JP2009179554A - Cleaning method of polycrystal silicon - Google Patents

Cleaning method of polycrystal silicon Download PDF

Info

Publication number
JP2009179554A
JP2009179554A JP2009107670A JP2009107670A JP2009179554A JP 2009179554 A JP2009179554 A JP 2009179554A JP 2009107670 A JP2009107670 A JP 2009107670A JP 2009107670 A JP2009107670 A JP 2009107670A JP 2009179554 A JP2009179554 A JP 2009179554A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon
hydrofluoric acid
oxide film
cleaning method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107670A
Other languages
Japanese (ja)
Other versions
JP5035923B2 (en
Inventor
Kenji Yamawaki
健治 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2009107670A priority Critical patent/JP5035923B2/en
Publication of JP2009179554A publication Critical patent/JP2009179554A/en
Application granted granted Critical
Publication of JP5035923B2 publication Critical patent/JP5035923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly clean polycrystal silicon which is used for producing a silicon single crystal for a semiconductor by a CZ pulling method or used as a dissolution material, e.g. for producing polycrystal silicon for a solar battery; to reduce the cleaning cost; to diminish silicon loss, used amount of a chemical solution, and environmental load due to waste liquid; and to solve a problem of NO<SB>x</SB>gas generation. <P>SOLUTION: After the production of polycrystal silicon in a reductive reaction furnace by Siemens method and before the opening of the reductive reaction furnace, a clean gas-containing steam is introduced into the reductive reaction furnace, thus forming an oxide film 2 contaminated little on the surface of polycrystal silicon 1. The polycrystal silicon 1 is subjected to cleaning treatment with hydrofluoric acid, thus removing the oxide film 2 contaminated little and formed on the surface of the polycrystal silicon 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CZ引上げ法による半導体用シリコン単結晶の製造や、太陽電池用多結晶シリコンの製造等に溶解原料として使用される多結晶シリコンの洗浄方法に関する。   The present invention relates to a method for cleaning polycrystalline silicon used as a melting raw material in the production of silicon single crystals for semiconductors by the CZ pulling method, the production of polycrystalline silicon for solar cells, and the like.

CZ引上げ法による半導体用シリコン単結晶の製造や、太陽電池用多結晶シリコンの製造に溶解原料として使用される多結晶シリコンは、一般にシーメンス法により製造される。シーメンス法による多結晶シリコンの製造では、周知のとおり、多結晶シリコンからなる芯材が、シーメンス炉と呼ばれる還元反応炉内で通電加熱され、この状態で還元反応炉内にシラン系ガスと水素ガスの混合ガスからなる原料ガスが導入される。これにより、還元反応炉内の芯材が気相反応により成長し、棒状の多結晶シリコンが製造される。   Polycrystalline silicon used as a raw material for the production of silicon single crystals for semiconductors by the CZ pulling method and the production of polycrystalline silicon for solar cells is generally produced by the Siemens method. In the production of polycrystalline silicon by the Siemens method, as is well known, a core material made of polycrystalline silicon is heated and energized in a reduction reaction furnace called a Siemens furnace, and in this state, a silane-based gas and hydrogen gas are placed in the reduction reaction furnace. A raw material gas composed of a mixed gas is introduced. Thereby, the core material in the reduction reaction furnace grows by the gas phase reaction, and the rod-like polycrystalline silicon is manufactured.

シーメンス法により製造された棒状の多結晶シリコンは、所定長さのロッド(カットロッド)に切断したり、タングステンカーバイトなどの超硬工具でつくられたハンマーで適当な大きさの塊粒状に破砕した後、これらの表面を洗浄して溶解原料として出荷される。ここにおける表面洗浄処理の詳細は以下のとおりである。   Bar-shaped polycrystalline silicon produced by the Siemens method is cut into rods (cut rods) of a predetermined length, or crushed into lump particles of an appropriate size with a hammer made of a carbide tool such as tungsten carbide. After that, these surfaces are washed and shipped as a melting raw material. The details of the surface cleaning process here are as follows.

シーメンス法で製造された多結晶シリコン棒は、炉からの取り出し作業などで表面がFeなどの金属類で汚染されており、製造されたままの多結晶シリコンを溶解原料に使用すると、溶解製品の純度低下を引き起こす。このため、カットロッドや塊粒といった溶解原料形態に加工された多結晶シリコンには、出荷前に表面洗浄が行われており、その洗浄処理には、特許文献1及び2に記載されているように、フッ酸と硝酸の混合液(フッ硝酸液)によるエッチング処理や、フッ硝酸液によるエッチング処理を含めた複合処理が一般に用いられている。   Polycrystalline silicon rods manufactured by the Siemens method are contaminated with metals such as Fe during removal from the furnace, etc. If polycrystalline silicon as manufactured is used as a melting raw material, Causes a decrease in purity. For this reason, the polycrystalline silicon processed into a melted raw material form such as a cut rod and a lump is subjected to surface cleaning before shipment, and the cleaning process is described in Patent Documents 1 and 2. In addition, a composite process including an etching process using a mixed solution of hydrofluoric acid and nitric acid (a hydrofluoric acid solution) and an etching process using a hydrofluoric acid solution is generally used.

特開平05−154466号公報Japanese Patent Laid-Open No. 05-154466 特開平11−168076号公報JP-A-11-168076

フッ硝酸液によるエッチング処理は、シリコン単結晶の洗浄処理にも使用されており、シリコンの表面を溶解することにより汚染部位を除去する。この方法によるとシリコン表面の汚染部位を確実に除去することができる。しかし、その確実な除去のためには数十μmに及ぶエッチング処理が必要とされており、これによるシリコンロス、フッ硝酸使用量の増大、エッチング廃液による環境負荷増大といった経済的負担が問題になっている。   Etching with a hydrofluoric acid solution is also used for cleaning a silicon single crystal, and the contaminated portion is removed by dissolving the silicon surface. According to this method, the contaminated part on the silicon surface can be reliably removed. However, an etching process as long as several tens of μm is required for the reliable removal, and economic burdens such as silicon loss, increased use of hydrofluoric nitric acid, and increased environmental load due to etching waste liquid become problems. ing.

これに加え、フッ硝酸によるエッチング処理ではNOxガスが発生する。NOxガス濃度には法的な規制が設けられており、このためにNaHS、NaClO2 、NaOHなどの処理液が必要になり、薬液コストが更に増加する。またNOx処理に使用した廃液中の窒素量にも法的な規制が設けられている。これらのためにNOxガスの発生を極力抑制することが求められている。 In addition to this, NOx gas is generated in the etching process using hydrofluoric acid. There is a legal restriction on the NOx gas concentration, which requires treatment liquids such as NaHS, NaClO 2 , and NaOH, which further increases the chemical cost. There is also a legal restriction on the amount of nitrogen in the waste liquid used for NOx treatment. For these reasons, it is required to suppress the generation of NOx gas as much as possible.

本発明の目的は、汚染原因を確実に除去しつつ、その除去に伴う経済的負担を可及的に軽減でき、合わせてNOxガスの発生を可及的に抑制できる多結晶シリコン洗浄方法を提供することにある。   An object of the present invention is to provide a polycrystalline silicon cleaning method capable of reducing the economic burden associated with the removal as much as possible while reliably removing the cause of contamination and also suppressing the generation of NOx gas as much as possible. There is to do.

上記目的を達成するために、本発明者はシーメンス法で製造される多結晶シリコン棒の汚染メカニズムについて詳細な解析検討を行った。その結果、以下の事実が新たに判明した。   In order to achieve the above object, the present inventor has conducted a detailed analysis and examination on the contamination mechanism of a polycrystalline silicon rod produced by the Siemens method. As a result, the following facts were newly found.

シーメンス法を実施する還元反応炉(シーメンス炉)内では、多結晶シリコン精製時に発生するポリマーと称されるシリコン−ハロゲン−水素の化合物のため、還元炉を開放するときは若干のハロゲン化物ガス雰囲気になっている。還元炉を開放すると、大気中の水分によりポリマーが加水分解され、多結晶シリコンの表面に酸化膜が形成される。一般的に還元炉は大気の雰囲気で取り扱われており、開放時に大気中の微量金属がこの酸化膜に取り込まれることにより、多結晶シリコンの表面が金属汚染される。   In the reduction reaction furnace (Siemens furnace) where the Siemens method is carried out, a slight halogen gas atmosphere is generated when the reduction furnace is opened because of a silicon-halogen-hydrogen compound called a polymer generated during the purification of polycrystalline silicon. It has become. When the reduction furnace is opened, the polymer is hydrolyzed by moisture in the atmosphere, and an oxide film is formed on the surface of the polycrystalline silicon. In general, the reduction furnace is handled in an atmosphere of air, and when the trace metal in the atmosphere is taken into this oxide film when opened, the surface of the polycrystalline silicon is contaminated with metal.

この汚染を防止するためには、例えばハロゲン化物を完全に除去できる設備を備えた還元反応炉をクリーンルーム内に設置することが有効である。しかし、原料ガスが一般に使用されるハロゲン化シランの場合、還元反応炉を開放すると若干量の腐食性ガスが発生する。このためクリーンルームには高度の腐食対策が必要となり、その設備維持に膨大な費用が必要となる。このためもあり、還元反応炉は大気雰囲気で取り扱われるのが一般的であり、その結果、多結晶シリコン棒表面の金属汚染は避けることができない現象になっている。そして、この多結晶シリコン棒表面の金属汚染対策としては、前述したとおり、フッ硝酸液によるエッチング処理が行われており、その経済的負担は大きな問題になっている。   In order to prevent this contamination, it is effective to install, for example, a reduction reaction furnace equipped with facilities capable of completely removing halides in a clean room. However, when the raw material gas is a halogenated silane generally used, a slight amount of corrosive gas is generated when the reduction reaction furnace is opened. For this reason, a clean room requires a high degree of corrosion countermeasures, and enormous costs are required to maintain the equipment. For this reason, the reduction reactor is generally handled in an air atmosphere, and as a result, metal contamination on the surface of the polycrystalline silicon rod is an unavoidable phenomenon. As a measure against the metal contamination on the surface of the polycrystalline silicon rod, as described above, the etching treatment with a hydrofluoric acid solution is performed, and the economic burden is a big problem.

図1(a)はシーメンス法で製造された多結晶シリコン棒の表層部を表している。前述したように、シーメンス法で製造された多結晶シリコン棒の表面汚染に関しては、シリコン棒1が汚染されているのではなく、シリコン棒1の表面に形成された酸化膜2が汚染されているのである。換言すれば、シーメンス法で製造されたシリコン棒1は本来清浄であり、その表面に金属汚染された酸化膜2が付着しているのである。   FIG. 1A shows a surface layer portion of a polycrystalline silicon rod manufactured by the Siemens method. As described above, regarding the surface contamination of the polycrystalline silicon rod manufactured by the Siemens method, the silicon rod 1 is not contaminated but the oxide film 2 formed on the surface of the silicon rod 1 is contaminated. It is. In other words, the silicon rod 1 manufactured by the Siemens method is inherently clean, and the metal-contaminated oxide film 2 is attached to the surface thereof.

ここで注目すべきは、酸化膜2に関しては、ポリマーの付着状況に影響されるため、その厚みに大きなばらつきがあるということである。このような多結晶シリコンに対し、従来の洗浄方法であるフッ硝酸液によるエッチング処理を行うと、図1(b)に示すように、酸化膜2を含めた多結晶シリコン表面が均等にエッチングされるため、汚染された酸化膜2も除去されるが、シリコン棒1の表面も溶解除去され、シリコンロスなどが問題になる。   It should be noted here that the thickness of the oxide film 2 varies greatly because it is affected by the state of polymer adhesion. When such polycrystalline silicon is subjected to an etching process using a hydrofluoric acid solution, which is a conventional cleaning method, the surface of the polycrystalline silicon including the oxide film 2 is uniformly etched as shown in FIG. Therefore, the contaminated oxide film 2 is also removed, but the surface of the silicon rod 1 is also dissolved and removed, which causes a problem such as silicon loss.

すなわち、ここでのエッチング処理に使用するフッ硝酸は、前述したとおり、シリコン単結晶の洗浄処理にも使用されており、酸化膜のみならずシリコンをも溶解する能力がある。このため、半導体向け溶解原料のように高い清浄度を要求される用途では、シリコン表面の汚染部位を確実に除去するために、酸化膜の最も厚い部分を完全に除去することが必要となり、その結果エッチング量は数十μmに及び、処理コストが増大すると共に、酸化膜が薄い部分ではシリコン棒を必要以上に溶解し、大きなシリコンロスが生じる。また、酸化膜の厚みとエッチング量の関係によっては酸化膜が残存する危険性もある。   That is, as described above, the nitric acid used for the etching process here is also used for the cleaning process of the silicon single crystal, and has the ability to dissolve not only the oxide film but also silicon. For this reason, in applications that require high cleanliness, such as melting raw materials for semiconductors, it is necessary to completely remove the thickest part of the oxide film in order to reliably remove the contaminated sites on the silicon surface. As a result, the etching amount reaches several tens of μm, and the processing cost increases, and in the portion where the oxide film is thin, the silicon rod is dissolved more than necessary and a large silicon loss occurs. Further, there is a risk that the oxide film remains depending on the relationship between the thickness of the oxide film and the etching amount.

以上が、本発明者が知見した多結晶シリコン棒の汚染メカニズムであり、従来対策であるエッチング処理の問題点である。   The above is the contamination mechanism of the polycrystalline silicon rod discovered by the present inventor, and is the problem of the etching treatment that is a conventional countermeasure.

このような事実を踏まえ、本発明者は従来対策の問題点を解決する方法について鋭意検討した。その結果、図1(c)に示すように、シリコン棒1の表面に形成された酸化膜2のみを除去するのが合理的であるとの結論に達し、本発明に到達した。すなわち、シリコン棒1の表面に形成された酸化膜2のみを除去するならば、汚染源が効率的に除去される上に、その除去に要する負荷が軽減され、シリコンロスも生じないのである。   Based on such facts, the present inventor has intensively studied a method for solving the problems of the conventional countermeasures. As a result, as shown in FIG. 1C, it was concluded that it is reasonable to remove only the oxide film 2 formed on the surface of the silicon rod 1, and the present invention was reached. That is, if only the oxide film 2 formed on the surface of the silicon rod 1 is removed, the contamination source is efficiently removed, the load required for the removal is reduced, and no silicon loss occurs.

本発明の多結晶シリコン洗浄方法は、シーメンス法で製造された溶解原料用の多結晶シリコンに対して洗浄処理を行う多結晶シリコン洗浄方法おいて、還元反応炉を開放する前に炉内の多結晶シリコンの表面に清浄な酸化膜を形成し、しかる後に前記還元反応炉から取り出した多結晶シリコンに対してフッ酸液により洗浄処理を行うものである。   The polycrystalline silicon cleaning method of the present invention is a polycrystalline silicon cleaning method in which polycrystalline silicon for melting raw material manufactured by the Siemens method is cleaned. A clean oxide film is formed on the surface of the crystalline silicon, and then the polycrystalline silicon taken out from the reduction reaction furnace is washed with a hydrofluoric acid solution.

フッ酸溶液によれば、図1(c)に示すように、シリコン棒1の表面に形成された酸化膜2のみを除去することができ、NOx発生の問題も生じない。また、図1(d)に示すように、フッ酸溶液による洗浄処理後に、フッ酸と硝酸の混合液(フッ硝酸溶液)によりエッチング処理を行なうならば、シリコン表面が溶解除去され、軽度のエッチング処理を付加するだけで、酸化膜形成時に危惧されるシリコン表面の汚染まで解消でき、清浄度を半導体向けまで飛躍的に高めることができる。具体的には数μmのエッチング処理の付加で、フッ酸処理なしで数十μmのエッチング処理を行った場合と同等の清浄度を確保することができる。   According to the hydrofluoric acid solution, as shown in FIG. 1C, only the oxide film 2 formed on the surface of the silicon rod 1 can be removed, and the problem of NOx generation does not occur. In addition, as shown in FIG. 1 (d), if the etching process is performed with a mixed solution of hydrofluoric acid and nitric acid (hydrofluoric nitric acid solution) after the cleaning process with the hydrofluoric acid solution, the silicon surface is dissolved and removed, and a slight etching is performed. By simply adding processing, contamination of the silicon surface, which is a concern during oxide film formation, can be eliminated, and the cleanliness can be dramatically increased to that for semiconductors. Specifically, with the addition of an etching process of several μm, it is possible to ensure a cleanliness equivalent to that obtained when an etching process of several tens of μm is performed without hydrofluoric acid treatment.

フッ硝酸溶液がシリコン及び酸化膜を溶解除去するのに対し、フッ酸は酸化膜のみを溶解除去する。そのメカニズムは次のとおりである。フッ硝酸の場合は先ず硝酸でシリコンを酸化し、酸化したシリコンをフッ酸で溶解する。この二段階の反応でシリコンを溶解している。フッ酸のみでは、シリコンの酸化ができないため、表面の酸化膜のみ溶解して反応が停止する。   The hydrofluoric acid solution dissolves and removes the silicon and the oxide film, whereas hydrofluoric acid dissolves and removes only the oxide film. The mechanism is as follows. In the case of hydrofluoric acid, first, silicon is oxidized with nitric acid, and the oxidized silicon is dissolved with hydrofluoric acid. Silicon is dissolved by this two-stage reaction. Since hydrofluoric acid alone cannot oxidize silicon, only the surface oxide film dissolves and the reaction stops.

フッ酸溶液の濃度として10wt%以上が好ましい。この濃度が10wt%以上あればシリコン同士が重なった場所でも酸化膜を確実に除去することができる。この濃度の上限については効果が飽和しコストが増大することから35wt%以下が望ましい。   The concentration of the hydrofluoric acid solution is preferably 10 wt% or more. If this concentration is 10 wt% or more, the oxide film can be reliably removed even where silicon is overlapped. The upper limit of this concentration is preferably 35 wt% or less because the effect is saturated and the cost increases.

そして何よりも、本発明の多結晶シリコン洗浄方法は、シーメンス法で製造された多結晶シリコンを対象とし、還元反応炉を開放し還元反応炉から多結晶シリコンを取り出す前に、多結晶シリコン棒の表面に清浄な(汚染が少ない)酸化膜を形成することにより、酸化膜の清浄度を高める。そうすることにより、フッ酸による洗浄処理後のエッチング処理を行わずとも、フッ酸処理なしで数十μmのエッチング処理を行った場合と同等の半導体向け清浄度を確保でき、仮に半導体向け清浄度を確保できない場合でも極僅かのエッチング処理で半導体向け清浄度を確保できる。   Above all, the polycrystalline silicon cleaning method of the present invention is intended for polycrystalline silicon manufactured by the Siemens method. Before the polycrystalline silicon is removed from the reduction reaction furnace by opening the reduction reaction furnace, By forming a clean (low contamination) oxide film on the surface, the cleanliness of the oxide film is increased. By doing so, the cleanliness for semiconductors equivalent to the case where etching treatment of several tens of μm is performed without hydrofluoric acid treatment without performing the etching treatment after the hydrofluoric acid treatment can be ensured. Even if it is not possible to ensure the cleanliness for semiconductors, it is possible to ensure the cleanliness for semiconductors with very little etching.

清浄な(汚染が少ない)酸化膜を形成する方法(酸化膜の清浄度を高める方法)としては、具体的には還元反応炉を開放する前に水蒸気を含む清浄なガスを炉内に導入する方法がある。こうすれば、還元反応炉を開放する前に多結晶シリコン棒の表面に付着するポリマーが清浄なガス中の水蒸気と反応して、多結晶シリコン棒の表面に酸化膜が形成されるが、ガスの清浄度が高いために、形成される酸化膜の清浄度も向上する。その結果、フッ酸と硝酸の混合液によるエッチング処理なし(フッ酸による洗浄処理のみ)でも清浄度を半導体向けまで飛躍的に高めることができ、仮に半導体向け清浄度を確保できない場合でも極僅かのエッチング処理で半導体向け清浄度を確保できる。   As a method for forming a clean (low contamination) oxide film (a method for increasing the cleanliness of the oxide film), specifically, a clean gas containing water vapor is introduced into the furnace before the reduction reactor is opened. There is a way. In this way, before the reduction reactor is opened, the polymer adhering to the surface of the polycrystalline silicon rod reacts with water vapor in the clean gas, and an oxide film is formed on the surface of the polycrystalline silicon rod. Therefore, the cleanliness of the oxide film formed is improved. As a result, it is possible to dramatically increase the cleanliness to semiconductors without etching with hydrofluoric acid and nitric acid mixed solution (only cleaning with hydrofluoric acid). Etching can ensure cleanliness for semiconductors.

ここで、水蒸気を含む清浄なガスとは、水蒸気を含み且つ大気より0.3μm以下の微粒子が少ないガスであり、具体的にはHEPAフィルタ(High Efficiency Particulate Air Filter)を通した空気(空気中の水蒸気を含む)又は清浄な不活性ガス(Ar又は窒素等)に水蒸気を混合したガスなどである。   Here, the clean gas containing water vapor is a gas containing water vapor and containing fine particles of 0.3 μm or less from the atmosphere, and specifically, air (in air) through a HEPA filter (High Efficiency Particulate Air Filter). Or a gas obtained by mixing water vapor into a clean inert gas (such as Ar or nitrogen).

洗浄処理を行う段階は、多結晶シリコン棒を溶解原料用に切断加工した後や破砕加工した後のカットロッドや塊粒の段階が好ましい。これらの加工前に洗浄処理を行うと、加工による汚染が残る危険がある。加工を終えた溶解原料形態(カットロッドや塊粒等)の多結晶シリコンに洗浄処理を行うことにより、加工による汚染も合わせて除去される。   The stage of performing the cleaning treatment is preferably a stage of cut rods or agglomerates after the polycrystalline silicon rod has been cut for a melting raw material or crushed. If cleaning is performed before these processes, there is a risk that contamination due to the processes may remain. Contamination due to processing is also removed by washing the polycrystalline silicon in a dissolved raw material form (cut rod, lump, etc.) that has been processed.

本発明の多結晶シリコン洗浄方法は、シーメンス法で製造された溶解原料用の多結晶シリコンに対して洗浄処理を行う多結晶シリコン洗浄方法おいて、還元反応炉を開放する前に炉内の多結晶シリコンの表面に清浄な酸化膜を形成し、しかる後に前記還元反応炉から取り出した多結晶シリコンに対してフッ酸により洗浄処理を行うことにより、シリコンを溶解せずにシリコン表面の汚染された酸化膜を除去できるのみならず、フッ酸による洗浄処理後にフッ酸と硝酸の混合液によるエッチング処理を行わずとも、多結晶シリコンの清浄度を飛躍的に高めることができる。その結果シリコンロス、フッ硝酸使用量、エッチング廃液による環境負荷を大幅に軽減できる。また、フッ酸と硝酸の混合液の使用に伴うNOxガス発生の問題を解決乃至は軽減できる。   The polycrystalline silicon cleaning method of the present invention is a polycrystalline silicon cleaning method in which polycrystalline silicon for melting raw material manufactured by the Siemens method is cleaned. A clean oxide film was formed on the surface of the crystalline silicon, and then the polycrystalline silicon taken out from the reduction reactor was washed with hydrofluoric acid, so that the silicon surface was contaminated without dissolving the silicon. Not only the oxide film can be removed, but also the cleanliness of the polycrystalline silicon can be dramatically increased without performing the etching process with a mixed solution of hydrofluoric acid and nitric acid after the cleaning process with hydrofluoric acid. As a result, the environmental load caused by silicon loss, the amount of hydrofluoric acid used, and the etching waste liquid can be greatly reduced. In addition, the problem of NOx gas generation associated with the use of a mixed solution of hydrofluoric acid and nitric acid can be solved or reduced.

(a)〜(d)は多結晶シリコン棒の表面性状を示す模式断面図であり、(a)は多結晶シリコン棒の表面に酸化膜が形成された状態、(b)はその表面をエッチング処理した状態、(c)はその表面をフッ酸により洗浄処理した状態、(d)はフッ酸による洗浄後に軽度のエッチング処理をした状態をそれぞれ示す。(A)-(d) is a schematic cross section which shows the surface property of a polycrystal silicon rod, (a) is the state in which the oxide film was formed in the surface of a polycrystal silicon rod, (b) etched the surface The treated state, (c) shows a state in which the surface has been cleaned with hydrofluoric acid, and (d) shows a state in which a mild etching process has been performed after cleaning with hydrofluoric acid.

以下に本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施形態の多結晶シリコン洗浄方法では、シーメンス法により製造された多結晶シリコン棒を冷却後に還元反応炉から取り出し、要求される溶解原料形態に加工する。具体的には所定長さのカットロッドに切断加工したり、所定の大きさの塊粒状に破砕加工する。製造された多結晶シリコン棒を還元反応炉から取り出す際、必要に応じて炉開放の前に炉内へ清浄な空気等を導入する。これにより、多結晶シリコンの表面に形成される酸化膜の清浄度が向上することは前述したとおりである。   In the polycrystalline silicon cleaning method of the present embodiment, the polycrystalline silicon rod manufactured by the Siemens method is taken out from the reduction reaction furnace after being cooled and processed into a required melting raw material form. Specifically, it is cut into a predetermined length of a cut rod or crushed into a lump of a predetermined size. When the produced polycrystalline silicon rod is taken out from the reduction reaction furnace, clean air or the like is introduced into the furnace before opening the furnace as necessary. This improves the cleanliness of the oxide film formed on the surface of the polycrystalline silicon as described above.

還元反応炉から多結晶シリコン棒を取り出し、要求される溶解原料形態への加工が終わると、その加工を終えた溶解原料形態の多結晶シリコンをフッ酸溶液に所定量ずつ所定時間浸漬する。   When the polycrystalline silicon rod is taken out from the reduction reaction furnace and the processing into the required melting raw material form is completed, the polycrystalline silicon in the melting raw material form after the processing is immersed in a hydrofluoric acid solution for a predetermined amount of time.

使用するフッ酸溶液の濃度は、前述したとおり10wt%以上が好ましい。また浸漬時間は5〜10分間程度が好ましい。浸漬時間が短すぎるとシリコン表面の汚染された酸化膜を十分に除去できず、長すぎる場合は洗浄時間が必要以上に長くなり時間のロスが生じる。   As described above, the concentration of the hydrofluoric acid solution to be used is preferably 10 wt% or more. The immersion time is preferably about 5 to 10 minutes. If the immersion time is too short, the contaminated oxide film on the silicon surface cannot be removed sufficiently. If the immersion time is too long, the cleaning time becomes longer than necessary, resulting in time loss.

フッ酸溶液は、シリコン表面の酸化膜を溶解除去できるが、シリコンを溶解する能力はない。このため、溶解原料形態に加工した多結晶シリコンをフッ酸溶液に浸漬することにより、シリコン表面の酸化膜のみを選択的に除去できる(図1(c)参照)。また、硝酸を使用しない非窒素系のフッ酸溶液は、フッ酸と硝酸の混合液であるフッ硝酸液(硝酸の比率が大きい)と比べて安価であり、使用後の廃液による環境負荷も格段に軽い。更にNOxガス発生の問題も生じない。   The hydrofluoric acid solution can dissolve and remove the oxide film on the silicon surface, but has no ability to dissolve silicon. For this reason, only the oxide film on the silicon surface can be selectively removed by immersing the polycrystalline silicon processed into the dissolved raw material form in a hydrofluoric acid solution (see FIG. 1C). In addition, non-nitrogen hydrofluoric acid solution that does not use nitric acid is cheaper than hydrofluoric acid solution (which has a large ratio of nitric acid), which is a mixture of hydrofluoric acid and nitric acid, and the environmental impact due to waste liquid after use is also significant. Very light. Furthermore, the problem of NOx gas generation does not occur.

フッ酸溶液による洗浄処理が終わると、必要に応じて多結晶シリコンにフッ硝酸溶液による軽度のエッチング処理を行う。これにより、シリコン表面が僅かに溶解除去され(図1(d)参照)、多結晶シリコンの清浄度が更に向上する。ここにおけるエッチング処理は、フッ酸と硝酸の混合液であるフッ硝酸溶液を使用するものの、エッチング量が僅かであるため、経済的問題を始めとする諸問題を軽微に抑制できる。   When the cleaning process using the hydrofluoric acid solution is finished, the polycrystalline silicon is subjected to a mild etching process using a hydrofluoric acid solution as necessary. Thereby, the silicon surface is slightly dissolved and removed (see FIG. 1D), and the cleanliness of the polycrystalline silicon is further improved. Although the etching process here uses a hydrofluoric acid solution that is a mixed liquid of hydrofluoric acid and nitric acid, the etching amount is small, so various problems such as economic problems can be suppressed to a minimum.

フッ硝酸溶液によるエッチング処理は、必要とする清浄度に応じて適宜決定されるが、主汚染部位である酸化膜が事前に除去されているので軽度の処理で済む。   The etching process using the hydrofluoric acid solution is appropriately determined according to the required cleanliness, but a light process is sufficient because the oxide film which is the main contamination site is removed in advance.

次に、本発明の実施例を示し、比較例と対比することにより本発明の効果を明らかにする。   Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparing with comparative examples.

還元反応炉内でシーメンス法により外径130mm×長さ約2000mmの多結晶シリコン棒を製造し、炉外へ取り出す際に、従来どおり還元反応炉を大気開放した。また、還元反応炉を開放する前にHEPAフィルタを通した空気を炉内に導入し、しかる後に還元反応炉を開放し、多結晶シリコン棒を取り出した。それぞれで製造した多結晶シリコン棒をタングステンカーバイトのハンマーで5〜40mm程度に破砕し、10kgを樹脂製のカゴに入れ、10wt%のフッ酸槽に5分間浸漬し洗浄した。   A polycrystalline silicon rod having an outer diameter of 130 mm and a length of about 2000 mm was produced by a Siemens method in the reduction reaction furnace, and the reduction reaction furnace was opened to the atmosphere as before when taken out of the furnace. Further, before opening the reduction reaction furnace, air passed through the HEPA filter was introduced into the furnace, and then the reduction reaction furnace was opened and the polycrystalline silicon rod was taken out. The polycrystalline silicon rods produced in each were crushed to about 5 to 40 mm with a tungsten carbide hammer, 10 kg was placed in a resin basket, and immersed in a 10 wt% hydrofluoric acid bath for 5 minutes for cleaning.

その後更に、一部の破砕多結晶シリコンについては、フッ硝酸溶液による清浄化エッチング処理をエッチング代を種々変えて実施した。具体的には、50wt%フッ酸と70wt%硝酸を1:50の体積比で混合したフッ硝酸の槽に破砕多結晶シリコンをエッチング代が種々変更されるように時間を変えて浸漬し、その後、純水により水洗した。   Thereafter, a part of the crushed polycrystalline silicon was subjected to a cleaning etching treatment using a hydrofluoric acid solution with various etching charges. Specifically, the crushed polycrystalline silicon is immersed in a hydrofluoric acid tank in which 50 wt% hydrofluoric acid and 70 wt% nitric acid are mixed at a volume ratio of 1:50 at various times so that the etching allowance is variously changed. And washed with pure water.

比較のために、フッ酸による洗浄処理を行わず、フッ硝酸溶液による清浄化エッチング処理のみを、エッチング代を種々変えて実施した。   For comparison, cleaning treatment with hydrofluoric acid was not performed, and only cleaning etching treatment with a hydrofluoric acid solution was performed with various etching charges.

処理後の破砕多結晶シリコンから、棒状シリコンの表皮部分(酸化膜を除去した部分)を含む1個あたり3〜5gのシリコンサンプルを5個で20gになるように採取した。そして、5個のシリコンサンプルに分析用フッ硝酸エッチングを行った。分析用フッ硝酸エッチングでは、5個のシリコンサンプルの各表面をフッ硝酸で同じ量(0.600±0.050g)だけ溶解し、溶解後のフッ硝酸溶液中の金属濃度を原子吸光法で分析することで、シリコンサンプル表層中の不純物濃度を測定し、洗浄処理後の破砕多結晶シリコンの表面品質を評価した。評価結果、特にFe濃度を表1に示す。評価基準としてはFe濃度<0.02ppbwを半導体向け溶解原料としての合格ラインとした。   From the crushed polycrystalline silicon after the treatment, 3 to 5 g of silicon samples including the skin portion of the rod-like silicon (the portion from which the oxide film was removed) were collected so that 5 pieces would be 20 g. Five silicon samples were subjected to analytical fluoronitric acid etching. In the analysis of nitric acid for analysis, each surface of five silicon samples is dissolved in the same amount (0.600 ± 0.050g) with hydrofluoric acid, and the metal concentration in the hydrofluoric acid solution is analyzed by atomic absorption method. Thus, the impurity concentration in the surface layer of the silicon sample was measured, and the surface quality of the crushed polycrystalline silicon after the cleaning treatment was evaluated. Table 1 shows the evaluation results, particularly the Fe concentration. As an evaluation standard, an Fe concentration <0.02 ppbw was taken as an acceptable line as a melting raw material for semiconductors.

表1中のエッチング代とは、清浄化を目的としたフッ硝酸エッチングでのエッチング量(エッチング厚み)であり、次の方法で測定した。サンプルとして板材を一緒にエッチングし、エッチング前後の厚みをマイクロメータで測定するか、エッチング前後の板材の重量変化を測定することでエッチング代を測定する。事前にこの方法でエッチング時間とエッチング代との関係を調べておけば、エッチング時間を調節することにより、サンプル板材を用いずともエッチング代を自在に調節することができる。   The etching allowance in Table 1 is the etching amount (etching thickness) in the hydrofluoric acid etching for the purpose of cleaning, and was measured by the following method. The plate material is etched together as a sample, and the etching allowance is measured by measuring the thickness before and after etching with a micrometer or by measuring the change in weight of the plate material before and after etching. If the relationship between the etching time and the etching allowance is examined in advance by this method, the etching allowance can be freely adjusted without using the sample plate material by adjusting the etching time.

Figure 2009179554
Figure 2009179554

表1から分かるように、還元反応炉をいきなり大気開放し、大気雰囲気中で酸化膜を形成した場合、フッ酸洗浄を行わなければ、多結晶シリコンの表面清浄度はFe濃度=1.8ppbwであり、合格ラインであるFe濃度<0.02ppbwの表面清浄度を確保するためには、20μmの清浄化エッチング処理が必要となる。これが従来例である。これに対し、フッ酸洗浄を行い、酸化膜を事前に除去すると、清浄化エッチング処理を行わなくても、表面清浄度はFe濃度=0.22ppbwであり、合格ラインであるFe濃度<0.02ppbwの表面清浄度を確保するためには、5μmの清浄化エッチング処理を行うだけで済む。これは比較例である。   As can be seen from Table 1, when the reduction reactor is suddenly opened to the atmosphere and an oxide film is formed in the atmosphere, the surface cleanliness of the polycrystalline silicon is Fe concentration = 1.8 ppbw unless cleaning with hydrofluoric acid is performed. In order to ensure the surface cleanliness of Fe concentration <0.02 ppbw, which is an acceptable line, a cleaning etching process of 20 μm is required. This is a conventional example. On the other hand, when the hydrofluoric acid cleaning is performed and the oxide film is removed in advance, the surface cleanliness is Fe concentration = 0.22 ppbw without performing the cleaning etching process, and the Fe concentration <0. In order to ensure the surface cleanliness of 02 ppbw, it is only necessary to perform a 5 μm cleaning etching process. This is a comparative example.

これらに対し、還元反応炉を開放する前に清浄な空気を炉内に導入し、清浄な酸化膜を形成した本発明の実施例の場合は、フッ酸洗浄だけで、多結晶シリコンの表面清浄度はFe濃度=0.02ppbwに達し、合格ラインであるFe濃度<0.02ppbwの表面清浄度を確保するための清浄化エッチング処理は僅か2μmで済む。   On the other hand, in the case of the embodiment of the present invention in which clean air is introduced into the furnace before the reduction reaction furnace is opened to form a clean oxide film, the surface of the polycrystalline silicon is cleaned only by hydrofluoric acid cleaning. The degree reaches Fe concentration = 0.02 ppbw, and the cleaning etching process for ensuring the surface cleanliness of Fe concentration <0.02 ppbw, which is an acceptable line, is only 2 μm.

前述した大気雰囲気中で酸化膜を形成し破砕後に樹脂カゴに入れた塊粒状の多結晶シリコン10kgを、50wt%フッ酸を純水で各種濃度に希釈して作製したフッ酸の槽に5分間浸漬し洗浄した。次に、50wt%フッ酸と70wt%硝酸を1:50の体積比で混合したフッ硝酸の槽に多結晶シリコンを浸漬し、5μmの表面清浄化エッチング処理を行った。処理後の多結晶シリコンの表面清浄度を実施例1と同じ方法で評価した。評価結果を表2に示す。   5 minutes in a hydrofluoric acid tank prepared by diluting 50 wt% hydrofluoric acid to various concentrations with 10 kg of bulk polycrystalline silicon formed in a resin basket after forming an oxide film in the air atmosphere and crushing. Immerse and wash. Next, polycrystalline silicon was immersed in a hydrofluoric acid tank in which 50 wt% hydrofluoric acid and 70 wt% nitric acid were mixed at a volume ratio of 1:50, and a surface cleaning etching treatment of 5 μm was performed. The surface cleanliness of the polycrystalline silicon after the treatment was evaluated by the same method as in Example 1. The evaluation results are shown in Table 2.

Figure 2009179554
Figure 2009179554

表2から分かるように、フッ硝酸の濃度が高くなるほど処理後の多結晶シリコンの表面清浄度が上がり、濃度10wt%以上で効果が顕著である。   As can be seen from Table 2, as the concentration of hydrofluoric acid increases, the surface cleanliness of the polycrystalline silicon after the treatment increases, and the effect is remarkable at a concentration of 10 wt% or more.

1 シリコン棒
2 酸化膜
1 Silicon rod 2 Oxide film

Claims (5)

シーメンス法で製造された溶解原料用の多結晶シリコンに対して洗浄処理を行う多結晶シリコン洗浄方法おいて、還元反応炉を開放する前に炉内の多結晶シリコンの表面に清浄な酸化膜を形成し、しかる後に前記還元反応炉から取り出した多結晶シリコンに対してフッ酸液により洗浄処理を行う多結晶シリコン洗浄方法。   In the polycrystalline silicon cleaning method in which polycrystalline silicon for melting raw material manufactured by the Siemens method is cleaned, a clean oxide film is formed on the surface of the polycrystalline silicon in the furnace before the reduction reactor is opened. A polycrystalline silicon cleaning method for forming and then cleaning the polycrystalline silicon taken out from the reduction reactor with a hydrofluoric acid solution. 請求項1に記載の多結晶シリコン洗浄方法において、還元反応炉を開放する前に水蒸気を含む清浄なガスを炉内に導入することにより、多結晶シリコンの表面に清浄な酸化膜を形成する多結晶シリコン洗浄方法。   2. The polycrystalline silicon cleaning method according to claim 1, wherein a clean gas containing water vapor is introduced into the furnace before the reduction reactor is opened, thereby forming a clean oxide film on the surface of the polycrystalline silicon. Crystalline silicon cleaning method. 請求項2に記載の多結晶シリコン洗浄方法において、水蒸気を含む清浄なガスは、水蒸気を含み且つ0.3μm以下の微粒子が少ないガスである多結晶シリコン洗浄方法。   The polycrystalline silicon cleaning method according to claim 2, wherein the clean gas containing water vapor is a gas containing water vapor and having a small amount of fine particles of 0.3 μm or less. 請求項3に記載の多結晶シリコン洗浄方法において、水蒸気を含み且つ0.3μm以下の微粒子が少ないガスは、HEPAフィルタを通した空気、又は清浄な不活性ガスに水蒸気を混合したガスである多結晶シリコン洗浄方法。   4. The polycrystalline silicon cleaning method according to claim 3, wherein the gas containing water vapor and having a small amount of fine particles of 0.3 μm or less is air that has passed through a HEPA filter or a gas obtained by mixing water vapor with a clean inert gas. Crystalline silicon cleaning method. 請求項1〜4の何れかに記載の多結晶シリコン洗浄方法において、フッ酸液の濃度が10wt%以上である多結晶シリコン洗浄方法。   The polycrystalline silicon cleaning method according to claim 1, wherein the concentration of the hydrofluoric acid solution is 10 wt% or more.
JP2009107670A 2009-04-27 2009-04-27 Polycrystalline silicon cleaning method Expired - Fee Related JP5035923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107670A JP5035923B2 (en) 2009-04-27 2009-04-27 Polycrystalline silicon cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107670A JP5035923B2 (en) 2009-04-27 2009-04-27 Polycrystalline silicon cleaning method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005149486A Division JP4554435B2 (en) 2005-05-23 2005-05-23 Polycrystalline silicon cleaning method

Publications (2)

Publication Number Publication Date
JP2009179554A true JP2009179554A (en) 2009-08-13
JP5035923B2 JP5035923B2 (en) 2012-09-26

Family

ID=41033802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107670A Expired - Fee Related JP5035923B2 (en) 2009-04-27 2009-04-27 Polycrystalline silicon cleaning method

Country Status (1)

Country Link
JP (1) JP5035923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156376A (en) * 2013-02-18 2014-08-28 Shin Etsu Handotai Co Ltd Method of producing silicon single crystal and method of producing silicon single crystal wafer
CN110621619A (en) * 2017-04-24 2019-12-27 株式会社德山 Method for producing broken polycrystalline silicon product, and method for controlling surface metal concentration of broken polycrystalline silicon product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114815A (en) * 1980-02-08 1981-09-09 Koujiyundo Silicon Kk Preliminary washing method of reaction furnace for preparing polycrystalline silicon
JPH06227888A (en) * 1993-02-03 1994-08-16 Fujitsu Ltd Production of silicon single crystal
JP2000302594A (en) * 1999-02-18 2000-10-31 Mitsubishi Materials Polycrystalline Silicon Corp Cleaning method of polycrystalline silicon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114815A (en) * 1980-02-08 1981-09-09 Koujiyundo Silicon Kk Preliminary washing method of reaction furnace for preparing polycrystalline silicon
JPH06227888A (en) * 1993-02-03 1994-08-16 Fujitsu Ltd Production of silicon single crystal
JP2000302594A (en) * 1999-02-18 2000-10-31 Mitsubishi Materials Polycrystalline Silicon Corp Cleaning method of polycrystalline silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156376A (en) * 2013-02-18 2014-08-28 Shin Etsu Handotai Co Ltd Method of producing silicon single crystal and method of producing silicon single crystal wafer
CN110621619A (en) * 2017-04-24 2019-12-27 株式会社德山 Method for producing broken polycrystalline silicon product, and method for controlling surface metal concentration of broken polycrystalline silicon product
EP3617144A4 (en) * 2017-04-24 2021-02-17 Tokuyama Corporation Method for manufacturing polycrystalline silicon fragment and method for managing surface metal concentration of polycrystalline silicon fragment
US11214892B2 (en) 2017-04-24 2022-01-04 Tokuyama Corporation Method for manufacturing polycrystalline silicon fragment and method for managing surface metal concentration of polycrystalline silicon fragment
CN110621619B (en) * 2017-04-24 2023-08-01 株式会社德山 Method for producing broken polysilicon, and method for controlling surface metal concentration of broken polysilicon

Also Published As

Publication number Publication date
JP5035923B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4554435B2 (en) Polycrystalline silicon cleaning method
US6309467B1 (en) Method for producing a semiconductor material
JP5071611B2 (en) Method of cleaning silicon for semiconductor material, polycrystalline silicon lump, and cleaning apparatus
JP5254335B2 (en) Method for cleaning polycrystalline silicon
JP2000117208A (en) Electronic material washing method
JP4377393B2 (en) Method and apparatus for cleaning pure water of polycrystalline silicon
JP5035923B2 (en) Polycrystalline silicon cleaning method
JP6630027B1 (en) Cleaning method, manufacturing method and cleaning apparatus for polycrystalline silicon
JP6636225B1 (en) Polycrystalline silicon crushed lump and method for producing the same
JP2013256445A (en) Method for producing single crystal silicon
JP7458833B2 (en) Silicon raw material cleaning equipment
JP7482039B2 (en) Polycrystalline silicon lump, its packaging and manufacturing method thereof
KR102643428B1 (en) Method for manufacturing polycrystalline silicon crushed lumps
JPH0867511A (en) Production of polycrystal silicon
JP6251870B2 (en) Method for collecting sludge and method for producing granular material
JPH0867510A (en) Mechanical workpiece of polycrystal silicon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees