JP2009178692A - Method for dispersing discharged liquid - Google Patents

Method for dispersing discharged liquid Download PDF

Info

Publication number
JP2009178692A
JP2009178692A JP2008022225A JP2008022225A JP2009178692A JP 2009178692 A JP2009178692 A JP 2009178692A JP 2008022225 A JP2008022225 A JP 2008022225A JP 2008022225 A JP2008022225 A JP 2008022225A JP 2009178692 A JP2009178692 A JP 2009178692A
Authority
JP
Japan
Prior art keywords
dispersion
discharge liquid
dispersing
stirrer
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022225A
Other languages
Japanese (ja)
Inventor
Tomoko Karasawa
智子 唐澤
Tsutomu Maekawa
勉 前川
Satoru Hida
悟 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Ricoh Printing Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Printing Systems Ltd filed Critical Ricoh Printing Systems Ltd
Priority to JP2008022225A priority Critical patent/JP2009178692A/en
Publication of JP2009178692A publication Critical patent/JP2009178692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for dispersing a discharged liquid which generates no precipitate during a storage period and eliminates capturing of bubbles by dispersion. <P>SOLUTION: The method for dispersing a discharged liquid which is used in an apparatus mounting a tank or a cartridge housing the discharged liquid having particles of micron order includes a first process of completely dispersing the particle precipitate part in the tank or the cartridge before using the discharged liquid in the apparatus and a second process of continuing the dispersion by lowering dispersion power during a period after the precipitate part has been removed and till the discharged liquid in the apparatus is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,液滴吐出装置等に搭載されたタンクまたはカートリッジ中のミクロンオーダの粒子を有する吐出液(例えば、インク)を該装置で使用する前に分散させるための吐出液分散方法に関する。 The present invention relates to a discharge liquid dispersion method for dispersing discharge liquid (for example, ink) having micron-order particles in a tank or cartridge mounted on a droplet discharge apparatus or the like before use in the apparatus.

一般に、インクジェット記録装置のような液滴吐出記録装置に用いられる吐出液としては、溶媒中に顔料等の分散粒子を均一に分散させて混合したもの(インク)が用いられることがある。このようなインクは、長期間にわたり印刷が行われていなかったり、インク貯蔵部内においてインクが循環しない状態で置かれていたりすると、溶媒と分散粒子との比重差で分散粒子が沈降する性質がある。
このような分散粒子の沈降において、濃度を一定に維持するために撹拌装置を設けることが検討されてきた。例えば、特許文献1には、沈降粒子の再分散の手法として、インクタンクの底部にマグネットスターラーを配置し、このマグネットスターラーの回転によりインクタンク内の撹拌子を回転させて、沈降粒子を拡散することが開示されている(例えば、特許文献1参照)。
また、スターラチップとスターラを用いた間欠運転によるインクの分散方法と、超音波照射によるインクの分散方法が開示されている(例えば、特許文献2参照)。
In general, as a discharge liquid used in a droplet discharge recording apparatus such as an ink jet recording apparatus, a liquid (ink) in which dispersed particles such as pigments are uniformly dispersed in a solvent may be used. Such ink has a property that when the printing is not performed for a long period of time or when the ink is not circulated in the ink storage unit, the dispersed particles settle due to the difference in specific gravity between the solvent and the dispersed particles. .
In such sedimentation of dispersed particles, it has been studied to provide a stirring device in order to keep the concentration constant. For example, in Patent Document 1, as a method for redispersing precipitated particles, a magnet stirrer is disposed at the bottom of the ink tank, and the stirrer in the ink tank is rotated by the rotation of the magnet stirrer to diffuse the precipitated particles. (For example, refer to Patent Document 1).
Further, an ink dispersion method by intermittent operation using a stirrer chip and a stirrer and an ink dispersion method by ultrasonic irradiation are disclosed (for example, see Patent Document 2).

特開昭60‐110458号公報Japanese Unexamined Patent Publication No. 60-110458 特開2004‐74625号公報JP 2004-74625 A

上記の特許文献で分散させる吐出液中の粒子の対象は顔料(粒子径50〜200nm)であるが、本発明ではミクロンオーダの粒子を対象としており、分散剤を使用しても効果が得られないため、濃度一定を維持するためには常に分散を行わなければならない。ミクロンオーダの粒子を有する、タンクまたはカートリッジの液滴吐出装置に搭載させる前の吐出液は保管期間中に沈殿を生じるので、吐出液を液滴吐出装置に充填する前に沈降した粒子を確実に分散させなければならない。しかし、タンクまたはカートリッジの保管期間が長期になると、撹拌子が吐出液粒子に埋もれてしまい、マグネチックスターラを回転させても撹拌子が回転しない。また、沈殿部に埋もれていた撹拌子が沈殿部から現れても、一箇所に留まったり、撹拌子が飛び跳ねたりして正常な撹拌ができないという問題がある。沈殿部を確実に分散させるために強い撹拌を行うことで分散可能となるが、液中に気泡を取り込んでしまう。液滴吐出装置に充填時、取り込まれた気泡が吐出経路、さらにはヘッド内部に溜まると不吐出要因となるので、気泡を取り込むような回転を避けるか、巻き込んだ気泡を速やかに排除しなければならない。
液滴吐出装置にタンクまたはカートリッジを充填する前に吐出液中の沈殿物を完全に分散させ、次にタンクまたはカートリッジを液滴吐出装置に充填する前よりも弱い分散力で分散させることで気泡の取り込みを防ぐ分散方法を検討した。しかし、この方法では、タンクまたはカートリッジを液滴吐出装置に搭載する時に弱い分散力に変更されるが、強い分散を行っていたことによって吐出液中に気泡が多く取り込まれてしまう。この気泡を排除するために、本発明は分散処理装置で分散が完全に終了した後から液滴吐出装置に充填するまでの間は沈殿部を分散させるときの分散力よりも低い分散力で分散させることを目的とする。
The target of the particles in the discharge liquid to be dispersed in the above patent document is a pigment (particle size: 50 to 200 nm), but in the present invention, the target is micron order particles, and the effect can be obtained even if a dispersant is used. Therefore, in order to maintain a constant concentration, dispersion must always be performed. Discharge liquid that has micron-order particles before it is installed in a droplet discharge device of a tank or cartridge causes precipitation during the storage period. Must be distributed. However, if the storage period of the tank or the cartridge becomes long, the stirrer is buried in the discharged liquid particles, and the stirrer does not rotate even if the magnetic stirrer is rotated. Moreover, even if the stirring bar buried in the precipitation part appears from the precipitation part, there is a problem that normal stirring cannot be performed because the stirring bar stays in one place or the stirring bar jumps. Dispersion can be achieved by carrying out strong agitation in order to reliably disperse the sedimentation part, but bubbles are taken into the liquid. When the droplet ejection device is filled, trapped bubbles may become a non-ejection factor if they accumulate inside the ejection path, and further inside the head, so it is necessary to avoid rotation that traps bubbles or to quickly eliminate trapped bubbles. Don't be.
Air bubbles by completely dispersing the precipitate in the discharge liquid before filling the droplet discharge device into the tank or cartridge, and then dispersing the tank or cartridge with a weaker dispersion force than before filling the droplet discharge device We studied a dispersion method to prevent the uptake of water. However, in this method, when the tank or cartridge is mounted on the droplet discharge device, the dispersion force is changed to a weak dispersion force. However, due to the strong dispersion, many bubbles are taken into the ejection liquid. In order to eliminate the bubbles, the present invention disperses with a dispersion force lower than the dispersion force when dispersing the sedimentation section after the dispersion processing device completely disperses until the droplet discharge device is filled. The purpose is to let you.

前記目的を達成するために、本発明の第1の手段は、ミクロンオーダの粒子を有する吐出液を収納したタンクまたはカートリッジを搭載した装置で用いる吐出液の分散方法において、該吐出液を該装置で使用する前に、前記タンクまたは前記カートリッジ中の粒子沈殿部に対し、沈殿部を完全に分散させる第1工程と、沈殿部がなくなった後から前記装置に前記吐出液を使用するまでの間、分散力を低下させて分散を継続させる第2工程からなることを特徴とする吐出液の分散方法である。
本発明の第2の手段は、該タンクまたは該カートリッジの保管期間の長短によって分散時間を変化させて分散処理を行うことを特徴とするものである。
本発明の第3の手段は、前記分散処理を前記装置の分散処理装置と異なる装置で行うことを特徴とする吐出液の分散方法である。
本発明の第4の手段は、分散処理装置は撹拌子とマグネチックスターラを有する装置であることを特徴とする吐出液の分散方法である。
本発明の第5の手段は、強磁力性の該撹拌子、該マグネチックスターラを有することを特徴とする吐出液の分散方法である。
本発明の第6の手段は、マグネチックスターラの動作は回転と停止の繰り返しであることを特徴とする吐出液の分散方法である。
In order to achieve the above object, the first means of the present invention is a dispersion method of discharge liquid used in an apparatus equipped with a tank or cartridge containing discharge liquid having micron-order particles. Before the use in the first step of completely dispersing the sedimentation portion with respect to the particle sedimentation portion in the tank or the cartridge, and after the sedimentation portion disappears until the discharge liquid is used in the apparatus. , And a second step of reducing the dispersion force and continuing the dispersion.
The second means of the present invention is characterized in that the dispersion processing is performed by changing the dispersion time depending on the storage period of the tank or the cartridge.
According to a third aspect of the present invention, there is provided a method for dispersing a discharge liquid, wherein the dispersion processing is performed by a device different from the dispersion processing device of the device.
A fourth means of the present invention is a method for dispersing a discharge liquid, wherein the dispersion treatment apparatus is an apparatus having a stirrer and a magnetic stirrer.
According to a fifth aspect of the present invention, there is provided a method for dispersing a discharge liquid, comprising the stirrer having a strong magnetic force and the magnetic stirrer.
A sixth means of the present invention is a method for dispersing a discharge liquid, wherein the operation of the magnetic stirrer is repeated rotation and stop.

本発明の第1工程で強磁力の撹拌子とマグネチックスターラを用いた分散によって、沈殿した粒子中に埋もれた撹拌子が強制的に動かされて沈殿部上に現れる。回転初期は一箇所に留まったり、撹拌子が飛び跳ねたりして正常な撹拌が行えないが、間欠運転により解消される。吐出液中の粒子の沈殿、凝集が確実に分散され、吐出液濃度が均一になることで、液滴吐出装置内の吐出液経路中で粒子の沈殿による詰まりを回避できる。
また、カートリッジ保管期間の状態によって沈殿した吐出液の分散時間を長短にできることで、分散を効率よく行える。
さらに、第2工程において、沈殿物を完全に分散してから液滴吐出装置に搭載させるまでの間は、分散力を低下させることで気泡を取り込みづらくし、強力に分散を行った際に取り込んだ気泡を液面上に浮上させて排除し易くする。また同時に、分散した粒子の沈殿を防ぐことも実現する。
In the first step of the present invention, the stirrer buried in the precipitated particles is forcibly moved and appears on the precipitation part by the dispersion using the strong magnetic stirrer and the magnetic stirrer. In the initial stage of rotation, it stays in one place, or the stirrer jumps and cannot perform normal stirring, but it is eliminated by intermittent operation. Precipitation and aggregation of particles in the discharge liquid are reliably dispersed and the discharge liquid concentration becomes uniform, thereby preventing clogging due to particle precipitation in the discharge liquid path in the droplet discharge device.
In addition, since the dispersion time of the discharged liquid that has settled depending on the state of the cartridge storage period can be shortened, dispersion can be performed efficiently.
Furthermore, in the second step, during the period from when the precipitate is completely dispersed to when it is mounted on the droplet discharge device, it is difficult to take in bubbles by reducing the dispersion force, and it is taken in when strongly dispersing. Air bubbles rise above the liquid surface to make it easier to eliminate. At the same time, it is possible to prevent sedimentation of dispersed particles.

分散処理方法として、密閉容器に入れられた吐出液を振とうさせる方法、撹拌機を用いた分散方法、超音波照射による分散方法、撹拌子とマグネチックスターラを用いた分散方法があり、いずれか一つでも良いし、これら二つ以上を組み合わせても良い。最も好ましくは、本発明の撹拌子とマグネチックスターラを用いた分散方法である。
本発明の分散方法は、液滴吐出装置にカートリッジを充填させる前に、再分散装置での分散を行う。吐出液の沈殿がなくなるまで分散を行い(第1工程)、沈殿部がなくなった後から該液滴吐出装置に該吐出液を充填するまでの間、分散力を低下させて分散を継続させる(第2工程)。第1工程の分散は、カートリッジの保管期間に応じて変化させる。後述の実施例1に示すが、保管期間が長期になるに従い、分散時間を要するため、液滴吐出装置に充填する前に液滴吐出装置とは別の分散装置で分散を行う。従って、分散時間の短縮が可能となり効率よくインクを使用することができる。
次に、本発明の実施の形態を、図、実施例に基づいて説明する。
図1は、カートリッジ2を搭載する液滴吐出装置11の概略図である。本発明で用いる液滴吐出装置11は、記録するためのヘッド7と粒子径が2〜5μm、粘度10〜15mPa・s程度の吐出液5を貯蔵するためのタンク3を有するカートリッジ2と吐出液5を分散するための再分散装置1を有する。再分散装置1は、0.6T程度の磁力を有するマグネチックスターラを備える。タンク3中に吐出液5と磁性体がサマリウム・コバルトである撹拌子4を有するカートリッジ2を搭載し、撹拌子4の回転により吐出液5を分散させる。
マグネチックスターラの例として、具体的に以下に述べる。アズワン製;ハイパワースターラREMIX、RP−1D、高機能ハイパワースターラ、ML−102、強磁力マグネチックスターラ、HS−4SP、ハイパワースターラ、HS−100、日伸理化製;超強磁力スターラSW‐RS077Dなどのマグネチックスターラを用いると良い。
撹拌子の例として、具体的に以下に述べる。アイシス製;テフロン(登録商標)HP回転子テーパ型CMH2930、テフロン(登録商標)HP回転子テーパ型CMH2925、テフロン(登録商標)HP回転子シリンダ型CMH2930、テフロン(登録商標)HP回転子シリンダ型CMH2925などの回転子を用いると良い。
図2の再分散装置1は、液滴吐出装置11のマグネチックスターラ9と異なる分散処理装置である。好ましくは、カートリッジ2を液滴吐出装置11に搭載する前に、図2の再分散装置1でカートリッジ2内の吐出液5を分散させる。
図3は吐出液の分散するためのフローチャートである。
分散時間は吐出液の保管状態により異なる。北原編「分散・凝集の解明と応用技術」テクノシステム(平成8年)では、液体中の球形分散粒子の沈降時間tに関して基本的に下式で示される挙動が知られている(数1)。
As a dispersion treatment method, there are a method of shaking the discharge liquid put in a sealed container, a dispersion method using a stirrer, a dispersion method by ultrasonic irradiation, and a dispersion method using a stirrer and a magnetic stirrer, either One may be used, or two or more of these may be combined. Most preferred is a dispersion method using the stirrer and magnetic stirrer of the present invention.
In the dispersion method of the present invention, the dispersion is performed by the redispersion device before the cartridge is filled in the droplet discharge device. Dispersion is performed until there is no sedimentation of the discharge liquid (first step), and the dispersion is continued by reducing the dispersion force until the liquid droplet ejection device is filled with the discharge liquid after the sedimentation portion has disappeared (first step). Second step). The dispersion in the first step is changed according to the storage period of the cartridge. As shown in Example 1 to be described later, as the storage period becomes longer, dispersion time is required. Therefore, dispersion is performed by a dispersion device different from the droplet ejection device before filling the droplet ejection device. Accordingly, the dispersion time can be shortened, and the ink can be used efficiently.
Next, embodiments of the present invention will be described based on the drawings and examples.
FIG. 1 is a schematic view of a droplet discharge device 11 on which a cartridge 2 is mounted. A droplet discharge device 11 used in the present invention includes a head 2 for recording, a cartridge 2 having a tank 3 for storing a discharge liquid 5 having a particle diameter of 2 to 5 μm and a viscosity of about 10 to 15 mPa · s, and the discharge liquid. 5 has a redispersing device 1 for dispersing 5. The redispersion device 1 includes a magnetic stirrer having a magnetic force of about 0.6T. A cartridge 2 having a discharger 5 and a stirrer 4 whose magnetic material is samarium / cobalt is mounted in a tank 3, and the discharger 5 is dispersed by the rotation of the stirrer 4.
An example of a magnetic stirrer will be specifically described below. Made by ASONE; High-power stirrer REMIX, RP-1D, High-function high-power stirrer, ML-102, Ferromagnetic magnetic stirrer, HS-4SP, High-power stirrer, HS-100, manufactured by Nisshinka; Super-ferromagnetic stirrer SW -Use a magnetic stirrer such as RS077D.
Specific examples of the stirrer will be described below. Made by Isis; Teflon (registered trademark) HP rotor taper type CMH2930, Teflon (registered trademark) HP rotor taper type CMH2925, Teflon (registered trademark) HP rotor cylinder type CMH2930, Teflon (registered trademark) HP rotor cylinder type CMH2925 It is better to use a rotor such as
The redispersion device 1 in FIG. 2 is a dispersion processing device different from the magnetic stirrer 9 of the droplet discharge device 11. Preferably, before the cartridge 2 is mounted on the droplet discharge device 11, the discharge liquid 5 in the cartridge 2 is dispersed by the redispersion device 1 of FIG.
FIG. 3 is a flowchart for dispersing the discharge liquid.
The dispersion time varies depending on the storage state of the discharged liquid. In Kitahara's “Elucidation and Application Technology of Dispersion / Agglomeration” Technosystem (1996), the behavior represented by the following equation is known for the sedimentation time t of spherical dispersed particles in liquid (Equation 1) .

Figure 2009178692
Figure 2009178692

ここで、η:粘度、H:沈降距離、ρ:分散粒子密度、ρ0:分散媒密度、D:分散粒子径、g:重力加速度である。実際の系においては(数1)式から定量的には、はずれる場合もあるが、一般的な傾向として分散粒子の沈降時間は他の条件が一定の場合、粘度にほぼ比例して変化し、沈降速度は粘度にほぼ逆比例する傾向を示す。
本発明で用いた吐出液は、η=10〜15mPa・s、ρ=1000kg/m3、ρ0=1100kg/m3、D=2〜5μmである。
保管中に沈殿を生じ、撹拌子が粒子中に埋もれても、1000rpm以上の回転数で強制的に撹拌を行うことで分散が可能となる。また、撹拌子が飛び跳ねたりして正常な撹拌が行えない場合、間欠運転を行うことで停止時に撹拌子が中央に戻り、再度撹拌が開始する際にマグネチックスターラの中心で正常な撹拌を行うことが可能である。間欠運転は、例えば15〜60秒撹拌、5〜15秒停止等で行うことが好ましく、間欠の時間はいずれの範囲の組合せでも良く、粒子と吐出液の種類により適宜変更できる。分散時間はインク種、粘度、濃度、吐出液の保管状態により異なるが保管期間が1ヶ月以下の場合、15〜40分の分散時間を要する。保管期間が1ヶ月を超える場合は40〜120分の分散時間を要する。また、第2工程では、分散時間はカートリッジ2に充填する直前までとし、回転数は300rpm程度が好ましい。
〔実施例1〕
吐出液の保管期間の長短による分散時間を確認した。
粒子径3μmのスペーサ微粒子を有する粘度13mPa・s(東機産業(株)製、E型粘度計、回転数20rpm、測定温度23.0℃)の吐出液の分散実験を行った。1Lの容器(容器底面直径100mm)に撹拌子((株)アイシス製、テフロン(登録商標)HP回転子テーパ型CMH2930)と吐出液600mL入れ、保管期間がそれぞれ1ヶ月、2ヶ月、3ヶ月、4ヶ月のサンプルをマグネチックスターラ((株)日伸理化製、超強磁力スターラSW‐RS077D)により1400rpmで撹拌した。撹拌は、60秒撹拌、5秒停止の間欠運転で行った。保管期間が1ヶ月の吐出液は15分、2ヶ月の吐出液は15〜30分、3ヶ月の吐出液は15〜40分、4ヶ月の吐出液は30〜40分となり、保管期間が長期になると分散時間も長くなる傾向を確認した。結果を図4に示す。
〔実施例2〕
粒子径3μmのスペーサ微粒子を有する粘度13mPa・s(東機産業(株)製、E型粘度計、回転数20rpm、測定温度23.0℃)の吐出液の分散実験を行った。1Lの容器(容器底面直径100mm)に撹拌子((株)アイシス製、テフロン(登録商標)HP回転子テーパ型CMH2930)と吐出液600mL入れ、1ヶ月静置保管したサンプルをマグネチックスターラ((株)日伸理化製、超強磁力スターラSW‐RS077D)で1400rpmで撹拌した。撹拌は、60秒撹拌、5秒停止の間欠運転で行った。保管時間が1ヶ月の吐出液は15分で沈殿部が完全になくなった。
沈殿部分散終了後、再分難装置に搭載させたまま回転数を300rpmに低下させた。回転数を低速にすることで気泡を取り込む量の変化を測定した。実験結果を図5に示す。(株)東興化学研究所製パーソナル溶存酸素メータTOX−90iを用いて吐出液中の溶存酸素の変化量を測定した。回転数が1400rpmのときに溶存酸素量が一定値を得た後、回転数を300rpmに下げた。吐出液中の溶存酸素量が10%近く低下し、気泡の取り込みは低減でき、不吐出発生率は回転数を下げない場合の50%から下げた場合の30%へ減少した。
同様に沈殿部分散終了後、300rpmで撹拌を1週間おこなった吐出液の濃度変化を測定した。実験結果を図6に示す。上部のグラフは、タンク中の吐出液の上部の濃度測定を行った値であり、下部はタンク中の吐出液下部の値である。濃度は堀場製作所(株)製粒度分布計LB‐500のレーザー散乱強度を利用して測定した。1400rpmで撹拌を行っていた初期状態と、300rpmで一週間(336時間)後までのそれぞれでの状態には濃度変化はなく、ほぼ一定であった。300rpm程度の低速回転でも粒子の沈降を防ぐことが可能である。
Here, η: viscosity, H: sedimentation distance, ρ: dispersed particle density, ρ0: dispersion medium density, D: dispersed particle diameter, and g: gravitational acceleration. In an actual system, there is a case that quantitatively deviates from the formula (1). However, as a general tendency, the settling time of the dispersed particles changes almost in proportion to the viscosity when other conditions are constant, The sedimentation rate tends to be almost inversely proportional to the viscosity.
The discharge liquid used in the present invention is η = 10 to 15 mPa · s, ρ = 1000 kg / m 3, ρ 0 = 1100 kg / m 3, and D = 2 to 5 μm.
Even if precipitation occurs during storage and the stirrer is buried in the particles, it can be dispersed by forcibly stirring at a rotational speed of 1000 rpm or more. In addition, when normal stirring cannot be performed due to jumping of the stirring bar, intermittent stirring is performed to return the stirring bar to the center when stopped, and normal stirring is performed at the center of the magnetic stirrer when stirring is started again. It is possible. The intermittent operation is preferably performed by, for example, stirring for 15 to 60 seconds, stopping for 5 to 15 seconds, or the like, and the intermittent time may be a combination in any range, and can be appropriately changed depending on the types of particles and the discharge liquid. The dispersion time varies depending on the ink type, viscosity, concentration, and storage state of the discharge liquid, but when the storage period is one month or less, a dispersion time of 15 to 40 minutes is required. When the storage period exceeds one month, a dispersion time of 40 to 120 minutes is required. In the second step, the dispersion time is until just before the cartridge 2 is filled, and the rotation speed is preferably about 300 rpm.
[Example 1]
The dispersion time depending on the storage period of the discharged liquid was confirmed.
Dispersion experiment of the discharge liquid having a viscosity of 13 mPa · s having a spacer fine particle with a particle diameter of 3 μm (manufactured by Toki Sangyo Co., Ltd., E-type viscometer, rotation speed 20 rpm, measurement temperature 23.0 ° C.) was conducted. A stirrer (manufactured by Isis Co., Ltd., Teflon (registered trademark) HP rotor taper type CMH2930) and 600 mL of discharge liquid are put into a 1 L container (container bottom diameter: 100 mm), and the storage period is 1 month, 2 months, 3 months, A sample of 4 months was stirred at 1400 rpm with a magnetic stirrer (Nisshin Rika Co., Ltd., super-strong magnetic stirrer SW-RS077D). Stirring was performed by intermittent operation of 60 seconds stirring and 5 seconds stop. Discharge liquid with a storage period of 1 month is 15 minutes, discharge liquid of 2 months is 15 to 30 minutes, discharge liquid of 3 months is 15 to 40 minutes, discharge liquid of 4 months is 30 to 40 minutes, and the storage period is long The tendency for the dispersion time to become longer was confirmed. The results are shown in FIG.
[Example 2]
Dispersion experiment of the discharge liquid having a viscosity of 13 mPa · s having a spacer fine particle with a particle diameter of 3 μm (manufactured by Toki Sangyo Co., Ltd., E-type viscometer, rotation speed 20 rpm, measurement temperature 23.0 ° C.) was conducted. In a 1 L container (container bottom diameter: 100 mm), a stirrer (manufactured by Isis Co., Ltd., Teflon (registered trademark) HP rotor taper type CMH2930) and 600 mL of the discharge liquid was put, and a magnetic stirrer (( The product was stirred at 1400 rpm using a Nisshin Rika Co., Ltd. super-strong magnetic stirrer SW-RS077D). Stirring was performed by intermittent operation of 60 seconds stirring and 5 seconds stop. The discharged liquid with a storage time of 1 month was completely free of sediment in 15 minutes.
After the precipitation part dispersion was completed, the rotational speed was reduced to 300 rpm while being mounted on the re-separation apparatus. The change in the amount of bubbles taken in was measured by reducing the number of rotations. The experimental results are shown in FIG. The amount of change in dissolved oxygen in the discharged liquid was measured using a personal dissolved oxygen meter TOX-90i manufactured by Toko Chemical Laboratory. After the dissolved oxygen amount obtained a constant value when the rotational speed was 1400 rpm, the rotational speed was lowered to 300 rpm. The amount of dissolved oxygen in the discharged liquid was reduced by nearly 10%, the intake of bubbles could be reduced, and the non-ejection occurrence rate was reduced from 50% when the rotational speed was not lowered to 30% when lowered.
Similarly, after the dispersion of the precipitation part was completed, the change in the concentration of the discharged liquid was measured after stirring at 300 rpm for 1 week. The experimental results are shown in FIG. The upper graph is a value obtained by measuring the concentration of the upper part of the discharge liquid in the tank, and the lower part is a value of the lower part of the discharge liquid in the tank. The concentration was measured using the laser scattering intensity of a particle size distribution meter LB-500 manufactured by Horiba, Ltd. There was no change in concentration in the initial state where stirring was performed at 1400 rpm and the state after 300 weeks at one week (336 hours), and the concentration was almost constant. It is possible to prevent sedimentation of particles even at a low speed of about 300 rpm.

本発明はエレクトロルミネッセンスの製造、あるいは酸化チタン粒子を含有したインクを印刷するプリント配線基板の製造、沈降や凝集しやすい高濃度の電子部品用インクを使用して製造する積層セラミック電子部品や高周波電子部品の如き電子部品の製造、液晶表示装置のスペーサ粒子などの分散技術分野において適用可能である。 The present invention relates to the production of electroluminescence, the production of printed wiring boards on which ink containing titanium oxide particles is printed, the production of multilayer ceramic electronic components and high-frequency electronics using high-concentration inks for electronic components that tend to settle and aggregate. The present invention can be applied in the field of dispersion technology such as manufacture of electronic parts such as parts and spacer particles of liquid crystal display devices.

本発明で用いるカートリッジを分散後に搭載し、吐出液を充填させる液滴吐出装置の概略図である。It is the schematic of the droplet discharge apparatus which mounts the cartridge used by this invention after dispersion | distribution, and is filled with discharge liquid. 本発明によるカートリッジと再分散装置の断面図である。FIG. 3 is a cross-sectional view of a cartridge and a redispersion device according to the present invention. 液滴吐出の分散過程のフローチャートである。It is a flowchart of the dispersion | distribution process of droplet discharge. 吐出液の保管期間の長短による分散時間の確認結果である。It is a confirmation result of the dispersion time by the length of the storage period of the discharged liquid. 分散回転数を1400rpmから300rpmに変更した時の溶存酸素量変化である。This is a change in dissolved oxygen amount when the dispersion rotational speed is changed from 1400 rpm to 300 rpm. 分散回転数が1400rpmと300rpmでの吐出液の濃度変化と沈殿部の有無を確認した結果である。It is the result of having confirmed the density change of the discharge liquid and the presence or absence of a precipitation part in dispersion | distribution rotation speed 1400rpm and 300rpm.

符号の説明Explanation of symbols

1:再分散装置、2:カートリッジ、3:タンク、4:撹拌子、5:吐出液、6a〜6c:接続部、7:ヘッド、8:液滴吐出循環路、9:マグネチックスターラ、10:ポンプ、11:液滴吐出装置 1: redispersion device, 2: cartridge, 3: tank, 4: stirrer, 5: discharge liquid, 6a to 6c: connection, 7: head, 8: droplet discharge circuit, 9: magnetic stirrer, 10 : Pump, 11: Droplet discharge device

Claims (6)

ミクロンオーダの粒子を有する吐出液を収納したタンクまたはカートリッジを搭載した装置で用いる吐出液の分散方法において、該吐出液を該装置で使用する前に、前記タンクまたは前記カートリッジ中の粒子沈殿部に対し、沈殿部を完全に分散させる第1工程と、沈殿部がなくなった後から前記装置に前記吐出液を使用するまでの間、分散力を低下させて分散を継続させる第2工程からなることを特徴とする吐出液の分散方法。 In a dispersion method of a discharge liquid used in an apparatus equipped with a tank or cartridge containing discharge liquid having micron-order particles, before the discharge liquid is used in the apparatus, it is applied to a particle sedimentation portion in the tank or the cartridge. On the other hand, it consists of a first step of completely dispersing the precipitation portion and a second step of continuing the dispersion by reducing the dispersion force until the discharge liquid is used in the apparatus after the precipitation portion disappears. A method of dispersing a discharge liquid characterized by the above. 該タンクまたは該カートリッジの保管期間の長短によって分散時間を変化させて分散処理を行うことを特徴とする請求項1記載の吐出液の分散方法。 2. The method for dispersing a discharge liquid according to claim 1, wherein the dispersion process is performed by changing a dispersion time depending on the storage period of the tank or the cartridge. 前記分散処理を前記装置の分散処理装置と異なる装置で行うことを特徴とする請求項1乃至2記載の吐出液の分散方法。 3. The method for dispersing a discharge liquid according to claim 1, wherein the dispersion processing is performed by an apparatus different from the dispersion processing apparatus of the apparatus. 分散処理装置は撹拌子とマグネチックスターラを有する装置であることを特徴とする請求項1乃至3記載の吐出液の分散方法。 4. The method for dispersing a discharge liquid according to claim 1, wherein the dispersion treatment device is a device having a stirrer and a magnetic stirrer. 強磁力性の該撹拌子、該マグネチックスターラを有することを特徴とする請求項4記載の吐出液の分散方法。 5. A method for dispersing a discharge liquid according to claim 4, comprising the stirrer having a strong magnetic force and the magnetic stirrer. マグネチックスターラの動作は回転と停止の繰り返しであることを特徴とする請求項4乃至5記載の吐出液の分散方法。 6. The method of dispersing a discharge liquid according to claim 4, wherein the operation of the magnetic stirrer is repeated rotation and stop.
JP2008022225A 2008-02-01 2008-02-01 Method for dispersing discharged liquid Pending JP2009178692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022225A JP2009178692A (en) 2008-02-01 2008-02-01 Method for dispersing discharged liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022225A JP2009178692A (en) 2008-02-01 2008-02-01 Method for dispersing discharged liquid

Publications (1)

Publication Number Publication Date
JP2009178692A true JP2009178692A (en) 2009-08-13

Family

ID=41033076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022225A Pending JP2009178692A (en) 2008-02-01 2008-02-01 Method for dispersing discharged liquid

Country Status (1)

Country Link
JP (1) JP2009178692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052383A (en) * 2011-09-05 2013-03-21 Yoshiko Moriyasu Device and method for purifying water
CN114441428A (en) * 2022-01-14 2022-05-06 常州大学 Metal material hydrogen sulfide corrosion experiment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052383A (en) * 2011-09-05 2013-03-21 Yoshiko Moriyasu Device and method for purifying water
CN114441428A (en) * 2022-01-14 2022-05-06 常州大学 Metal material hydrogen sulfide corrosion experiment device

Similar Documents

Publication Publication Date Title
Tamjid et al. Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol
De Vicente et al. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles
US10619066B2 (en) Metallic nanoparticle dispersion
US9833836B2 (en) Core-shell metallic nanoparticles, methods of production thereof, and ink compositions containing same
JP4629335B2 (en) Pigment-containing ink composition
Rouxel et al. Dispersion of nanoparticles: From organic solvents to polymer solutions
JP6201875B2 (en) Silver powder and method for producing the same
KR101633152B1 (en) Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
JP4447273B2 (en) Silver ink and method for producing the same
US9839961B2 (en) Metallic nanoparticle dispersion
JP5791146B2 (en) Colloidal dispersion
KR20140093704A (en) Method for producing a metal nanoparticle dispersion, metal nanoparticle dispersion, and use of said metal nanoparticle dispersion
US20160083594A1 (en) A method of preparing a conductive metallic layer or pattern
WO2005009651A1 (en) Fine-grain silver powder and process for producing the same
WO2018088339A1 (en) Silver particle dispersion liquid, method for producing same, and method for producing conductive film with use of said silver particle dispersion liquid
KR20040002991A (en) High Pressure Media and Method of Creating Ultra-Fine Particles
WO2007111384A1 (en) Water-based ink, method of ink-jet recording, ink cartridge, recording unit, and apparatus for ink-jet recording
JP2009178692A (en) Method for dispersing discharged liquid
Almansoori et al. Parametric study on the stabilization of metal oxide nanoparticles in organic solvents: A case study with indium tin oxide (ITO) and heptane
JP6101403B2 (en) Conductive ink
JP2009178690A (en) Dispersion method of discharge liquid
JP2007207589A (en) Manufacturing method of zinc oxide dispersion paste
JP6779736B2 (en) Dispersion method and crushing method of particles in slurry
JP2002153769A (en) Method and apparatus for finely dividing particle
US20070009422A1 (en) Carbon black paint and method for manufacturing the same