JP2009178026A - Dc power distribution system - Google Patents

Dc power distribution system Download PDF

Info

Publication number
JP2009178026A
JP2009178026A JP2008305436A JP2008305436A JP2009178026A JP 2009178026 A JP2009178026 A JP 2009178026A JP 2008305436 A JP2008305436 A JP 2008305436A JP 2008305436 A JP2008305436 A JP 2008305436A JP 2009178026 A JP2009178026 A JP 2009178026A
Authority
JP
Japan
Prior art keywords
power
distribution board
converter
distributed
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008305436A
Other languages
Japanese (ja)
Inventor
Hiroaki Koshin
博昭 小新
Takuya Kagawa
卓也 香川
Tsunehiro Kitamura
常弘 北村
Masataka Kanda
雅隆 神田
Takeshi Inoue
健 井上
Masato Kasaya
正人 傘谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008305436A priority Critical patent/JP2009178026A/en
Publication of JP2009178026A publication Critical patent/JP2009178026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Distribution Board (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC power distribution system capable of distributing DC power having a desired voltage level to a number of sites while extending a wiring distance, and informing about a power distribution board (main power distribution board or distributed power distribution board) in which an abnormal current is applied. <P>SOLUTION: The DC power distribution system includes: a main distribution board MPB containing an AC/DC conversion device 3 for converting AC power supplied from an AC power system AC into DC power; and a plurality of distributed distribution board SPB1-SPB 4 containing a DC/DC conversion device 10 for converting the DC power supplied from the main distribution board MPB into DC power of a desired level. In a notification section 3 of the main power distribution board MPB, when a communication signal is received by the signal receiving section 30, a signal determination control section 32 refers to a data table of a storage section 33 to acquire identification information about a main switch 11 which has detected an abnormal current from a transmission destination address of a communication signal and about a distributed power distribution board SPBn having the main switch 11 installed thereon, and causes a display section 31 to display the acquired identification information (e.g. a number of the distributed power distribution board SPBn in which an abnormal current has been detected or an installation site thereof). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、屋内に直流電力を配電する直流配電システムに関するものである。   The present invention relates to a DC power distribution system that distributes DC power indoors.

従来、屋内に直流電力を配電する直流配電システムとして特許文献1に記載されているものがあった。この従来システムは、分電盤と交流電源用コンセントを有し、交流電源用コンセントに直流出力電源端子が設けられ、分電盤内に変圧器と整流器が配設されて構成されており、変圧器によって100ボルト又は200ボルトの交流電圧を6ボルト、3ボルト、1.5ボルトの3種類の交流電圧に変換した後、これらの交流電圧を整流器で整流することによって6ボルト、3ボルト、1.5ボルトの3種類の直流電圧を得ていた。
実開平4−128024号公報
Conventionally, there has been one disclosed in Patent Document 1 as a DC distribution system that distributes DC power indoors. This conventional system has a distribution board and an AC power outlet, a DC output power terminal is provided in the AC power outlet, and a transformer and a rectifier are arranged in the distribution board. The AC voltage of 100 volts or 200 volts is converted into three types of AC voltages of 6 volts, 3 volts, and 1.5 volts by a rectifier, and then these AC voltages are rectified by a rectifier to obtain 6 volts, 3 volts, 1 Three types of DC voltages of 5 volts were obtained.
Japanese Utility Model Publication No. 4-128024

しかしながら、上記従来例では分電盤内で作成した3種類の直流電圧を直流出力電源端子へ配電しているため、特に低い電圧については配線抵抗による電圧降下の影響が大きくなってしまうことから配線長を長くできないという問題があった。   However, in the above conventional example, since three types of DC voltage created in the distribution board are distributed to the DC output power supply terminal, the influence of the voltage drop due to the wiring resistance becomes large especially at a low voltage. There was a problem that the length could not be increased.

そこで本出願人は、主分電盤から複数の分散分電盤へは相対的に高いレベルの直流電力を配電し、それぞれの分散分電盤において直流/直流変換装置により所望の電圧レベルの直流電力に変換して負荷に給電することで配線抵抗による電圧降下の影響を低減する直流配電システムを発明した。ここで、複数の分散分電盤を設けたとき、地絡電流(漏洩電流)や過電流(過負荷電流及び短絡電流)などの異常電流が流れた場合に何れの分電盤(主分電盤及び複数の分散分電盤)で異常電流が流れたかが使用者に判別しづらいという問題がある。   Therefore, the present applicant distributes a relatively high level of DC power from the main distribution board to the plurality of distributed distribution boards, and the DC / DC converters in each of the distributed distribution boards use a DC voltage of a desired voltage level. We have invented a direct current distribution system that reduces the influence of voltage drop due to wiring resistance by converting it into electric power and feeding it to the load. Here, when a plurality of distributed distribution boards are installed, if an abnormal current such as a ground fault current (leakage current) or overcurrent (overload current and short-circuit current) flows, which distribution board (main distribution board) There is a problem that it is difficult for the user to determine whether an abnormal current has flowed in the panel and a plurality of distributed distribution boards.

本発明は上記事情に鑑みて為されたものであり、その目的は、配線距離を伸ばしつつ所望の電圧レベルの直流電力を多箇所に配電することができるとともに異常電流が流れた分電盤(主分電盤又は分散分電盤)を知らせることができる直流配電システムを提供することにある。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to provide a distribution board that can distribute direct current power at a desired voltage level to multiple locations while extending the wiring distance and flows an abnormal current ( It is an object of the present invention to provide a DC power distribution system capable of informing a main distribution board or a distributed distribution board.

請求項1の発明は、上記目的を達成するために、交流の電力系統から供給される交流電力を直流電力に変換する交流/直流変換装置を収納した主分電盤と、主分電盤から供給される直流電力を所望レベルの直流電力に変換する直流/直流変換装置を収納した複数の分散分電盤とを備え、給電路に流れる漏洩電流を検出する漏洩電流検出手段が主分電盤又は分散分電盤の少なくとも何れか一方に設けられ、漏洩電流検出手段で漏洩電流が検出されたことを報知するとともに、漏洩電流を検出した漏洩電流検出手段が設けられている前記分電盤の識別情報を報知する報知手段を備えたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 includes a main distribution board that houses an AC / DC converter that converts AC power supplied from an AC power system into DC power, and a main distribution board. And a plurality of distributed distribution boards containing DC / DC converters for converting the supplied DC power to a desired level of DC power, and a leakage current detection means for detecting leakage current flowing in the power supply path is the main distribution board Or provided in at least one of the distributed distribution boards, notifying that leakage current has been detected by the leakage current detection means, and of the distribution board provided with leakage current detection means for detecting leakage current. An informing means for informing the identification information is provided.

請求項1の発明によれば、主分電盤から分散分電盤へは相対的に高いレベルの直流電力を配電し、それぞれの分散分電盤において直流/直流変換装置により互いに異なる電圧レベルの直流電力に変換して負荷に給電することで配線抵抗による電圧降下の影響を低減し、配線距離を伸ばしつつ電圧レベルが異なる直流電力を多箇所に配電することができるとともに、地絡事故の発生並びに地絡事故が発生した分電盤(主分電盤又は分散分電盤)を報知手段で報知することで使用者に知らしめることができる。   According to the first aspect of the present invention, a relatively high level of DC power is distributed from the main distribution board to the distributed distribution board, and each of the distributed distribution boards has different voltage levels by the DC / DC converter. By converting to DC power and supplying power to the load, the influence of voltage drop due to wiring resistance can be reduced, and DC power with different voltage levels can be distributed to multiple locations while extending the wiring distance, and a ground fault occurs. In addition, it is possible to notify the user by notifying the distribution board (main distribution board or distributed distribution board) where the ground fault has occurred by the notification means.

請求項2の発明は、上記目的を達成するために、交流の電力系統から供給される交流電力を直流電力に変換する交流/直流変換装置を収納した主分電盤と、主分電盤から供給される直流電力を所望レベルの直流電力に変換する直流/直流変換装置を収納した複数の分散分電盤とを備え、給電路に流れる過電流を検出する過電流検出手段が主分電盤又は分散分電盤の少なくとも何れか一方に設けられ、過電流検出手段で過電流が検出されたことを報知するとともに、過電流を検出した過電流検出手段が設けられている前記分電盤の識別情報を報知する報知手段を備えたことを特徴とする。   In order to achieve the above object, the invention according to claim 2 includes a main distribution board that houses an AC / DC converter that converts AC power supplied from an AC power system into DC power, and a main distribution board. And a plurality of distributed distribution boards containing DC / DC converters for converting supplied DC power into DC power of a desired level, and an overcurrent detection means for detecting an overcurrent flowing through a power supply path is a main distribution board Or provided in at least one of the distributed distribution boards, notifying that the overcurrent has been detected by the overcurrent detection means, and providing the overcurrent detection means for detecting the overcurrent. An informing means for informing the identification information is provided.

請求項2の発明によれば、主分電盤から分散分電盤へは相対的に高いレベルの直流電力を配電し、それぞれの分散分電盤において直流/直流変換装置により互いに異なる電圧レベルの直流電力に変換して負荷に給電することで配線抵抗による電圧降下の影響を低減し、配線距離を伸ばしつつ電圧レベルが異なる直流電力を多箇所に配電することができるとともに、過電流が流れたこと並びに過電流の流れた分電盤(主分電盤又は分散分電盤)を報知手段で報知することで使用者に知らしめることができる。   According to the invention of claim 2, a relatively high level of DC power is distributed from the main distribution board to the distributed distribution board, and each of the distributed distribution boards has different voltage levels by the DC / DC converter. By converting to DC power and supplying power to the load, the influence of voltage drop due to wiring resistance was reduced, and DC power with different voltage levels could be distributed to multiple locations while extending the wiring distance, and overcurrent flowed In addition, it is possible to notify the user by notifying the distribution board (main distribution board or distributed distribution board) in which an overcurrent has passed by the notification means.

請求項3の発明は、請求項1又は2の発明において、前記報知手段が主分電盤に設けられたことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the notification means is provided in a main distribution board.

請求項4の発明は、請求項1〜3の何れか1項の発明において、複数の分散分電盤に収納された直流/直流変換装置が出力する直流電力の電圧レベルが互いに異なることを特徴とする。   The invention of claim 4 is the invention of any one of claims 1 to 3, wherein the voltage levels of the DC power output from the DC / DC converters housed in the plurality of distributed distribution boards are different from each other. And

請求項5の発明は、請求項1〜4の何れか1項の発明において、主分電盤又は分散分電盤の少なくとも何れか一方は、交流/直流変換装置又は直流/直流変換装置の高電位側の出力端子と接続された第1の導電部材と、交流/直流変換装置又は直流/直流変換装置の低電位側の出力端子と接続された第2の導電部材と、第1及び第2の導電部材の少なくとも一方に電気的に接続される1乃至複数の内器とを具備し、第2の導電部材に対して第1の導電部材と反対側に内器が配置されることを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein at least one of the main distribution board and the distributed distribution board is an AC / DC converter or a DC / DC converter. A first conductive member connected to the output terminal on the potential side, a second conductive member connected to the output terminal on the low potential side of the AC / DC converter or the DC / DC converter, and the first and second One or a plurality of internal units electrically connected to at least one of the conductive members, and the internal unit is disposed on the opposite side of the first conductive member with respect to the second conductive member. And

請求項5の発明によれば、分電盤(主分電盤又は分散分電盤)内に内器を配置する際に高電位側の充電部(第1の導電部材)に誤って触れる虞が少なくなる。   According to the fifth aspect of the present invention, when the internal unit is disposed in the distribution board (main distribution board or distributed distribution board), there is a risk of accidentally touching the high-potential side charging unit (first conductive member). Less.

請求項6の発明は、請求項5の発明において、交流/直流変換装置又は直流/直流変換装置の少なくとも何れか一方は、外部から前記分電盤内に引き込まれる情報配線が接続されるとともに当該情報配線と電気的に接続された情報配線用接続端子を有し、情報配線用接続端子は、低電位側の出力端子に対して高電位側の出力端子と反対側に設けられ、前記内器と接続されていることを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, at least one of the AC / DC converter and the DC / DC converter is connected to an information wiring drawn into the distribution board from outside. An information wiring connection terminal electrically connected to the information wiring, the information wiring connection terminal being provided on the opposite side of the output terminal on the high potential side with respect to the output terminal on the low potential side; It is characterized by being connected to.

請求項6の発明によれば、情報配線を介して通信する通信機器を内器として分電盤(主分電盤又は分散分電盤)内に配設することができる。   According to the sixth aspect of the present invention, the communication device that communicates via the information wiring can be disposed in the distribution board (main distribution board or distributed distribution board) as an internal unit.

請求項7の発明は、請求項5又は6の発明において、交流/直流変換装置又は直流/直流変換装置の少なくとも何れか一方は、複数の出力端子を有し、内器にもっとも近くに配置される一の出力端子に対する他の出力端子の電位差が内器から遠く配置される他の出力端子ほど大きくなることを特徴とする。   The invention of claim 7 is the invention of claim 5 or 6, wherein at least one of the AC / DC converter and the DC / DC converter has a plurality of output terminals and is arranged closest to the internal unit. The difference in potential of the other output terminal with respect to the one output terminal becomes larger as the other output terminal arranged farther from the inner unit.

請求項7の発明によれば、分電盤(主分電盤又は分散分電盤)内に内器を配設する作業の安全性が向上する。   According to invention of Claim 7, the safety | security of the operation | work which arrange | positions an internal unit in a distribution board (a main distribution board or a distributed distribution board) improves.

請求項8の発明は、請求項1〜7の何れか1項の発明において、主分電盤における交流/直流変換装置の出力側に、分散分電盤の直流/直流変換装置とともに直流電力が供給される負荷が接続されることを特徴とする。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein DC power is supplied to the output side of the AC / DC converter in the main distribution board together with the DC / DC converter in the distributed distribution board. A supplied load is connected.

請求項9の発明は、請求項1〜8の何れか1項の発明において、それぞれの直流/直流変換装置が出力する直流電力の電流レベルが互いに異なることを特徴とする。   The invention of claim 9 is the invention of any one of claims 1 to 8, characterized in that the current levels of the DC power output by the respective DC / DC converters are different from each other.

請求項9の発明によれば、定格電圧が同じであっても定格電流が異なる負荷にそれぞれ直流電力を供給でき、また、直流/直流変換装置の出力側に回路遮断器(開閉器)を設置する場合においては、回路遮断器における過電流保護のレベルを負荷毎の適したレベルに設定することができ、さらに、負荷の定格電流に合わせて効率が最大となるような直流/直流変換装置を選択することで省エネルギ化が図れる。   According to the invention of claim 9, even if the rated voltage is the same, DC power can be supplied to loads having different rated currents, and a circuit breaker (switch) is installed on the output side of the DC / DC converter. In this case, a DC / DC converter that can set the level of overcurrent protection in the circuit breaker to an appropriate level for each load, and maximizes the efficiency in accordance with the rated current of the load. Energy saving can be achieved by selecting.

本発明によれば、配線距離を伸ばしつつ所望の電圧レベルの直流電力を多箇所に配電することができるとともに異常電流が流れた分電盤(主分電盤又は分散分電盤)を知らせることができる。   According to the present invention, it is possible to distribute DC power at a desired voltage level to multiple locations while extending the wiring distance, and to notify a distribution board (main distribution board or distributed distribution board) in which an abnormal current flows. Can do.

以下、本発明を戸建て住宅に適用した実施形態について図面を参照しながら詳細に説明する。但し、本発明が適用可能な建物は戸建て住宅に限定されるものではなく、集合住宅の各住戸や事務所等にも適用可能である。   Hereinafter, an embodiment in which the present invention is applied to a detached house will be described in detail with reference to the drawings. However, the building to which the present invention is applicable is not limited to a detached house, and can be applied to each dwelling unit or office of a collective housing.

本実施形態の直流配電システムは、図1に示すように主開閉器1と当該主開閉器1を介して交流電力系統ACから供給される交流電力を直流電力に変換する交流/直流変換装置3を収納した主分電盤MPBと、主分電盤MPBから供給される直流電力を所望レベルの直流電力に変換する直流/直流変換装置10を収納した複数(図示例では4つ)の分散分電盤SPB1〜SPB4とを備え、分散分電盤SPB1〜SPB4から導出される直流供給線路Wdcを通して負荷である直流機器102に直流電力を給電している。   As shown in FIG. 1, the DC power distribution system of the present embodiment includes a main switch 1 and an AC / DC converter 3 that converts AC power supplied from the AC power system AC through the main switch 1 into DC power. And a plurality of (four in the illustrated example) distributed components containing a DC / DC converter 10 that converts DC power supplied from the main distribution panel MPB into DC power of a desired level. DC boards SPB1 to SPB4 are provided, and DC power is supplied to the DC device 102 which is a load through a DC supply line Wdc derived from the distributed distribution boards SPB1 to SPB4.

直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。   The DC supply line Wdc is used as a DC power supply path and also as a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices. This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.

直流供給線路Wdcは、後述するように交流/直流変換装置3を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下、「宅内網」という)を構築する主装置であり、宅内網において直流機器102が構築するサブシステムなどと通信を行う。尚、宅内サーバ116と交流/直流変換装置3とは情報配線(例えば、エンハンスト・カテゴリ5若しくはカテゴリ6のツイストペアケーブル)Lsによって接続されている。   The DC supply line Wdc is connected to the home server 116 via the AC / DC converter 3 as will be described later. The in-home server 116 is a main device for constructing a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem constructed by the DC device 102 in the home network. The in-home server 116 and the AC / DC converter 3 are connected by an information wiring (for example, an enhanced category 5 or category 6 twisted pair cable) Ls.

図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器102からなる情報機器システムK101、照明器具のような照明系の直流機器102からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器102からなるインターホンシステムK103、住宅用火災警報器(住警器)のような警報系の直流機器102からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。   In the example shown in the drawing, as an subsystem, an illumination system comprising an information equipment system K101 comprising an information-system DC device 102 such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment 102 such as a lighting fixture. K102, K105, intercom system K103 comprising a DC device 102 for handling visitors and monitoring intruders, etc., a residential alarm system K104 comprising an alarm DC device 102 such as a residential fire alarm (residential alarm), etc. There is. Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.

交流/直流変換装置3は従来周知のスイッチング電源装置からなるAC/DCコンバータと、AC/DCコンバータから出力される直流電圧に通信信号を重畳し且つ分離する通信信号重畳/分離回路とを具備し、その出力側に後述する協調制御部4を介して端子台5が接続されている。尚、主開閉器1と交流/直流変換装置3を繋ぐ電路(母線)には複数の分岐回路が設けられ、それぞれの分岐回路には分岐開閉器2が接続されており、分岐開閉器2を通して住宅H内に設置された交流機器に交流電力が給電される。   The AC / DC converter 3 includes an AC / DC converter composed of a conventionally known switching power supply device, and a communication signal superimposing / separating circuit that superimposes and separates a communication signal on a DC voltage output from the AC / DC converter. The terminal block 5 is connected to the output side via a cooperative control unit 4 described later. A plurality of branch circuits are provided on the electric circuit (bus line) connecting the main switch 1 and the AC / DC converter 3, and branch switches 2 are connected to the respective branch circuits. AC power is supplied to AC devices installed in the house H.

情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で家屋Hに先行配置(家屋Hの建築時に施工)される直流コンセント131に接続される直流機器102からなる情報機器システムK101が設けられる。   As the information equipment system K101, there is provided an information equipment system K101 composed of a DC equipment 102 connected to a DC outlet 131 arranged in advance in the house H (constructed when the house H is constructed) in the form of a wall outlet or a floor outlet.

照明システムK102、K105としては、家屋Hに先行配置される照明器具(直流機器102)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器102)からなる照明システムK105とが設けられる。引掛シーリング132には、家屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。   The lighting systems K102 and K105 include a lighting system K102 composed of a lighting device (DC device 102) arranged in advance in the house H and a lighting device (DC device 102) connected to a hook ceiling 132 arranged in advance on the ceiling. An illumination system K105 is provided. At the time of interior construction of the house H, the contractor attaches the lighting fixture to the hook ceiling 132, or the householder himself attaches the lighting fixture.

照明システムK102を構成する直流機器102である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。すなわち、スイッチ141は直流機器102とともに通信の機能を有している。また、スイッチ141の操作によらず、宅内網の別の直流機器102あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。   In addition to using an infrared remote control device, a control instruction for the lighting apparatus that is the DC device 102 constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc. That is, the switch 141 has a communication function together with the DC device 102. In addition, a control instruction may be given by a communication signal from another DC device 102 in the home network or the home server 116 regardless of the operation of the switch 141. The instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.

上述した直流コンセント131、引掛シーリング132には、任意の直流機器102を接続することができ、接続された直流機器102に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。   Since any DC device 102 can be connected to the DC outlet 131 and the hooking ceiling 132 described above and DC power is output to the connected DC device 102, the DC outlet 131 and the hooking ceiling 132 are distinguished below. When it is not necessary, it is called “DC outlet”.

これらの直流アウトレットは、直流機器102に直接設けた接触子(図示せず)または接続線を介して設けた接触子(図示せず)が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有している。すなわち、直流アウトレットは接触式で給電を行う。直流アウトレットに接続された直流機器102が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器102だけではなく直流アウトレットにも通信機能が設けられている。   These DC outlets have a plug-in connection port into which a contact (not shown) provided directly on the DC device 102 or a contact (not shown) provided via a connection line is inserted into the body. The contact receiver that directly contacts the contact inserted into the connection port is held by the container. That is, the direct current outlet supplies power in a contact manner. When the DC device 102 connected to the DC outlet has a communication function, a communication signal can be transmitted through the DC supply line Wdc. A communication function is provided not only in the DC device 102 but also in the DC outlet.

宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。   The home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet. When the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.

センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器102であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。   The service provided by the center server 200 includes a service that enables monitoring and control of equipment (including mainly the DC equipment 102 but also other equipment having a communication function) connected to the home network through the wide area network NT. is there. This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.

宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。   The in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information on equipment in the home network ( Here, it is assumed that an IP address is used).

宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。   The home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200. The center server 200 mediates between home devices and communication terminals on the wide area network NT.

通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。   When monitoring and controlling home devices from a communication terminal, monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.

また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。   Further, when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.

宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。   An important function among the communication functions with the home network in the home server 116 is the detection and management of devices constituting the home network. The home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play). The home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117. The display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117. The display device 117 may be provided separately from the home server 116.

宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。   The in-home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.

機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、たとえば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。   Each device holds the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116. By associating the linked operations for each device, for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.

ところで、本実施形態においては、商用電力系統ACから交流電力が供給されない期間(たとえば、商用電力系統ACの停電期間)に備えて二次電池162が設けられている。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。商用電力系統ACから直流電力を生成する交流/直流変換装置3を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示例において、太陽電池161、二次電池162、燃料電池163は出力電圧を制御する回路部を含み、二次電池162は放電だけではなく充電を制御する回路部も含んでいる。   By the way, in this embodiment, the secondary battery 162 is provided in preparation for the period (for example, power failure period of the commercial power system AC) in which AC power is not supplied from the commercial power system AC. It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power. The solar cell 161, the secondary battery 162, and the fuel cell 163 are distributed power sources with respect to the main power source including the AC / DC converter 3 that generates DC power from the commercial power system AC. In the illustrated example, the solar cell 161, the secondary battery 162, and the fuel cell 163 include a circuit unit that controls the output voltage, and the secondary battery 162 includes a circuit unit that controls charging as well as discharging.

分散電源のうち太陽電池161や燃料電池163は必ずしも設けなくてもよいが、二次電池162は設けるのが望ましい。二次電池162は主電源や他の分散電源により適時充電され、二次電池162の放電は、商用電力系統ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部4により行われる。すなわち、協調制御部4は主電源および分散電源から分散分電盤SPBnへの電力の配分を制御している。なお、太陽電池161、二次電池162、燃料電池163の出力を交流電力に変換し、交流/直流変換装置3の入力電力として用いる構成を採用してもよい。   Of the distributed power sources, the solar cell 161 and the fuel cell 163 are not necessarily provided, but the secondary battery 162 is preferably provided. The secondary battery 162 is charged in a timely manner by a main power supply or other distributed power supply, and the secondary battery 162 is discharged not only in a period in which power is not supplied from the commercial power system AC but also in a timely manner as necessary. The coordination control unit 4 performs charging / discharging of the secondary battery 162 and coordination between the main power source and the distributed power source. That is, the cooperative control unit 4 controls the distribution of power from the main power supply and the distributed power supply to the distributed distribution board SPBn. In addition, the structure which converts the output of the solar cell 161, the secondary battery 162, and the fuel cell 163 into alternating current power, and uses it as input power of the alternating current / direct current converter 3 may be employ | adopted.

直流機器102の駆動電圧(定格電圧)は1種類ではなく、例えば、48ボルト、24ボルト、12ボルト、6ボルトというように複数種類が存在する。一方、従来技術で説明したように低い電圧で配電すると配線抵抗による電圧降下の影響が大きくなってしまうから、主分電盤MPBから各分散分電盤SPBnに供給する直流電圧の電圧レベルはできるだけ高くすることが望ましい。そのために本実施形態では、交流/直流変換装置3から出力する直流電圧を相対的に高い値(例えば、100ボルト〜60ボルト)とし、端子台5で分岐された複数の直流分岐線路Lpを通して4つの分散分電盤SPBnに高電圧の直流電力を配電し、各分散分電盤SPBnに設けた直流/直流変換装置10において直流機器102に応じた互いに異なる電圧レベルの直流電力に変換している。例えば、情報機器システムK101に給電している分散分電盤SPB1の直流/直流変換装置10では12ボルトの直流電力に変換し、照明システムK102とインターホンシステムK103に給電している分散分電盤SPB2の直流/直流変換装置10では48ボルトの直流電力に変換し、住警器システムK104に給電している分散分電盤SPB3の直流/直流変換装置10では6ボルトの直流電力に変換し、照明システムK105に給電している分散分電盤SPB4の直流/直流変換装置10では48ボルトの直流電力に変換している。尚、交流/直流変換装置3から出力される電圧レベルと駆動電圧とが一致する直流機器102に対しては、分散分電盤SPBnを介さずに端子台5で分岐された直流分岐線路Lpを通して高電圧の直流電力を給電することも可能である。   The drive voltage (rated voltage) of the DC device 102 is not one type, and there are a plurality of types, for example, 48 volts, 24 volts, 12 volts, and 6 volts. On the other hand, as explained in the prior art, if the voltage is distributed at a low voltage, the influence of the voltage drop due to the wiring resistance becomes large. Therefore, the voltage level of the DC voltage supplied from the main distribution board MPB to each distributed distribution board SPBn is as much as possible. It is desirable to raise it. Therefore, in the present embodiment, the DC voltage output from the AC / DC converter 3 is set to a relatively high value (for example, 100 volts to 60 volts), and is passed through a plurality of DC branch lines Lp branched by the terminal block 5. High-voltage DC power is distributed to the two distributed distribution boards SPBn, and the DC / DC converter 10 provided in each distributed distribution board SPBn converts the DC power into different DC power levels corresponding to the DC devices 102. . For example, the DC / DC converter 10 of the distributed distribution board SPB1 that supplies power to the information equipment system K101 converts the DC power to 12 volts and supplies the illumination system K102 and the intercom system K103 to the distributed distribution board SPB2. The DC / DC converter 10 converts the power into 48 volt DC power, and the DC / DC converter 10 of the distributed distribution board SPB3 that feeds the residential alarm system K104 converts it into 6 volt DC power. The DC / DC converter 10 of the distributed distribution board SPB4 that supplies power to the system K105 converts the DC power to 48 volts. Note that the DC device 102 in which the voltage level output from the AC / DC converter 3 and the drive voltage coincide with each other through the DC branch line Lp branched by the terminal block 5 without passing through the distributed distribution board SPBn. It is also possible to supply high-voltage DC power.

而して、上述のように主分電盤MPBから分散分電盤SPB1〜SPB4へは相対的に高いレベルの直流電力を配電し、それぞれの分散分電盤SPB1〜SPB4において直流/直流変換装置10により所望レベルの直流電力に変換して負荷に給電することで配線抵抗による電圧降下の影響を低減することができ、その結果、配線距離を伸ばしつつ互いに電圧レベルが異なる直流電力を多箇所に配電することができる。   Thus, as described above, a relatively high level of DC power is distributed from the main distribution board MPB to the distributed distribution boards SPB1 to SPB4, and a DC / DC converter is provided in each of the distributed distribution boards SPB1 to SPB4. 10 can reduce the influence of the voltage drop due to the wiring resistance by converting the DC power to a desired level and supplying the load to the load. As a result, the DC power having different voltage levels can be increased at multiple locations while extending the wiring distance. Can distribute power.

分散分電盤SPBnにおいては、直流/直流変換装置10の出力側に主開閉器11が接続され、主開閉器11の二次側に接続された電路(母線)には分岐線を介して複数の分岐開閉器12が接続され、さらに、分岐開閉器12の二次側に直流供給線路Wdcが接続されている。主開閉器11あるいは主開閉器11と分岐開閉器12は直流供給線路Wdcが地絡したときに流れる地絡電流(漏洩電流)を検出して引き外し動作を行う漏電遮断器からなる。   In the distributed distribution board SPBn, a main switch 11 is connected to the output side of the DC / DC converter 10, and a plurality of electric circuits (buses) connected to the secondary side of the main switch 11 are connected via branch lines. The branch switch 12 is connected, and a DC supply line Wdc is connected to the secondary side of the branch switch 12. The main switch 11 or the main switch 11 and the branch switch 12 are constituted by an earth leakage circuit breaker that performs a tripping operation by detecting a ground fault current (leakage current) that flows when the DC supply line Wdc is grounded.

本実施形態における主開閉器11は、図2に示すように電路に挿入された主接点11aと、主接点11aを開閉する開閉機構11bと、過電流(過負荷電流及び短絡電流)及び地絡電流(漏洩電流)を検出する異常電流検出手段11dと、異常電流検出手段11dで異常電流(過電流又は地絡電流)が検出されたときに開閉機構11bを釈放して主接点11aを開放する引き外し部11cと、電路に印加される直流電圧に通信信号を重畳して送信する信号重畳部11eと、これらの構成要素を収納した絶縁性の容器(図示せず)とを備えている。但し、このような開閉機構11b並びに引き外し部11cは従来周知であるから詳細な構造についての図示並びに説明を省略する。また、異常電流検出手段11dは、例えば、電路に流れる電流を検出する電流センサ等で構成される。尚、分岐開閉器12についても主開閉器11とほぼ共通の構成を有しているから、図示並びに説明は省略する。   As shown in FIG. 2, the main switch 11 in the present embodiment includes a main contact 11a inserted in the electric circuit, an open / close mechanism 11b for opening / closing the main contact 11a, an overcurrent (overload current and short-circuit current), and a ground fault. An abnormal current detecting means 11d for detecting current (leakage current), and when the abnormal current (overcurrent or ground fault current) is detected by the abnormal current detecting means 11d, the switching mechanism 11b is released to open the main contact 11a. The trip part 11c, the signal superimposition part 11e which superimposes and transmits a communication signal on the DC voltage applied to an electric circuit, and the insulating container (not shown) which accommodated these components are provided. However, since such an opening / closing mechanism 11b and the tripping part 11c are well known in the art, illustration and description of a detailed structure are omitted. Further, the abnormal current detection unit 11d is configured by, for example, a current sensor that detects a current flowing in the electric circuit. The branch switch 12 also has a configuration that is substantially the same as that of the main switch 11, and therefore illustration and description thereof are omitted.

ここで、主開閉器11や分岐開閉器12だけでなく、交流/直流変換装置3、協調制御部4、直流/直流変換装置10、分散電源(太陽電池161、二次電池162、燃料電池163)にもそれぞれ直流分岐線路Lpを通して通信する通信機能が設けられており、主電源および分散電源や直流機器102を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器102に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。   Here, not only the main switch 11 and the branch switch 12, but also the AC / DC converter 3, the cooperative control unit 4, the DC / DC converter 10, the distributed power source (solar cell 161, secondary battery 162, fuel cell 163). ) Are each provided with a communication function for communicating through the DC branch line Lp, and can perform a cooperative operation to cope with a load state including the main power source, the distributed power source, and the DC device 102. The communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device 102.

本実施形態においては、主開閉器11が具備する異常電流検出手段11dで異常電流(過電流また地絡電流)が検出された場合に、信号重畳部11eから異常電流検出を通知するための通信信号が宅内サーバ116に送信され、主分電盤MPB内に設けられている報知部6に対して、宅内サーバ116から情報配線(図示せず)を通して当該通信信号が転送される。   In the present embodiment, when an abnormal current (overcurrent or ground fault current) is detected by the abnormal current detection means 11d provided in the main switch 11, communication for notifying abnormal signal detection from the signal superimposing unit 11e. The signal is transmitted to the home server 116, and the communication signal is transferred from the home server 116 to the notification unit 6 provided in the main distribution board MPB through information wiring (not shown).

主分電盤MPB内に設けられる報知部6は、図3に示すように情報配線を通して伝送される通信信号を受信する信号受信部60と、液晶ディスプレイや有機ELディスプレイなどの表示デバイスを有する表示部61と、信号受信部60で受信する通信信号に含まれる異常電流検出の情報に対応した表示を表示部61に行わせる信号判別制御部62と、各分散分電盤SPBnの主開閉器11に割り当てられたアドレスと各分散分電盤SPBnの識別情報(番号若しくは設置場所など)との対応関係(データテーブル)を記憶した記憶部63と、記憶部63に対して前記対応関係を設定するための設定部64とを具備している。そして、報知部6では、信号受信部60で通信信号を受信すると、信号判別制御部62が記憶部63のデータテーブルを参照して通信信号の送信元アドレスから異常電流を検出した主開閉器11、さらに当該主開閉器11が設置されている分散分電盤SPBnの識別情報を取得し、その識別情報(例えば、異常電流が検出された分散分電盤SPBnの番号や設置場所など)を表示部61に表示させる。従って、家人は報知部6の報知内容(表示部61で表示される識別情報)から異常電流が流れた分散分電盤SPBnを知ることができて迅速な対応が可能となる。   As shown in FIG. 3, the notification unit 6 provided in the main distribution board MPB includes a signal receiving unit 60 that receives a communication signal transmitted through information wiring, and a display having a display device such as a liquid crystal display or an organic EL display. Unit 61, signal discrimination control unit 62 for causing display unit 61 to perform display corresponding to abnormal current detection information included in the communication signal received by signal receiving unit 60, and main switch 11 of each distributed distribution board SPBn. The storage unit 63 that stores the correspondence (data table) between the address assigned to each of the distributed distribution boards SPBn and the identification information (number, installation location, etc.), and sets the correspondence to the storage unit 63. And a setting unit 64. In the notification unit 6, when the communication signal is received by the signal receiving unit 60, the signal switching control unit 62 refers to the data table in the storage unit 63 and detects the abnormal current from the transmission source address of the communication signal 11. Further, the identification information of the distributed distribution board SPBn in which the main switch 11 is installed is acquired, and the identification information (for example, the number of the distributed distribution board SPBn where the abnormal current is detected, the installation location, etc.) is displayed. This is displayed on the unit 61. Therefore, the householder can know the distributed distribution board SPBn in which the abnormal current has flowed from the notification content of the notification unit 6 (identification information displayed on the display unit 61), and can respond quickly.

尚、主分電盤MPBに収納されている主開閉器1あるいは主開閉器1と分岐開閉器2を、地絡電流(漏洩電流)又は過電流(過負荷電流及び短絡電流)などの異常電流を検出して引き外し動作を行う漏電遮断器(特に、分岐開閉器2に用いられるものは住宅用分電盤分岐用漏電遮断器と呼ばれる。)とし、主開閉器1又は何れかの分岐開閉器2が引き外し動作を行ったときに、主分電盤MPBで異常電流が流れたことを報知するようにしても構わない。   Note that the main switch 1 or the main switch 1 and the branch switch 2 housed in the main distribution board MPB are connected to an abnormal current such as a ground fault current (leakage current) or an overcurrent (overload current and short-circuit current). The earth leakage circuit breaker that detects and detects the trip (particularly, the one used for the branch switch 2 is called the earth leakage circuit breaker for the distribution board for houses), and the main switch 1 or any branch switch When the device 2 performs the tripping operation, it may be notified that an abnormal current flows in the main distribution board MPB.

ところで、主分電盤MPB(又は分散分電盤SPBn)においては、図4に示すように交流/直流変換装置3(若しくは直流/直流変換装置10)の高電位側(正極)の出力端子T1と接続された長尺板状の第1の導電部材7と、交流/直流変換装置3(若しくは直流/直流変換装置10)の低電位側(負極)の出力端子T2と接続された長尺板状の第2の導電部材8と、第1及び第2の導電部材7,8に電気的に接続される1乃至複数の内器Xとが収納され、第2の導電部材8に対して第1の導電部材7と反対側(図4における第2の導電部材8の下側)に導電部材7,8の長手方向に沿って内器Xが配置される空間(スペース)が設けられている。主分電盤MPB(又は分散分電盤SPBn)内に収納される内器Xとしては、直流電力で動作する直流機器が該当する。ここで、内器Xの配置スペースに対して第1の導電部材7が第2の導電部材8よりも離れた位置に配設されているため、主分電盤MPB(又は分散分電盤SPBn)内に内器Xを配設する際に高電位側の充電部(第1の導電部材7)に誤って触れる虞が少なくなる。   Incidentally, in the main distribution board MPB (or distributed distribution board SPBn), as shown in FIG. 4, the output terminal T1 on the high potential side (positive electrode) of the AC / DC converter 3 (or DC / DC converter 10). A long plate-like first conductive member 7 connected to the output terminal T2 connected to the output terminal T2 on the low potential side (negative electrode) of the AC / DC converter 3 (or DC / DC converter 10). A second conductive member 8 having a shape and one or more internal devices X electrically connected to the first and second conductive members 7 and 8 are accommodated. A space (space) in which the inner device X is disposed along the longitudinal direction of the conductive members 7 and 8 is provided on the side opposite to the first conductive member 7 (below the second conductive member 8 in FIG. 4). . The internal device X housed in the main distribution board MPB (or the distributed distribution board SPBn) corresponds to a DC device that operates with DC power. Here, since the first conductive member 7 is disposed at a position away from the second conductive member 8 with respect to the arrangement space of the internal unit X, the main distribution board MPB (or the distributed distribution board SPBn). ), The risk of accidentally touching the high-potential side charging unit (first conductive member 7) is reduced when the inner device X is disposed inside.

また、図4において内器Xの配置スペースに隣接する交流/直流変換装置3(若しくは直流/直流変換装置10)の端部には、外部から盤内に引き込まれた情報配線Lsと交流/直流変換装置3(若しくは直流/直流変換装置10)の内部で電気的に接続された情報配線用接続端子Tsが設けられており、内器Xとして収納されているネットワーク機器(例えば、ルータや無線LANアダプタなど)を宅内網と接続することができる。このような構成とすれば、盤内に引き込まれた情報配線Lsを、内器として盤内に収納されているネットワーク機器Xに直接接続する場合と比較して、盤内に情報配線Lsを引き回す手間が省けるという利点がある。尚、必要に応じて、ネットワーク機器と情報機器システムK101とが情報配線(ツイストペアケーブル)で接続される。   Also, in FIG. 4, at the end of the AC / DC converter 3 (or DC / DC converter 10) adjacent to the arrangement space of the internal unit X, the information wiring Ls drawn into the panel from the outside and the AC / DC A network device (for example, a router or a wireless LAN) provided as an internal unit X is provided with an information wiring connection terminal Ts electrically connected inside the conversion device 3 (or the DC / DC conversion device 10). Adapter etc.) can be connected to the home network. With such a configuration, the information wiring Ls drawn in the board is routed in the board as compared with the case where the information wiring Ls drawn in the board is directly connected to the network device X housed in the board as an internal unit. There is an advantage that labor can be saved. If necessary, the network device and the information device system K101 are connected by information wiring (twisted pair cable).

ところで、図5に示すように、低電位側の出力端子T2に対して高電位側の出力端子T1と反対側に第1の高電位側出力端子T1とは異なる電圧レベルの直流電圧を出力する第2の高電位側出力端子T3を交流/直流変換装置3(又は直流/直流変換装置10)に設ければ、必要に応じて異なる電圧レベルの内器を主分電盤MPB(又は分散分電盤SPBn)内に配設することができる。例えば、図6に示すように内器として複数(図示例では3つ)の分岐開閉器13を配設し、直流機器102と分散分電盤SPB1には同一の電圧レベル(第1の電圧レベル)の直流電力を供給し、分散分電盤SPB2,SPB3,SPB4には第1の電圧レベルと異なる第2の電圧レベルの直流電力を供給する構成とすることができる。   By the way, as shown in FIG. 5, a DC voltage having a voltage level different from that of the first high potential side output terminal T1 is output to the low potential side output terminal T2 on the opposite side to the high potential side output terminal T1. If the second high-potential side output terminal T3 is provided in the AC / DC converter 3 (or DC / DC converter 10), an internal device having a different voltage level may be provided as required in the main distribution board MPB (or the distributed component). It can be arranged in the electrical panel SPBn). For example, as shown in FIG. 6, a plurality (three in the illustrated example) of branch switches 13 are arranged as internal units, and the DC device 102 and the distributed distribution board SPB1 have the same voltage level (first voltage level). ), And DC power having a second voltage level different from the first voltage level may be supplied to the distributed distribution boards SPB2, SPB3, and SPB4.

このとき、内器にもっとも近く配置される一の出力端子(図5における出力端子T3)と他の出力端子(図5における出力端子T1,T2)との電位差が内器から遠く配置される他の出力端子ほど大きくなるようにすることが望ましい。例えば、交流/直流変換装置3(又は直流/直流変換装置10)の出力電圧がプラス24ボルトとマイナス24ボルトである場合、出力端子T2を基準(0ボルト)として出力端子T3をマイナス24ボルト、出力端子T1をプラス24ボルトとすれば、出力端子T3−T2間の電位差は24ボルトとなり、出力端子T3−T1間の電位差は48ボルトとなる。あるいは、交流/直流変換装置3(又は直流/直流変換装置10)の出力電圧がプラス24ボルトとプラス48ボルトである場合、出力端子T3を基準(0ボルト)として出力端子T2をプラス24ボルト、出力端子T1をプラス48ボルトとすれば、出力端子T3−T2間の電位差は24ボルトとなり、出力端子T3−T1間の電位差は48ボルトとなる。また、交流/直流変換装置3(又は直流/直流変換装置10)の出力電圧がプラス24ボルトとプラス300ボルトである場合、出力端子T3を基準(0ボルト)として出力端子T2をプラス24ボルト、出力端子T1をプラス300ボルトとすれば、出力端子T3−T2間の電位差は24ボルトとなり、出力端子T3−T1間の電位差は300ボルトとなる。あるいはまた、交流/直流変換装置3(直流/直流変換装置10)の出力電圧がプラス300ボルトとマイナス24ボルトである場合、出力端子T2を基準(0ボルト)として出力端子T3をマイナス24ボルト、出力端子T1をプラス300ボルトとすれば、出力端子T3−T2間の電位差は24ボルトとなり、出力端子T3−T1間の電位差は324ボルトとなる。   At this time, the potential difference between one output terminal (output terminal T3 in FIG. 5) and the other output terminals (output terminals T1 and T2 in FIG. 5) arranged closest to the inner unit is arranged far from the inner unit. It is desirable that the output terminal be larger. For example, when the output voltage of the AC / DC converter 3 (or DC / DC converter 10) is plus 24 volts and minus 24 volts, the output terminal T3 is minus 24 volts with the output terminal T2 as a reference (0 volts), If the output terminal T1 is set to plus 24 volts, the potential difference between the output terminals T3 and T2 is 24 volts, and the potential difference between the output terminals T3 and T1 is 48 volts. Alternatively, when the output voltage of the AC / DC converter 3 (or DC / DC converter 10) is plus 24 volts and plus 48 volts, the output terminal T2 is plus 24 volts with the output terminal T3 as a reference (0 volts), If the output terminal T1 is set to plus 48 volts, the potential difference between the output terminals T3 and T2 is 24 volts, and the potential difference between the output terminals T3 and T1 is 48 volts. When the output voltage of the AC / DC converter 3 (or DC / DC converter 10) is plus 24 volts and plus 300 volts, the output terminal T2 is plus 24 volts with the output terminal T3 as a reference (0 volts), If the output terminal T1 is set to plus 300 volts, the potential difference between the output terminals T3 and T2 is 24 volts, and the potential difference between the output terminals T3 and T1 is 300 volts. Alternatively, when the output voltage of the AC / DC converter 3 (DC / DC converter 10) is plus 300 volts and minus 24 volts, the output terminal T3 is minus 24 volts with the output terminal T2 as a reference (0 volts), If the output terminal T1 is set to plus 300 volts, the potential difference between the output terminals T3 and T2 is 24 volts, and the potential difference between the output terminals T3 and T1 is 324 volts.

而して、上述のように内器にもっとも近く配置される一の出力端子(図5における出力端子T3)と他の出力端子(図5における出力端子T1,T2)との電位差が内器から遠く配置される他の出力端子ほど大きくなるようにすれば、内器を設置する際に作業者が出力端子T3−T2に触れたとしても、出力端子T3−T2間の電位差が相対的に低く設定されているので、内器を設置する際の作業の安全性を向上することができる。尚、上述の説明では交流/直流変換装置3(又は直流/直流変換装置10)の出力電圧が2種類の場合について説明したが、3種類以上の場合においても同様の構成を取ることで作業の安全性が向上できる。   Thus, as described above, the potential difference between one output terminal (output terminal T3 in FIG. 5) and the other output terminals (output terminals T1 and T2 in FIG. 5) arranged closest to the internal unit is from the internal unit. If the other output terminals arranged farther are made larger, even if the operator touches the output terminals T3-T2 when installing the internal unit, the potential difference between the output terminals T3-T2 is relatively low. Since it is set, it is possible to improve the safety of work when installing the internal unit. In the above description, the case where there are two types of output voltages of the AC / DC converter 3 (or the DC / DC converter 10) has been described. Safety can be improved.

ところで、図1や図6に示すように情報機器システムK101,照明システムK102、インターホンシステムK103には同一の電圧レベル(第1の電圧レベル)の直流電力を供給し、住警器システムK104並びに照明システムK105には第1の電圧レベルと異なる第2の電圧レベルの直流電力を供給する構成において、それぞれのサブシステムK101〜K105における定格容量(定格電流)は異なっている場合が多いと考えられる。例えば、住警器システムK104と照明システムK105を比較すれば、一般に照明システムK105の方が定格電流は大きいと考えられる。そこで、それぞれの分散分電盤SPBnにおける直流/直流変換装置10の電流レベルを、直流供給線路Wdcを介して給電される各サブシステムK101〜K105の定格電流に応じた値とすることが望ましい。つまり、容量(定格電流)の異なる負荷に共通の直流供給線路Wdcから直流電力が供給される場合、回路遮断器(分岐開閉器12)の過電流保護レベルが大容量負荷の定格電流よりも高く設定されると小容量負荷の過負荷保護ができず、反対に過電流保護レベルが大容量負荷の定格電流よりも低く設定されると小容量負荷の過電流保護はできても回路遮断器が頻繁に直流供給線路Wdcを遮断してしまう虞があるが、各分散分電盤SPBn毎に直流/直流変換装置10の電流レベルを異ならせれば、直流/直流変換装置10の出力側に設置される回路遮断器(分岐開閉器12)における過電流保護のレベルを負荷(図示例では各サブシステムK101〜K105)毎の適したレベルに設定することができる。尚、直流/直流変換装置10の出力側に設けられている複数の分岐開閉器12に、それぞれ直流供給線路Wdcを介して給電する負荷の定格電流に対応した過電流保護レベルの回路遮断器を用いれば、直流/直流変換装置10の出力電流レベルを実質的に複数の直流供給線路Wdc毎に異ならせることができる。   By the way, as shown in FIG. 1 and FIG. 6, DC power of the same voltage level (first voltage level) is supplied to the information equipment system K101, the lighting system K102, and the intercom system K103, and the house alarm system K104 and the lighting are supplied. In the configuration in which DC power having a second voltage level different from the first voltage level is supplied to the system K105, the rated capacities (rated currents) of the respective subsystems K101 to K105 are often different. For example, if the residential alarm system K104 and the lighting system K105 are compared, it is generally considered that the lighting system K105 has a higher rated current. Therefore, it is desirable that the current level of the DC / DC converter 10 in each of the distributed distribution boards SPBn be a value corresponding to the rated current of each of the subsystems K101 to K105 fed via the DC supply line Wdc. That is, when DC power is supplied from a common DC supply line Wdc to loads having different capacities (rated currents), the overcurrent protection level of the circuit breaker (branch switch 12) is higher than the rated current of the large capacity load. If it is set, overload protection is not possible for small-capacity loads.On the other hand, if the overcurrent protection level is set lower than the rated current for large-capacity loads, the circuit breaker will not operate even if overcurrent protection is possible Although the DC supply line Wdc may be frequently interrupted, if the current level of the DC / DC converter 10 is different for each distributed distribution board SPBn, it is installed on the output side of the DC / DC converter 10. The level of overcurrent protection in the circuit breaker (branch switch 12) can be set to an appropriate level for each load (subsystems K101 to K105 in the illustrated example). A circuit breaker having an overcurrent protection level corresponding to the rated current of the load fed to each of the plurality of branch switches 12 provided on the output side of the DC / DC converter 10 via the DC supply line Wdc is provided. If used, the output current level of the DC / DC converter 10 can be made substantially different for each of the plurality of DC supply lines Wdc.

あるいは、それぞれの直流供給線路Wdcを通して電力供給を受けるサブシステムK101〜K105の定格電圧及び定格電流に対応した電圧レベル並びに電流レベルの直流電力を供給可能な複数の直流/直流変換装置10を分散分電盤SPBnに収納しても構わない。このように各直流供給線路Wdc毎に定格電流(電流レベル)を変えれば、負荷の定格電流に合わせて効率が最大となるような直流/直流変換装置10を選択することで省エネルギ化が図れるという利点がある。   Alternatively, a plurality of DC / DC converters 10 capable of supplying DC power at a voltage level and current level corresponding to the rated voltage and rated current of the subsystems K101 to K105 that receive power supply through each DC supply line Wdc are distributed. You may store in electrical board SPBn. Thus, if the rated current (current level) is changed for each DC supply line Wdc, energy saving can be achieved by selecting the DC / DC converter 10 that maximizes the efficiency in accordance with the rated current of the load. There is an advantage.

本発明の実施形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of the present invention. 同上における主開閉器を示すブロック図である。It is a block diagram which shows the main switch in the same as the above. 同上における報知部を示すブロック図である。It is a block diagram which shows the alerting | reporting part in the same as the above. 同上における主分電盤を示す一部省略した概略構成図である。It is the schematic block diagram which a part of which showed the main distribution board same as the above was abbreviate | omitted. 同上における他の主分電盤を示す一部省略した概略構成図である。It is the schematic block diagram which a part of which showed the other main distribution board same as the above was abbreviate | omitted. 同上の一部省略した他のシステム構成図である。It is the other system block diagram which abbreviate | omitted a part same as the above.

符号の説明Explanation of symbols

MPB 主分電盤
SPB1〜SPB4 分散分電盤
3 交流/直流変換装置
10 直流/直流変換装置
MPB main distribution board SPB1 to SPB4 Distributed distribution board 3 AC / DC converter 10 DC / DC converter

Claims (9)

交流の電力系統から供給される交流電力を直流電力に変換する交流/直流変換装置を収納した主分電盤と、主分電盤から供給される直流電力を所望レベルの直流電力に変換する直流/直流変換装置を収納した複数の分散分電盤とを備え、給電路に流れる漏洩電流を検出する漏洩電流検出手段が主分電盤又は分散分電盤の少なくとも何れか一方に設けられ、漏洩電流検出手段で漏洩電流が検出されたことを報知するとともに、漏洩電流を検出した漏洩電流検出手段が設けられている前記分電盤の識別情報を報知する報知手段を備えたことを特徴とする直流配電システム。   A main distribution board that houses an AC / DC converter that converts AC power supplied from an AC power system into DC power, and a DC that converts DC power supplied from the main distribution board to a desired level of DC power / A plurality of distributed distribution boards containing DC converters, and a leakage current detection means for detecting leakage current flowing in the power supply path is provided in at least one of the main distribution board and the distributed distribution board. In addition to notifying that the leakage current has been detected by the current detection means, it is provided with notification means for notifying the distribution board identification information provided with the leakage current detection means for detecting the leakage current. DC power distribution system. 交流の電力系統から供給される交流電力を直流電力に変換する交流/直流変換装置を収納した主分電盤と、主分電盤から供給される直流電力を所望レベルの直流電力に変換する直流/直流変換装置を収納した複数の分散分電盤とを備え、給電路に流れる過電流を検出する過電流検出手段が主分電盤又は分散分電盤の少なくとも何れか一方に設けられ、過電流検出手段で過電流が検出されたことを報知するとともに、過電流を検出した過電流検出手段が設けられている前記分電盤の識別情報を報知する報知手段を備えたことを特徴とする直流配電システム。   A main distribution board that houses an AC / DC converter that converts AC power supplied from an AC power system into DC power, and a DC that converts DC power supplied from the main distribution board to a desired level of DC power A plurality of distributed distribution boards containing DC converters, and overcurrent detection means for detecting overcurrent flowing through the power supply path is provided on at least one of the main distribution board and the distributed distribution board. In addition to notifying that the overcurrent has been detected by the current detection means, it is provided with notification means for notifying the distribution panel identification information provided with the overcurrent detection means for detecting the overcurrent. DC power distribution system. 前記報知手段が主分電盤に設けられたことを特徴とする請求項2又は3記載の直流配電システム。   4. The DC power distribution system according to claim 2, wherein the notification means is provided in a main distribution board. 複数の分散分電盤に収納された直流/直流変換装置が出力する直流電力の電圧レベルが互いに異なることを特徴とする請求項1〜3の何れか1項に記載の直流配電システム。   The DC power distribution system according to any one of claims 1 to 3, wherein voltage levels of DC power output from DC / DC converters housed in a plurality of distributed distribution boards are different from each other. 主分電盤又は分散分電盤の少なくとも何れか一方は、交流/直流変換装置又は直流/直流変換装置の高電位側の出力端子と接続された第1の導電部材と、交流/直流変換装置又は直流/直流変換装置の低電位側の出力端子と接続された第2の導電部材と、第1及び第2の導電部材の少なくとも一方に電気的に接続される1乃至複数の内器とを具備し、第2の導電部材に対して第1の導電部材と反対側に内器が配置されることを特徴とする請求項1〜4の何れか1項に記載の直流配電システム。   At least one of the main distribution board and the distributed distribution board includes an AC / DC converter, a first conductive member connected to an output terminal on the high potential side of the DC / DC converter, and an AC / DC converter. Alternatively, a second conductive member connected to the output terminal on the low potential side of the DC / DC converter and one or more internal units electrically connected to at least one of the first and second conductive members. 5. The DC power distribution system according to claim 1, wherein the internal unit is disposed on the opposite side of the first conductive member with respect to the second conductive member. 交流/直流変換装置又は直流/直流変換装置の少なくとも何れか一方は、外部から前記分電盤内に引き込まれる情報配線が接続されるとともに当該情報配線と電気的に接続された情報配線用接続端子を有し、情報配線用接続端子は、低電位側の出力端子に対して高電位側の出力端子と反対側に設けられ、前記内器と接続されていることを特徴とする請求項5記載の直流配電システム。   At least one of the AC / DC converter and the DC / DC converter is connected to an information wiring drawn into the distribution board from outside and connected to the information wiring electrically connected to the information wiring 6. The information wiring connection terminal is provided on a side opposite to the output terminal on the high potential side with respect to the output terminal on the low potential side, and is connected to the internal unit. DC power distribution system. 交流/直流変換装置又は直流/直流変換装置の少なくとも何れか一方は、複数の出力端子を有し、内器にもっとも近くに配置される一の出力端子に対する他の出力端子の電位差が内器から遠く配置される他の出力端子ほど大きくなることを特徴とする請求項5又は6記載の直流配電システム。   At least one of the AC / DC converter and the DC / DC converter has a plurality of output terminals, and the potential difference of the other output terminal with respect to one output terminal arranged closest to the inner unit is different from the inner unit. The DC power distribution system according to claim 5 or 6, wherein the output terminal is further increased as the output terminals are further distant from each other. 主分電盤における交流/直流変換装置の出力側に、分散分電盤の直流/直流変換装置とともに直流電力が供給される負荷が接続されることを特徴とする請求項1〜7の何れか1項に記載の直流配電システム。   8. A load to which DC power is supplied together with the DC / DC converter of the distributed distribution board is connected to the output side of the AC / DC converter of the main distribution board. The DC power distribution system according to item 1. それぞれの直流/直流変換装置が出力する直流電力の電流レベルが互いに異なることを特徴とする請求項1〜8の何れか1項に記載の直流配電システム。   The DC power distribution system according to any one of claims 1 to 8, wherein current levels of DC power output from the DC / DC converters are different from each other.
JP2008305436A 2007-12-25 2008-11-28 Dc power distribution system Pending JP2009178026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305436A JP2009178026A (en) 2007-12-25 2008-11-28 Dc power distribution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007332891 2007-12-25
JP2008305436A JP2009178026A (en) 2007-12-25 2008-11-28 Dc power distribution system

Publications (1)

Publication Number Publication Date
JP2009178026A true JP2009178026A (en) 2009-08-06

Family

ID=40801213

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2008305435A Pending JP2009178025A (en) 2007-12-25 2008-11-28 Dc power distribution system
JP2008305436A Pending JP2009178026A (en) 2007-12-25 2008-11-28 Dc power distribution system
JP2008305441A Pending JP2009178031A (en) 2007-12-25 2008-11-28 Dc power distribution system
JP2008305437A Pending JP2009178027A (en) 2007-12-25 2008-11-28 Dc power distribution system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008305435A Pending JP2009178025A (en) 2007-12-25 2008-11-28 Dc power distribution system

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008305441A Pending JP2009178031A (en) 2007-12-25 2008-11-28 Dc power distribution system
JP2008305437A Pending JP2009178027A (en) 2007-12-25 2008-11-28 Dc power distribution system

Country Status (2)

Country Link
JP (4) JP2009178025A (en)
WO (1) WO2009081912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111846A (en) * 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 Setting device, power distribution board, and measurement system
KR101964893B1 (en) * 2019-03-04 2019-04-05 주식회사 이린 Electric Leakage Detecting System

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010393A (en) 2009-06-23 2011-01-13 Panasonic Electric Works Co Ltd Apparatus for protecting direct current branch circuit
JP5513819B2 (en) 2009-09-15 2014-06-04 パナソニック株式会社 Power distribution system
JP2011066967A (en) * 2009-09-15 2011-03-31 Panasonic Electric Works Co Ltd Power distribution system
JP5330941B2 (en) 2009-09-15 2013-10-30 パナソニック株式会社 Equipment control system
JP5838318B2 (en) * 2009-11-06 2016-01-06 パナソニックIpマネジメント株式会社 Power distribution system
JP2011101528A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Home distribution board
WO2011092743A1 (en) * 2010-01-29 2011-08-04 Hitachi, Ltd. Storage system
JP2012217255A (en) * 2011-03-31 2012-11-08 Panasonic Corp Power distribution system
CN106451401B (en) * 2016-05-16 2019-02-05 浙江大学 The control method of inverter maximum power output when DC voltage falls
JP6147402B1 (en) * 2016-09-14 2017-06-14 一穂 松本 DC power distribution system
TWI628895B (en) * 2017-03-17 2018-07-01 台達電子工業股份有限公司 Electric power system and method of operating the same
JP6910905B2 (en) * 2017-09-25 2021-07-28 ホーチキ株式会社 Tunnel disaster prevention system
JP6994673B2 (en) * 2017-11-28 2022-01-14 パナソニックIpマネジメント株式会社 Power conversion system
EP3886283A4 (en) 2018-11-20 2022-01-19 Mitsubishi Electric Corporation Dc power supply and distribution system
US10847954B1 (en) 2019-04-17 2020-11-24 Faith Technologies, Inc. Temporary direct current power system
US11824353B2 (en) * 2019-09-02 2023-11-21 Mitsubishi Electric Corporation DC power distribution system
US20230178975A1 (en) 2020-05-18 2023-06-08 Nippon Telegraph And Telephone Corporation Power supply system, protection coordination method and program
US20230006615A1 (en) * 2021-07-01 2023-01-05 Epirus, Inc. Systems and methods for power distribution for amplifier arrays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276412A (en) * 1989-04-17 1990-11-13 Ohbayashi Corp Power wiring in building
JPH0426307A (en) * 1990-05-21 1992-01-29 Mitsubishi Electric Corp Household distribution panel
JP4453955B2 (en) * 2003-03-12 2010-04-21 日東工業株式会社 Distribution board
JP2007011675A (en) * 2005-06-30 2007-01-18 Daihen Corp Central monitoring system
JP4821488B2 (en) * 2005-10-03 2011-11-24 パナソニック電工株式会社 Residential distribution board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111846A (en) * 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 Setting device, power distribution board, and measurement system
KR101964893B1 (en) * 2019-03-04 2019-04-05 주식회사 이린 Electric Leakage Detecting System

Also Published As

Publication number Publication date
JP2009178025A (en) 2009-08-06
WO2009081912A1 (en) 2009-07-02
JP2009178031A (en) 2009-08-06
JP2009178027A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP4838838B2 (en) DC power distribution system
JP2009178026A (en) Dc power distribution system
JP2009146781A (en) Dc connecting device
JP2009159734A (en) Dc power distribution system
JP4974868B2 (en) DC connection device
JP2009153339A (en) Ac power distribution system
JP2009146780A (en) Dc connecting device
JP5221946B2 (en) Power failure compensation system, outlet
JP2009159651A (en) Direct-current power distribution system
JP5032292B2 (en) Catch ceiling
JP2009146783A (en) Dc connecting device
JP4670864B2 (en) DC power distribution system
JP2009165251A (en) Dc distribution system
JP2009159653A (en) Dc power distribution system
JP4966180B2 (en) Power distribution system
JP2009177924A (en) Power supply system and outlet used therefor
JP2009159728A (en) Dc power distribution system
JP2009159732A (en) Dc distributing system
JP4950869B2 (en) DC distribution system and circuit breaker
JP5059653B2 (en) Circuit breaker
JP2009163962A (en) Emergency lighting system
JP2009159693A (en) Power feeding system and power supply unit thereof
JP4981650B2 (en) Power distribution system
JP4977002B2 (en) Circuit breaker
JP2009178008A (en) Power supply system, outlet and electric device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126