を測定する温度センサーと、を備える燃焼装置。
A combustion device for burning activated carbon adsorbing precious metals to ash,
A combustion vessel having an oxygen-containing gas inlet and burning activated carbon, a microwave oscillator for oscillating microwaves for heating the activated carbon, a temperature sensor for measuring the combustion temperature in the combustion vessel, A combustion apparatus comprising:
燃焼容器は、誘電損失係数が5以下の材料からなる請求項7に記載の燃焼装置。 The combustion apparatus according to claim 7, wherein the combustion container is made of a material having a dielectric loss coefficient of 5 or less. 燃焼容器は、熱膨張率が5.0×10−6−1以下の材料からなる請求項7又は請求項8に記載の燃焼装置。 9. The combustion apparatus according to claim 7, wherein the combustion container is made of a material having a thermal expansion coefficient of 5.0 × 10 −6 K −1 or less. 燃焼容器は、コージェライト、コージェライト−ムライト、溶融シリカ、石英のいずれかよりなる請求項7〜請求項9のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 7 to 9, wherein the combustion container is made of any one of cordierite, cordierite-mullite, fused silica, and quartz. マイクロ波発振器の出力を、燃焼温度に応じて制御する制御手段を更に備える請求項7〜請求項10のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 7 to 10, further comprising control means for controlling the output of the microwave oscillator in accordance with the combustion temperature. 酸素含有ガス導入口に接続され、燃焼温度に応じた流量のガスを供給するガス流量調節手段を更に備える請求項7〜請求項11のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 7 to 11, further comprising a gas flow rate adjusting means connected to the oxygen-containing gas inlet and supplying a gas having a flow rate corresponding to the combustion temperature. 燃焼容器は、1以上のフィルターを更に備える請求項7〜請求項12のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 7 to 12, wherein the combustion container further includes one or more filters. 燃焼容器は、酸素含有ガスの拡散手段を備える請求項7〜請求項13のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 7 to 13, wherein the combustion container includes means for diffusing oxygen-containing gas.
JP2008022499A 2008-02-01 2008-02-01 Precious metal recovery method and combustion apparatus Active JP5688200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022499A JP5688200B2 (en) 2008-02-01 2008-02-01 Precious metal recovery method and combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022499A JP5688200B2 (en) 2008-02-01 2008-02-01 Precious metal recovery method and combustion apparatus

Publications (2)

Publication Number Publication Date
JP2009179873A true JP2009179873A (en) 2009-08-13
JP5688200B2 JP5688200B2 (en) 2015-03-25

Family

ID=41034069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022499A Active JP5688200B2 (en) 2008-02-01 2008-02-01 Precious metal recovery method and combustion apparatus

Country Status (1)

Country Link
JP (1) JP5688200B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441553A (en) * 2010-10-12 2012-05-09 深圳市格林美高新技术股份有限公司 Method and device for recovering precious metals from precious metal electronic scraps
JP2013112857A (en) * 2011-11-29 2013-06-10 Jx Nippon Mining & Metals Corp Method of recovering iridium
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
WO2014168749A1 (en) * 2013-04-08 2014-10-16 Sotagold, Llc Extraction of gold from fine carbon residue
CN104148360A (en) * 2014-07-03 2014-11-19 中航上大金属再生科技有限公司 Rare/precious metal turning material cleaning process
KR101902541B1 (en) 2016-10-25 2018-10-23 주식회사 슈퍼노바열분해 Method for recovering valuable metal from electronic scrap
CN114107689A (en) * 2021-10-18 2022-03-01 江西省君鑫贵金属科技材料有限公司 Adjustable spraying equipment for pyrometallurgical precious metal extraction
JP2022103014A (en) * 2020-12-25 2022-07-07 世苑 柯 Waste treatment furnace and treatment equipment having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130435A (en) * 1984-11-29 1986-06-18 Ebara Corp Method and device for treating waste containing mercury
JPH02264850A (en) * 1989-01-18 1990-10-29 Cem Corp Microwave type calcination analyzer, component thereof and microwave type calcination analysis
JPH0790401A (en) * 1993-09-20 1995-04-04 N E Chemcat Corp Rhodium recovering method
JPH0790402A (en) * 1993-09-20 1995-04-04 N E Chemcat Corp Rhodium recovering method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130435A (en) * 1984-11-29 1986-06-18 Ebara Corp Method and device for treating waste containing mercury
JPH02264850A (en) * 1989-01-18 1990-10-29 Cem Corp Microwave type calcination analyzer, component thereof and microwave type calcination analysis
JPH0790401A (en) * 1993-09-20 1995-04-04 N E Chemcat Corp Rhodium recovering method
JPH0790402A (en) * 1993-09-20 1995-04-04 N E Chemcat Corp Rhodium recovering method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013026493; R.K. Amankwah 他2名: 'Gold recovery by microwave augmented ashing of wasteactivated carbon' Minerals Engineering Vol.18 No.5, 200504, p.517-526, Elsevier B.V. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441553A (en) * 2010-10-12 2012-05-09 深圳市格林美高新技术股份有限公司 Method and device for recovering precious metals from precious metal electronic scraps
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
JP2013112857A (en) * 2011-11-29 2013-06-10 Jx Nippon Mining & Metals Corp Method of recovering iridium
WO2014168749A1 (en) * 2013-04-08 2014-10-16 Sotagold, Llc Extraction of gold from fine carbon residue
US9062358B2 (en) 2013-04-08 2015-06-23 Sotagold, Llc Extraction of gold from fine carbon residue
EA037339B1 (en) * 2013-04-08 2021-03-15 СОТАГОЛД, ЭлЭлСи Extraction of gold from fine carbon residue
CN104148360A (en) * 2014-07-03 2014-11-19 中航上大金属再生科技有限公司 Rare/precious metal turning material cleaning process
KR101902541B1 (en) 2016-10-25 2018-10-23 주식회사 슈퍼노바열분해 Method for recovering valuable metal from electronic scrap
JP2022103014A (en) * 2020-12-25 2022-07-07 世苑 柯 Waste treatment furnace and treatment equipment having the same
JP7165234B2 (en) 2020-12-25 2022-11-02 世苑 柯 Waste treatment furnace and treatment equipment having it
CN114107689A (en) * 2021-10-18 2022-03-01 江西省君鑫贵金属科技材料有限公司 Adjustable spraying equipment for pyrometallurgical precious metal extraction

Also Published As

Publication number Publication date
JP5688200B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5688200B2 (en) Precious metal recovery method and combustion apparatus
JP5082155B2 (en) Waste treatment system
US6523764B2 (en) Method for separating metallic from waste printed circuit boards, and dry distillation apparatus used for waste treatment
US20070289508A1 (en) Apparatus And Method For Heating Treatment
US10724116B2 (en) Process and device for burn-off of precious metal-containing materials
JP2020037711A (en) Cracking furnace
JP2012021664A (en) Rotary kiln, and metal recovery method
CA2750068C (en) Heavy metal removing apparatus and cement production system
JPH05193909A (en) Production of metal oxide powder
JP3890442B2 (en) Dry distillation gas generation method and dry distillation gas generation system
JP5127034B2 (en) Recovery method for white metal elements
JP2004154677A (en) Ash treatment system
JP2003290755A (en) Method for treating waste printed circuit board
WO2022004781A1 (en) Waste solar cell processing method
JP3534679B2 (en) Plasma arc ash melting furnace
JP4730882B2 (en) Carbon material raw material drying method and carbon material raw material drying furnace
JP2004162082A (en) Pre-treating method for recovering noble metal
JP5060776B2 (en) Method and apparatus for recovering mercury from exhaust gas
CA3111658A1 (en) Process for recovering non-ferrous precious metals by pelletisation and calcination of leaching activated carbon powder
JP2012171858A (en) Method for melting recovered silicon waste
JP2011032563A (en) Method for producing silver ingot and crucible device
US5513207A (en) Melting furnace and method
JPS63161129A (en) Method for recovering platinum from fuel cell electrode
JP3579283B2 (en) Equipment and method for recovering phosphorus from waste
JP3567614B2 (en) Exhaust gas treatment equipment for ash melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5688200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250