JP2012170892A - Sedimentation type liquid/liquid separator - Google Patents
Sedimentation type liquid/liquid separator Download PDFInfo
- Publication number
- JP2012170892A JP2012170892A JP2011035599A JP2011035599A JP2012170892A JP 2012170892 A JP2012170892 A JP 2012170892A JP 2011035599 A JP2011035599 A JP 2011035599A JP 2011035599 A JP2011035599 A JP 2011035599A JP 2012170892 A JP2012170892 A JP 2012170892A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- body portion
- passage
- mixed
- rectifying member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0208—Separation of non-miscible liquids by sedimentation
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Centrifugal Separators (AREA)
- Removal Of Floating Material (AREA)
Abstract
Description
本発明は、沈降型液液分離器に関する。さらに詳しくは、油と水のように、比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する沈降型液液分離器に関する。 The present invention relates to a sedimentation type liquid-liquid separator. More specifically, the present invention relates to a sedimentation type liquid-liquid separator that separates a mixed liquid, such as oil and water, in which liquids having different specific gravities form an interface and mixes them.
従来から、水と油などのように比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する装置として、比重差を利用した重力沈降操作を行う装置が開発されている(例えば、特許文献1、2) 2. Description of the Related Art Conventionally, a device for performing gravity sedimentation operation utilizing a specific gravity difference has been developed as a device for separating a mixed liquid in which liquids having different specific gravities such as water and oil form an interface and mixing them into liquids ( For example, Patent Documents 1 and 2)
特許文献1には、整流板と、流路に対して傾斜した傾斜流路を有する傾斜流路集合体とを備え、両者を混合液体の流路に設けた懸濁液分離装置が開示されており、整流板によって平行層流となった混合液を傾斜流路内に流入させて、比重の小さい主液体から、比重の大きい液体を、沈降液体として沈降分離させる旨が記載されている。 Patent Document 1 discloses a suspension separation device that includes a current plate and an inclined channel assembly having an inclined channel inclined with respect to the channel, and both are provided in a mixed liquid channel. In addition, it is described that the liquid mixture having a parallel laminar flow by the rectifying plate is allowed to flow into the inclined flow path, and the liquid having a large specific gravity is settled and separated as a settled liquid from the main liquid having a small specific gravity.
特許文献2は、中空な筒状の胴部を有する本体部を有し、この本体部内に整流部材と、この整流部材を通過した混合液体における比重の大きい沈降液体を沈降させる沈降部材とを設けた沈降型液液分離器が記載されている。
そして、特許文献2の沈降型液液分離器では、整流部材によって混合液体が層流状態に近づけられ、この層流状態に近づいた混合液体を沈降部材が設けられている領域に供給するようになっているので混合液体の分離が促進されるようになっている。
Patent Document 2 has a main body portion having a hollow cylindrical body portion, and a rectifying member and a settling member for settling a settling liquid having a large specific gravity in the mixed liquid that has passed through the rectifying member are provided in the main body portion. A settling liquid-liquid separator is described.
In the sedimentation type liquid-liquid separator of Patent Document 2, the mixed liquid is brought close to the laminar flow state by the rectifying member, and the mixed liquid approaching the laminar flow state is supplied to the region where the sedimentation member is provided. Therefore, the separation of the mixed liquid is promoted.
ところで、特許文献1、2の技術では、傾斜流路や沈降部材が、混合液体を流すための流路を複数有している。このため、傾斜流路や沈降部材によって効率よく液体を分離する上では、全ての流路がほぼ同じ効率で液体分離するように機能させることが好ましい。具体的には、全ての流路に供給される混合液体の流量および状態が同じ(つまり、混合液体中における主液体と沈降液体の混合割合が同じもの)であることが好ましい。 By the way, in the techniques of Patent Documents 1 and 2, the inclined flow path and the sedimentation member have a plurality of flow paths for flowing the mixed liquid. For this reason, in order to efficiently separate the liquid by the inclined flow path or the sedimentation member, it is preferable that all the flow paths function so as to perform liquid separation with substantially the same efficiency. Specifically, the flow rate and the state of the mixed liquid supplied to all the flow paths are preferably the same (that is, the mixing ratio of the main liquid and the precipitated liquid in the mixed liquid is the same).
しかるに、特許文献1、2に設けられている整流板や整流部材には、全て同じ径の貫通孔が形成されている。このため、混合液体に整流板や整流部材を通過させることによって混合液体の流れを層流に近づけることはできるものの、胴部の断面における混合液体の速度を均一にすることはできない。量の多い主液体は混合液体の上部に向かって流れようとする一方、量の少ない沈降液体は混合液体の下部に向かって流れようとするからである。すると、両者の流量の差に起因して、整流板を通過する混合液体の速度は、量の多い主液体が流れようとする上部の方が下部に比べて速くなり、整流板の背後(整流板と沈降部材の間)で循環流が発生する可能性がある。かかる循環流が発生すると、循環流において沈降部材に向かう流れが生じている部分では、混合液体の速度が速くなるため、主液体から沈降液体を沈降させるために必要な距離が長くなる。一方、沈降部材と逆方向に向かう流れが生じている部分では、沈降部材を活用することはできなくなる。 However, all the rectifying plates and rectifying members provided in Patent Documents 1 and 2 are formed with through holes having the same diameter. For this reason, although the flow of the mixed liquid can be made close to a laminar flow by passing the rectifying plate or the rectifying member through the mixed liquid, the speed of the mixed liquid in the cross section of the body portion cannot be made uniform. This is because the main liquid having a large amount tends to flow toward the upper part of the mixed liquid, while the precipitated liquid having a small amount tends to flow toward the lower part of the mixed liquid. Then, due to the difference in flow rate between them, the speed of the mixed liquid passing through the current plate becomes faster in the upper part where the main liquid is flowing, compared to the lower part. Circulation flow may occur between the plate and the settling member. When such a circulating flow is generated, the speed of the mixed liquid is increased in a portion where the flow toward the settling member is generated in the circulating flow, so that a distance necessary for settling the settling liquid from the main liquid becomes long. On the other hand, the sinking member cannot be used in a portion where the flow in the direction opposite to that of the sinking member occurs.
また、特許文献1、2に設けられている整流板や整流部材でも、小さな孔径の貫通孔を形成すれば、整流板や整流部材を通過する際の圧力損失が大きくなる。すると、整流板や整流部材の上部と下部とを通過する流体間の速度差を小さくできるから、循環流の発生を防ぐことができる可能性はある。しかし、整流板や整流部材を通過する際の圧力損失が大きくなると、整流板や整流部材を通過するときに混合液体中の沈降液体が分離して(小粒径化して)、沈降部材において主液体から沈降液体を分離する分離効率が悪化する。 Further, even in the rectifying plate and the rectifying member provided in Patent Documents 1 and 2, if a through hole having a small hole diameter is formed, the pressure loss when passing through the rectifying plate and the rectifying member is increased. Then, since the speed difference between the fluids passing through the upper part and the lower part of the rectifying plate and the rectifying member can be reduced, there is a possibility that the generation of the circulating flow can be prevented. However, when the pressure loss when passing through the rectifying plate or the rectifying member becomes large, the precipitated liquid in the mixed liquid is separated (reduced in particle size) when passing through the rectifying plate or the rectifying member, so that The separation efficiency for separating the precipitated liquid from the liquid deteriorates.
さらに、整流板や整流部材を設けて、この整流板や整流部材の背後で循環流が発生しても、この循環流は主液体と沈降液体との混合を促進するほど強い循環流ではないので、整流板や整流部材を通過する前後において、混合液体における主液体と沈降液体の混合割合は、ほぼそのままに維持される。上述したように、整流板や整流部材を通過する前の混合液体は、通常、上部は比重の小さい主液体の割合が多く、下部は比重の大きい沈降液体の割合が多くなっている。このため、整流板や整流部材を通過した後でも、同様の状態になっており、傾斜流路や沈降部材に供給される混合液体の状態は、その流路によって両者の混合状態が異なった状態になる。すると、沈降液体の割合の少ない混合液体が供給される部分では、液体分離機能が過剰になるし、沈降液体の割合の多い混合液体が供給される部分では、十分に液体分離を行うことができない可能性がある。 Furthermore, even if a rectifying plate or a rectifying member is provided and a circulating flow is generated behind the rectifying plate or the rectifying member, the circulating flow is not strong enough to promote the mixing of the main liquid and the settled liquid. Before and after passing through the current plate and the current member, the mixing ratio of the main liquid and the settled liquid in the mixed liquid is maintained almost as it is. As described above, the mixed liquid before passing through the current plate or the current member usually has a large proportion of the main liquid having a small specific gravity in the upper portion and a large proportion of the settled liquid having a large specific gravity in the lower portion. For this reason, even after passing the current plate or current member, the mixed liquid supplied to the inclined flow channel or the sedimentation member is in a state where the mixed state of the two differs depending on the flow channel. become. Then, the liquid separation function becomes excessive in the portion where the mixed liquid with a small proportion of the precipitated liquid is supplied, and the liquid separation cannot be sufficiently performed in the portion where the mixed liquid with a large proportion of the precipitated liquid is supplied. there is a possibility.
以上のごとく、特許文献1、2の技術では、整流板や整流部材を設けてある程度混合液体の流れを層流に近づけることはできても、傾斜流路や沈降部材における分離効率を十分に向上させることが困難である。 As described above, the techniques of Patent Documents 1 and 2 sufficiently improve the separation efficiency in the inclined flow path and the sedimentation member even though the flow of the mixed liquid can be brought close to the laminar flow to some extent by providing the flow straightening plate and the flow straightening member. It is difficult to do.
本発明は上記事情に鑑み、液体分離機能を有効に発揮させることができ、液体分離効率を向上させることができる沈降型液液分離器を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a sedimentation type liquid-liquid separator that can effectively exhibit a liquid separation function and can improve liquid separation efficiency.
第1発明の沈降型液液分離器は、比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する装置であって、内部に液体通路を有する中空な筒状の胴部と、該胴部の前端に設けられ該胴部の液体通路に対し混合液体を供給する流入通路と、前記胴部の後端に設けられ分離された液体を該胴部から排出する排出通路と、を備えた本体部と、該本体部内において、前記混合液体における比重の大きい液体を沈降させる沈降部材と、前記本体部内において、該沈降部材と前記流入通路との間に設けられた整流部材とからなり、前記整流部材は、孔径の異なる複数の貫通孔が形成された上流側整流部材と、該上流側整流部材に対して前記沈降部材側に配置された、均一な孔径の貫通孔が形成された下流側整流部材とからなり、前記上流側整流部材の貫通孔は、その上部と下部とで形成されている貫通孔の大きさが異なることを特徴とする。
第2発明の沈降型液液分離器は、第1発明において、前記流入通路は、前記胴部の前端内面に向けて、前記液体通路の軸方向に沿った方向から、前記混合液体を供給するように配置されていることを特徴とする。
第3発明の沈降型液液分離器は、第1発明において、前記上流側整流部材は、前記流入通路の軸方向の延長線と交差する部位に、液体を透過させない衝突部を備えていることを特徴とする。
第4発明の沈降型液液分離器は、第1、第2または第3発明において、前記流入通路の供給口は、前記胴部の液体通路内において、該液体通路内に沈降している前記比重の大きい液体の自由表面が形成されている位置に配設されていることを特徴とする。
ことを特徴とする。
A sedimentation type liquid-liquid separator according to a first aspect of the present invention is a device for separating a mixed liquid obtained by mixing liquids having different specific gravities by forming an interface into each liquid, the hollow cylindrical body having a liquid passage inside An inflow passage that is provided at a front end of the body portion and supplies a mixed liquid to a liquid passage of the body portion; and a discharge passage that is provided at a rear end of the body portion and discharges the separated liquid from the body portion. A main body portion provided in the main body portion, a settling member for precipitating a liquid having a large specific gravity in the mixed liquid, and a flow regulating member provided between the settling member and the inflow passage in the main body portion. The rectifying member is formed with an upstream rectifying member in which a plurality of through holes having different hole diameters are formed, and a through hole having a uniform hole diameter disposed on the settling member side with respect to the upstream rectifying member The downstream side straightening member, and the upstream side Flow through hole of the member is characterized in that the size of the through hole formed at its top and bottom are different.
In the sedimentation type liquid-liquid separator according to a second aspect of the present invention, in the first aspect, the inflow passage supplies the mixed liquid from a direction along the axial direction of the liquid passage toward the inner surface of the front end of the body portion. It is arranged so that it may be arranged.
In the sedimentation type liquid-liquid separator according to a third aspect of the present invention, in the first aspect, the upstream rectifying member has a collision portion that does not allow liquid to permeate at a portion that intersects with the axial extension line of the inflow passage. It is characterized by.
The sedimentation type liquid-liquid separator according to a fourth aspect of the present invention is the first, second or third aspect of the invention, wherein the supply port of the inflow passage is settled in the liquid passage in the liquid passage of the body portion. It is arranged at a position where a free surface of a liquid having a large specific gravity is formed.
It is characterized by that.
第1発明によれば、上流側整流部材では、その上部と下部とで形成されている貫通孔の大きさが異なる。すると、下部に形成されている貫通孔に比べて上部に形成されている貫通孔の孔径を大きくした場合には、上流側整流部材の上部は下部に比べて混合液体が通過しやすくなる。逆に、上部に形成されている貫通孔に比べて下部に形成されている貫通孔の孔径を大きくした場合には、上流側整流部材の下部は上部に比べて混合液体が通過しやすくなる。このため、混合液体中において、比重の大きい液体(高比重液体)が多い場合には、下部に形成されている貫通孔に比べて上部に形成されている貫通孔の孔径を大きくすれば、均一な孔径の貫通孔が形成されている場合に比べて、上流側整流部材の上部を通過する高比重液体の割合を多くできる。すると、上流側整流部材を通過後の混合液体の流速を、胴部の断面内において均一に近づけることができるから、下流側整流部材による混合液体の流速を均一化する機能を高めることができる。しかも、上流側整流部材の下部を通過しやすい高比重液体を比較的多く上流側整流部材の上部を通過させることができるから、上流側整流部材と下流側整流部材との間で高比重液体がある程度沈降することによって両板間における混合液体の混合割合の均一化も促進することができる。同様に、混合液体中において、比重の小さい液体(低比重液体)が多い場合には、上部に形成されている貫通孔に比べて下部に形成されている貫通孔の孔径を大きくすれば、均一な孔径の貫通孔が形成されている場合に比べて、上流側整流部材の下部を通過する低比重液体の割合を多くできる。すると、上流側整流部材を通過後の混合液体の流速を、胴部の断面内に断面内において均一に近づけることができるから、下流側整流部材による混合液体の流速を均一化する機能を高めることができる。しかも、上流側整流部材の上部を通過しやすい低比重液体を比較的多く上流側整流部材の下部を通過させることができるから、上流側整流部材と下流側整流部材との間で低比重液体がある程度上昇することによって両板間における混合液体の混合割合の均一化も促進することができる。よって、整流部材を通過した後の混合液体の状態を、胴部の断面内において均一にできるので、沈降部材における全ての流路においてほぼ同じ効率で液体分離をさせることができ、沈降部材における液体分離効率、つまり、装置の液体分離効率を高くすることができる。
第2発明によれば、流入通路から胴部の前端内面に向けて混合液体を供給すれば、流入通路の供給口から供給された混合液体は、胴部の液体通路内において混合液体が流れる方向(以下、主方向という)と逆向きに流れて胴部の前端内面に衝突する。そして、流入通路の供給口から供給された混合液体は、胴部の前端内面に衝突したときに、一旦胴部の前端内面近傍で滞留しその流動方向が変わってから主方向に向かって流れるので、流入通路の供給口から供給された状態に比べて低速の流れとなって液体通路内を整流部材に向かって流れる。しかも、混合液体を胴部の前端内面に衝突させることによって、胴部の前端内面に沿ったどの方向の流速もほぼ同じである略放射状の流れを形成させてから主方向に向かって流すことができる。すると、整流部材に供給されるまでに、混合液体の状態を、胴部の断面内においてほぼ均一な流速を有し、かつ、ほぼ均一な混合状態となった流れとすることができる。つまり、混合液体が整流部材に到達するまでに、混合液体の状態を胴部の断面内においてある程度均一な状態とすることができるから、整流部材を通過した後の混合液体の状態をより均一な状態とすることができる。
第3発明によれば、外部から流入通路を通って流入する混合液体が、上流側整流部材を素通りすることを防ぐことができるから、上流側整流部材と下流側整流部材との間における、混合液体を均一化する機能、および、混合液体中において副液体の割合を低下させる機能を維持することができる。よって、装置の液体分離効率をより高くすることができる。
第4発明によれば、流入通路の供給口から混合液体を供給したときに、胴部内の混合液体が攪拌されにくくすることができるから、分離された液体同士が再混合することを抑えることができる。すると、分離された液体同士が再混合したことに起因する、液体を分離する効率の低下を抑制することができる。
According to the first invention, in the upstream rectifying member, the sizes of the through holes formed in the upper part and the lower part thereof are different. Then, when the hole diameter of the through-hole formed in the upper part is made larger than that of the through-hole formed in the lower part, the mixed liquid is more likely to pass through the upper part of the upstream rectifying member than in the lower part. On the contrary, when the hole diameter of the through hole formed in the lower part is made larger than that of the through hole formed in the upper part, the mixed liquid passes through the lower part of the upstream rectifying member more easily than the upper part. For this reason, when there is a large amount of liquid with a high specific gravity (high specific gravity liquid) in the mixed liquid, it is uniform if the hole diameter of the through hole formed in the upper part is larger than the through hole formed in the lower part. Compared with the case where the through-hole of an appropriate hole diameter is formed, the ratio of the high specific gravity liquid that passes through the upper part of the upstream rectifying member can be increased. Then, the flow rate of the mixed liquid after passing through the upstream rectifying member can be made close to uniform in the cross section of the body portion, so that the function of equalizing the flow rate of the mixed liquid by the downstream rectifying member can be enhanced. In addition, since a relatively large amount of high specific gravity liquid that easily passes through the lower portion of the upstream rectifying member can be passed through the upper portion of the upstream rectifying member, the high specific gravity liquid is interposed between the upstream rectifying member and the downstream rectifying member. Uniformity of the mixing ratio of the mixed liquid between both plates can be promoted by settling to some extent. Similarly, when there are many liquids with low specific gravity (low specific gravity liquid) in the mixed liquid, it is uniform if the diameter of the through hole formed in the lower part is larger than the through hole formed in the upper part. The ratio of the low specific gravity liquid that passes through the lower part of the upstream rectifying member can be increased as compared with the case where a through hole having a small hole diameter is formed. Then, the flow rate of the mixed liquid after passing through the upstream rectifying member can be made close to the cross section of the body portion in the cross section, so that the function of equalizing the flow rate of the mixed liquid by the downstream rectifying member is enhanced. Can do. In addition, since a relatively large amount of low specific gravity liquid that easily passes through the upper portion of the upstream rectifying member can be passed through the lower portion of the upstream rectifying member, the low specific gravity liquid is interposed between the upstream rectifying member and the downstream rectifying member. By raising to some extent, the mixing ratio of the mixed liquid between both plates can be promoted. Therefore, since the state of the mixed liquid after passing through the flow straightening member can be made uniform in the cross section of the trunk portion, liquid separation can be performed with substantially the same efficiency in all the flow paths in the settling member. The separation efficiency, that is, the liquid separation efficiency of the apparatus can be increased.
According to the second invention, when the mixed liquid is supplied from the inflow passage toward the inner surface of the front end of the body portion, the mixed liquid supplied from the supply port of the inflow passage flows in the liquid passage of the body portion. It flows in the opposite direction (hereinafter referred to as the main direction) and collides with the inner surface of the front end of the trunk. And, when the mixed liquid supplied from the supply port of the inflow passage collides with the inner surface of the front end of the body part, it once stays in the vicinity of the inner surface of the front end of the body part and flows in the main direction after the flow direction changes. The flow is lower than that in the state of being supplied from the supply port of the inflow passage and flows in the liquid passage toward the rectifying member. In addition, by causing the mixed liquid to collide with the inner surface of the front end of the body, a substantially radial flow having almost the same flow velocity along the inner surface of the front end of the body is formed, and then it flows in the main direction. it can. Then, before being supplied to the rectifying member, the state of the mixed liquid can be a flow having a substantially uniform flow velocity in the cross section of the body portion and a substantially uniform mixed state. In other words, since the state of the mixed liquid can be made uniform to some extent within the cross section of the body part before the mixed liquid reaches the rectifying member, the state of the mixed liquid after passing through the rectifying member is made more uniform. State.
According to the third aspect of the invention, the mixed liquid flowing in from the outside through the inflow passage can be prevented from passing through the upstream rectifying member, so that the mixing between the upstream rectifying member and the downstream rectifying member can be prevented. The function of homogenizing the liquid and the function of reducing the proportion of the secondary liquid in the mixed liquid can be maintained. Therefore, the liquid separation efficiency of the apparatus can be further increased.
According to the fourth aspect of the present invention, when the mixed liquid is supplied from the supply port of the inflow passage, the mixed liquid in the trunk portion can be made difficult to be stirred, so that the separated liquids can be prevented from being remixed. it can. Then, the fall of the efficiency which isolate | separates the liquid resulting from the re-mixing of the separated liquids can be suppressed.
つぎに、本発明の実施形態を図面に基づき説明する。
本実施形態の沈降型液液分離器は、比重の異なる液体が界面を形成して混合した混合液体を各液体に分離する装置であって、化学プラントや処理装置等のように混合液体を連続処理する必要がある設備に適した装置である。
とくに、各液体の混合割合の差が比較的小さい混合液体の場合でも、効率よく各液体に分離することができるようにしたことに特徴を有している。
Next, an embodiment of the present invention will be described with reference to the drawings.
The sedimentation type liquid-liquid separator of this embodiment is an apparatus that separates mixed liquids obtained by mixing liquids having different specific gravities by forming an interface, and continuously mixing liquids like chemical plants and processing apparatuses. Equipment suitable for equipment that needs to be processed.
In particular, it is characterized in that it can be efficiently separated into each liquid even in the case of a mixed liquid in which the difference in the mixing ratio of each liquid is relatively small.
なお、比重の異なる液体が界面を形成して混合した混合液体とは、例えば、油と水または油とアルコールが混合した混合液体などである。具体的には、混合液体中の混合割合が多い液体中に、混合割合の少ない液体が液滴の状態で分散して存在している液体などである。そして、本実施形態の沈降型液液分離器によって各液体に分離される混合液体は比重の異なる液体が界面を形成して混合されたものであればよく、混合液体中に混合されている液体の種類はとくに限定されない。 The mixed liquid in which liquids having different specific gravities form an interface and mixed is, for example, a mixed liquid in which oil and water or oil and alcohol are mixed. Specifically, a liquid in which a liquid with a small mixing ratio is dispersed and present in the form of droplets in a liquid with a high mixing ratio in the mixed liquid. The mixed liquid separated into the respective liquids by the sedimentation type liquid-liquid separator of the present embodiment is not limited as long as liquids having different specific gravities are mixed to form an interface, and the liquid mixed in the mixed liquid. The type of is not particularly limited.
以下では、混合液体において比重の小さい液体を低比重液体といい、低比重液体よりも比重の大きい液体を沈降液体という。
また、本実施形態の沈降型液液分離器によって分離される混合液体では、低比重液体と沈降液体との混合割合はとくに限定されないが、以下では、低比重液体に沈降液体が混合している場合を代表として説明する。つまり、低比重液体に沈降液体が液滴の状態で分散している混合液体を、低比重液体と沈降液体とに分離する場合を代表として説明する。
Hereinafter, a liquid having a small specific gravity in the mixed liquid is referred to as a low specific gravity liquid, and a liquid having a specific gravity larger than that of the low specific gravity liquid is referred to as a sedimented liquid.
Further, in the mixed liquid separated by the sedimentation type liquid-liquid separator of the present embodiment, the mixing ratio of the low specific gravity liquid and the sedimentation liquid is not particularly limited, but in the following, the sedimentation liquid is mixed with the low specific gravity liquid. A case will be described as a representative. That is, the case where the mixed liquid in which the precipitated liquid is dispersed in the state of droplets in the low specific gravity liquid is separated into the low specific gravity liquid and the precipitated liquid will be described as a representative.
(本実施形態の沈降型液液分離器1の全体構造の説明)
図1において、符号10は本実施形態の沈降型液液分離器1(以下、単に分離器1という)の本体部を示している。この本体部10は中空な円筒状の胴部11と、この胴部11の軸方向の両端に設けられた、内面が略球面状に形成された鏡板12,13とを備えた中空な容器である。この本体部10は、例えば、本実施形態の分離器1が化学プラントにおいて使用される場合であれば、胴部11の内径が数m程度、軸方向の長さが胴部11の内径に対し数倍程度のものが使用されるが、本体部10は上記のごとき大きさに特に限定されず、処理する液体の量や物性等によって自由に決定できる。
(Description of the overall structure of the sedimentation type liquid-liquid separator 1 of this embodiment)
In FIG. 1, the code | symbol 10 has shown the main-body part of the sedimentation type liquid-liquid separator 1 (henceforth only the separator 1) of this embodiment. The main body 10 is a hollow container having a hollow cylindrical body 11 and end plates 12 and 13 having inner surfaces formed in a substantially spherical shape, provided at both ends in the axial direction of the body 11. is there. For example, if the separator 1 of the present embodiment is used in a chemical plant, the main body 10 has an inner diameter of the trunk portion 11 of about several meters and an axial length that is smaller than the inner diameter of the trunk portion 11. Although the thing of about several times is used, the main-body part 10 is not specifically limited to the above magnitude | sizes, It can determine freely with the quantity, physical property, etc. of the liquid to process.
前記胴部11の左端部(前端部)には、本体部10内に混合液体を供給する流入通路14が設けられている。この流入通路14は、胴部11の側面に配設された管状の部材である。この流入通路14は、その上端部が本体部10外に突出しており、その下端は本体部10内に配設されている。
なお、この流入通路14は、その下端が本体部10内の下部に溜まっている沈降液体と混合液体との界面(自由界面FS)の高さに位置するように配設されている。そして、混合液体を本体部10の胴部11内に供給する供給口14aは、流入通路14における前記前端鏡板12(前端鏡板12)側の側面に設けられているが、その理由は後述する。
An inflow passage 14 for supplying a mixed liquid into the main body portion 10 is provided at the left end portion (front end portion) of the body portion 11. The inflow passage 14 is a tubular member disposed on the side surface of the trunk portion 11. The inflow passage 14 has an upper end protruding outside the main body 10 and a lower end disposed in the main body 10.
The inflow passage 14 is disposed such that the lower end thereof is positioned at the height of the interface (free interface FS) between the settling liquid and the mixed liquid accumulated in the lower part of the main body 10. The supply port 14a for supplying the mixed liquid into the body portion 11 of the main body portion 10 is provided on the side surface of the inflow passage 14 on the front end end plate 12 (front end end plate 12) side, and the reason will be described later.
図1に示すように、流入通路14に対して右端部側(後端部側)には、2枚の整流部材21,22と沈降部材23とが、この順で配設されている。2枚の整流部材21,22および沈降部材23は、混合液体を低比重液体と沈降液体とに分離するために設けられているが、これらの詳細は後述する。 As shown in FIG. 1, two rectifying members 21 and 22 and a settling member 23 are arranged in this order on the right end side (rear end side) with respect to the inflow passage 14. The two rectifying members 21 and 22 and the settling member 23 are provided to separate the mixed liquid into the low specific gravity liquid and the settling liquid, and details thereof will be described later.
本体部10の後端部近傍には、沈降部材23と鏡板13(後端鏡板12)との間に、本体部10の胴部11内を仕切る分離プレート10dが設けられている。具体的には、胴部11内を液体分離空間と低比重液体排出空間とに分離するように、分離プレート10dが設けられている。なお、液体分離空間は沈降部材23が収容されている空間である。
分離プレート10dは、その上端と胴部11の内面との間に、前記両空間を連通する連通通路10fが形成されるように設けられている。このため、連通通路10fを通して、液体分離空間の上部に位置する液体、つまり、低比重液体を低比重液体排出空間に流入させることができるようになっている。
In the vicinity of the rear end portion of the main body portion 10, a separation plate 10 d that partitions the inside of the body portion 11 of the main body portion 10 is provided between the settling member 23 and the end plate 13 (rear end end plate 12). Specifically, a separation plate 10d is provided so as to separate the inside of the body portion 11 into a liquid separation space and a low specific gravity liquid discharge space. The liquid separation space is a space in which the settling member 23 is accommodated.
The separation plate 10d is provided so that a communication passage 10f that communicates the two spaces is formed between the upper end of the separation plate 10d and the inner surface of the body portion 11. For this reason, the liquid located in the upper part of the liquid separation space, that is, the low specific gravity liquid can flow into the low specific gravity liquid discharge space through the communication passage 10f.
そして、本体部10の後端部には、本体部10内から外部に液体を排出する排出通路11a,11bが設けられている。 Discharge passages 11a and 11b for discharging liquid from the inside of the main body 10 to the outside are provided at the rear end of the main body 10.
胴部11の後端部において、分離プレート10d近傍における液体分離空間側の下部には、沈降液体排出通路11aが設けられている。この沈降液体排出通路11aは、低比重液体から分離された沈降液体を外部に排出する通路である。この沈降液体排出通路11aには、本体部10内部と外部との間を連通遮断し得る器具(例えば、バルブ等)が設けられており、所定の期間毎に沈降液体排出通路11aから沈降液体を排出するようになっている。具体的には、沈降液体は、胴部11の下部に溜まっている量が所定の量(つまり、所定の深さ)となるようにその排出量が調整されている。 At the rear end portion of the body portion 11, a sedimented liquid discharge passage 11a is provided in the lower part on the liquid separation space side in the vicinity of the separation plate 10d. The sedimented liquid discharge passage 11a is a passage for discharging the sedimented liquid separated from the low specific gravity liquid to the outside. The sedimented liquid discharge passage 11a is provided with a device (for example, a valve) that can cut off communication between the inside and the outside of the main body 10 and allows the sedimented liquid to be discharged from the sedimented liquid discharge passage 11a every predetermined period. It comes to discharge. Specifically, the discharge amount of the settled liquid is adjusted so that the amount accumulated in the lower portion of the body portion 11 becomes a predetermined amount (that is, a predetermined depth).
一方、胴部11の後端部において、分離プレート10d近傍における低比重液体排出空間の下部には、低比重液体排出通路11bが設けられている。この低比重液体排出通路11bは、沈降液体が分離された後、連通通路10fから低比重液体排出空間内に流入した低比重液体を外部に排出する通路である。この低比重液体排出通路11bには、本体部10内部と外部との間を連通遮断し得る器具(例えば、バルブ等)が設けられており、低比重液体排出通路11bから排出される低比重液体の流量を調整している。具体的には、低比重液体の液面が一定の高さとなるように調整している。 On the other hand, a low specific gravity liquid discharge passage 11b is provided at the rear end of the body portion 11 below the low specific gravity liquid discharge space in the vicinity of the separation plate 10d. The low specific gravity liquid discharge passage 11b is a passage that discharges the low specific gravity liquid that has flowed into the low specific gravity liquid discharge space from the communication passage 10f after the settled liquid is separated. The low specific gravity liquid discharge passage 11b is provided with a device (for example, a valve) that can cut off communication between the inside and the outside of the main body portion 10, and the low specific gravity liquid discharged from the low specific gravity liquid discharge passage 11b. The flow rate is adjusted. Specifically, the liquid surface of the low specific gravity liquid is adjusted to have a certain height.
以上のごとき構成であるから、本体部10の前端部に設けられている流入通路14から混合液体を供給すれば、本体部10の胴部11内に混合液体を供給することができる。
本体部10はその後端部に排出通路11a,11bを備えているので、混合液体は胴部11内を、流入通路14から排出通路11a,11bに向かって(つまり、本体部10の前端から後端に向かって)流れる。
すると、胴部11内において、流入通路14と排出通路11a,11bとの間には、2枚の整流部材21,22および沈降部材23が設けられているので、流入通路14から排出通路11a,11bまで流れる間に低比重液体から沈降液体が分離される。
そして、沈降液体は液体分離空間の下部に溜められるので、液体分離空間の上部に位置する低比重液体のみが連通通路10fから低比重液体排出空間内に流入する。このため、液体分離空間内において分離された各液体を、再混合させることなく、それぞれ排出通路11a,11bから排出することができる。
つまり、本実施形態の分離器1では、流入通路14から胴部11内に混合液体を供給すれば、混合液体を低比重液体と沈降液体とを分離することができ、分離された各液体をそれぞれ回収することができるのである。
Since the configuration is as described above, the mixed liquid can be supplied into the body portion 11 of the main body 10 by supplying the mixed liquid from the inflow passage 14 provided at the front end of the main body 10.
Since the main body portion 10 is provided with the discharge passages 11a and 11b at the rear end portions thereof, the mixed liquid flows through the body portion 11 from the inflow passage 14 toward the discharge passages 11a and 11b (that is, from the front end of the main body portion 10 to the rear) Flowing towards the edge).
Then, since the two rectifying members 21 and 22 and the settling member 23 are provided between the inflow passage 14 and the discharge passages 11a and 11b in the body portion 11, the discharge passage 11a, The precipitated liquid is separated from the low specific gravity liquid while flowing to 11b.
Then, since the settled liquid is stored in the lower portion of the liquid separation space, only the low specific gravity liquid located in the upper portion of the liquid separation space flows into the low specific gravity liquid discharge space from the communication passage 10f. Therefore, the liquids separated in the liquid separation space can be discharged from the discharge passages 11a and 11b without remixing.
That is, in the separator 1 of the present embodiment, if the mixed liquid is supplied into the body portion 11 from the inflow passage 14, the mixed liquid can be separated from the low specific gravity liquid and the settled liquid, and the separated liquids are separated from each other. Each can be recovered.
なお、上述した低比重液体排出通路11bから排出される低比重液体は、沈降液体がほとんど含まれない状態のものだけを意味するのではなく、流入通路14から供給される混合液体に比べて沈降液体の割合が減少した状態のものを含んでいるのはいうまでもない。同様に、上述した沈降液体排出通路11aから排出される沈降液体は、低比重液体をほとんど含まないものだけを意味するのではなく、低比重液体を若干含有するものも含んでいるのはいうまでもない。 In addition, the low specific gravity liquid discharged from the low specific gravity liquid discharge passage 11b described above does not mean only a liquid that does not contain any settling liquid, but settles compared to the mixed liquid supplied from the inflow passage 14. Needless to say, the liquid content is reduced. Similarly, the settling liquid discharged from the settling liquid discharge passage 11a described above does not mean only a liquid containing almost no low specific gravity liquid, but also includes a liquid containing some low specific gravity liquid. Nor.
また、胴部11の前端部上方には、気体排出部11eが設けられている。この気体排出部11eには、本体部10内部と外部との間を連通遮断し得る器具(例えば、バルブ等)が設けられており、本体部10内に溜まった気体を適宜排出することができるように構成されている。 Further, a gas discharge part 11 e is provided above the front end of the body part 11. The gas discharge part 11e is provided with an instrument (for example, a valve) that can cut off communication between the inside and the outside of the main body part 10, and can appropriately discharge the gas accumulated in the main body part 10. It is configured as follows.
(各部の詳細説明)
つぎに、本実施形態の沈降型液液分離器1の各部について詳細に説明する。
(Detailed explanation of each part)
Below, each part of the sedimentation type liquid-liquid separator 1 of this embodiment is demonstrated in detail.
(2枚の整流部材21,22の説明)
本実施形態の分離器1では、分離効果を高めるために、本体部10の胴部11内に、2枚の整流部材21,22および沈降部材23を設けている。
(Description of the two rectifying members 21 and 22)
In the separator 1 of the present embodiment, two rectifying members 21 and 22 and a settling member 23 are provided in the body portion 11 of the main body portion 10 in order to enhance the separation effect.
図1に示すように、流入通路14と沈降部材23との間には、本体部10の胴部11内を仕切る2枚の整流部材21,22が設けられている。具体的には、胴部11の前端部を液体供給空間と前記液体分離空間とに分離するように、2枚の整流部材21,22が設けられている。なお、液体分離空間は前述したように沈降部材23が収容されている空間であり、液体供給空間は流入通路14が収容されている空間である。 As shown in FIG. 1, between the inflow passage 14 and the settling member 23, two rectifying members 21 and 22 that partition the inside of the body portion 11 of the main body portion 10 are provided. Specifically, the two rectifying members 21 and 22 are provided so as to separate the front end portion of the body portion 11 into the liquid supply space and the liquid separation space. As described above, the liquid separation space is a space in which the settling member 23 is accommodated, and the liquid supply space is a space in which the inflow passage 14 is accommodated.
2枚の整流部材21,22は、いずれも板状の部材であって、その表裏を貫通する複数の貫通穴が形成されている(図2(A)、(B))。 Each of the two rectifying members 21 and 22 is a plate-like member, and a plurality of through holes penetrating the front and back surfaces thereof are formed (FIGS. 2A and 2B).
まず、2枚の整流部材21,22のうち、流入通路14側に位置する整流部材21(以下、上流側整流部材21という)は、複数の貫通孔が形成された板状の部材である。上流側整流部材21には、孔径の異なる複数の貫通孔21a,21bが形成されている。例えば、図2(A)に示すように、上流側整流部材21には、孔径の大きい貫通孔21aが形成された領域(上部領域21A)が上部に設けられており、孔径の小さい貫通孔21bが形成された領域(下部領域21B)が下部に設けられている。そして、上部領域21Aは、下部領域21Bに比べてその面積が小さくなるように設けられている。 First, of the two rectifying members 21 and 22, the rectifying member 21 (hereinafter referred to as the upstream rectifying member 21) located on the inflow passage 14 side is a plate-like member in which a plurality of through holes are formed. The upstream rectifying member 21 is formed with a plurality of through holes 21a and 21b having different hole diameters. For example, as shown in FIG. 2A, the upstream rectifying member 21 is provided with a region (upper region 21A) in which a through hole 21a having a large hole diameter is formed in the upper portion, and a through hole 21b having a small hole diameter. A region (lower region 21B) in which is formed is provided in the lower part. The upper region 21A is provided so that its area is smaller than that of the lower region 21B.
また、整流部材22(以下、下流側整流部材22という)も、複数の貫通孔が形成された板状の部材である。この下流側整流部材22は、上流側整流部材21と異なり、全て同じ孔径の貫通孔22hが形成されている。この貫通孔22hの孔径はとくに限定されないが、整流効果を有効に発揮させる上では、上流側整流部材21の貫通孔21aと同程度であることが好ましい。 The rectifying member 22 (hereinafter referred to as the downstream rectifying member 22) is also a plate-like member in which a plurality of through holes are formed. Unlike the upstream rectifying member 21, the downstream rectifying member 22 is formed with through holes 22 h having the same hole diameter. The diameter of the through hole 22h is not particularly limited, but is preferably about the same as the through hole 21a of the upstream rectifying member 21 in order to effectively exert the rectifying effect.
以上のごとき構造を有する2枚の整流部材21,22を設ければ、以下のごとき効果を得ることができる。 If the two rectifying members 21 and 22 having the structure as described above are provided, the following effects can be obtained.
まず、上流側整流部材21に向かって流れる混合液体中では、沈降液体の比重が低比重液体の比重よりも大きいため、上流側整流部材21の下部に向う沈降液体の流れが発生する。このため、上流側整流部材21に向かう混合液体の流れでは、上部に比べて下部の流速が速くなりやすい。 First, in the mixed liquid flowing toward the upstream rectifying member 21, the sedimented liquid flows toward the lower portion of the upstream rectifying member 21 because the specific gravity of the sedimented liquid is larger than the specific gravity of the low specific gravity liquid. For this reason, in the flow of the mixed liquid toward the upstream rectifying member 21, the lower flow velocity tends to be faster than the upper portion.
一方、上流側整流部材21は、その下部領域21Bに形成されている貫通孔21bが上部領域21Aに形成されている貫通孔21aに比べて小さくなっているので、上流側整流部材21の下部(下部領域21Bの部分)は、上部(上部領域21Aの部分)に比べて、混合液体が通過しにくくなる。つまり、上流側整流部材21の下部では、上部に比べて、混合液体が通過する際の抵抗が大きくなる。 On the other hand, the upstream rectifying member 21 has a through hole 21b formed in the lower region 21B smaller than the through hole 21a formed in the upper region 21A. The mixed liquid is less likely to pass through the lower region 21B) than at the upper portion (upper region 21A). That is, the resistance when the mixed liquid passes is larger in the lower part of the upstream rectifying member 21 than in the upper part.
すると、上流側整流部材21を通過する際には、上部領域21Aを通過する混合液体の流れに比べて下部領域21Bを通過する混合液体の流れが抑えられるので、上流側整流部材21を通過した位置では、上部と下部との間における混合液体の流速の差を小さくできる。つまり、液体通路10hの断面内において位置による混合流体の流速の差を小さくでき、液体通路10hの断面内における混合液体の流速を均一な状態に近づけることができる。 Then, when passing through the upstream rectifying member 21, the flow of the mixed liquid passing through the lower region 21B is suppressed as compared with the flow of the mixed liquid passing through the upper region 21A. In the position, the difference in the flow rate of the mixed liquid between the upper part and the lower part can be reduced. That is, the difference in the flow rate of the mixed fluid depending on the position in the cross section of the liquid passage 10h can be reduced, and the flow rate of the mixed liquid in the cross section of the liquid passage 10h can be made to be uniform.
そして、上流側整流部材21を通過した混合液体は、均一な貫通孔22hが形成された下流側整流部材22を通過するので、液体通路10hの断面内において、位置による混合液体の流速の差をさらに小さい状態に近づけることができる。
すると、下流側整流部材22を通過した位置で混合液体の流速差に起因する循環流が発生することを防ぐことができるから、循環流が発生した場合に生じる低比重液体と沈降液体とを分離するために必要な距離(沈降液体を沈降させるために必要な距離)に差ができることを防ぐことができる。
Since the mixed liquid that has passed through the upstream rectifying member 21 passes through the downstream rectifying member 22 in which the uniform through-hole 22h is formed, the difference in the flow rate of the mixed liquid depending on the position in the cross section of the liquid passage 10h is obtained. It can be made closer to a smaller state.
Then, since it is possible to prevent a circulating flow due to the difference in flow rate of the mixed liquid from occurring at a position that has passed through the downstream side rectifying member 22, the low specific gravity liquid and the sedimented liquid that are generated when the circulating flow is generated are separated. Therefore, it is possible to prevent a difference from being made in the distance necessary for the purpose (the distance necessary for causing the sedimented liquid to settle).
また、上流側整流部材21を通過する際に、上部領域21Aを通過する混合液体の流れに比べて下部領域21Bを通過する混合液体の流れが抑えられると、下部領域21Bに向かって流れていた沈降液体の一部を上部領域21Aに向かって流すことができる。つまり、上流側整流部材21に全て同じ孔径の貫通孔を形成した場合に比べて、上流側整流部材21の上部領域21Aに比較的多く沈降液体を通過させることができる。すると、上流側整流部材21と下流側整流部材22との間において、上部領域21Aを通過した沈降液体がある程度沈降することによって、両整流部材21,22間において混合液体中の低比重液体と沈降液体の混合が進み、液体通路10hの断面内において、混合液体における両液体の混合割合の差を小さくできる。 In addition, when the flow of the mixed liquid passing through the lower region 21B is suppressed as compared with the flow of the mixed liquid passing through the upper region 21A when passing through the upstream side rectifying member 21, the flow was toward the lower region 21B. A part of the settled liquid can flow toward the upper region 21A. That is, as compared with the case where all the through holes having the same hole diameter are formed in the upstream rectifying member 21, a relatively large amount of the settled liquid can pass through the upper region 21 </ b> A of the upstream rectifying member 21. Then, between the upstream rectifying member 21 and the downstream rectifying member 22, the sedimented liquid that has passed through the upper region 21 </ b> A settles to some extent, so that the low specific gravity liquid and the sediment in the mixed liquid are set between the rectifying members 21 and 22. As the mixing of the liquid proceeds, the difference in the mixing ratio of the two liquids in the mixed liquid can be reduced within the cross section of the liquid passage 10h.
つまり、2枚の整流部材21,22を設けることによって、液体通路10hの断面内において、沈降部材23に供給される混合液体の状態(流速や混合割合など)の差を小さくできるのである。 That is, by providing the two rectifying members 21 and 22, the difference in the state of the mixed liquid (flow velocity, mixing ratio, etc.) supplied to the settling member 23 can be reduced in the cross section of the liquid passage 10h.
(沈降液体>低比重液体の場合における2枚の整流部材21,22の説明)
なお、上記例では、混合液体中において、沈降液体に比べて低比重液体の量が多い場合を説明したが、上記例とは逆に、混合液体中において、低比重液体に比べて沈降液体の量が多い場合には、以下のような整流部材を使用する。
(Explanation of the two rectifying members 21 and 22 in the case of sedimentation liquid> low specific gravity liquid)
In the above example, the case where the amount of the low specific gravity liquid in the mixed liquid is larger than that of the sedimented liquid has been described. On the contrary, in the mixed liquid, the amount of the precipitated liquid is compared with that of the low specific gravity liquid. When the amount is large, the following rectifying member is used.
混合液体中において、低比重液体に比べて沈降液体の量が多い場合には、図2(A)に示す上流側整流部材21を180度回転させたものを上流側整流部材として使用する。つまり、上部に形成されている貫通孔に比べて下部に形成されている貫通孔の孔径が大きくなり、かつ、孔径が大きい貫通孔が形成された部分(下部領域)の面積が、孔径が小さい貫通孔が形成された部分(上部領域)の面積よりも狭くなったものを上流側整流部材として使用する。
すると、上部領域を通過する混合液体の流速を抑えることができるから、上流側整流部材を通過した位置では、液体通路10hの断面内における混合液体の流量(つまり、液体通路10hの断面内における混合液体の流速)の差を小さくすることができる。
しかも、上流側整流部材に全て同じ孔径の貫通孔を形成した場合に比べて、上流側整流部材の下部を通過する低比重液体の割合を多くできるから、上流側整流部材と下流側整流部材との間で低比重液体がある程度上昇することによって、両整流部材間において混合液体中の低比重液体と沈降液体の混合が進み、液体通路10hの断面内において、混合液体における両液体の混合割合の差を小さくできる。
したがって、低比重液体に比べて沈降液体の量が多い場合でも、液体通路10hの断面内において、下流側整流部材を通過した後の混合液体の状態(流速や混合割合など)の差を小さくすることができる。
In the mixed liquid, when the amount of the settled liquid is larger than the low specific gravity liquid, the upstream rectifying member 21 shown in FIG. 2A rotated 180 degrees is used as the upstream rectifying member. In other words, the hole diameter of the through hole formed in the lower portion is larger than that of the through hole formed in the upper portion, and the area of the portion (lower region) where the through hole having a larger hole diameter is formed is smaller in the hole diameter. What is narrower than the area of the portion (upper region) where the through hole is formed is used as the upstream rectifying member.
Then, since the flow rate of the mixed liquid passing through the upper region can be suppressed, the flow rate of the mixed liquid in the cross section of the liquid passage 10h (that is, mixing in the cross section of the liquid passage 10h) at the position that has passed through the upstream rectifying member. The difference in the liquid flow rate) can be reduced.
In addition, since the ratio of the low specific gravity liquid that passes through the lower portion of the upstream rectifying member can be increased compared to the case where all the through holes having the same hole diameter are formed in the upstream rectifying member, the upstream rectifying member and the downstream rectifying member The low specific gravity liquid rises to a certain extent between the two rectifying members, so that the mixing of the low specific gravity liquid and the settled liquid in the mixed liquid proceeds between the two rectifying members. The difference can be reduced.
Therefore, even when the amount of settled liquid is larger than that of the low specific gravity liquid, the difference in the state of the mixed liquid (flow velocity, mixing ratio, etc.) after passing through the downstream rectifying member is reduced in the cross section of the liquid passage 10h. be able to.
(沈降部材23の説明)
また、図1に示すように、下流側整流部材22と分離プレート10dとの間には、沈降部材23が設けられている。この沈降部材23には、本体部10の胴部11の方向に沿って、複数の貫通孔23hが形成されている。この複数の貫通孔23hは、その中心軸が水平となるように配設されており、その中心軸が互い平行となるように形成されている。
また、複数の貫通孔23hは、略正方形の断面形状を有しており、ほぼ全ての貫通孔23hが同一形状同一断面積を有するように形成されている。なお、図2(C)に示すように、沈降部材23と胴部11の内面とが接触する位置に形成されている貫通孔23hは、胴部11の内面形状に合う形状に形成される。
(Description of sedimentation member 23)
Further, as shown in FIG. 1, a sedimentation member 23 is provided between the downstream rectifying member 22 and the separation plate 10d. A plurality of through holes 23 h are formed in the sedimentation member 23 along the direction of the body 11 of the main body 10. The plurality of through holes 23h are arranged such that their central axes are horizontal, and are formed so that their central axes are parallel to each other.
The plurality of through holes 23h have a substantially square cross-sectional shape, and almost all the through holes 23h have the same shape and the same cross-sectional area. As shown in FIG. 2C, the through hole 23 h formed at a position where the settling member 23 and the inner surface of the body portion 11 are in contact with each other is formed in a shape that matches the inner surface shape of the body portion 11.
沈降部材23が以上のごとき構成であるから、液体通路10hにおいて沈降部材23が設けられている領域では、混合液体を沈降部材23の複数の貫通孔23h内に流すことができる。
複数本の貫通孔23hに流入した混合液体は、貫通孔23h内を通過する際に、沈降液体と低比重液体とに分離される。具体的には、沈降部材23の貫通孔23h内で沈降液体が沈降して、沈降した沈降液体は、貫通孔23hの内面と接触し付着して混合液体(つまり、低比重液体)から分離される。このとき、貫通孔23hはその断面積が小さい(上下方向の長さが短い)ので、沈降液体が貫通孔23hの内面と接触するまでの沈降距離が短くなり、沈降液体が貫通孔23hの内面と接触するまでの時間も短くなる。
したがって、上記のごとき沈降部材23を設けていれば、沈降液体と低比重液体を、迅速にかつ効率よく分離させることができる。
Since the sedimentation member 23 is configured as described above, the mixed liquid can flow into the plurality of through holes 23h of the sedimentation member 23 in the region where the sedimentation member 23 is provided in the liquid passage 10h.
The mixed liquid that has flowed into the plurality of through holes 23h is separated into a sedimented liquid and a low specific gravity liquid when passing through the through holes 23h. Specifically, the settled liquid settles in the through hole 23h of the settling member 23, and the settled settled liquid comes into contact with and adheres to the inner surface of the through hole 23h and is separated from the mixed liquid (that is, low specific gravity liquid). The At this time, since the through-hole 23h has a small cross-sectional area (short in the vertical direction), the settling distance until the settled liquid comes into contact with the inner surface of the through-hole 23h is shortened, and the settled liquid becomes the inner surface of the through-hole 23h. The time until contact with is also shortened.
Therefore, if the settling member 23 is provided as described above, the settling liquid and the low specific gravity liquid can be separated quickly and efficiently.
そして、複数の貫通孔23hの内面に付着した沈降液体は、貫通孔23h内を流れる混合液体によって、沈降部材23の後端に向かって押し流され、沈降部材23の後端から排出される。すると、沈降部材23の貫通孔23h内で混合液体から分離された沈降液体を、沈降部材23の後端から排出して、液体通路10hの底部に沈降させることができる。
一方、沈降液体が分離した混合液体は、沈降液体とは逆に、複数の貫通孔23hから流出後上方に向かって流れて、連通通路10fを通って低比重液体排出空間内に流入する。
したがって、沈降部材23の後端から排出された後、液体通路10hの底部に向かって沈降する沈降液体と低比重液体の割合が多い混合液体とが再び混合することを防ぐことができる。
Then, the settled liquid adhering to the inner surfaces of the plurality of through holes 23h is pushed toward the rear end of the settling member 23 by the mixed liquid flowing in the through holes 23h, and is discharged from the rear end of the settling member 23. Then, the settled liquid separated from the mixed liquid in the through hole 23h of the settling member 23 can be discharged from the rear end of the settling member 23 and settled on the bottom of the liquid passage 10h.
On the other hand, the mixed liquid from which the settled liquid is separated flows from the plurality of through holes 23h upward after flowing out from the plurality of through holes 23h, and flows into the low specific gravity liquid discharge space through the communication passage 10f.
Therefore, it is possible to prevent the settled liquid that has been discharged from the rear end of the settling member 23 and settled toward the bottom of the liquid passage 10h from being mixed again with the mixed liquid having a high ratio of the low specific gravity liquid.
また、複数の貫通孔23hは、その断面形状および断面積がほぼ同じになるように形成されているので、混合液体が流れる際における貫通孔23h間の流動抵抗の差を小さくすることができる。すると、沈降部材23の複数の貫通孔23h内にほぼ均一に混合液体を流すことができる。つまり、沈降部材23の各貫通孔23hを通過する混合液体の流量をほぼ均一にすることができるから、全ての貫通孔23hを有効に液体分離に活用することができ、装置としての液体分離効率を高めることができる。
とくに、上述したような2枚の整流部材21,22を設けることによって、沈降部材23に供給される混合液体の状態が液体通路10hの断面内においてほぼ均一になっていれば、各貫通孔23hにおける液体分離効率を、どの貫通孔23hでもほぼ均一な状態に近づけることができるので、装置としての液体分離効率をより一層高めることができる。
Further, since the plurality of through holes 23h are formed so that their cross-sectional shapes and cross-sectional areas are substantially the same, the difference in flow resistance between the through holes 23h when the mixed liquid flows can be reduced. Then, the mixed liquid can be made to flow almost uniformly into the plurality of through holes 23h of the settling member 23. That is, since the flow rate of the mixed liquid passing through each through hole 23h of the settling member 23 can be made substantially uniform, all the through holes 23h can be effectively used for liquid separation, and the liquid separation efficiency as an apparatus Can be increased.
In particular, by providing the two rectifying members 21 and 22 as described above, if the state of the mixed liquid supplied to the settling member 23 is substantially uniform in the cross section of the liquid passage 10h, each through-hole 23h The liquid separation efficiency can be made almost uniform in any through-hole 23h, so that the liquid separation efficiency as an apparatus can be further increased.
さらに、沈降部材23は複数の貫通孔23hの中心軸が水平となるように配設されているので、混合液体が貫通孔23h内の沈降液体を押し流す抵抗が小さくなる。したがって、複数の貫通孔23h内から沈降液体を効率よく排出することができるし、一度分離した両液体が再混合することも防ぐことができる。 Furthermore, since the settling member 23 is disposed so that the central axes of the plurality of through holes 23h are horizontal, the resistance of the mixed liquid to push the settling liquid in the through holes 23h is reduced. Therefore, it is possible to efficiently discharge the precipitated liquid from the plurality of through holes 23h, and it is possible to prevent the two liquids once separated from being mixed again.
なお、沈降部材23は複数の貫通孔23hの中心軸が水平でなくてもよく、低比重液体に沈降液体が混合している場合であれば、上流側から下流側に向かって非上傾であればよい。例えば、上流側から下流側に向かって下傾していた場合には、混合液体によって貫通孔の内面上にある沈降液体を押し流す抵抗をより小さくできるので、貫通孔23h内から沈降液体を効率よく排出することができる。すると、沈降部材23の貫通孔23h内における液体分離効率を高めることができ、一度分離した両液体が再混合することも防ぐことができる。 The centering axis of the plurality of through holes 23h may not be horizontal in the sedimentation member 23. If the sedimentation liquid is mixed with the low specific gravity liquid, the sedimentation member 23 is not inclined upward from the upstream side to the downstream side. I just need it. For example, when the liquid is inclined downward from the upstream side toward the downstream side, the resistance of the settling liquid on the inner surface of the through hole to be pushed by the mixed liquid can be further reduced. Can be discharged. Then, the liquid separation efficiency in the through-hole 23h of the sedimentation member 23 can be increased, and remixing of both liquids once separated can also be prevented.
(沈降部材23の形成方法)
上述したような沈降部材23はどのような方法で形成してもよく、とくに限定されない。例えば、複数の管状部材を並べて形成すれば、沈降部材23を簡単に形成することができる。複数の管状部材を並べて形成した場合には、全て同じ径の管状部材を使用することによって、全ての貫通孔23hの断面形状および断面積が同じである沈降部材23を、簡単かつ確実に形成することができる。
(Method for forming sedimentation member 23)
The settling member 23 as described above may be formed by any method and is not particularly limited. For example, if a plurality of tubular members are formed side by side, the settling member 23 can be easily formed. When a plurality of tubular members are formed side by side, by using tubular members having the same diameter, the settling members 23 in which the cross-sectional shapes and the cross-sectional areas of all the through holes 23h are the same are easily and reliably formed. be able to.
(貫通孔の断面形状)
なお、沈降部材23に形成されている貫通孔23hの断面形状は、上述したような矩形に限られず、円形や三角形などでもよく、とくに限定されない。
例えば、油などの低比重液体に純度の高い水(沈降液体)が混合した混合液体の場合には、貫通孔23hの側面に水が接触しても水を混合液体から分離させることができる。このような混合液体を処理する場合には、貫通孔23hの断面を縦長な四角形にして側面積を大きくすれば、水を側面積に付着させて低比重液体から分離できるので、より効率よく水を低比重液体から分離することができる。
(Cross-sectional shape of the through hole)
The cross-sectional shape of the through-hole 23h formed in the settling member 23 is not limited to the rectangle as described above, and may be a circle or a triangle, and is not particularly limited.
For example, in the case of a mixed liquid in which high-purity water (precipitation liquid) is mixed with a low specific gravity liquid such as oil, the water can be separated from the mixed liquid even if water contacts the side surface of the through hole 23h. When processing such a mixed liquid, if the cross-section of the through-hole 23h is a vertically long rectangle and the side area is increased, water can adhere to the side area and be separated from the low specific gravity liquid. Can be separated from the low specific gravity liquid.
(流入通路14の説明)
また、図1に示すように、流入通路14は、胴部11の側面に配設された管状の部材であり、前記胴部11の前端部において2枚の整流部材21,22よりも前端鏡板12側に配設されている。
この流入通路14の先端は閉じられており、その先端部側面に供給口14aが設けられている。つまり、流入通路14の基端から供給された混合液体は、先端部側面に設けられた供給口14aから胴部11内に供給されるようになっている。
しかも、供給口14aは、前端鏡板12側の側面に設けられており、供給口14aから液体通路10h内に供給される混合液体の流動方向が胴部11の軸方向と略平行となるように形成されている。
(Description of inflow passage 14)
Further, as shown in FIG. 1, the inflow passage 14 is a tubular member disposed on the side surface of the body portion 11, and the front end end plate of the front end portion of the body portion 11 is more than the two rectifying members 21 and 22. It is arranged on the 12 side.
The front end of the inflow passage 14 is closed, and a supply port 14a is provided on the side surface of the front end portion. That is, the mixed liquid supplied from the proximal end of the inflow passage 14 is supplied into the body portion 11 from the supply port 14a provided on the side surface of the distal end portion.
In addition, the supply port 14a is provided on the side surface on the front end panel 12 side so that the flow direction of the mixed liquid supplied from the supply port 14a into the liquid passage 10h is substantially parallel to the axial direction of the body portion 11. Is formed.
流入通路14が上記のごとき構造であるので、流入通路14の供給口14aから供給された混合液体は、胴部11内において混合液体が流れる方向(図1では左から右、以下、主方向という)と逆向きに流れて、前端鏡板12の内面に衝突する。すると、前端鏡板12の内面に衝突した混合液体は、一旦前端鏡板12の内面近傍で滞留した後、主方向に向かって流れるので、混合液体は、流入通路14の供給口14aから供給された状態に比べて低速の流れとなって胴部11内を整流部材21,22に向かって流れる。
しかも、混合液体を衝突させる前端鏡板12はその内面が略球面状になっているので、混合液体を前端鏡板12の内面に衝突させることによって、前端鏡板12の内面に沿った混合液体の流れが形成される。つまり、混合液体は、前端鏡板12の内面に沿った、位置による速度差の小さい略放射状の流れとなった後、主方向に向かって流れる。すると、混合液体の流れは、整流部材21,22に到達するまでに、胴部11の断面内において位置による流速の差が小さい流れとなる。
つまり、混合液体が整流部材21,22に到達するまでに、混合液体の流速を、胴部の断面内においてある程度位置による流速の差が小さい状態とすることができる。
Since the inflow passage 14 is structured as described above, the mixed liquid supplied from the supply port 14a of the inflow passage 14 flows in the direction in which the mixed liquid flows in the body 11 (from left to right in FIG. 1, hereinafter referred to as the main direction). ) In the opposite direction to collide with the inner surface of the front end panel 12. Then, the liquid mixture that has collided with the inner surface of the front end end plate 12 once stays in the vicinity of the inner surface of the front end end plate 12 and then flows in the main direction, so that the mixed liquid is supplied from the supply port 14a of the inflow passage 14. Compared to the above, the flow becomes a low speed and flows in the body portion 11 toward the rectifying members 21 and 22.
In addition, since the inner surface of the front end end plate 12 that collides with the mixed liquid has a substantially spherical shape, the mixed liquid flows along the inner surface of the front end end plate 12 by causing the mixed liquid to collide with the inner surface of the front end end plate 12. It is formed. That is, the mixed liquid flows in the main direction along the inner surface of the front end panel 12 after becoming a substantially radial flow with a small speed difference depending on the position. Then, the flow of the mixed liquid becomes a flow with a small difference in flow velocity depending on the position in the cross section of the body portion 11 before reaching the flow regulating members 21 and 22.
That is, by the time the mixed liquid reaches the flow regulating members 21, 22, the flow rate of the mixed liquid can be set to a state in which the difference in flow rate depending on the position is small to some extent within the cross section of the body portion.
なお、流入通路14の側面において、供給口14aを形成する位置はとくに限定されないが、供給口14aは、胴部11内に溜まっている沈降液体の自由表面FSの高さに形成されていることが好ましい。かかる位置に流入通路14の供給口14aが配置されていれば、流入通路14の供給口14aから胴部11内に混合液体を供給したときに、供給された混合液体による胴部11内に溜まっている沈降液体の攪拌が生じることを抑えることができる。すると、胴部11内に溜まっている沈降液体が再び液滴となって低比重液体に再混合(低比重液体に再分散)することを抑えることができるから、胴部11内に溜まっている沈降液体と低比重液体とが再混合した場合に生じる、装置による液体分離効率が低下することを抑制することができる。 The position where the supply port 14a is formed on the side surface of the inflow passage 14 is not particularly limited, but the supply port 14a is formed at the height of the free surface FS of the settled liquid accumulated in the body portion 11. Is preferred. If the supply port 14a of the inflow passage 14 is disposed at such a position, when the mixed liquid is supplied into the body portion 11 from the supply port 14a of the inflow passage 14, the liquid mixture is accumulated in the body portion 11 due to the supplied mixed liquid. It is possible to suppress the stirring of the settled liquid being generated. As a result, it is possible to prevent the settled liquid collected in the body 11 from becoming droplets again and remixing into the low specific gravity liquid (redispersion into the low specific gravity liquid). It can suppress that the liquid separation efficiency by an apparatus which arises when a sedimentation liquid and a low specific gravity liquid remix is reduced.
なお、供給口14aを自由表面FSの高さに形成しても、供給口14aから胴部11に供給された混合液体の一部は、前端鏡板12の内面と衝突することにより胴部11内に溜まっている沈降液体に流入する現象は生じる。しかし、胴部11内に溜まっている沈降液体に流入する混合流体の量は少なく、その速度も小さいので、流入した混合液体によって沈降液体が撹拌される状況はほとんど生じない。
また、胴部11の底部には沈降液体が溜まっているので、混合液体は、ほとんどが沈降液体の自由界面FSよりも上方の空間内で流動する。したがって、以下では、「胴部11内において沈降液体の自由界面FSよりも上方の空間」を「液体通路10h」で示し、「胴部11内において沈降液体の自由界面FSよりも上方の空間の断面」を「液体通路10hの断面」示すこととする。
Even if the supply port 14a is formed at the height of the free surface FS, a part of the mixed liquid supplied from the supply port 14a to the barrel portion 11 collides with the inner surface of the front end end plate 12 so that the inside of the barrel portion 11 is reached. The phenomenon of flowing into the sedimented liquid that has accumulated in the tank occurs. However, since the amount of the mixed fluid flowing into the sedimented liquid accumulated in the body portion 11 is small and the speed thereof is small, the situation where the sedimented liquid is stirred by the mixed liquid that has flowed in hardly occurs.
Further, since the settled liquid is accumulated at the bottom of the body portion 11, most of the mixed liquid flows in the space above the free interface FS of the settled liquid. Therefore, hereinafter, “the space above the free interface FS of the settled liquid in the body portion 11” is indicated by “liquid passage 10 h”, and “the space above the free interface FS of the settled liquid in the body portion 11”. “Cross section” is indicated as “cross section of liquid passage 10h”.
(分離器1による混合液体の分離処理)
つぎに、本実施形態の分離器1による混合液体の分離処理について説明する。
まず、処理される混合液体は、流入通路14から本体部10の胴部11内に供給される。すると、混合液体は、主方向と逆方向に向かって流れて前端鏡板12の内面に衝突し、前端鏡板12の内面に沿った略放射状の流れとなった後、主方向に向かって流れる。つまり、混合液体は、一端前端鏡板12に向かって流れ、その後反転して、前端鏡板12から整流部材21,22に向かって流れる。そして、前端鏡板12から上流側整流部材21まで流れる間に、混合液体は、液体通路10hの断面内においてほぼ均一な流速を有する流れとなる。
(Separation of mixed liquid by separator 1)
Next, the separation process of the mixed liquid by the separator 1 of the present embodiment will be described.
First, the mixed liquid to be processed is supplied from the inflow passage 14 into the body 11 of the main body 10. Then, the mixed liquid flows in a direction opposite to the main direction and collides with the inner surface of the front end end plate 12, becomes a substantially radial flow along the inner surface of the front end end plate 12, and then flows in the main direction. That is, the mixed liquid flows toward the front end end plate 12 at one end, then reverses, and flows from the front end end plate 12 toward the rectifying members 21 and 22. Then, while flowing from the front end end plate 12 to the upstream side rectifying member 21, the mixed liquid becomes a flow having a substantially uniform flow velocity in the cross section of the liquid passage 10h.
上流側整流部材21に到達すると、混合液体は、上流側整流部材21の貫通孔を通過する。混合液体は、低比重流体に沈降液体が分散しているので、上流側整流部材21の下部領域21Bを流れようとする混合液体の流速が速くなる。
一方、上部領域21Aに形成されている貫通孔21aが下部領域21Bに形成されている貫通孔21bに比べて大きくなっているので、上流側整流部材21の下部は上部に比べて混合液体が通過する際の抵抗が大きい。
したがって、下部領域21Bを通過する混合液体の流速を抑えることができるので、上流側整流部材21を通過後の混合流体は、液体通路10hの断面内における流速の差が小さくなる。
When reaching the upstream rectifying member 21, the mixed liquid passes through the through hole of the upstream rectifying member 21. In the mixed liquid, since the settled liquid is dispersed in the low specific gravity fluid, the flow rate of the mixed liquid that is going to flow through the lower region 21B of the upstream rectifying member 21 is increased.
On the other hand, since the through hole 21a formed in the upper region 21A is larger than the through hole 21b formed in the lower region 21B, the mixed liquid passes through the lower part of the upstream rectifying member 21 as compared with the upper part. The resistance when doing
Therefore, since the flow rate of the mixed liquid passing through the lower region 21B can be suppressed, the flow rate difference in the cross section of the liquid passage 10h is reduced in the mixed fluid after passing through the upstream rectifying member 21.
しかも、下部領域21Bを通過する混合液体の流速を抑えることによって、上流側整流部材21の下部領域21Bを通過しやすい沈降液体を比較的多く上部領域21Aに通過させることができる。すると、上流側整流部材21を通過した混合液体が下流側整流部材22まで流れる間に、上部領域21Aを通過した沈降液体がある程度沈降するので、上流側整流部材21と下流側整流部材22との間で、混合液体中の低比重液体と沈降液体の混合が進み、液体通路10hの断面内における混合液体の混合割合の差も小さくなる。 In addition, by suppressing the flow rate of the mixed liquid passing through the lower region 21B, a relatively large amount of settled liquid that easily passes through the lower region 21B of the upstream rectifying member 21 can be passed through the upper region 21A. Then, while the mixed liquid that has passed through the upstream rectifying member 21 flows to the downstream rectifying member 22, the settled liquid that has passed through the upper region 21 </ b> A sinks to some extent. In the meantime, the mixing of the low specific gravity liquid and the sedimented liquid in the mixed liquid proceeds, and the difference in the mixing ratio of the mixed liquid in the cross section of the liquid passage 10h is also reduced.
そして、上流側整流部材21を通過後の混合流体は、均一な貫通孔22hが形成された下流側整流部材22を通過することによって、液体通路10hの断面内における流速がさらに均一化される。 Then, the mixed fluid after passing through the upstream rectifying member 21 passes through the downstream rectifying member 22 in which the uniform through hole 22h is formed, so that the flow velocity in the cross section of the liquid passage 10h is further uniformized.
下流側整流部材22を通過した混合液体、つまり、液体通路10hの断面内における流速および混合割合の差が小さくなった混合流体は、沈降部材23が設けられている領域を通過する。このとき、沈降部材23の貫通孔23h内をその前端から後端に向かって流れる間に、混合液体中の沈降液体は沈降して、貫通孔23hの内底面に接触し付着するので、混合液体から分離される。つまり、貫通孔23hの内において、沈降液体と低比重液体とが分離される。 The mixed liquid that has passed through the downstream rectifying member 22, that is, the mixed fluid in which the difference between the flow velocity and the mixing ratio in the cross section of the liquid passage 10 h has passed through the region where the settling member 23 is provided. At this time, while flowing in the through hole 23h of the sedimentation member 23 from the front end toward the rear end, the sedimented liquid in the mixed liquid settles and contacts and adheres to the inner bottom surface of the through hole 23h. Separated from. That is, the sedimented liquid and the low specific gravity liquid are separated in the through hole 23h.
かかる沈降液体と低比重液体の分離は、混合液体が貫通孔23h内を通過している間に進行し、混合液体が貫通孔23hの後端に向かって流れていくにつれ、低比重液体に分散している沈降液体の割合が徐々に減少していく。すると、貫通孔23hの後端から排出されるときには、低比重液体に分散している沈降液体の割合が低い状態となり、混合液体は、低比重液体と沈降液体にほぼ完全に分離される。 The separation of the settled liquid and the low specific gravity liquid proceeds while the mixed liquid passes through the through hole 23h, and disperses into the low specific gravity liquid as the mixed liquid flows toward the rear end of the through hole 23h. The ratio of settled liquid gradually decreases. Then, when discharged from the rear end of the through hole 23h, the ratio of the sedimented liquid dispersed in the low specific gravity liquid becomes low, and the mixed liquid is almost completely separated into the low specific gravity liquid and the sedimented liquid.
そして、低比重液体が分離プレート10dに到達すると、低比重液体は連通通路10fを通って低比重液体排出空間内に流入し、低比重液体排出通路11bから排出される。 When the low specific gravity liquid reaches the separation plate 10d, the low specific gravity liquid flows into the low specific gravity liquid discharge space through the communication passage 10f and is discharged from the low specific gravity liquid discharge passage 11b.
一方、沈降した沈降液体は、液体通路10hの底部に沈降して溜まり、沈降液体排出通路11aを通して外部に排出される。そして、溜まっている沈降液体を沈降液体排出通路11aから排出する際に、沈降液体が所定の量以上溜まっていれば、低比重液体が沈降液体と再混合したり、低比重液体が沈降液体とともに沈降液体排出通路11aから流出したりすることを防止することができる。 On the other hand, the settled sedimented liquid settles and accumulates at the bottom of the liquid passage 10h and is discharged to the outside through the sedimented liquid discharge passage 11a. When the sedimented liquid that has accumulated is discharged from the sedimented liquid discharge passage 11a, if the sedimented liquid is accumulated in a predetermined amount or more, the low specific gravity liquid is remixed with the sedimented liquid, or the low specific gravity liquid is mixed with the sedimented liquid. It is possible to prevent the liquid from flowing out of the settled liquid discharge passage 11a.
以上のごとく、本実施形態の分離器1によれば、混合液体中の低比重液体と沈降液体とを効果的に分離して、低比重液体および沈降液体を分離して回収することができる。 As described above, according to the separator 1 of the present embodiment, the low specific gravity liquid and the sedimented liquid in the mixed liquid can be effectively separated, and the low specific gravity liquid and the sedimented liquid can be separated and recovered.
(流入通路14の他の例)
なお、上記例では、流入通路14が胴部11の側面に配設された管状の部材である場合を説明した。しかし、図3に示すように、前端鏡板12に、その軸方向が液体通路10hの軸方向と略平行、または、その軸方向と液体通路10hの軸方向との成す角度が小さくなるように管状部材を設け、この管状部材を流入通路としてもよい。
この場合には、上流側整流部材21の一部分に、穴が形成されていない領域(以下、衝突部LFという)を設けることが好ましい(図3(B))。具体的には、衝突部LFを、流入通路の軸方向の延長線と交差する位置であってその面積が流入通路の断面積よりも大きくなるように形成する。すると、外部から流入通路を通って流入する混合液体の大部分は上流側整流部材21の衝突部LFに衝突するので、上流側整流部材21および下流側整流部材22と干渉することなく沈降部材23まで到達する混合液体をなくすことができる。したがって、上流側整流部材21および上流側整流部材22による、液体通路10hの断面内における位置による混合液体の混合割合および流速の差を小さくする機能を維持することができる。
(Other examples of the inflow passage 14)
In the above example, the case where the inflow passage 14 is a tubular member disposed on the side surface of the trunk portion 11 has been described. However, as shown in FIG. 3, the front end panel 12 is tubular so that its axial direction is substantially parallel to the axial direction of the liquid passage 10h, or the angle formed between the axial direction and the axial direction of the liquid passage 10h is small. A member may be provided, and this tubular member may be used as the inflow passage.
In this case, it is preferable to provide a region where the hole is not formed (hereinafter referred to as the collision portion LF) in a part of the upstream side rectifying member 21 (FIG. 3B). Specifically, the collision portion LF is formed so as to cross the axial extension line of the inflow passage and have an area larger than the cross-sectional area of the inflow passage. Then, most of the mixed liquid flowing in from the outside through the inflow passage collides with the collision portion LF of the upstream rectifying member 21, so that the settling member 23 does not interfere with the upstream rectifying member 21 and the downstream rectifying member 22. The mixed liquid reaching up to can be eliminated. Therefore, it is possible to maintain the function of reducing the difference in the mixing ratio and the flow rate of the mixed liquid depending on the position in the cross section of the liquid passage 10h by the upstream rectifying member 21 and the upstream rectifying member 22.
(沈降部材23の他の例)
なお、上記例では、沈降部材23が複数の貫通孔23hを有する場合を説明したが、沈降部材は、沈降部材の位置を通過する間に混合液体を低比重液体と沈降液体に分離できる構造を有していればよく、上記構造に限定されない。つまり、沈降部材の位置を通過するときに、混合液体の流速をある程度遅くすることができ、しかも、沈降液体の沈降距離を短くできる構造であればよい。
例えば、沈降部材として、複数の板状部材を間隔が開いた状態となるように上下方向に沿って並べて、沈降部材としてもよい。
(Another example of the sedimentation member 23)
In the above example, the case where the sedimentation member 23 has a plurality of through holes 23h has been described. However, the sedimentation member has a structure capable of separating the mixed liquid into a low specific gravity liquid and a sedimentation liquid while passing through the position of the sedimentation member. The structure is not limited to the above structure as long as it is included. That is, any structure may be used as long as the flow rate of the mixed liquid can be reduced to some extent when passing through the position of the settling member and the settling distance of the settling liquid can be shortened.
For example, as the sedimentation member, a plurality of plate-like members may be arranged along the vertical direction so as to be in a state of being spaced apart, and the sedimentation member may be used.
つぎに、比重の異なる2種類の液体を混合した混合液体を沈降型液液分離器によって分離する場合における液体通路内の混合液体の流れおよび混合液体中の水体積率を数値シミュレーションした。 Next, a numerical simulation was performed on the flow of the mixed liquid in the liquid passage and the water volume ratio in the mixed liquid in the case where the mixed liquid obtained by mixing two kinds of liquids having different specific gravities is separated by the sedimentation type liquid-liquid separator.
数値シミュレーションは、図1の構造を有する本発明の沈降型液液分離器(実施例)、図4の構造を有する沈降型液液分離器(比較例)について実施した。 The numerical simulation was performed for the sedimentation type liquid-liquid separator (Example) of the present invention having the structure of FIG. 1 and the sedimentation type liquid-liquid separator (Comparative Example) having the structure of FIG.
計算は、ANSYS CFXにより行った。計算条件は以下のとおりである。 Calculation was performed by ANSYS CFX. The calculation conditions are as follows.
(1)混合液体
混合液体:油(密度900kg/m3、粘度1.5cP)と水(密度970kg/m3、粘度0.4cP)の混合液体
混合液体の流量:70m3/h
流量比率: 水:油=1:2
水の粒子径:180μm
(1) Mixed liquid Mixed liquid: Flow rate of mixed liquid mixed liquid of oil (density 900 kg / m 3 , viscosity 1.5 cP) and water (density 970 kg / m 3 , viscosity 0.4 cP): 70 m 3 / h
Flow rate ratio: Water: Oil = 1: 2
Water particle size: 180μm
(2)本体部
胴部長さ(鏡板部分を含む):7600mm
前側鏡板内面から分離プレートまでの長さ:6300mm
内径:1800mm
分離プレートの高さ:1550mm
流入通路径:300mm
なお、側面開口(実施例のみ)は、流入通路の側面において、軸方向長さ200mm、半径方向(図1の左右方向)の長さ100mmの部分を除去して形成されている。
(2) Body length (including end plate): 7600mm
Length from the inner surface of the front end panel to the separation plate: 6300 mm
Inner diameter: 1800mm
Separation plate height: 1550mm
Inflow passage diameter: 300mm
The side opening (only the embodiment) is formed by removing a portion having an axial length of 200 mm and a radial direction (left and right direction in FIG. 1) of 100 mm on the side surface of the inflow passage.
(3)整流部材
(i)実施例
上流側整流部材:上部領域の開口率30%、下部領域の開口率10%
上部領域と下部領域の面積比: 上部領域:下部領域=1:5
下流側整流部材:開口率30%
(ii)比較例
整流部材:開口率30%
なお、計算では、整流部材として、図2および図4に示すような多孔板を設置するのではなく、上記開口率に対応する圧力損失を有する物体を設置して計算した。
(3) Rectification member
(i) Example upstream flow regulating member: 30% aperture ratio in the upper region, 10% aperture ratio in the lower region
Area ratio of upper region and lower region: Upper region: Lower region = 1: 5
Downstream flow straightening member: Opening ratio 30%
(ii) Comparative example rectifying member: 30% aperture ratio
In the calculation, calculation was performed by installing an object having a pressure loss corresponding to the opening ratio, instead of installing a porous plate as shown in FIGS. 2 and 4 as the rectifying member.
(4)沈降部材
(i)実施例
貫通孔断面形状:80mm×80mm
長さ:3000mm
(ii)比較例
長さ:3000mm
沈降部材間距離:400mm
(4) Settling member
(i) Example cross-sectional shape of through hole: 80 mm × 80 mm
Length: 3000mm
(ii) Comparative example length: 3000mm
Distance between sinking members: 400mm
図5および図6に数値シミュレーションの結果を示す。
なお、図5(B)および図6(B)では、色が濃い領域が水体積率の大きい領域を示している。
5 and 6 show the results of numerical simulation.
Note that in FIGS. 5B and 6B, the darker regions indicate the regions with a large water volume ratio.
図5(A)に示すように、比較例では、整流部材121の貫通孔121hの大きさが全て同じであるので、整流部材121の下流側では、胴部111の内面近傍から胴部111の中央に向かう循環流が生じていることが確認できる。この循環流の影響により、胴部111の中心近傍に位置する部分と周辺部とでは、沈降部材123の間を流れる液体の流速に差が生じている。 As shown in FIG. 5A, in the comparative example, since the size of the through holes 121h of the rectifying member 121 are all the same, on the downstream side of the rectifying member 121, from the vicinity of the inner surface of the trunk portion 111, It can be confirmed that there is a circulating flow toward the center. Due to the influence of this circulating flow, there is a difference in the flow velocity of the liquid flowing between the settling members 123 between the portion located near the center of the trunk 111 and the peripheral portion.
一方、図6(A)に示すように、実施例では、下流側整流部材22の下流側に循環流は発生していない。また、水が下方に沈降しながら流れるため、下流側整流部材22の下流側では、下部の流速がその他の部分に比べて速くなっているものの、下部以外の部分では、流速がほぼ同じで非常に遅くなっている。そして、沈降部材23内を通過するときにも、貫通孔23h間で通過する混合流体の流速の差は小さくなっている。 On the other hand, as shown in FIG. 6A, in the embodiment, no circulating flow is generated on the downstream side of the downstream rectifying member 22. In addition, since water flows while sinking downward, the flow velocity at the lower part is higher than that at the other parts on the downstream side of the downstream rectifying member 22, but the flow rate is almost the same in the other parts than the lower part. It's getting late. Even when passing through the settling member 23, the difference in the flow velocity of the mixed fluid passing between the through holes 23h is small.
以上のごとく、実施例の分離器では、沈降部材23内を流れる混合液体の流速を、断面内でほぼ均一にすることができていることが確認できる。 As described above, in the separator of the example, it can be confirmed that the flow velocity of the mixed liquid flowing in the settling member 23 can be made substantially uniform in the cross section.
また、図5(B)に示すように、比較例の分離器では、整流部材121の下流側では、水体積率が0.25から0.05まで緩やかにしており、水体積率が胴部111の下部から上部にかけて徐々に変化していることが確認できる。つまり、整流部材121の下流側では、胴部111内における水体積率の位置による差が大きくなっている。 Further, as shown in FIG. 5B, in the separator of the comparative example, on the downstream side of the rectifying member 121, the water volume ratio is moderated from 0.25 to 0.05, and the water volume ratio is It can be confirmed that it gradually changes toward the top. That is, on the downstream side of the rectifying member 121, the difference due to the position of the water volume ratio in the trunk portion 111 is large.
一方、図6(B)に示すように、実施例の分離器では、下流側整流部材22の下流側では、水体積率が0.25から0.05に狭い範囲で変化している。つまり、下流側整流部材22の下流側では、胴部11内における水体積率は、水が蓄積している部分の近傍を除けば、比較例の分離器に比べて、胴部11の断面内において位置による差が小さくなっていることが確認できる。 On the other hand, as shown in FIG. 6B, in the separator of the embodiment, the water volume ratio changes in a narrow range from 0.25 to 0.05 on the downstream side of the downstream rectifying member 22. That is, on the downstream side of the downstream rectifying member 22, the water volume ratio in the body portion 11 is within the cross section of the body portion 11 as compared with the separator of the comparative example, except in the vicinity of the portion where water is accumulated. It can be confirmed that the difference due to the position is small.
以上のごとく、実施例の分離器では、胴部11の断面内において、沈降部材23に供給される混合液体の混合割合の位置による差を小さくできていることが確認できる。 As described above, in the separator of the example, it can be confirmed that the difference due to the position of the mixing ratio of the mixed liquid supplied to the settling member 23 can be reduced in the cross section of the body portion 11.
そして、実施例の分離器と比較例の分離器の水回収率を比較すると、比較例の分離器では約0.86であるのに対し、実施例の分離器では約0.96となっている。つまり、実施例の分離器を採用することによって、大幅に水回収率を改善できること、言い換えれば、油と水を効率よく分離できることが確認できた。 When the water recovery rates of the separator of the example and the separator of the comparative example are compared, it is about 0.86 for the separator of the comparative example and about 0.96 for the separator of the example. That is, it was confirmed that by adopting the separator of the example, the water recovery rate can be greatly improved, in other words, oil and water can be separated efficiently.
本発明の沈降型液液分離器は、化学プラントや処理装置等における混合液体の分離に適しており、とくに、連続して分離処理を行う設備における分離器として適している。 The sedimentation type liquid-liquid separator of the present invention is suitable for separation of a mixed liquid in a chemical plant, a processing apparatus or the like, and is particularly suitable as a separator in equipment for performing a separation process continuously.
1 沈降型液液分離器
10 本体部
10h 液体通路
11 胴部
11a 低比重液体排出通路
11b 沈降液体排出通路
14 流入通路
21 上流側整流部材
22 下流側整流部材
23 沈降部材
23h 貫通孔
LF 衝突部
DESCRIPTION OF SYMBOLS 1 Sedimentation type liquid-liquid separator 10 Main part 10h Liquid passage 11 Body 11a Low specific gravity liquid discharge passage 11b Precipitation liquid discharge passage 14 Inflow passage 21 Upstream rectification member 22 Downstream rectification member 23 Settling member 23h Through hole LF Collision part
Claims (4)
内部に液体通路を有する中空な筒状の胴部と、該胴部の前端に設けられ該胴部の液体通路に対し混合液体を供給する流入通路と、前記胴部の後端に設けられ分離された液体を該胴部から排出する排出通路と、を備えた本体部と、
該本体部内において、前記混合液体における比重の大きい液体を沈降させる沈降部材と、
前記本体部内において、該沈降部材と前記流入通路との間に設けられた整流部材とからなり、
前記整流部材は、
孔径の異なる複数の貫通孔が形成された上流側整流部材と、
該上流側整流部材に対して前記沈降部材側に配置された、均一な孔径の貫通孔が形成された下流側整流部材とからなり、
前記上流側整流部材の貫通孔は、
その上部と下部とで形成されている貫通孔の大きさが異なる
ことを特徴とする沈降型液液分離器。 An apparatus for separating a mixed liquid obtained by mixing liquids having different specific gravities by forming an interface,
A hollow cylindrical body portion having a liquid passage inside, an inflow passage provided at the front end of the body portion for supplying a mixed liquid to the liquid passage of the body portion, and a separation provided at the rear end of the body portion A discharge passage for discharging the liquid that has been discharged from the body portion;
In the main body, a sedimentation member that sediments a liquid having a large specific gravity in the mixed liquid;
In the main body portion, the rectifying member provided between the settling member and the inflow passage,
The rectifying member is
An upstream rectifying member in which a plurality of through holes having different hole diameters are formed;
It is arranged on the settling member side with respect to the upstream rectifying member, and includes a downstream rectifying member in which a through hole having a uniform hole diameter is formed,
The through hole of the upstream rectifying member is
A sedimentation type liquid-liquid separator, characterized in that the sizes of the through holes formed in the upper part and the lower part are different.
前記胴部の前端内面に向けて、前記液体通路の軸方向に沿った方向から、前記混合液体を供給するように配置されている
ことを特徴とする請求項1記載の沈降型液液分離器。 The inflow passage is
The sedimentation type liquid-liquid separator according to claim 1, wherein the liquid mixture is arranged to be supplied from a direction along an axial direction of the liquid passage toward an inner surface of a front end of the body portion. .
前記流入通路の軸方向の延長線と交差する部位に、液体を透過させない衝突部を備えている
ことを特徴とする請求項1記載の沈降型液液分離器。 The upstream rectifying member is
2. The sedimentation type liquid-liquid separator according to claim 1, further comprising a collision portion that does not allow liquid to permeate at a portion intersecting with an axial extension line of the inflow passage.
前記胴部の液体通路内において、該液体通路内に沈降している前記比重の大きい液体の自由表面が形成されている位置に配設されている
ことを特徴とする請求項1、2または3記載の沈降型液液分離器。
The inlet of the inflow passage is
4. The liquid passage of the trunk portion is disposed at a position where a free surface of the liquid having a large specific gravity that has settled in the liquid passage is formed. The settling liquid-liquid separator as described.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035599A JP2012170892A (en) | 2011-02-22 | 2011-02-22 | Sedimentation type liquid/liquid separator |
CN201280009466.7A CN103370115B (en) | 2011-02-22 | 2012-02-21 | Sedimentation type liquid-liquid separator |
PCT/JP2012/054690 WO2012115261A1 (en) | 2011-02-22 | 2012-02-21 | Sedimentation type liquid-liquid separator |
TW101105782A TW201238633A (en) | 2011-02-22 | 2012-02-22 | Sedimentation type liquid-liquid separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035599A JP2012170892A (en) | 2011-02-22 | 2011-02-22 | Sedimentation type liquid/liquid separator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012170892A true JP2012170892A (en) | 2012-09-10 |
Family
ID=45894627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011035599A Withdrawn JP2012170892A (en) | 2011-02-22 | 2011-02-22 | Sedimentation type liquid/liquid separator |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2012170892A (en) |
CN (1) | CN103370115B (en) |
TW (1) | TW201238633A (en) |
WO (1) | WO2012115261A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107441772A (en) * | 2017-08-04 | 2017-12-08 | 怡然科技(深圳)有限公司 | Multi-cavity type oil-water separator |
JP6978341B2 (en) * | 2018-02-20 | 2021-12-08 | スタンレー電気株式会社 | Fluid sterilizer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL64165C (en) * | 1946-04-09 | |||
US3471401A (en) * | 1967-09-29 | 1969-10-07 | Chevron Res | Method of removing oil from water containing suspended solids |
US3674677A (en) * | 1970-06-02 | 1972-07-04 | Robert J Roberts | Electrically energized petroleum de-emulsifier |
SE509656C2 (en) * | 1997-04-15 | 1999-02-22 | Sweden Recycling Ab | Apparatus for separating particles from a liquid |
US5874008A (en) * | 1997-08-13 | 1999-02-23 | Hirs; Gene | Purification of machine tool coolant via tramp oil injection to effectuate coalescence of target contaminant tramp oil |
CN2397976Y (en) * | 1999-11-29 | 2000-09-27 | 陈润明 | Pressure type film separation oil water separator |
DE10333884B4 (en) * | 2003-07-22 | 2008-01-10 | Dentale Abfall-Entsorgungs-Gesellschaft Mbh | Apparatus for amalgam separation |
JP3681003B2 (en) | 2003-11-21 | 2005-08-10 | 財団法人北九州産業学術推進機構 | Suspension separation method, suspension separator, sedimentation channel module, suspension separator unit |
JP5548338B2 (en) | 2008-01-31 | 2014-07-16 | 住友化学株式会社 | Settling liquid-liquid separator |
-
2011
- 2011-02-22 JP JP2011035599A patent/JP2012170892A/en not_active Withdrawn
-
2012
- 2012-02-21 WO PCT/JP2012/054690 patent/WO2012115261A1/en active Application Filing
- 2012-02-21 CN CN201280009466.7A patent/CN103370115B/en active Active
- 2012-02-22 TW TW101105782A patent/TW201238633A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN103370115A (en) | 2013-10-23 |
TW201238633A (en) | 2012-10-01 |
CN103370115B (en) | 2015-07-01 |
WO2012115261A1 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4913058B2 (en) | Multi-fluid injection mixer | |
US7708453B2 (en) | Device for creating hydrodynamic cavitation in fluids | |
US9981206B2 (en) | Separator for oil well produced fluid, and separation device comprising the same | |
CN104685154B (en) | Multi-phase separation system | |
US20030173289A1 (en) | Self diluting feedwell including a vertical eduction mechanism and method of dilution employing same | |
JP6325722B2 (en) | Settling tank and inflow pipe unit | |
US20240316479A1 (en) | Method for separation of particles suspended in a fluid | |
JP2012170892A (en) | Sedimentation type liquid/liquid separator | |
JP5548338B2 (en) | Settling liquid-liquid separator | |
JP2015155092A (en) | Emulsion demulsification device and demulsification method | |
BR112014006878B1 (en) | FLOATING MACHINE, METHOD FOR OPERATING A FLOATING MACHINE AND USE OF A FLOATING MACHINE | |
US20160367918A1 (en) | Filter system | |
JP2012170891A (en) | Sedimentation type liquid/liquid separator | |
US12090453B2 (en) | Nozzle for liquid phase ejection | |
JP2012170893A (en) | Sedimentation type liquid/liquid separator | |
CN100540128C (en) | Multi fluid injection mixer | |
DE69318822T2 (en) | Vortex flocculation of floating solids from one liquid | |
JP5319927B2 (en) | Settling liquid-liquid separator | |
JP2005230608A (en) | Alkali washing liquid recycling apparatus and method for using it | |
JP2017080675A (en) | Precipitation tank and precipitation treatment method | |
KR101876536B1 (en) | Plate pack type separator for separating fluid in vessel | |
WO2019122028A1 (en) | Gas flotation water treatment system and flow straightener therefore | |
JP2009095310A (en) | Desalting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |