JP2009178654A - Liquid/liquid separator of sedimentation type - Google Patents

Liquid/liquid separator of sedimentation type Download PDF

Info

Publication number
JP2009178654A
JP2009178654A JP2008020112A JP2008020112A JP2009178654A JP 2009178654 A JP2009178654 A JP 2009178654A JP 2008020112 A JP2008020112 A JP 2008020112A JP 2008020112 A JP2008020112 A JP 2008020112A JP 2009178654 A JP2009178654 A JP 2009178654A
Authority
JP
Japan
Prior art keywords
liquid
sedimentation
passage
settling
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020112A
Other languages
Japanese (ja)
Other versions
JP5548338B2 (en
Inventor
Naoki Shimada
直樹 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008020112A priority Critical patent/JP5548338B2/en
Publication of JP2009178654A publication Critical patent/JP2009178654A/en
Application granted granted Critical
Publication of JP5548338B2 publication Critical patent/JP5548338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Floating Material (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid/liquid separator of a sedimentation type capable of separating a liquid mixture comprising liquids each having a mutually different specific gravity, particularly a liquid mixture wherein a liquid of a lower specific gravity is present in a higher ratio relative to a liquid of a higher specific gravity. <P>SOLUTION: The liquid/liquid separator of a sedimentation type for separating a liquid mixture wherein a liquid of a higher specific gravity than that of a principal liquid is dispersed in the principal liquid of a low specific gravity forming interfaces therebetween, into the respective liquids, comprises: a body 10 equipped with a cylindrical barrel 11 having a liquid passage 10h disposed thereinside, an inflow passage 12a disposed on the front end of the barrel 11 for feeding the liquid mixture into the liquid passage 10h of the barrel 11, and a discharge passage 11a disposed on the rear end of the barrel 11 for discharging the separated liquid from the barrel 11; a sedimentator 21 that causes the liquid of a higher specific gravity present in the liquid mixture to sink in the body 10; and a distributor 22 disposed between the sedimentator 21 and the inflow passage 12a in the body 10. The sedimentator 21 is equipped with a sedimentation face 21s not ascending from the upstream side toward the downstream side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、沈降型液液分離器に関する。さらに詳しくは、油と水のように、比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する沈降型液液分離器に関する。   The present invention relates to a sedimentation type liquid-liquid separator. More specifically, the present invention relates to a sedimentation type liquid-liquid separator that separates a mixed liquid, such as oil and water, in which liquids having different specific gravities form an interface and mixes them.

従来から、水と油などのように比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する装置として、比重差を利用した重力沈降操作を行う装置が開発されている(例えば特許文献1,2)。   2. Description of the Related Art Conventionally, a device for performing gravity sedimentation operation utilizing a specific gravity difference has been developed as a device for separating a mixed liquid in which liquids having different specific gravities such as water and oil form an interface and mixing them into liquids ( For example, Patent Documents 1 and 2).

特許文献1には、油水分離槽内に仕切り部材を設けて流路を蛇行させた油水分離装置が開示されている。この技術は、仕切り部材に混合液体を衝突させることにより油水の分離を促進させるとともに、流路を蛇行させて混合液体の流速を低下させることにより油水分離の重力沈降を促進させている。   Patent Document 1 discloses an oil / water separation device in which a partition member is provided in an oil / water separation tank to meander a flow path. This technology promotes the separation of oil and water by causing the mixed liquid to collide with the partition member, and promotes gravity sedimentation of the oil and water separation by meandering the flow path to reduce the flow rate of the mixed liquid.

また、特許文献2には、整流板と、流路に対して傾斜した傾斜流路を有する傾斜流路集合体とを備え、両者を混合液体の流路に設けた懸濁液分離装置が開示されている。この装置では、整流板によって混合液体を平行層流とし、この平行層流となった混合液体を傾斜流路内に流入させて比重の大きい懸濁流体を沈降分離させている。そして、この文献では分散媒と懸濁流体の相対的な比重によって、傾斜流路集合体の傾斜流路を変える旨の記載もある。   Patent Document 2 discloses a suspension separator that includes a current plate and an inclined flow channel assembly having an inclined flow channel that is inclined with respect to the flow channel, both of which are provided in a mixed liquid flow channel. Has been. In this apparatus, the mixed liquid is converted into a parallel laminar flow by the rectifying plate, and the mixed liquid that has become the parallel laminar flow is caused to flow into the inclined flow path so that the suspended fluid having a large specific gravity is settled and separated. This document also describes that the inclined flow path of the inclined flow path assembly is changed depending on the relative specific gravity of the dispersion medium and the suspended fluid.

しかるに、特許文献1の技術では、混合液体の流れ方向に対して直交するように仕切り部材が設けられているため、流路抵抗が大きく、連続的に混合液体を各液体に分離する処理効率が低くなる。   However, in the technique of Patent Document 1, since the partition member is provided so as to be orthogonal to the flow direction of the mixed liquid, the flow resistance is large and the processing efficiency for continuously separating the mixed liquid into each liquid is high. Lower.

一方、特許文献2の技術では、懸濁流体を沈降分離させる流路が傾斜流路となっているので特許文献1の技術に比べて流路抵抗は小さくできるが、以下の問題がある。   On the other hand, in the technique of Patent Document 2, since the flow path for settling and separating the suspended fluid is an inclined flow path, the flow path resistance can be reduced as compared with the technique of Patent Document 1, but there are the following problems.

まず、特許文献2には、比重の小さい液体(以下、単に主液体という)に、この主液体よりも比重の大きい液体(以下、沈降液体という)が混合している場合には、混合液体の流れ方向に対して上傾した傾斜流路を有する傾斜流路集合体を使用する旨の記載がある。かかる場合、沈降液体は傾斜流路内で沈降し傾斜流路の傾斜を滑り落ちるように排出されるが、沈降液体が傾斜を滑り落ちる方向は混合液体の流れの方向と逆向きである。すると、沈降液体は混合液体の流れに逆らって移動しなければならず、傾斜流路から沈降液体を排出する排出効率が低下するとともに、沈降液体と混合液体が干渉して、分離した沈降液体が主液体に再混合する可能性がある。
しかも、特許文献2の技術では、傾斜流路後端から主液体を吸引するので、沈降液体を排出する排出効率が低下すると、主液体とともに沈降液体も吸引してしまう可能性が高く、この場合には、分離した主液体と沈降液体とが確実に再混合してしまう。
First, in Patent Document 2, a liquid having a specific gravity smaller than that of the main liquid (hereinafter referred to as a sedimented liquid) is mixed with a liquid having a low specific gravity (hereinafter simply referred to as a main liquid). There is a description that an inclined channel assembly having an inclined channel inclined upward with respect to the flow direction is used. In such a case, the settled liquid settles in the inclined channel and is discharged so as to slide down the slope of the inclined channel, but the direction in which the settled liquid slides down the tilt is opposite to the direction of the flow of the mixed liquid. Then, the settled liquid must move against the flow of the mixed liquid, and the discharge efficiency for discharging the settled liquid from the inclined flow path is reduced. There is a possibility of remixing into the main liquid.
Moreover, in the technique of Patent Document 2, since the main liquid is sucked from the rear end of the inclined flow path, if the discharge efficiency for discharging the settling liquid is reduced, the settling liquid is likely to be sucked together with the main liquid. In this case, the separated main liquid and the settled liquid are reliably remixed.

また、特許文献2には、混合液体の流れ方向に対して傾斜流路が下傾している例も記載されている。そして、この構成は比重の大きい液体(以下、単に主液体という)に、この主液体よりも比重の小さい液体(以下、浮上液体という)が混合している混合液体において、主液体から浮上液体を分離除去する場合に使用される旨が記載されている。かかる構成の場合には、傾斜流路内で浮上した浮上液体は、傾斜流路の上面に沿って浮き上がり傾斜流路から排出されるのであるが、この場合も、浮上液体の移動方向と混合液体の流れの方向とが逆向きになる。すると、浮上液体は混合液体の流れに逆らって移動しなければならず、傾斜流路から浮上液体を排出する排出効率が低下するし、浮上液体と主液体とが再混合してしまう可能性がある。   Patent Document 2 also describes an example in which the inclined channel is inclined downward with respect to the flow direction of the mixed liquid. In this configuration, in a mixed liquid in which a liquid having a large specific gravity (hereinafter simply referred to as a main liquid) is mixed with a liquid having a specific gravity smaller than that of the main liquid (hereinafter referred to as a floating liquid), the floating liquid is converted from the main liquid. It is described that it is used for separation and removal. In such a configuration, the floating liquid floating in the inclined flow path rises along the upper surface of the inclined flow path and is discharged from the inclined flow path. In this case as well, the moving direction of the floating liquid and the mixed liquid The direction of the flow is reversed. Then, the floating liquid must move against the flow of the mixed liquid, the discharge efficiency for discharging the floating liquid from the inclined flow path is reduced, and the floating liquid and the main liquid may be remixed. is there.

特開2001−252503号JP 2001-252503 A 特許第3681003号Japanese Patent No. 3681003

本発明は上記事情に鑑み、比重の異なる液体が混合した混合液体、とくに比重の小さい流体の割合が多い混合液体を効率よく各液体に分離することができる沈降型液液分離器を提供することを目的とする。   In view of the above circumstances, the present invention provides a sedimentation type liquid-liquid separator capable of efficiently separating a mixed liquid in which liquids having different specific gravities are mixed, particularly a mixed liquid having a large proportion of fluid having a small specific gravity, into each liquid. With the goal.

第1発明の沈降型液液分離器は、比重の小さい主液体に該主液体よりも比重の大きい液体が界面を形成して混合した混合液体を各液体に分離する装置であって、内部に液体通路を有する中空な筒状の胴部と、該胴部の前端に設けられ該胴部の液体通路に対し混合液体を供給する流入通路と、前記胴部の後端に設けられ分離された液体を該胴部から排出する排出通路とを備えた本体部と、該本体部内において、前記混合液体における比重の大きい液体を沈降させる沈降部材と、前記本体部内において、該沈降部材と前記流入通路との間に設けられた整流部材とからなり、前記沈降部材は、上流側から下流側に向かって非上傾の沈降面を備えていることを特徴とする。
第2発明の沈降型液液分離器は、第1発明において、前記沈降面は、上流側から下流側に向かって下傾していることを特徴とする。
第3発明の沈降型液液分離器は、第1または第2発明において、前記沈降部材は、その上面が前記沈降面となるように配設された板状の傾斜板であることを特徴とする。
第4発明の沈降型液液分離器は、第1、第2または第3発明において、前記整流部材は、前記流入通路の軸方向の延長線と交差する部位に、流体を透過させない衝突部を備えていることを特徴とする。
第5発明の沈降型液液分離器は、第4発明において、前記流入通路は、前記本体部の下方に設けられており、その軸方向が前記液体通路に対して上傾した状態となるように配設されていることを特徴とする。
第6発明の沈降型液液分離器は、第1、第2、第3、第4または第5発明において、前記排出通路は、前記胴部の後端下部に設けられた比重の大きい液体を排出する下部排出通路を有しており、前記整流部材の下端と、前記本体部の下部内面との間には隙間が形成されていることを特徴とする。
A sedimentation type liquid-liquid separator according to a first aspect of the present invention is an apparatus for separating a mixed liquid obtained by mixing a main liquid having a low specific gravity with a liquid having a higher specific gravity than the main liquid by forming an interface, and separating the liquid into each liquid. A hollow cylindrical body having a liquid passage, an inflow passage provided at the front end of the body and supplying a mixed liquid to the liquid passage of the body, and provided at the rear end of the body and separated. A main body provided with a discharge passage for discharging the liquid from the body, a settling member for settling a liquid having a large specific gravity in the mixed liquid in the main body, and the settling member and the inflow passage in the main body. The sinking member is provided with a sinking surface that is not inclined upward from the upstream side to the downstream side.
A sedimentation type liquid-liquid separator according to a second invention is characterized in that, in the first invention, the sedimentation surface is inclined downward from the upstream side toward the downstream side.
The sedimentation type liquid-liquid separator according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the sedimentation member is a plate-like inclined plate disposed so that the upper surface thereof becomes the sedimentation surface. To do.
The sedimentation type liquid-liquid separator according to a fourth aspect of the present invention is the first, second or third aspect of the present invention, wherein the rectifying member is provided with a collision portion which does not allow fluid to permeate at a portion intersecting with the axial extension line of the inflow passage. It is characterized by having.
According to a fifth aspect of the present invention, there is provided the sedimentation type liquid-liquid separator according to the fourth aspect, wherein the inflow passage is provided below the main body and the axial direction thereof is inclined upward with respect to the liquid passage. It is characterized by being arranged.
A sedimentation type liquid-liquid separator according to a sixth aspect of the present invention is the first, second, third, fourth or fifth aspect, wherein the discharge passage is a liquid having a high specific gravity provided at a lower rear end of the body portion. A lower discharge passage for discharging is provided, and a gap is formed between a lower end of the rectifying member and a lower inner surface of the main body.

第1発明によれば、整流部材によって混合液体を層流状態に近づければ、混合液体の分離が促進され、整流部材を通過した後、比重の大きい液体(沈降液体)は徐々に沈降し、沈降部材が設けられている領域では、沈降した沈降液体は沈降部材の沈降面上に付着する。沈降面上に付着した沈降液体は沈降面上で合体するが、沈降部材の沈降面は上流側から下流側に向かって非上傾であるから、混合液体によって沈降面上の混合液体を押し流す抵抗が小さく、沈降部材から沈降液体を効率よく排出することができる。よって、沈降部材における液体分離効率を高めることができ、分離した沈降液体と比重の小さい主液体が再混合することも防ぐことができる。
第2発明によれば、沈降面上に付着した沈降液体は、沈降液体の移動方向は混合液体の移動方向と同じ方向に沿って沈降面を滑り落ちるように移動するので、沈降部材から沈降液体を排出する効率をより高くすることができる。しかも、沈降液体が混合液体の移動方向と同じ方向に沿って自重で移動するので、混合液体によって沈降面上の混合液体を押し流す抵抗がより小さくなる。すると、分離した沈降液体と比重の小さい主液体が再混合することをより効果的に防ぐことができる。
第3発明によれば、沈降部材が板状の部材であり、その上面が沈降面となるように配設されている。すると、板状の部材を混合液体の流動方向と直交するように配設した場合に比べて混合液体の流動抵抗を少なくすることができ、処理効率を高くすることができる。
第4発明によれば、外部から流入通路を通って流入する混合液体が整流部材を素通りすることを防ぐことができるから、沈降部材に供給される前に、混合液体の分離を促進することができる。
第5発明によれば、流入通路に対して上向きに流入した混合液体が整流部材と衝突するから、衝突後、沈降液体が下方に移動しやすくなるので、混合液体の分離を促進することができる。
第6発明によれば、沈降液体が整流部材よりも上流側に溜まることを防ぐことができるので、長期間連続して処理を行うことができる。
According to the first invention, if the mixed liquid is brought close to the laminar flow state by the rectifying member, the separation of the mixed liquid is promoted, and after passing through the rectifying member, the liquid having a large specific gravity (sedimented liquid) gradually settles, In the region where the settling member is provided, the settled settling liquid adheres to the settling surface of the settling member. The settling liquid adhering to the settling surface coalesces on the settling surface, but the settling surface of the settling member is not inclined upward from the upstream side to the downstream side, so the mixed liquid pushes the mixed liquid on the settling surface. And the sedimentation liquid can be efficiently discharged from the sedimentation member. Therefore, the liquid separation efficiency in the sedimentation member can be increased, and the separated sedimentation liquid and the main liquid having a small specific gravity can be prevented from being mixed again.
According to the second invention, the settled liquid adhering to the settling surface moves so that the moving direction of the settling liquid slides down the settling surface along the same direction as the moving direction of the mixed liquid. The efficiency of discharging can be further increased. In addition, since the settled liquid moves by its own weight along the same direction as the moving direction of the mixed liquid, the resistance of pushing the mixed liquid on the settled surface by the mixed liquid becomes smaller. Then, it can prevent more effectively that the separated sedimentation liquid and the main liquid with small specific gravity are mixed again.
According to the third invention, the sedimentation member is a plate-like member, and the upper surface thereof is disposed to be the sedimentation surface. Then, the flow resistance of the mixed liquid can be reduced as compared with the case where the plate-like member is disposed so as to be orthogonal to the flow direction of the mixed liquid, and the processing efficiency can be increased.
According to the fourth aspect of the present invention, it is possible to prevent the mixed liquid flowing in from the outside through the inflow passage from passing through the rectifying member. Therefore, the separation of the mixed liquid can be promoted before being supplied to the settling member. it can.
According to the fifth aspect of the present invention, since the mixed liquid that flows upward with respect to the inflow passage collides with the rectifying member, the settled liquid easily moves downward after the collision, so that the separation of the mixed liquid can be promoted. .
According to the sixth aspect of the invention, it is possible to prevent the settled liquid from collecting on the upstream side of the rectifying member, so that the treatment can be performed continuously for a long period of time.

つぎに、本発明の実施形態を図面に基づき説明する。
本実施形態の沈降型液液分離器は、油等の比重の小さい主液体に水やアルコール等の主液体よりも比重の大きい液体(以下、沈降液体という)が界面を形成して混合した混合液体を各液体に分離する装置であって、化学プラントや処理装置等のように混合液体を連続処理する必要がある設備に適した装置である。
Next, an embodiment of the present invention will be described with reference to the drawings.
The sedimentation type liquid-liquid separator of the present embodiment is a mixture in which a liquid having a specific gravity greater than that of a main liquid such as water or alcohol (hereinafter referred to as a precipitation liquid) is mixed with a main liquid having a small specific gravity such as oil. It is an apparatus that separates a liquid into liquids, and is suitable for equipment that needs to continuously process a mixed liquid, such as a chemical plant or a processing apparatus.

図1は本実施形態の沈降型液液分離器の概略断面図である。図2は(A)は図1のA−A線断面矢視図であり、(B)は図1のB−B線断面矢視図であり、(C)は沈降部材21の概略平面図である。   FIG. 1 is a schematic cross-sectional view of a sedimentation type liquid-liquid separator of this embodiment. 2A is a cross-sectional view taken along line AA in FIG. 1, FIG. 2B is a cross-sectional view taken along line BB in FIG. 1, and FIG. 2C is a schematic plan view of the settling member 21. It is.

図1において、符号10は本実施形態の沈降型液液分離器1(以下、単に分離器1という)の本体部を示している。この本体部10は中空な円筒状の胴部11と、この胴部11の軸方向の両端に設けられた鏡板12,13とからなる中空な容器である。この本体部10は、例えば、本実施形態の分離器1が化学プラントにおいて使用される場合であれば、胴部11の内径、つまり、液体通路10hの径が数m程度、軸方向の長さが胴部11の内径に対し数倍程度のものが使用されるが、本体部10は上記のごとき大きさに特に限定されず、処理する液体の量や物性等によって自由に決定できる。   In FIG. 1, the code | symbol 10 has shown the main-body part of the sedimentation type liquid-liquid separator 1 (henceforth only the separator 1) of this embodiment. The main body 10 is a hollow container including a hollow cylindrical body 11 and end plates 12 and 13 provided at both ends of the body 11 in the axial direction. For example, when the separator 1 of the present embodiment is used in a chemical plant, the main body 10 has an inner diameter of the body 11, that is, a diameter of the liquid passage 10h of about several meters, and an axial length. However, the main body 10 is not particularly limited in size as described above, and can be freely determined depending on the amount of liquid to be processed, physical properties, and the like.

前記胴部11の左端(前端)に設けられている鏡板12(以下、前端鏡板12という)の下部には、本体部10内に混合液体を供給する流入通路12aが設けられている。この流入通路12aは、その内径が前記胴部11の直径よりも小さく、胴部11の内径の約1/3以下となるように形成されている。
なお、胴部11の前端部上方には、気体排出部11bが設けられている。この気体排出部11bには、本体部10内部と外部との間を連通遮断し得る器具(例えば、バルブ等)が設けられており、本体部10内に溜まった気体を適宜排出することができるように構成されている。
An inflow passage 12 a for supplying a mixed liquid into the main body 10 is provided at a lower portion of a end plate 12 (hereinafter referred to as a front end end plate 12) provided at the left end (front end) of the body portion 11. The inflow passage 12a is formed so that the inner diameter thereof is smaller than the diameter of the body portion 11 and is about 1/3 or less of the inner diameter of the body portion 11.
A gas discharge part 11b is provided above the front end of the body part 11. The gas discharge part 11b is provided with an instrument (for example, a valve) that can cut off communication between the inside and the outside of the main body part 10, and can appropriately discharge the gas accumulated in the main body part 10. It is configured as follows.

一方、本体部10の右端部には、本体部10内から外部に液体を排出する排出通路11a,13aが設けられている。   On the other hand, discharge passages 11 a and 13 a for discharging liquid from the inside of the main body 10 to the outside are provided at the right end of the main body 10.

前記胴部11の右端(後端)に設けられている鏡板13(以下、後端鏡板13という)の上部には、上部排出通路13aが配設されている。この上部排出通路13aは、混合液体に含まれる比重の小さい主液体を排出する通路であり、常時主液体が外部に排出されている。   An upper discharge passage 13a is disposed at an upper portion of a mirror plate 13 (hereinafter referred to as a rear end mirror plate 13) provided at the right end (rear end) of the body portion 11. The upper discharge passage 13a is a passage for discharging the main liquid having a small specific gravity contained in the mixed liquid, and the main liquid is always discharged to the outside.

また、胴部11の右端(後端)下部には、下部排出通路11aが設けられている。この下部排出通路11aは、主液体から分離された沈降流体を外部に排出する通路である。この下部排出通路11aには、本体部10内部と外部との間を連通遮断し得る器具(例えば、バルブ等)が設けられており、所定の期間毎に下部排出通路11aから沈降流体を排出するようになっている。具体的には、沈降液体は、液体通路10h下部にある程度の量が溜まったときに下部排出通路11aから外部に排出されるようになっている。この場合、液体通路10h下部に溜まった沈降液体によって下部排出通路11aが覆われた状態において、下部排出通路11aを液体通路10hに連通させることになるから、主液体が直接下部排出通路11aに流入することを防ぐことができ、下部排出通路11aから主液体が流出する可能性を低くすることができる。   A lower discharge passage 11a is provided at the lower right end (rear end) of the body portion 11. The lower discharge passage 11a is a passage for discharging the sedimented fluid separated from the main liquid to the outside. The lower discharge passage 11a is provided with a device (for example, a valve) that can cut off communication between the inside of the main body 10 and the outside, and discharges the sedimented fluid from the lower discharge passage 11a every predetermined period. It is like that. Specifically, the settled liquid is discharged to the outside from the lower discharge passage 11a when a certain amount is accumulated in the lower portion of the liquid passage 10h. In this case, since the lower discharge passage 11a is communicated with the liquid passage 10h in a state where the lower discharge passage 11a is covered with the settled liquid accumulated in the lower portion of the liquid passage 10h, the main liquid directly flows into the lower discharge passage 11a. It is possible to prevent the main liquid from flowing out from the lower discharge passage 11a.

以上のごとき構成であるから、本体部10前端の流入通路12aから混合液体を供給すれば、本体部10内を前端から後端に向かって混合液体が流れ、後端の排出通路11a,13aから処理された液体を排出することができるのである。   With the configuration as described above, if the mixed liquid is supplied from the inflow passage 12a at the front end of the main body 10, the mixed liquid flows in the main body 10 from the front end to the rear end, and from the discharge passages 11a and 13a at the rear end. The treated liquid can be discharged.

なお、上述した上部排出通路13aから排出される主液体とは、沈降液体がほとんど含まれない状態のものだけを意味するのではなく、流入通路12aから供給される混合液体に比べて沈降液体の割合が減少した状態のものを含んでいるのはいうまでもない。例えば、流入通路12aから供給される混合液体において、混合している沈降液体の割合が流量比で約3%の場合であれば、流量比で約1%以下の沈降液体を含む主液体も、本明細書における上部排出通路13aから排出される主液体に含まれる。つまり、混合している沈降液体の割合が、流入通路12aから供給される混合液体中の沈降液体の割合に比べて60%以上低下している主液体も、本明細書における上部排出通路13aから排出される主液体に含まれる。   Note that the main liquid discharged from the upper discharge passage 13a described above does not mean only the liquid that does not contain the precipitated liquid, but the precipitated liquid compared to the mixed liquid supplied from the inflow passage 12a. Needless to say, it includes those with a reduced ratio. For example, in the mixed liquid supplied from the inflow passage 12a, if the ratio of the precipitated liquid being mixed is about 3% in the flow rate ratio, the main liquid containing the precipitated liquid having a flow rate ratio of about 1% or less is It is included in the main liquid discharged from the upper discharge passage 13a in this specification. That is, the main liquid in which the ratio of the settling liquid mixed is lower by 60% or more than the ratio of the settling liquid in the mixed liquid supplied from the inflow passage 12a is also from the upper discharge passage 13a in this specification. Included in the main liquid discharged.

図1に示すように、本実施形態の分離器1では、分離効果を高めるために、本体部10の液体通路10h内に、整流部材22と沈降部材21とを設けている。   As shown in FIG. 1, in the separator 1 of the present embodiment, a rectifying member 22 and a settling member 21 are provided in the liquid passage 10 h of the main body 10 in order to enhance the separation effect.

図1に示すように、整流部材22は、本体部10の胴部11前端部に設けられている。この整流部材22は、胴部11を前端部と後部とに分離するように配設された板状の部材であって複数の貫通穴22hが形成されている(図2(A))。
このため、流入通路12aから本体部10の液体通路10h内に供給された混合液体は整流部材22の複数の貫通穴22hを通過して後部に流入するので、混合液体を層流状態に近づけた状態で胴部11後端に向かって流すことができる。
As shown in FIG. 1, the rectifying member 22 is provided at the front end portion of the body portion 11 of the main body portion 10. The rectifying member 22 is a plate-like member disposed so as to separate the body portion 11 into a front end portion and a rear portion, and a plurality of through holes 22h are formed (FIG. 2A).
For this reason, the mixed liquid supplied from the inflow passage 12a into the liquid passage 10h of the main body portion 10 passes through the plurality of through holes 22h of the rectifying member 22 and flows into the rear portion, so that the mixed liquid is brought close to a laminar flow state. In this state, it can flow toward the rear end of the trunk portion 11.

なお、整流部材22は上記のごとき部材に限られず、混合液体の流速を均一に近づけ、層流状態に近づけることができるものであればとくに制限されず、例えば、金網などで代替してもよい。   The rectifying member 22 is not limited to the member as described above, and is not particularly limited as long as the flow rate of the mixed liquid can be made close to a uniform and close to a laminar flow state, and may be replaced with, for example, a wire mesh. .

また、図1に示すように、前記整流部材22と前記上部排出通路13aとの間には、液体通路10h内の上下方向に沿って、2つの沈降部材21,21が設けられている。この2つの沈降部材21,21は、互いに平行となるように並んで設けられた板状の部材であって、その上面(沈降面21s)が水平となるように配設されている。   As shown in FIG. 1, two settling members 21 and 21 are provided between the flow straightening member 22 and the upper discharge passage 13a along the vertical direction in the liquid passage 10h. The two settling members 21 and 21 are plate-like members provided side by side so as to be parallel to each other, and are arranged such that the upper surface (sedimentation surface 21s) is horizontal.

以上のごとき構成であるから、液体通路10hにおいて2つの沈降部材21,21が設けられている領域では、混合液体は2つの沈降部材21,21の間、および各沈降部材21と胴部11の内面との間を流れる。すると、2つの沈降部材21,21間の距離および各沈降部材21と胴部11の内面との間の距離は胴部11の直径に比べて十分に短いので、この領域を流れる混合液体中の沈降液体が沈降面21sや胴部11の内面等に接触するまでの距離(沈降距離)を短くすることができる。
よって、混合液体中の沈降液体を、沈降部材21がない場合に比べて迅速に主液体から分離させることができ、混合液体中に存在する沈降液体が十分に沈降できず主液体とともに上部排出通路13aから排出される可能性を低くすることができる。
しかも、胴部11の内面だけでなく沈降部材21の沈降面21sでも沈降液体を接触させて液滴を集合させることができるから、沈降面21s上の沈降液体が主液体に混合する可能性を低くすることができる。
Because of the above-described configuration, in the region where the two settling members 21 and 21 are provided in the liquid passage 10h, the mixed liquid is between the two settling members 21 and 21 and between the settling members 21 and the trunk portion 11. It flows between the inside. Then, since the distance between the two settling members 21 and 21 and the distance between each settling member 21 and the inner surface of the body portion 11 are sufficiently shorter than the diameter of the body portion 11, It is possible to reduce the distance (sedimentation distance) until the settled liquid comes into contact with the sedimentation surface 21s, the inner surface of the body portion 11, and the like.
Therefore, the settled liquid in the mixed liquid can be separated from the main liquid more quickly than in the case where the settling member 21 is not provided, and the settled liquid present in the mixed liquid cannot be sufficiently settled together with the main liquid. The possibility of being discharged from 13a can be reduced.
In addition, since the settled liquid can be brought into contact with not only the inner surface of the body 11 but also the settled surface 21s of the sedimentation member 21 to collect droplets, the settled liquid on the settled surface 21s may be mixed with the main liquid. Can be lowered.

また、沈降部材21の沈降面21sに沈降し集合した沈降液体は、胴部11の内面と沈降部材21との間や沈降部材21間を流れる混合液体によって、沈降部材21の後端に向かって押し流され、沈降部材21の後端から排出される。このとき、沈降部材21の沈降面21sが水平であり混合液体が沈降面21s上の沈降液体を押し流す抵抗が小さくなるから、沈降部材から沈降液体を効率よく排出することができるし、分離した沈降液体と比重の小さい主液体が再混合することも防ぐことができる。   Further, the settled liquid that settles and collects on the settling surface 21s of the settling member 21 is directed toward the rear end of the settling member 21 by the mixed liquid flowing between the inner surface of the trunk portion 11 and the settling member 21 or between the settling members 21. It is pushed away and discharged from the rear end of the settling member 21. At this time, since the settling surface 21s of the settling member 21 is horizontal and the mixed liquid pushes down the settling liquid on the settling surface 21s, the settling liquid can be efficiently discharged from the settling member. It is also possible to prevent the liquid and the main liquid having a small specific gravity from being mixed again.

さらに、図1に示すように、沈降部材21は、その前端(図1では左端)が整流部材22から一定の距離だけ離れた状態となるように配設されている。
このため、整流部材22を通過した混合液体は、沈降部材21の位置に到達する前に層流化が十分に進行するので、沈降部材21が設けられている領域での沈降流体の沈降をスムースに行わせることができる。
しかも、沈降部材21は、その後端(図1では右端)が上部排出通路13aから一定の距離だけ離れた状態となるように設置されているから、沈降部材21の後端から排出される沈降液体が主液体とともに上部排出通路13aに流入することを防ぐことができる。
Further, as shown in FIG. 1, the settling member 21 is disposed such that the front end (left end in FIG. 1) is separated from the rectifying member 22 by a certain distance.
For this reason, the mixed liquid that has passed through the rectifying member 22 is sufficiently laminarized before reaching the position of the settling member 21, so that the sedimentation of the settling fluid in the region where the settling member 21 is provided is smoothly performed. Can be done.
Moreover, since the sedimentation member 21 is installed such that its rear end (right end in FIG. 1) is separated from the upper discharge passage 13a by a certain distance, the sedimentation liquid discharged from the rear end of the sedimentation member 21. Can be prevented from flowing into the upper discharge passage 13a together with the main liquid.

なお、沈降部材21の断面形状はとくに制限されないが、図2(B)に示すように、その幅方向(本体部10の幅方向)における中央が凹んだ断面視V字状に形成されていれば、沈降面21sに付着した沈降液体は、本体部10の前端から後端に向かって流れつつ幅方向の中央に向かって流れる。すると、沈降面21s上を流れる沈降液体を迅速に合体させることができるので、沈降液体が沈降面21sから浮上して主液体に再混合する可能性をより低くすることができる。   In addition, although the cross-sectional shape of the sedimentation member 21 is not particularly limited, as shown in FIG. 2B, it may be formed in a V-shaped cross-sectional view in which the center in the width direction (the width direction of the main body portion 10) is recessed. For example, the settled liquid adhering to the settled surface 21s flows toward the center in the width direction while flowing from the front end of the main body 10 toward the rear end. Then, since the sedimentation liquid flowing on the sedimentation surface 21s can be quickly combined, the possibility that the sedimentation liquid floats from the sedimentation surface 21s and is remixed with the main liquid can be further reduced.

さらになお、図2(C)に示すように、沈降部材21の適所に表裏を貫通する孔21hを形成しておけば、沈降面21sを流れる沈降液体を迅速に下方に移動させることができ、沈降面21s上に溜まっている沈降液体の量が多くなりすぎることを防ぐことができる。すると、沈降面21s上の沈降液体が混合液体の流動の抵抗となることを少なくすることができるし、沈降面21s上の沈降液体と混合液体とが干渉し、分離した沈降液体と主液体とが再混合することも防ぐことができる。   Furthermore, as shown in FIG. 2 (C), if a hole 21h penetrating the front and back is formed at an appropriate position of the settling member 21, the settling liquid flowing through the settling surface 21s can be quickly moved downward, It is possible to prevent the amount of the settled liquid accumulated on the settled surface 21s from being excessively increased. Then, it is possible to reduce the sedimentation liquid on the sedimentation surface 21s from becoming a resistance to the flow of the mixed liquid, and the sedimentation liquid and the liquid mixture on the sedimentation surface 21s interfere with each other, and the separated sedimentation liquid and the main liquid are separated. Can also be prevented from remixing.

つぎに、本実施形態の分離器1による混合液体の分離処理について説明する。
まず、処理される混合液体は、流入通路12aから本体部10内の液体通路10hに供給される。液体通路10hは流入通路12aに比べてその断面積が大きいので、混合液体の流速が低下する。沈降液体は混合液体中に界面を形成し液滴の状態で混合しているが、混合液体の流速低下により沈降液体が沈降しやすい状態となる。
しかも、混合液体は整流部材22を通過することによって層流状態に近づけられるので、沈降液体はより一層沈降しやすい状態となる。
Next, the separation process of the mixed liquid by the separator 1 of the present embodiment will be described.
First, the mixed liquid to be processed is supplied from the inflow passage 12a to the liquid passage 10h in the main body 10. Since the liquid passage 10h has a larger cross-sectional area than the inflow passage 12a, the flow rate of the mixed liquid decreases. The precipitated liquid forms an interface in the mixed liquid and is mixed in the form of droplets. However, the precipitated liquid tends to settle due to a decrease in the flow rate of the mixed liquid.
In addition, since the mixed liquid is brought close to the laminar flow state by passing through the rectifying member 22, the settled liquid is more likely to settle.

整流部材22を通過し沈降液体が沈降しやすくなった混合液体は、沈降部材21が設けられている領域を通過する。このとき沈降液体は混合液体中を沈降しながら本体部10の前端から後端に向かって流れ、沈降部材21の沈降面21s上や胴部11の内面上に接触する。すると、沈降面21s等に接触した沈降液体は沈降面21s等に付着して、混合液体中の主液体の流れに追従できなくなり、混合液体の主液体から分離される。
沈降液体の分離は沈降部材21が設けられている領域を通過している間に進行するので、混合液体が沈降部材21後端に向かって流れていくにつれ、混合液体中の沈降液体の割合が徐々に減少していく。すると、沈降部材21から混合液体が排出されるときには、主液体に混合している沈降液体の割合が低い状態となる。そして、この沈降液体の割合が低下した主液体が本体部10の後端に到達すると、主液体は上部排出通路13aから排出されるのである。
The mixed liquid that has passed through the rectifying member 22 and the sedimented liquid has easily settled passes through the region where the sedimentation member 21 is provided. At this time, the settled liquid flows from the front end to the rear end of the main body 10 while sinking in the mixed liquid, and comes into contact with the settling surface 21 s of the settling member 21 and the inner surface of the body 11. Then, the settled liquid that contacts the settled surface 21s or the like adheres to the settled surface 21s or the like and cannot follow the flow of the main liquid in the mixed liquid, and is separated from the main liquid of the mixed liquid.
Since the separation of the settled liquid proceeds while passing through the region where the settling member 21 is provided, as the mixed liquid flows toward the rear end of the settling member 21, the ratio of the settled liquid in the mixed liquid increases. It gradually decreases. Then, when the mixed liquid is discharged from the settling member 21, the ratio of the settling liquid mixed with the main liquid is low. Then, when the main liquid in which the ratio of the settled liquid is reduced reaches the rear end of the main body 10, the main liquid is discharged from the upper discharge passage 13a.

一方、沈降し胴部11の内面に接触した沈降液体は、本体部10の内面上で集合しながら本体部10後端底部まで移動して溜まっていく。また、沈降部材21の沈降面21s上に接触した沈降液体は、沈降部材21の沈降面21s上で集合しながら沈降部材21の後端に向かって移動し、沈降部材21の後端まで到達する。そして、沈降部材21の後端から下方に沈降し、やがて本体部10後端底部に溜まっていく。
すると、時間の経過とともに本体部10後端底部に溜まっている沈降液体の量が増加するので、所定の量以上に沈降液体が溜まったときに下部排出通路11aを通して液体通路10hと外部との間を連通すれば、沈降流体のみ下部排出通路11aから排出することができる。そして、溜まっている沈降流体を下部排出通路11aから適宜排出すれば、過剰に溜まった沈降液体が主液体と再混合したり、沈降液体が主液体とともに上部排出通路13aから流出したりすることを防止することができる。
On the other hand, the settled liquid that has settled and contacted the inner surface of the body portion 11 moves to the rear end bottom portion of the main body portion 10 while collecting on the inner surface of the main body portion 10. Further, the settled liquid that has come into contact with the sedimentation surface 21s of the sedimentation member 21 moves toward the rear end of the sedimentation member 21 while gathering on the sedimentation surface 21s of the sedimentation member 21, and reaches the rear end of the sedimentation member 21. . Then, it settles downward from the rear end of the settling member 21 and eventually accumulates at the bottom end of the main body 10.
Then, since the amount of the sedimented liquid accumulated at the bottom of the rear end of the main body 10 increases with the passage of time, when the sedimented liquid accumulates more than a predetermined amount, the liquid passage 10h passes between the liquid passage 10h and the outside through the lower discharge passage 11a. , Only the sedimentary fluid can be discharged from the lower discharge passage 11a. Then, if the accumulated sedimentation fluid is appropriately discharged from the lower discharge passage 11a, the excessively accumulated sedimentation liquid is remixed with the main liquid, or the sedimentation liquid flows out from the upper discharge passage 13a together with the main liquid. Can be prevented.

以上のごとく、本実施形態の分離器1によれば、混合液体中の比重の小さい主液体から比重の大きい沈降液体を効果的に分離することができ、しかも、沈降液体が主液体に再混合することを防止できる。   As described above, according to the separator 1 of the present embodiment, a precipitated liquid having a large specific gravity can be effectively separated from a main liquid having a small specific gravity in the mixed liquid, and the precipitated liquid is remixed into the main liquid. Can be prevented.

上記の例では、沈降部材21の沈降面21sが水平に配設される場合を説明したが、図4に示すように、沈降面21sは本体部10の前端から後端に向かうに従って下傾するように配設されていてもよい。言い換えれば、沈降面21sは、混合液体の流動方向に沿って上流側から下流側に向かって下傾するように配設されていてもよい。
沈降部材21の沈降面21sをかかる構成とした場合でも、沈降部材21の沈降面21s上で集合した沈降液体は混合液体の流れに後押しされて移動するが、それに加えて、沈降部材21はその自重によっても沈降面21s上を本体部10の後端に向かって滑り落ちるように移動する。すると、沈降部材21が自重で移動する方向と、沈降液体の移動方向と沈降部材21間を流れる混合液体の移動方向とが同じ方向になるから、沈降面21sが水平である場合よりも、沈降部材21の後端から沈降液体を効率よくかつ迅速に排出することができる。
しかも、沈降部材21は本体部10の前端から後端に向かうに従って下傾するように配設されているが、その下傾している角度は本体部10の軸方向に対してせいぜい3〜15度程度である。すると、混合液体の流動方向と直交するように板状の部材が配設される場合に比べて、沈降部材21が存在することによる流動抵抗の増加を抑えることができるので、混合液体の処理効率を高くすることができる。
In the above example, the case where the settling surface 21s of the settling member 21 is disposed horizontally has been described. However, as shown in FIG. 4, the settling surface 21s tilts downward from the front end toward the rear end of the main body 10. It may be arranged like this. In other words, the sedimentation surface 21s may be disposed so as to incline downward from the upstream side toward the downstream side along the flow direction of the mixed liquid.
Even when the settling surface 21s of the settling member 21 is configured as described above, the settling liquid gathered on the settling surface 21s of the settling member 21 is pushed and moved by the flow of the mixed liquid. It moves so as to slide down on the settling surface 21s toward the rear end of the main body 10 by its own weight. Then, the direction in which the sedimentation member 21 moves under its own weight and the movement direction of the sedimentation liquid and the movement direction of the mixed liquid flowing between the sedimentation members 21 are the same direction. The settled liquid can be discharged efficiently and quickly from the rear end of the member 21.
Moreover, the settling member 21 is disposed so as to be inclined downwardly from the front end to the rear end of the main body 10, but the downward inclination angle is at most 3 to 15 with respect to the axial direction of the main body 10. Degree. Then, compared with the case where a plate-like member is disposed so as to be orthogonal to the flow direction of the mixed liquid, an increase in flow resistance due to the presence of the settling member 21 can be suppressed, so that the processing efficiency of the mixed liquid Can be high.

また、上記の例では、沈降部材21を2枚設けた場合を示しているが、沈降部材21を設ける数は特に制限されず、1枚でもよいし3枚以上でもよい。
そして、沈降部材21は、上述したような板状の部材に限られず、混合液体の流動方向に沿って上流側から下流側に向かって上傾していない上面(非上傾の上面)、つまり、水平な上面や、混合液体の流動方向に沿って上流側から下流側に向かって下傾した上面を有する部材であれば採用することができる。例えば、水平に配設した筒状の部材等や、混合液体の流動方向に沿って上流側から下流側に向かって下傾した筒状の部材等も使用することができる。
Moreover, although the case where the two sedimentation members 21 are provided is shown in the above example, the number of the sedimentation members 21 is not particularly limited, and may be one or three or more.
The sedimentation member 21 is not limited to the plate-shaped member as described above, and is an upper surface that is not inclined upward from the upstream side to the downstream side in the flow direction of the mixed liquid (non-upwardly inclined upper surface), that is, Any member having a horizontal upper surface or an upper surface inclined downward from the upstream side toward the downstream side along the flow direction of the mixed liquid can be employed. For example, a cylindrical member arranged horizontally, a cylindrical member inclined downward from the upstream side to the downstream side along the flow direction of the mixed liquid, or the like can be used.

さらに、整流部材22は、その下端が本体部10の胴部11下部内面と接するように配設してもよいが、その下端と、本体部10の胴部11下部内面との間に、隙間22aが形成されるように配設してもよい(図2(A)参照)。
分離器1内では、整流部材22よりも下流側だけでなく、整流部材22より上流側において沈降液体が沈降する。このため、整流部材22の下端と胴部11下部内面とが連結されている場合には、整流部材22よりも上流側に沈降液体が溜まる可能性がある。この場合、溜まった沈降液体が流入通路12aから供給される混合流体に混合したりするなどの問題を発生させる可能性がある。すると、前記下部排出通路11aに加えて胴部11前端下部にも沈降液体を排出する手段を設けなければならないし、かかる手段を設けない場合であれば、沈降液体を排出する除去作業を行うために設備を停止しなければならない。
しかし、図2(A)に示すように、隙間22aが形成されていれば、整流部材22より上流側において沈降した沈降液体も、混合流体の流れに追従するように、本体部10下部内面に沿って下部排出通路11aに向かって移動させることができるから、沈降液体が整流部材よりも上流側に溜まることを防ぐことができる。すると、整流部材22より上流側で溜まった沈降液体を排出する作業を行うために設備を停止する必要がないので、長期間連続して分離器1による処理を行うことができる。また、整流部材22の位置に溜まった沈降液体を排出する手段を設けなくてもよいから、分離器1の構造を簡単にできる。
Further, the rectifying member 22 may be disposed such that the lower end thereof is in contact with the inner surface of the lower portion of the trunk portion 11 of the main body portion 10, but there is a gap between the lower end thereof and the inner surface of the lower portion of the trunk portion 11 of the main body portion 10. You may arrange | position so that 22a may be formed (refer FIG. 2 (A)).
In the separator 1, the settled liquid settles not only on the downstream side of the rectifying member 22 but also on the upstream side of the rectifying member 22. For this reason, when the lower end of the rectifying member 22 and the inner surface of the lower portion of the trunk portion 11 are connected, there is a possibility that the settled liquid is accumulated on the upstream side of the rectifying member 22. In this case, there is a possibility that the accumulated sedimented liquid may be mixed with the mixed fluid supplied from the inflow passage 12a. Then, in addition to the lower discharge passage 11a, a means for discharging the settled liquid must be provided at the front end lower portion of the body portion 11, and if such means is not provided, a removal operation for discharging the settled liquid is performed. The equipment must be shut down.
However, as shown in FIG. 2A, if the gap 22a is formed, the settled liquid that has settled on the upstream side of the rectifying member 22 also follows the flow of the mixed fluid on the inner surface of the lower portion of the main body 10. Therefore, it is possible to prevent the settled liquid from being accumulated upstream of the rectifying member. Then, since it is not necessary to stop the facility to perform the operation of discharging the sedimented liquid accumulated on the upstream side of the rectifying member 22, the treatment by the separator 1 can be performed continuously for a long period of time. Moreover, since it is not necessary to provide a means for discharging the settled liquid accumulated at the position of the rectifying member 22, the structure of the separator 1 can be simplified.

また、図2(A)に示すように、整流部材22の一部分に、穴が形成されていない領域(以下、衝突部LFという)を設けてもよい。この場合、衝突部LFは、前記流入通路12aの軸方向の延長線と交差する位置に、その面積が流入通路12aの断面積よりも大きくなるように形成する。
すると、外部から流入通路12aを通って流入する混合液体の大部分は整流部材22の衝突部LFに衝突するので、主液体と沈降液体の分離が促進される。しかも、整流部材22と干渉することなく貫通孔を素通りする混合液体をなくすことができるから、沈降部材に供給される前に、混合液体の層流化と、主液体と沈降液体の分離をより一層促進することができる。
Further, as shown in FIG. 2A, a region where the hole is not formed (hereinafter referred to as a collision portion LF) may be provided in a part of the rectifying member 22. In this case, the collision part LF is formed at a position intersecting with the axial extension line of the inflow passage 12a so that the area thereof is larger than the cross-sectional area of the inflow passage 12a.
Then, most of the mixed liquid flowing in from the outside through the inflow passage 12a collides with the collision portion LF of the rectifying member 22, so that separation of the main liquid and the settled liquid is promoted. Moreover, since the mixed liquid that passes through the through-hole without interfering with the rectifying member 22 can be eliminated, laminar flow of the mixed liquid and separation of the main liquid and the precipitated liquid can be further performed before being supplied to the settling member. It can be further promoted.

また、流入通路12aをその軸方向が液体通路10hに対して上傾した状態となるように配設すれば、流入通路12aから流入した混合液体は液体通路10hに対して上向きに整流部材22と衝突する。すると、整流部材22に衝突後、主液体は上方に移動しやすくなり、一方、沈降液体は下方に移動しやすくなるので、混合液体の分離をより一層促進することができる。流入通路12aを上傾させる角度は、本体部10の軸方向に対して10〜30度程度が混合液体の分離に好ましい。   Further, if the inflow passage 12a is arranged so that the axial direction thereof is inclined upward with respect to the liquid passage 10h, the mixed liquid flowing in from the inflow passage 12a and the rectifying member 22 are directed upward with respect to the liquid passage 10h. collide. Then, after the collision with the rectifying member 22, the main liquid easily moves upward, while the settled liquid easily moves downward, so that the separation of the mixed liquid can be further promoted. The angle at which the inflow passage 12a is inclined upward is preferably about 10 to 30 degrees with respect to the axial direction of the main body 10 for the separation of the mixed liquid.

また、図1に示すように、上部排出通路13aを筒状の部材によって形成し、その一端が後端鏡板13の内面から突出した突出部13pとなるように配設することが好ましい。この場合、本体部10後端底部に溜まった沈降液体が上部排出通路13aに向かう主液体の流れに追従して移動し、後端鏡板13の内面に沿って上部排出通路13aに向かって流れても、上部排出通路13a内に沈降液体が漏洩することを防ぐことができる。具体的にいえば、上部排出通路13aの一端の開口部が後端鏡板13の内面から離れた位置に配設されているので、突出部13pの位置まで沈降液体が流れてきても、沈降液体が開口部の位置に到達できず、上部排出通路13a内に沈降液体が漏洩することを防ぐことができる。   Further, as shown in FIG. 1, it is preferable that the upper discharge passage 13 a is formed of a cylindrical member, and is arranged so that one end thereof is a protruding portion 13 p protruding from the inner surface of the rear end panel 13. In this case, the settled liquid accumulated at the bottom end of the main body 10 moves following the flow of the main liquid toward the upper discharge passage 13a and flows toward the upper discharge passage 13a along the inner surface of the rear end end plate 13. In addition, it is possible to prevent the settled liquid from leaking into the upper discharge passage 13a. Specifically, since the opening at one end of the upper discharge passage 13a is disposed at a position away from the inner surface of the rear end panel 13, even if the settled liquid flows to the position of the protruding portion 13p, the settled liquid Cannot reach the position of the opening, and it is possible to prevent the settled liquid from leaking into the upper discharge passage 13a.

なお、上部排出通路13aの突出部13pの軸方向の長さ、つまり、後端鏡板13の内面から突出部13p先端までの長さは、100〜500mm程度であれば、後端鏡板13の内面に沿って流れる沈降液体の厚さよりも長くなるので、上部排出通路13a内に沈降液体が漏洩することを十分に防ぐことができる。   If the length in the axial direction of the projecting portion 13p of the upper discharge passage 13a, that is, the length from the inner surface of the rear end end plate 13 to the front end of the projecting portion 13p is about 100 to 500 mm, the inner surface of the rear end end plate 13 Therefore, it is possible to sufficiently prevent the settled liquid from leaking into the upper discharge passage 13a.

さらになお、図3(A)、(B)に示すように、上部排出通路13aを後端鏡板13の内面から突出させる代わりに、後端鏡板13の内面に、上部排出通路13aに向かう沈降液体の流れを堰き止める遮断壁13wを立設してもよい。この場合でも、後端鏡板13の内面に形成される上部排出通路13aの開口部の周囲を囲むように遮断壁13wを形成すれば、突出部13pを形成した場合と同様に、上部排出通路13a内に沈降液体が漏洩することを防ぐことができる。   Furthermore, as shown in FIGS. 3 (A) and 3 (B), instead of causing the upper discharge passage 13a to protrude from the inner surface of the rear end end plate 13, a settling liquid is directed to the inner surface of the rear end end plate 13 toward the upper discharge passage 13a. A blocking wall 13w may be provided to block the flow of water. Even in this case, if the blocking wall 13w is formed so as to surround the periphery of the opening of the upper discharge passage 13a formed on the inner surface of the rear end panel 13, the upper discharge passage 13a is formed in the same manner as in the case of forming the protrusion 13p. It is possible to prevent the settled liquid from leaking inside.

なお、遮断壁13wは、必ずしも上部排出通路13aの開口部の周囲を囲むように配設する必要はなく、例えば、図3(C)に示すように、上部排出通路13aの下方に遮断壁13wを立設してもよい。後端鏡板13の内面に沿った下方から上方に向かう沈降液体の流れを遮るように遮断壁13wを設ければ、一旦沈降した沈降液体が上部排出通路13aに漏洩することを防ぐことができる。
ただし、かかる構成の遮断壁13wでは、混合液体の流速が速い場合や混合液体が大量に流れてきた場合等には、沈降液体が遮断壁13wをまわりこんで上部排出通路13aに漏洩する可能性は否定できない。
よって、図3(C)に示すような構成の遮断壁13wは、混合液体の流速が遅く沈降液体のまわりこみが発生しないような条件で使用する場合に使用することが好ましい。
The blocking wall 13w is not necessarily arranged so as to surround the periphery of the opening of the upper discharge passage 13a. For example, as shown in FIG. 3C, the blocking wall 13w is provided below the upper discharge passage 13a. May be erected. If the blocking wall 13w is provided so as to block the flow of the settled liquid from the lower side along the inner surface of the rear end end plate 13, the sedimented liquid once settled can be prevented from leaking into the upper discharge passage 13a.
However, with the blocking wall 13w having such a configuration, when the flow rate of the mixed liquid is high or when a large amount of mixed liquid flows, there is a possibility that the settled liquid will flow around the blocking wall 13w and leak into the upper discharge passage 13a. Cannot be denied.
Therefore, the blocking wall 13w configured as shown in FIG. 3 (C) is preferably used when the mixed liquid is used under such a condition that the flow velocity of the mixed liquid is low and the stagnation of the settled liquid does not occur.

つぎに、比重の異なる2種類の液体を混合した混合液体を本発明の沈降型液液分離器によって分離する場合における液体通路内の混合液体の流れおよび濃度分布を数値シミュレーションした。   Next, a numerical simulation was performed on the flow and concentration distribution of the mixed liquid in the liquid passage when the mixed liquid obtained by mixing two kinds of liquids having different specific gravities was separated by the sedimentation type liquid-liquid separator of the present invention.

数値シミュレーションは、図1の構造を有する本発明の沈降型液液分離器(沈降面が水平な沈降部材を有する分離機)、図4の構造を有する本発明の沈降型液液分離器(沈降面が下傾した沈降部材を有する分離機)、および、本発明の沈降型液液分離器から整流部材および沈降部材を取り除いた分離器(比較例)について実施した。   In the numerical simulation, the sedimentation type liquid-liquid separator of the present invention having the structure of FIG. 1 (separator having a sedimentation member whose sedimentation surface is horizontal), the sedimentation type liquid-liquid separator of the present invention having the structure of FIG. A separator having a sedimentation member whose surface is inclined downward) and a separator (comparative example) in which the rectification member and the sedimentation member were removed from the sedimentation type liquid-liquid separator of the present invention.

計算は、ANSYS CFXにより行った。計算条件は以下のとおりである。
混合液体:油(密度600〜700kg/m3、粘度0.2〜0.4cp)と水の混合液体
混合割合:油に対し、流量比で2%の水を混合した
混合流体のレイノルズ数:入口約1300000、液体通路平均約200000
水の液滴径:100μm、200μm
Calculation was performed by ANSYS CFX. The calculation conditions are as follows.
Mixed liquid: Oil (density 600-700kg / m 3 , viscosity 0.2-0.4cp) and water mixed liquid Mixing ratio: Reynolds number of mixed fluid in which 2% water is mixed with oil at a flow rate ratio: Inlet about 1300,000 , Liquid passage average about 200,000
Water droplet diameter: 100μm, 200μm

図5、図6および図7に数値シミュレーションの結果を示す。
図5は比較例の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。図6は沈降面が水平な本発明の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。図7は沈降面が下傾している本発明の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。
なお、図5(B)、(C)、図6(B)、(C)および図7(B)、(C)では、色が濃い領域が水の濃度の高い領域を示している。
5, 6 and 7 show the results of the numerical simulation.
FIG. 5 is a calculation result of the situation in the separator of the comparative example, (A) is the flow velocity distribution, (B) is the water concentration distribution when the droplet diameter is 100 μm, and (C) is the case when the droplet diameter is 200 μm. It is a calculation result of the concentration distribution of water in. FIG. 6 shows the calculation results of the situation in the separator of the present invention where the sedimentation surface is horizontal, (A) is the flow velocity distribution, (B) is the water concentration distribution when the droplet diameter is 100 μm, and (C) is the liquid. It is a calculation result of the concentration distribution of water when the droplet diameter is 200 μm. FIG. 7 is a calculation result of the situation in the separator of the present invention in which the sedimentation surface is inclined downward, (A) is the flow velocity distribution, (B) is the water concentration distribution when the droplet diameter is 100 μm, (C ) Is the calculation result of the water concentration distribution when the droplet diameter is 200 μm.
In FIGS. 5B, 5C, 6B, 6C, 7B, and 7C, the darker color region indicates the higher water concentration region.

図5(A)に示すように、比較例では、入り口から流入した液体はある程度の速度を持った状態で分離器の中間ぐらいまで流れていることが確認できる。
これに対し、図6(A)および図7(A)に示すように、本発明の分離器では、入り口から流入した液体は整流部材によって堰き止められその後方は流速が低い領域となっていることが確認できる。
このことから、本発明の分離器では、整流部材を設けることによって、混合液体の流速を断面内で均一に低下させることができ、混合液体が排出されるまでの間に、水が沈降するための十分な時間を確保できていることが確認できる。
As shown in FIG. 5A, in the comparative example, it can be confirmed that the liquid flowing in from the inlet flows to the middle of the separator with a certain speed.
On the other hand, as shown in FIGS. 6 (A) and 7 (A), in the separator of the present invention, the liquid flowing in from the inlet is blocked by the rectifying member and the rear thereof is a region where the flow velocity is low. I can confirm that.
From this, in the separator of the present invention, the flow velocity of the mixed liquid can be reduced uniformly in the cross section by providing the rectifying member, and the water settles before the mixed liquid is discharged. It can be confirmed that sufficient time is secured.

また、図5(B)、(C)に示すように、比較例では、本発明の分離器に比べて、全体的に位置による濃度差が小さいことから、水と油の分離が十分にされていないことが確認できる。しかも、水の濃度の高い領域は、本体部の上部における前端から中間の領域と、本体部の後端部に広く見られ、本体部の底部内面近傍では僅かしか見られないので、水が油から十分に分離されていないと推察される。しかも、本体部の後端部では、上部排出通路の周囲に水の濃度の高い領域が存在しているので、油とともに排出される水の流量が多くなることが予想される。なお、今回の計算結果では、比較例において、油とともに排出される水の流量は、液滴径が100μmの場合には流量比で1%程度であり、液滴径が200μmの場合には1%程度である。   Further, as shown in FIGS. 5B and 5C, in the comparative example, compared with the separator of the present invention, since the concentration difference depending on the position is small as a whole, the separation of water and oil is sufficiently performed. It can be confirmed that it is not. In addition, the high water concentration region is widely seen in the region from the front end to the middle in the upper part of the main body part and the rear end part of the main body part, and is slightly seen near the bottom inner surface of the main body part. It is presumed that they are not sufficiently separated from Moreover, at the rear end portion of the main body, there is a region with high water concentration around the upper discharge passage, so it is expected that the flow rate of water discharged together with oil will increase. In the calculation result of this time, in the comparative example, the flow rate of water discharged together with oil is about 1% in the flow rate ratio when the droplet diameter is 100 μm, and 1 when the droplet diameter is 200 μm. %.

これに対し、図6(B)、(C)に示すように、沈降面が水平な本発明の分離器では、水の液滴径に係わらず、位置によって濃度の高い部分と低い部分がはっきりと現れており、水と油の分離が十分に行われていることが確認できる。また、水の濃度の高い領域は、沈降部材の上面や本体部の底部内面に現れ、水の濃度の低い領域は、沈降部材が設けられている位置から後方における本体部の上部や、沈降部材の下面近傍に現れている。このことから、沈降部材により水と油の分離が促進されて、水の沈降が進んでいることが確認できる。しかも、水の濃度の高い領域は、本体部の底部内面に沿って本体部前端から後端まで広がっていることから、整流部材と沈降部材を設けた効果により、分離器の前端側の領域から水の分離が十分に行われていることが確認できる。
しかも、沈降面が水平な本発明の分離器では、油とともに排出される水の流量は、液滴径が100μmの場合には流量比で0.36%程度であり、液滴径が200μmの場合には0.08%程度であり、いずれも比較例に対して70%以上改善される。
On the other hand, as shown in FIGS. 6B and 6C, in the separator according to the present invention in which the sedimentation surface is horizontal, a portion with a high concentration and a portion with a low concentration are distinct depending on the position regardless of the diameter of water droplets. It can be confirmed that water and oil are sufficiently separated. In addition, the high water concentration region appears on the upper surface of the sedimentation member and the bottom inner surface of the main body portion, and the low water concentration region represents the upper portion of the main body portion and the sedimentation member at the rear from the position where the sedimentation member is provided. It appears in the vicinity of the lower surface. From this, it can be confirmed that the separation of water and oil is promoted by the sedimentation member, and the sedimentation of water is proceeding. Moreover, since the region where the water concentration is high extends from the front end to the rear end of the main body along the bottom inner surface of the main body, the effect of providing the rectifying member and the settling member allows the region from the front end side of the separator. It can be confirmed that the water is sufficiently separated.
Moreover, in the separator of the present invention in which the sedimentation surface is horizontal, the flow rate of water discharged together with oil is about 0.36% in the flow rate ratio when the droplet diameter is 100 μm, and when the droplet diameter is 200 μm. Is about 0.08%, and both are improved by 70% or more compared to the comparative example.

さらに、図7(B)、(C)に示すように、沈降面が下傾した本発明の分離器においても、水の液滴径に係わらず、位置によって濃度の高い部分と低い部分がはっきりと現れており、水と油の分離が十分に行われていることが確認できる。また、水の濃度の高い領域は、沈降面が水平な本発明の分離器と同様に、沈降部材の上面や本体部の底部内面に現れ、水の濃度の低い領域は、沈降部材が設けられている位置から後方における本体部の上部や、沈降部材の下面近傍に現れている。また、水の濃度の高い領域が、本体部の底部内面に沿って本体部前端から後端まで広がっており、整流部材と沈降部材を設けた効果によって分離器の前端側の領域からの水の分離が十分に行われていることが確認できる。
とくに、沈降面が下傾した本発明の分離器では、沈降面が水平な本発明の分離器と比べて、沈降部材の下流側上面や本体部の下流側底部内面に水の濃度の高い領域が広く現れている。このことから、沈降面が下傾した本発明の分離器では、沈降液体の排出が沈降部材の後端から効率よく行われていると推察できる。
しかも、沈降面が下傾した本発明の分離器では、油とともに排出される水の流量は、液滴径が100μmの場合には流量比で0.25%程度であり、液滴径が200μmの場合には0.06%程度であり、いずれも比較例に対して80%以上改善されており、沈降面が水平である本発明の分離器と比較しても10%以上改善されている。
Furthermore, as shown in FIGS. 7B and 7C, even in the separator of the present invention in which the sedimentation surface is inclined downward, the high concentration portion and the low concentration portion are distinct depending on the position regardless of the water droplet diameter. It can be confirmed that water and oil are sufficiently separated. The high water concentration region appears on the upper surface of the sedimentation member and the bottom inner surface of the main body, as in the separator of the present invention where the sedimentation surface is horizontal, and the sedimentation member is provided in the low water concentration region. It appears in the upper part of the main body part in the rear from the position where it is located and in the vicinity of the lower surface of the settling member. In addition, the high water concentration region extends from the front end to the rear end of the main body along the bottom inner surface of the main body, and water from the front end side of the separator is obtained by the effect of providing the rectifying member and the settling member. It can be confirmed that the separation is sufficiently performed.
In particular, in the separator according to the present invention in which the sedimentation surface is inclined downward, compared to the separator according to the present invention in which the sedimentation surface is horizontal, a region in which the water concentration is high on the downstream upper surface of the sedimentation member and the downstream bottom inner surface of the main body. Is widely appearing. From this, it can be inferred that in the separator of the present invention in which the sedimentation surface is inclined downward, the sedimentation liquid is efficiently discharged from the rear end of the sedimentation member.
Moreover, in the separator of the present invention in which the sedimentation surface is inclined downward, the flow rate of water discharged together with the oil is about 0.25% in the flow rate ratio when the droplet diameter is 100 μm, and when the droplet diameter is 200 μm Is about 0.06%, which is improved by 80% or more compared to the comparative example, and is improved by 10% or more compared with the separator of the present invention in which the sedimentation surface is horizontal.

以上のごとく、整流部材および沈降部材を設けた本実施形態の沈降型液液分離器は、比重の小さい主液体からこの主液体に混合された比重の大きい沈降液体を分離する効果が高いことが確認できる。   As described above, the sedimentation type liquid-liquid separator of the present embodiment provided with the rectifying member and the sedimentation member has a high effect of separating the sedimentation liquid having a high specific gravity mixed with the main liquid from the main liquid having a small specific gravity. I can confirm.

本発明の沈降型液液分離器は、化学プラントや処理装置等における混合液体の分離に適しており、とくに、連続して分離処理を行う設備における分離器として適している。   The sedimentation type liquid-liquid separator of the present invention is suitable for separation of a mixed liquid in a chemical plant, a processing apparatus, etc., and is particularly suitable as a separator in equipment for performing a separation process continuously.

本実施形態の沈降型液液分離器の概略断面図である。It is a schematic sectional drawing of the sedimentation type liquid-liquid separator of this embodiment. (A)は図1のA−A線断面矢視図であり、(B)は図1のB−B線断面矢視図であり、(C)は沈降部材21の概略平面図である。(A) is the AA sectional view taken on the line of FIG. 1, (B) is the BB sectional view of FIG. 1, (C) is the schematic plan view of the sedimentation member 21. (A)は遮断壁13wを設けた沈降型液液分離器の概略断面図であり、(B)は(A)のB−B線断面矢視図であり、(C)は遮断壁13wの一例を示した図である。(A) is a schematic sectional view of a sedimentation type liquid-liquid separator provided with a blocking wall 13w, (B) is a sectional view taken along the line BB of (A), and (C) is a sectional view of the blocking wall 13w. It is the figure which showed an example. 他の実施形態の沈降型液液分離器の概略断面図である。It is a schematic sectional drawing of the sedimentation type liquid-liquid separator of other embodiment. 比較例の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。It is a calculation result of the situation in the separator of the comparative example, (A) is the flow velocity distribution, (B) is the concentration distribution of water when the droplet diameter is 100 μm, (C) is the water concentration when the droplet diameter is 200 μm. It is a calculation result of concentration distribution. 沈降面が水平な本発明の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。It is the calculation result of the situation in the separator of the present invention where the sedimentation surface is horizontal, (A) is the flow velocity distribution, (B) is the concentration distribution of water when the droplet diameter is 100 μm, and (C) is the droplet diameter of 200 μm. It is a calculation result of the concentration distribution of water in the case of. 沈降面が下傾している本発明の分離器内の状況の計算結果であり、(A)は流速分布、(B)は液滴径100μmの場合における水の濃度分布、(C)は液滴径200μmの場合における水の濃度分布の計算結果である。It is a calculation result of the situation in the separator of the present invention in which the sedimentation surface is inclined downward, (A) is the flow velocity distribution, (B) is the water concentration distribution when the droplet diameter is 100 μm, and (C) is the liquid It is a calculation result of the concentration distribution of water when the droplet diameter is 200 μm.

符号の説明Explanation of symbols

1 沈降型液液分離器
10 本体部
10h 液体通路
11 胴部
11a 下部排出通路
12a 流入通路
13a 上部排出通路
21 沈降部材
21s 沈降面
22 整流部材
LF 衝突部
DESCRIPTION OF SYMBOLS 1 Settling type liquid-liquid separator 10 Main body part 10h Liquid passage 11 Body part 11a Lower discharge passage 12a Inflow passage 13a Upper discharge passage 21 Settling member 21s Settling surface 22 Rectification member LF Colliding part

Claims (6)

比重の小さい主液体に該主液体よりも比重の大きい液体が界面を形成して混合した混合液体を各液体に分離する装置であって、
内部に液体通路を有する中空な筒状の胴部と、該胴部の前端に設けられ該胴部の液体通路に対し混合液体を供給する流入通路と、前記胴部の後端に設けられ分離された液体を該胴部から排出する排出通路とを備えた本体部と、
該本体部内において、前記混合液体における比重の大きい液体を沈降させる沈降部材と、
前記本体部内において、該沈降部材と前記流入通路との間に設けられた整流部材とからなり、
前記沈降部材は、
上流側から下流側に向かって非上傾の沈降面を備えている
ことを特徴とする沈降型液液分離器。
An apparatus for separating a mixed liquid obtained by mixing a main liquid having a small specific gravity with a liquid having a specific gravity larger than that of the main liquid by forming an interface;
A hollow cylindrical body portion having a liquid passage inside, an inflow passage provided at the front end of the body portion for supplying a mixed liquid to the liquid passage of the body portion, and a separation provided at the rear end of the body portion A main body provided with a discharge passage for discharging the discharged liquid from the body,
In the main body, a sedimentation member that sediments a liquid having a large specific gravity in the mixed liquid;
In the main body portion, the rectifying member provided between the settling member and the inflow passage,
The settling member is
A sedimentation-type liquid-liquid separator, comprising a sedimentation surface that is not inclined upward from the upstream side toward the downstream side.
前記沈降面は、上流側から下流側に向かって下傾している
ことを特徴とする請求項1記載の沈降型液液分離器。
The sedimentation type liquid-liquid separator according to claim 1, wherein the sedimentation surface is inclined downward from the upstream side toward the downstream side.
前記沈降部材は、その上面が前記沈降面となるように配設された板状の傾斜板である
ことを特徴とする請求項1または2記載の沈降型液液分離器。
The sedimentation type liquid-liquid separator according to claim 1 or 2, wherein the sedimentation member is a plate-like inclined plate disposed so that an upper surface thereof becomes the sedimentation surface.
前記整流部材は、前記流入通路の軸方向の延長線と交差する部位に、流体を透過させない衝突部を備えている
ことを特徴とする請求項1、2または3記載の沈降型液液分離器。
4. The sedimentation-type liquid-liquid separator according to claim 1, wherein the rectifying member includes a collision portion that does not allow fluid to permeate at a portion that intersects with an axial extension line of the inflow passage. .
前記流入通路は、前記本体部の下方に設けられており、その軸方向が前記液体通路に対して上傾した状態となるように配設されている
ことを特徴とする請求項4記載の沈降型液液分離器。
5. The sink according to claim 4, wherein the inflow passage is provided below the main body portion, and is arranged so that an axial direction thereof is inclined upward with respect to the liquid passage. Mold liquid-liquid separator.
前記排出通路は、前記胴部の後端下部に設けられた比重の大きい液体を排出する下部排出通路を有しており、
前記整流部材の下端と、前記本体部の下部内面との間には隙間が形成されている
ことを特徴とする請求項1、2、3、4または5記載の沈降型液液分離器。
The discharge passage has a lower discharge passage for discharging a liquid having a large specific gravity provided at a lower rear end of the trunk portion.
6. The sedimentation type liquid-liquid separator according to claim 1, wherein a gap is formed between a lower end of the rectifying member and a lower inner surface of the main body.
JP2008020112A 2008-01-31 2008-01-31 Settling liquid-liquid separator Expired - Fee Related JP5548338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020112A JP5548338B2 (en) 2008-01-31 2008-01-31 Settling liquid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020112A JP5548338B2 (en) 2008-01-31 2008-01-31 Settling liquid-liquid separator

Publications (2)

Publication Number Publication Date
JP2009178654A true JP2009178654A (en) 2009-08-13
JP5548338B2 JP5548338B2 (en) 2014-07-16

Family

ID=41033040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020112A Expired - Fee Related JP5548338B2 (en) 2008-01-31 2008-01-31 Settling liquid-liquid separator

Country Status (1)

Country Link
JP (1) JP5548338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115261A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
WO2012115260A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
WO2012115262A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
CN103816845A (en) * 2014-02-26 2014-05-28 明圣化工机械(南通)有限公司 Liquid distributor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710968U (en) * 1971-02-26 1972-10-09
JPS4815901Y1 (en) * 1972-04-12 1973-05-07
JPS4871777A (en) * 1971-12-24 1973-09-28
JPS4914030B1 (en) * 1969-01-21 1974-04-04
JPS5153696U (en) * 1974-10-23 1976-04-23
JPS51106270A (en) * 1975-03-17 1976-09-21 Akasaka Tetsukosho Kk YUSUIBUNRISOCHI
JPS58170508A (en) * 1982-03-22 1983-10-07 ナシヨナル・タンク・コンパニ− Inclined plate separator electritically enhanced in efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914030B1 (en) * 1969-01-21 1974-04-04
JPS4710968U (en) * 1971-02-26 1972-10-09
JPS4871777A (en) * 1971-12-24 1973-09-28
JPS4815901Y1 (en) * 1972-04-12 1973-05-07
JPS5153696U (en) * 1974-10-23 1976-04-23
JPS51106270A (en) * 1975-03-17 1976-09-21 Akasaka Tetsukosho Kk YUSUIBUNRISOCHI
JPS58170508A (en) * 1982-03-22 1983-10-07 ナシヨナル・タンク・コンパニ− Inclined plate separator electritically enhanced in efficiency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115261A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
WO2012115260A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
WO2012115262A1 (en) 2011-02-22 2012-08-30 Sumitomo Chemical Company, Limited Sedimentation type liquid-liquid separator
CN103816845A (en) * 2014-02-26 2014-05-28 明圣化工机械(南通)有限公司 Liquid distributor

Also Published As

Publication number Publication date
JP5548338B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US10518195B2 (en) Inlet diverter
CN111544947B (en) Separation element and unit, filter element, housing and device and method
US9981206B2 (en) Separator for oil well produced fluid, and separation device comprising the same
JP5548338B2 (en) Settling liquid-liquid separator
US20100236409A1 (en) Combined gas removal, dirt removal and contaminating liquid removal device
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP3820433B2 (en) Oil / water separator
US8431097B2 (en) Solute precipitation method and device
JP2015155092A (en) Emulsion demulsification device and demulsification method
US20240316479A1 (en) Method for separation of particles suspended in a fluid
US20160367918A1 (en) Filter system
US7484627B2 (en) EIP pack for separating oil from water
CA2671897C (en) Method for separating an aqueous phase from an oil phase
JP2012170892A (en) Sedimentation type liquid/liquid separator
JP5787573B2 (en) Gas-liquid separator
JP2012170891A (en) Sedimentation type liquid/liquid separator
CN110121388A (en) Particle separator and particle separation method
JP6981590B2 (en) Sedimentation separator
JP5319927B2 (en) Settling liquid-liquid separator
CN110652764B (en) Separating device
JP2012170893A (en) Sedimentation type liquid/liquid separator
KR101876536B1 (en) Plate pack type separator for separating fluid in vessel
CN217324086U (en) Large-corner continuous U-shaped flow channel for coding microsphere flow channel and liquid drop generator comprising same
JP2023004718A (en) Continuous liquid-liquid separator and continuous liquid-liquid separation method
KR20230005657A (en) Multiphase material separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees