JP2009177293A - Reception antenna and receiver using the same - Google Patents

Reception antenna and receiver using the same Download PDF

Info

Publication number
JP2009177293A
JP2009177293A JP2008011283A JP2008011283A JP2009177293A JP 2009177293 A JP2009177293 A JP 2009177293A JP 2008011283 A JP2008011283 A JP 2008011283A JP 2008011283 A JP2008011283 A JP 2008011283A JP 2009177293 A JP2009177293 A JP 2009177293A
Authority
JP
Japan
Prior art keywords
core
coil
receiving antenna
antenna
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011283A
Other languages
Japanese (ja)
Other versions
JP5163941B2 (en
Inventor
Hirokazu Araki
博和 荒木
Masahiro Mita
正裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008011283A priority Critical patent/JP5163941B2/en
Publication of JP2009177293A publication Critical patent/JP2009177293A/en
Application granted granted Critical
Publication of JP5163941B2 publication Critical patent/JP5163941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Clocks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop an antenna with low directivity, and to provide a reception antenna having a receivable direction of about 360 degrees on the same plane as a single antenna. <P>SOLUTION: A reception antenna of resonance type closed magnetic circuit includes an annular core consisting of a magnetic material, a coil wound around the core at least partially, and a capacitor connected in parallel with the coil, wherein the ratio Dx/Dy of the core width Dx of the coil in the axial direction and the core width Dy in the vertical direction is in the range of 0.5-2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、時刻情報を含む電磁波の中で磁界成分を受信して時刻を合わせる、電波時計、あるいは電磁波で所有者の接近を検知して自動車や住居のキーを開閉せしめるスマートキーレスエントリーシステム等(以下、キーレスエントリーシステムと言う)、あるいは電磁波に載せられた変調信号によって情報を授受するRFIDタグシステム等(以下、RFIDシステムと言う)に用いて好適な磁気センサ型の電磁波の受信アンテナに関するものである。   The present invention relates to a timepiece that receives a magnetic field component in an electromagnetic wave including time information and adjusts the time, a radio timepiece, or a smart keyless entry system that detects the approach of an owner by electromagnetic waves and opens and closes a car or a house key ( This is a magnetic sensor type electromagnetic wave receiving antenna suitable for use in an RFID tag system or the like (hereinafter referred to as an RFID system) that transmits and receives information by a modulation signal mounted on an electromagnetic wave (hereinafter referred to as a keyless entry system). is there.

ここでは電波時計用のアンテナを例に背景技術の説明を行う。
電波時計は、所定周波数の搬送波によって送られる時刻情報を受信し、その時刻情報を基に自身の時刻を修正する時計を指し、現在置時計、掛け時計、腕時計等さまざまな形態で実用化されている。
電波時計等に用いられている電波は40kHz〜200kHz以下と、長波帯を使用しており、その電波の一波長は数kmという長さになる。この電波を、電界として効率よく受信するには数百mを越す長さのアンテナ長が必要となり、小型化が必要な腕時計、キーレスエントリーシステム、RFIDシステム等に使用することは事実上困難であり、磁心を用いて磁界成分を受信することが必要である。
具体的には上記搬送波は、日本においては40kHz及び60kHzの2種類の電波を使用している。海外においても主に100kHz以下の周波数を用いて時刻情報を提供しているため、これらの周波数の電波を受信するには電磁波の磁界成分を効率良く収束させるために磁性体を磁心とし、これにコイルを巻き回した磁気センサ型のアンテナが主に使用されている。
Here, the background art will be described using an antenna for a radio timepiece as an example.
A radio clock is a clock that receives time information transmitted by a carrier wave of a predetermined frequency and corrects its own time based on the time information, and is currently put into practical use in various forms such as a table clock, a wall clock, and a wrist watch.
A radio wave used in a radio clock or the like uses a long wave band of 40 kHz to 200 kHz or less, and one wavelength of the radio wave has a length of several kilometers. In order to efficiently receive this radio wave as an electric field, an antenna length exceeding several hundred meters is required, and it is practically difficult to use it for wristwatches, keyless entry systems, RFID systems, etc. that require miniaturization. It is necessary to receive a magnetic field component using a magnetic core.
Specifically, the carrier wave uses two types of radio waves of 40 kHz and 60 kHz in Japan. Even overseas, time information is mainly provided using frequencies below 100 kHz, so in order to receive radio waves of these frequencies, a magnetic material is used as a magnetic core to efficiently converge the magnetic field component of the electromagnetic wave. A magnetic sensor type antenna in which a coil is wound is mainly used.

腕時計は、主に筐体(ケース)、ムーブメント(駆動部モジュール)とその周辺部品(文字盤、モータ、電池等)、非金属(ガラス)蓋および金属裏蓋とにより構成される。従来アンテナは筐体の外側に設けることが多かった。しかしながら、最近では小型軽量化の趨勢から筐体内部に設けることが求められるようになってきており、図9に示すようにムーブメント22と裏蓋24及び主として電池、時計針を動かすモータ等の周辺部品26の隙間に配置される。尚、図9の正面図のアンテナ1は構造を示すため実線で示しているが、実際は筐体25とムーブメント22、周辺部品26及び裏蓋24によって閉じられた空間に収められている。
筐体としては電磁波の磁界成分を阻害しない樹脂材とすることが望ましい。しかし、その反面一部を樹脂製にすると設計、デザイン面での制約がある。一般に腕時計は意匠性がセールスポイントとなり、例えば金属製の筐体が高級感や審美性の面で好まれる。そこで中高級時計や自動車に代表される機器類には筐体が金属ケースで作られることが多くなっている。この場合、従来のアンテナ構造、また配置によっては金属ケース等が電磁波に対するシールドとして働き、受信感度が大幅に低下すると言う問題があった。
A wristwatch is mainly composed of a housing (case), a movement (driving unit module) and its peripheral components (a dial, a motor, a battery, etc.), a non-metallic (glass) lid, and a metal back lid. Conventional antennas are often provided outside the housing. However, recently, due to the trend toward smaller and lighter weight, it has been required to be provided inside the housing. As shown in FIG. 9, the periphery of the movement 22 and the back cover 24, mainly the battery, the motor for moving the clock hand, etc. It arrange | positions in the clearance gap between the components 26. FIG. The antenna 1 in the front view of FIG. 9 is indicated by a solid line to show the structure, but is actually housed in a space closed by the casing 25, the movement 22, the peripheral component 26, and the back cover 24.
The casing is preferably made of a resin material that does not inhibit the magnetic field component of electromagnetic waves. However, if a part of it is made of resin, there are restrictions in terms of design and design. In general, the design of a wristwatch is a selling point. For example, a metal casing is preferred in terms of luxury and aesthetics. In view of this, cases such as middle and high-end watches and automobiles are often made of metal cases. In this case, depending on the conventional antenna structure and arrangement, a metal case or the like acts as a shield against electromagnetic waves, and there is a problem that reception sensitivity is greatly reduced.

また、アンテナとしては外部から入ってきた電磁波による磁束が磁心を通った結果としてコイルに電圧が誘起される。図13の等価回路図に示すように、この電圧はコイル8と並列に接続されたコンデンサCにより所望の周波数に共振するようになっており、共振させることによりコイル8にはQ倍(Qは共振回路の特性値)の電圧が発生し、コイル8にはその共振電流が流れる。この共振電流によってコイル8の周囲には磁界が発生し、磁束は主として磁心の両端から出入りする。ここで、アンテナの周囲に金属が接近していると、この共振電流によって発生した磁束が金属を貫く結果となり渦電流を発生させる。即ち、アンテナの近くに電気抵抗の小さな金属類があると、共振時の磁界エネルギーは渦電流損として失われ、アンテナコイルの損失となって現われ、結果、Q値が低下し実効的にアンテナ感度の低下を招くものである。この問題を解決するために、特許文献1では、図12に示すように、磁芯にコイルが巻回された主磁路部材と、磁芯にコイルが巻回されていない副磁路部材とを有し、磁芯に沿った閉ループ磁路の一部にエアギャップを設け、共振時には内部で発生した磁束が外部に漏れ難いようになしたアンテナが開示されている。このアンテナによれば、共振時に外部に向かう磁束の流れをエアギャップを設けた副磁路部材側に選択的に誘導することになり、磁束を外部に漏れ難くし、よって渦電流損によるQ値の低下を抑えることが出来る。   Further, as an antenna, a voltage is induced in the coil as a result of the magnetic flux caused by electromagnetic waves entering from the outside passing through the magnetic core. As shown in the equivalent circuit diagram of FIG. 13, this voltage resonates at a desired frequency by a capacitor C connected in parallel with the coil 8. By resonating, the coil 8 has Q times (Q is (Resonance circuit characteristic value) voltage is generated, and the resonance current flows through the coil 8. Due to this resonance current, a magnetic field is generated around the coil 8, and the magnetic flux mainly enters and exits from both ends of the magnetic core. Here, when a metal approaches the antenna, the magnetic flux generated by the resonance current penetrates the metal and generates an eddy current. That is, if there is a metal with low electrical resistance near the antenna, the magnetic field energy at the time of resonance is lost as eddy current loss and appears as loss of the antenna coil. As a result, the Q value is lowered and the antenna sensitivity is effectively reduced. This leads to a decrease in. In order to solve this problem, in Patent Document 1, as shown in FIG. 12, a main magnetic path member in which a coil is wound around a magnetic core, and a sub magnetic path member in which a coil is not wound around a magnetic core, There is disclosed an antenna in which an air gap is provided in a part of a closed loop magnetic path along a magnetic core so that a magnetic flux generated inside does not easily leak outside during resonance. According to this antenna, the flow of the magnetic flux toward the outside at the time of resonance is selectively guided to the side of the secondary magnetic path member provided with the air gap, so that the magnetic flux is hardly leaked to the outside, and thus the Q value due to the eddy current loss. Can be suppressed.

また、特許文献2には、リング状の一体の磁心からなり、コイルが形成された受信コイル形成部での断面積が、コイルが形成されない非受信コイル形成部の断面積よりも大きいアンテナを用いた電波修正時計が開示されている。この構成のアンテナを用いることによって、誘起起電力vとアンテナ特性Qを両方とも高くすることができ、共振用のコンデンサの両極間に発生する検出電圧Vを上げることができると記載されている。   Patent Document 2 uses an antenna having a ring-shaped integral magnetic core, in which the cross-sectional area at the receiving coil forming portion where the coil is formed is larger than the cross-sectional area of the non-receiving coil forming portion where the coil is not formed. A radio-controlled watch that has been disclosed is disclosed. It is described that by using the antenna of this configuration, both the induced electromotive force v and the antenna characteristic Q can be increased, and the detection voltage V generated between both poles of the resonance capacitor can be increased.

特許第3512782号公報Japanese Patent No. 3512782 特開2006−10542号公報JP 2006-10542 A

電波時計は人の腕に装着されて使われるものが多く、そのため時計はあらゆる方向に向く環境にある。一方、時間情報を載せた電波は常に一定の方向から送信される。時計内に装着されるアンテナは、いつどのような向きを向いていてもこの時間情報を載せた電波を受信できなければならない。しかしながら、従来のアンテナは指向性があるため、コイルが巻かれた軸方向に対しては高い電波の検出感度が得られるものの、それ以外の方向では検出感度が低下する。従来のアンテナでは、コイルが巻かれた軸方向に対して電波の入射角度が45度以上ずれてしまうと極端に検出感度が低下し始める。そのため、例えば特開2007−266892号公報に開示されるように、アンテナをほぼ垂直方向に2つ使うことで受信できる方位を360度に広げ、指向性のないアンテナ部品としていた。   Many radio timepieces are worn on a person's arm, so the watch is in an environment that can be used in any direction. On the other hand, radio waves carrying time information are always transmitted from a certain direction. The antenna mounted in the watch must be able to receive radio waves carrying this time information regardless of the orientation of the antenna. However, since the conventional antenna has directivity, a high radio wave detection sensitivity can be obtained in the axial direction around which the coil is wound, but the detection sensitivity is lowered in other directions. In the conventional antenna, when the incident angle of the radio wave is deviated by 45 degrees or more with respect to the axial direction around which the coil is wound, the detection sensitivity starts to extremely decrease. For this reason, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-266892, by using two antennas in a substantially vertical direction, the azimuth that can be received is expanded to 360 degrees, and the antenna component has no directivity.

同様な問題点は磁気センサ型のアンテナを金属製筐体の中に、或いは金属部品に近接して収容するキーレスエントリーシステム、またはRFIDシステムでも同様に存在する。キーレスエントリーシステムとは、例えば、乗用車等の車両の鍵を遠隔操作可能としたもので、特定の電磁波により開閉動作するアンテナを備えた送受信ユニットからなり、当該ユニットであるキーを持つ所有者の遠近により開閉遠隔操作が非接触で出来るものである。また、RFID(Radio Frequency Identification)システムは、タグに記憶された情報を特定の電磁波によって作動するアンテナにより情報を授受するもので、例えば、バス等の行先情報等が入力されたRFIDタグをバスに取り付け、時刻表情報が入力されたRFIDタグを乗り場の表示板等に埋設しておくと、利用者は非接触で各種の交通情報が認識できると言うものである。これらのシステムにおいても、指向性のないアンテナを得るためにアンテナを複数個使用しているのが実状である。   A similar problem exists in a keyless entry system or an RFID system in which a magnetic sensor type antenna is accommodated in a metal casing or close to a metal part. A keyless entry system is, for example, a remote control of a vehicle key such as a passenger car, which consists of a transmission / reception unit equipped with an antenna that opens and closes by a specific electromagnetic wave. The remote operation can be done without contact. In addition, an RFID (Radio Frequency Identification) system transfers information stored in a tag by an antenna that operates by a specific electromagnetic wave. For example, an RFID tag to which destination information such as a bus is input is used as a bus. If the RFID tag to which the timetable information is attached and embedded is embedded in the display board of the hall, the user can recognize various traffic information without contact. Even in these systems, in order to obtain an antenna with no directivity, a plurality of antennas are actually used.

以上のことより本発明は、指向性の小さいアンテナの開発を目指したものであって、単体で同一平面上ほぼ360度の受信可能方向を持つ受信アンテナを提供することを目的とする。特に限られた小スペース内で高いアンテナ特性を発揮でき、電波時計、特に電波腕時計やキーレスエントリーシステム、RFIDシステムに適した受信アンテナ及びこれを用いた受信装置を提供する。   In view of the above, the present invention aims to develop an antenna with low directivity, and an object thereof is to provide a receiving antenna having a receivable direction of approximately 360 degrees on the same plane as a single unit. Provided are a reception antenna suitable for radio wave watches, particularly radio wave watches, keyless entry systems, and RFID systems, and a receiving apparatus using the same, which can exhibit high antenna characteristics in a limited small space.

上記の課題は、磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、コイルの軸方向のコア幅Dxとその垂直方向のコア幅Dyの比Dx/Dyが0.5〜2であることを特徴とする。詳細は実施例にて述べるが、従来のアンテナよりも指向性が低く、入射した電波がコイルの軸方向に対して75度程度までずれても十分な検出感度で受信することが可能である。
従来のアンテナは、一見して類似の形状のアンテナはあるものの、環状コアにコイルを巻き、コアの軸方向から入る磁場によって誘起される誘起電力を測定する閉磁路共振型ではないアンテナや、環状型のコアで閉磁路共振型であっても指向性まで考慮されていない一方向に長いものばかりである。
縦横比が1に近い環状のコアを用いることで、磁束30がコイルの軸方向とずれた角度で入ってきても、高い感度で受信することができる。図7に示すように、磁束30はコアの形状に沿って流れるため、どの方向から入射する磁束であってもその磁束はコイルの軸方向に流れることになる。
比Dx/Dyが0.5未満、もしくは2超であると、指向性が高くなり、本願の目的とする受信アンテナが得られない。比Dx/Dyが0.7〜1.5のコア、さらには、、比Dx/Dyが0.8〜1.3のコアを用いることでさらに指向性を低下した受信アンテナとすることができる。
The above problem is a resonant closed magnetic circuit receiving antenna having an annular core made of a magnetic material, a coil wound around at least a part of the core, and a capacitor connected in parallel to the coil. The ratio Dx / Dy between the core width Dx in the axial direction of the coil and the core width Dy in the vertical direction is 0.5-2. Although details will be described in the embodiments, the directivity is lower than that of the conventional antenna, and even if the incident radio wave is shifted to about 75 degrees with respect to the axial direction of the coil, it can be received with sufficient detection sensitivity.
Although there are antennas of similar shape at first glance, conventional antennas are not closed magnetic circuit resonance type antennas that measure the induced power induced by the magnetic field entering from the axial direction of the core by winding a coil around the annular core. Even if the core is a closed magnetic circuit resonance type, it is only long in one direction where the directivity is not taken into consideration.
By using an annular core having an aspect ratio close to 1, even if the magnetic flux 30 enters at an angle shifted from the axial direction of the coil, it can be received with high sensitivity. As shown in FIG. 7, since the magnetic flux 30 flows along the shape of the core, the magnetic flux flows in the axial direction of the coil regardless of the direction of the incident magnetic flux.
If the ratio Dx / Dy is less than 0.5 or more than 2, the directivity increases, and the intended receiving antenna of the present application cannot be obtained. By using a core having a ratio Dx / Dy of 0.7 to 1.5, and further a core having a ratio Dx / Dy of 0.8 to 1.3, a receiving antenna with further reduced directivity can be obtained. .

また、本発明の受信アンテナは、磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、前記コアは実質的に円環状であるものが好ましい。指向性を下げるには、多角形状のものより円環状のものの方が好ましい。また、フェライト材などの脆性のある材料を用いることを想定すれば、ある程度のコア強度が必要である。円環状であれば、圧縮成形する際などに、多角形状よりも応力集中することが少なくなり、衝撃にも強いコアを得ることができる。ここで円環状とは、外径形状が一般的に円のものを指し、楕円なども含まれるものとする。外径の形状と内径の形状が同じ物が好ましい。   In addition, the receiving antenna of the present invention includes a ring-shaped core made of a magnetic material, a coil wound around at least a part of the core, and a resonant closed magnetic circuit having a capacitor connected in parallel to the coil. An antenna is preferable, wherein the core is substantially annular. In order to reduce directivity, an annular shape is preferable to a polygonal shape. Further, assuming that a brittle material such as a ferrite material is used, a certain level of core strength is required. In the case of an annular shape, stress concentration is less than in a polygonal shape when compression molding is performed, and a core that is resistant to impact can be obtained. Here, the annular shape means that the outer diameter shape is generally a circle, and includes an ellipse and the like. Those having the same outer diameter shape and inner diameter shape are preferred.

また、本発明の受信アンテナは、磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、前記コアはフェライト材からなり、かつ前記コアは角が丸い多角形状であることを特徴とする。上記したように、フェライト材は脆性が高いため、角を丸くしたものにしないと外部から何らかの力が加わった際に応力集中してコアが割れやすいためである。   In addition, the receiving antenna of the present invention includes a ring-shaped core made of a magnetic material, a coil wound around at least a part of the core, and a resonant closed magnetic circuit having a capacitor connected in parallel to the coil. An antenna is characterized in that the core is made of a ferrite material, and the core has a polygonal shape with rounded corners. As described above, the ferrite material is highly brittle, and unless the corners are rounded, the core is easily cracked due to stress concentration when some force is applied from the outside.

また、前記コアは、コイルが巻かれていない部分で磁気的なギャップを有するものが好ましい。この磁気的なギャップが設けられたコアの部分は他の部分よりもインピーダンスが高くなるため、入射した電波の殆どが、コイルが巻かれたコアの内部を通るので、磁気ギャップが無いものと比較して検出感度が向上する。また、コアは同一材料で製造されたものを用いることができる。同一材料であれば製造が簡易であり、小型化されたアンテナも作りやすい。   The core preferably has a magnetic gap at a portion where no coil is wound. Since the core part with this magnetic gap has higher impedance than the other parts, most of the incident radio waves pass through the inside of the core around which the coil is wound. As a result, the detection sensitivity is improved. Moreover, what was manufactured with the same material can be used for a core. If it is the same material, manufacture is easy and it is easy to make a miniaturized antenna.

また、前記コアは、コイルが巻かれている部分の断面積よりも、コイルが巻かれていない部分の断面積が小さくなる形状のものが好ましい。これは、一般的な開磁路型のアンテナと異なり、閉磁路共振型のアンテナは、コイルが巻かれていないコアの部分の断面積によってS/N比が増減するので、適宜断面積の大きさを調節する必要があるためである。この閉磁路共振型のS/N比を最適化することについては、本発明者は既に特開2007−13862号で出願済みである。   Further, the core preferably has a shape in which the cross-sectional area of the portion where the coil is not wound is smaller than the cross-sectional area of the portion where the coil is wound. Unlike a general open magnetic circuit type antenna, the S / N ratio of the closed magnetic circuit resonance type antenna increases or decreases depending on the cross sectional area of the core portion around which the coil is not wound. This is because it is necessary to adjust the thickness. The present inventor has already filed an application in Japanese Patent Application Laid-Open No. 2007-13862 for optimizing this closed magnetic circuit resonance type S / N ratio.

また、本発明の受信アンテナは、前記コアの軸平面に対して実質的に平行に第2のコイルが巻かれ、かつ前記第2のコイルの内部を通った磁束によって誘起される誘起電圧を計る測定手段が備えられるものが好ましい。図4に示すように、第2のコイルの誘起電圧の電圧値を測定することで、環状のコアの軸方向の電波を検出することが可能となり、同一平面のみならず、3軸方向のほぼ全方位からの電波も受信することが可能となる。第2のコイルは、コアの外周側に直接巻かれても良いし、ボビンなどの他の部材の周りに巻かれてもよい。第1のコイルと第2のコイルから得られる電圧QVを測定し、その電圧が大きい方の値を選択するような電子回路を使用することが好ましい。   In the receiving antenna of the present invention, the second coil is wound substantially parallel to the axial plane of the core, and the induced voltage induced by the magnetic flux passing through the inside of the second coil is measured. What is provided with a measurement means is preferable. As shown in FIG. 4, by measuring the voltage value of the induced voltage of the second coil, it becomes possible to detect the radio wave in the axial direction of the annular core, and not only in the same plane but also in almost the three axial directions. It is possible to receive radio waves from all directions. The second coil may be wound directly around the outer peripheral side of the core, or may be wound around another member such as a bobbin. It is preferable to use an electronic circuit that measures the voltage QV obtained from the first coil and the second coil and selects the value with the higher voltage.

また、前記コアはフェライト材であり、かつ前記フェライト材の比透磁率は1500以下であるものが好ましい。詳細は実施例にて述べるが、比透磁率が1500を超えると誘起電圧が低下してアンテナとしての特性が下がるためである。   The core is preferably made of a ferrite material, and the ferrite material has a relative magnetic permeability of 1500 or less. Although details will be described in Examples, when the relative permeability exceeds 1500, the induced voltage is lowered and the characteristics as an antenna are lowered.

これらの受信アンテナを用いた受信装置では、コアの内径部に電子部品(電子回路、コンデンサ、電池、抵抗等)が配置されるように構成されることが好ましい。入射してくる電波がこれらの電子部品に干渉されないため、電子部品内に受信アンテナを配置していた従来の受信装置よりも電波の検出感度が高くなる。   In a receiving apparatus using these receiving antennas, it is preferable that an electronic component (an electronic circuit, a capacitor, a battery, a resistor, or the like) is arranged on the inner diameter portion of the core. Since incident radio waves are not interfered with these electronic components, the detection sensitivity of radio waves is higher than that of a conventional receiving apparatus in which a receiving antenna is arranged in the electronic components.

また、前記コアの軸平面に対して実質的に平行に第2のコイルが巻かれた、かつ前記第2のコイルの両端の誘起電圧を計る測定手段をもつ受信アンテナを用いる場合、この第2のコイルは、前記コアの外周側に巻かれていることが好ましい。第2のコイルが前記コアの外周側に巻かれることで、内部に配置された電子部品から発生する磁場に対してコアがシールド材の役割を果たし、第2のコイルに対して、電子部品による誘起でんあつの影響を減らすことができる。また、コアの軸方向にもアンテナコア材として働くため、Z軸方向の感度が高まる。   Further, when using a receiving antenna in which a second coil is wound substantially parallel to the axial plane of the core and having a measuring means for measuring an induced voltage at both ends of the second coil, the second coil is used. The coil is preferably wound around the outer periphery of the core. By winding the second coil on the outer peripheral side of the core, the core serves as a shielding material against the magnetic field generated from the electronic component disposed inside, and the second coil is based on the electronic component. The influence of induction can be reduced. Moreover, since it functions as an antenna core material also in the axial direction of the core, the sensitivity in the Z-axis direction is increased.

このコアの内部に電子部品を配置する構造の受信装置とした場合、軽量化や省スペース化、耐衝撃性などを考慮すれば、コアには軟磁性薄帯もしくは軟磁性ワイヤーなどを用いたものが好ましい。例えば電波時計などであれば、筐体の内周側に沿うように軟磁性薄帯や軟磁性ワイヤーなどを巻くことで、受信感度の高い本発明のアンテナを得ることができる。また、環状のプラスチック材の周囲にメッキを施したものをコアとして用いたり、プリント基板にリング状に軟磁性材料を塗布したものをコアとして用いたりできる。   In the case of a receiver having a structure in which electronic components are arranged inside the core, a soft magnetic ribbon or a soft magnetic wire is used for the core in consideration of weight reduction, space saving, impact resistance, etc. Is preferred. For example, in the case of a radio timepiece or the like, the antenna of the present invention having high reception sensitivity can be obtained by winding a soft magnetic ribbon or a soft magnetic wire along the inner peripheral side of the housing. Moreover, what plated the circumference | surroundings of the cyclic | annular plastic material can be used as a core, and what applied the soft magnetic material in the ring shape to the printed circuit board can be used as a core.

本発明のアンテナによれば、外部より入射した磁束は環状のコアにより受けとめられ、コア内で共振されるため、磁束が磁気回路内を効率よく帰還する。その結果、高い出力電圧が得られ、Q値を高いまま保持できる。
また、従来の棒状アンテナでは得られなかった同一平面状での無指向性のアンテナを1つのコアで製造することが可能となり、従来の二つの棒状アンテナを組み合わせていた無指向性アンテナ部品よりも構成部品を少なくすることができ、製造コストを下げることができる。
また、主磁路と副磁路を別に製造して組合せる従来のアンテナと異なり、一体成形したコアを使用できるから製造工程が簡略化され、製造コストを下げることができる。
また、コイルを巻いていないコアの場所に磁気的なギャップを入れることで、外部より入射した磁束がコイルを巻いたコアの内部の方を通りやすくなり、高い出力電圧が得られる。
また、コイルを巻いていないコアの場所の断面積を小さくすることで、一律の断面積をもつ環状コアと比較してS/N比が向上し、その結果、高い出力電圧が得られる。
According to the antenna of the present invention, the magnetic flux incident from the outside is received by the annular core and resonated in the core, so that the magnetic flux efficiently returns in the magnetic circuit. As a result, a high output voltage can be obtained and the Q value can be kept high.
In addition, it is possible to manufacture a non-directional antenna in the same plane that cannot be obtained with a conventional rod-shaped antenna with a single core, compared to a conventional omni-directional antenna component that combines two rod-shaped antennas. The number of components can be reduced, and the manufacturing cost can be reduced.
Further, unlike a conventional antenna in which a main magnetic path and a sub magnetic path are separately manufactured and combined, an integrally molded core can be used, so that the manufacturing process is simplified and the manufacturing cost can be reduced.
Also, by providing a magnetic gap at the location of the core around which the coil is not wound, the magnetic flux incident from the outside can easily pass through the inside of the core wound with the coil, and a high output voltage can be obtained.
Further, by reducing the cross-sectional area of the core where the coil is not wound, the S / N ratio is improved as compared with an annular core having a uniform cross-sectional area, and as a result, a high output voltage is obtained.

また、環状コアの内径側に電子部品を配置することで、従来の受信装置よりも電波の検出感度が高いものを製造することができる。また、環状コアに軟磁性合金薄帯などの機械的強度が高い材料を用いて、なおかつ径が大きい環状コアを用いるのであれば、アンテナを入れる金属製筐体の内周側に沿うように環状コアを配置することもできる。環状コアの内部に回路部品を配置することで、外部より入射した磁束がこれらの回路部品に対して影響を受けることなく、アンテナで電波を受信することができ、高い出力電圧が得られるとともにノイズの少ない受信装置とすることができる。さらに、コアが電子部品の構成に限らず、筐体の形状に沿って配置できるため、筐体の意匠的な形状の制約がなくなり、特に電波腕時計などの嗜好品ではユーザーのニーズを満足する製品を提供しやすい。   In addition, by disposing an electronic component on the inner diameter side of the annular core, it is possible to manufacture a device having higher radio wave detection sensitivity than a conventional receiving device. In addition, if a material with high mechanical strength such as soft magnetic alloy ribbon is used for the annular core and an annular core with a large diameter is used, the annular core is arranged along the inner peripheral side of the metal casing into which the antenna is inserted. A core can also be placed. By arranging the circuit components inside the annular core, the magnetic flux incident from the outside can be received by the antenna without being affected by these circuit components, resulting in high output voltage and noise. It can be set as a receiver with few. Furthermore, because the core can be placed along the shape of the housing, not just the configuration of the electronic components, there are no restrictions on the design of the housing, and products that satisfy user needs, especially for luxury watches such as radio watches. Easy to provide.

また、本発明の受信アンテナの形状は磁心に巻かれたコイルに誘起した電圧と並列に接続されたコンデンサによる共振電流による磁束が主として磁心の両端から出入りする性質上、その出入りする磁束が金属製筐体を貫く量を減少させることとなり、結果として金属製筐体に発生させる渦電流を減少させ電気的なQ値を高く保つことができ、アンテナとしての高感度化に繋がる。また共振電流による磁束の流出を抑えて実効的な感度を高く得られる。
また、一体コアなので組立て性などが良好である。
以上の相乗効果により、配置自由度は高くデザイン的な制約も比較的小さい高感度の受信装置を得ることができる。
In addition, the shape of the receiving antenna of the present invention is such that the magnetic flux caused by the resonance current from the capacitor connected in parallel with the voltage induced in the coil wound around the magnetic core mainly enters and exits from both ends of the magnetic core. As a result, the amount penetrating the housing is reduced, and as a result, the eddy current generated in the metal housing can be reduced and the electrical Q value can be kept high, leading to high sensitivity as an antenna. In addition, the effective sensitivity can be increased by suppressing the outflow of magnetic flux due to the resonance current.
Also, since it is an integral core, it is easy to assemble.
Due to the above synergistic effect, it is possible to obtain a high-sensitivity receiving apparatus having a high degree of freedom in arrangement and relatively small design constraints.

この様なアンテナは、小型高性能の電波時計、電波腕時計、キーレスエントリーシステム、RFIDシステム等のアンテナ装置で好適に使用できる。特に電波時計、電波腕時計のアナログ表示のものは、長針、短針、秒針などを回転させる機構が筐体の中心部に集まる構造のため、筐体の中心部を避け、筐体の周囲にコアを配置できる効果は大きい。   Such an antenna can be suitably used in an antenna apparatus such as a small high-performance radio timepiece, radio wave wristwatch, keyless entry system, and RFID system. Especially, the analog display of radio clocks and radio watches has a structure in which the mechanism to rotate the long hand, short hand, second hand, etc. is gathered at the center of the case, so avoid the center of the case and place the core around the case. The effect that can be arranged is great.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。
以下、実施例について説明する。ここでは図14に示す電波腕時計に模した試験装置と図13に示す等価回路に沿って本発明のアンテナと従来のアンテナの出力電圧等を測定し比較した。
図13において、Lがアンテナの磁心1と巻線8で構成されるコイルである。Rがコイルの直流抵抗と交流抵抗の総和である。このコイルに磁束の時間変化による起電圧Vが発生する。ここでアンテナと並列にコンデンサCが接続され、このコンデンサCと先に述べたコイルLが電気的に共振し、コンデンサの両端には起電圧VのQ倍の電圧QVが発生し、アンテナとして動作する。比較試験は図14に示す電波腕時計に模した厚さ1mmの金属製(ステンレスSUS403)の筐体70の中に評価アンテナを配置し、上記等価回路による電圧QVを測定した。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
Examples will be described below. Here, the output voltage and the like of the antenna of the present invention and the conventional antenna were measured and compared along the test apparatus imitating the radio wave wristwatch shown in FIG. 14 and the equivalent circuit shown in FIG.
In FIG. 13, L is a coil composed of the antenna magnetic core 1 and the winding 8. R is the sum of the DC resistance and AC resistance of the coil. An electromotive voltage V is generated in the coil due to the time variation of the magnetic flux. Here, a capacitor C is connected in parallel with the antenna, the capacitor C and the coil L described above are electrically resonated, and a voltage QV that is Q times the electromotive voltage V is generated at both ends of the capacitor to operate as an antenna. To do. In the comparative test, an evaluation antenna was placed in a 1 mm-thick metal (stainless steel SUS403) casing 70 imitating the radio wave wristwatch shown in FIG. 14, and the voltage QV by the equivalent circuit was measured.

(実施例1〜3)
実施例1として、図1のアンテナ10aを製造した。磁心としてMn-Zn系フェライト材(日立金属製フェライトML25D)の環状コア1aを用いた。環状コア1aの外径は6mm、内径は3mm、高さは3mmのドーナツ形状であり、かつ一箇所で極部的に断面積が小さいくびれた形状になっている。Mn-Zn系フェライト材をこの形に圧縮成形して焼結したのち、このくびれた部分に衝撃を与えて亀裂を入れることで磁気的なギャップを持つようにしている。この環状コアのくびれた部分とは反対側に、線径0.1mmのエナメル被膜銅線を120ターンで幅3mmの範囲に巻き付けてコア2とした。このコアと並列になるようにコンデンサ3を繋ぎ、本発明の受信アンテナを製造した。
また、実施例2として、コアは実施例1のコアと材料や外形形状、寸法は同じであるが、くびれた部分で亀裂を入れておらず、一体的に成形および焼結されたままのものを用いた。それ以外は実施例1と同じ条件で受信アンテナを製造した。この環状コアのくびれた部分とは反対側に、線径0.1mmのエナメル被膜銅線を120ターンで幅3mmの範囲に巻き付けた。
また、実施例3として、くびれた部分を持たない外径輪郭、内径輪郭がともに円形の環状コアを用いた。外径、内径、高さの寸法は実施例1、2と同じである。この環状コアのくびれた部分とは反対側に、線径0.1mmのエナメル被膜銅線を120ターンで幅3mmの範囲に巻き付けた。
以上のアンテナを図14に示す金属ケース70の中に設置し、外部より電磁波の磁界成分に相当する交流磁界の実効値として周波数125kHz〜145kHz、磁界強度4.4nTの磁界を印加して出力電圧を測定した。結果を表1に示す。
くびれた部分で亀裂が入った磁気ギャップを持つ実施例1のアンテナが最も高い出力電圧が得られ、ついで実施例2の亀裂の無いくびれた部分を持つ実施例2のアンテナの出力電圧が高く、断面が一律の実施例3のアンテナがこの3種類ではアンテナの出力電圧が最も低い。実施例1と実施例3の受信アンテナの出力電圧と周波数の関係を図3に示す。
ただし、同材料で製造した長さが6mmで幅が1.5mm、高さ3mmの棒状コアに線径0.1mmのエナメル被膜銅線を120ターンで幅3mmの範囲に巻き付けたアンテナ(比較例1)よりは遥かに高い出力電圧が得られた。また、この棒状コアに同様にコイルを巻いた後、樹脂と鉄粉からなるスラリーを巻いたコイルの外側を介してコアの両端に繋がるように塗布して副磁路を形成したアンテナ(比較例2)では、同様の出力電圧が得られることが解った。
(Examples 1-3)
As Example 1, the antenna 10a shown in FIG. An annular core 1a made of Mn—Zn ferrite material (Hitachi Metals Ferrite ML25D) was used as the magnetic core. The annular core 1a has a donut shape with an outer diameter of 6 mm, an inner diameter of 3 mm, and a height of 3 mm, and has a constricted shape with a small cross-sectional area at one location. After the Mn—Zn ferrite material is compression-molded into this shape and sintered, the constricted portion is impacted and cracked to have a magnetic gap. On the side opposite to the constricted portion of the annular core, an enamel-coated copper wire having a wire diameter of 0.1 mm was wound in a range of 3 mm in width by 120 turns to form the core 2. The receiving antenna of the present invention was manufactured by connecting the capacitor 3 in parallel with the core.
Further, as Example 2, the core is the same material, outer shape, and dimensions as the core of Example 1, but is not cracked at the constricted part and remains integrally molded and sintered. Was used. Other than that, a receiving antenna was manufactured under the same conditions as in Example 1. On the opposite side of the annular core from the constricted portion, an enamel-coated copper wire having a wire diameter of 0.1 mm was wound in a range of 3 mm in width by 120 turns.
Further, as Example 3, an annular core having a constricted portion and having a circular outer diameter contour and an inner diameter contour was used. The dimensions of the outer diameter, inner diameter, and height are the same as those in Examples 1 and 2. On the opposite side of the annular core from the constricted portion, an enamel-coated copper wire having a wire diameter of 0.1 mm was wound in a range of 3 mm in width by 120 turns.
The above antenna is installed in a metal case 70 shown in FIG. 14, and an output voltage is applied by applying a magnetic field having a frequency of 125 kHz to 145 kHz and a magnetic field strength of 4.4 nT as an effective value of an alternating magnetic field corresponding to the magnetic field component of the electromagnetic wave. Was measured. The results are shown in Table 1.
The antenna of Example 1 having a cracked magnetic gap at the constricted portion can obtain the highest output voltage, and then the output voltage of the antenna of Example 2 having the constricted portion of Example 2 is high, In the three types of antennas of Example 3 having a uniform cross section, the output voltage of the antenna is the lowest. FIG. 3 shows the relationship between the output voltage and frequency of the receiving antennas of the first and third embodiments.
However, an antenna made of the same material with a length of 6 mm, a width of 1.5 mm, and a height of 3 mm and an enamel-coated copper wire with a wire diameter of 0.1 mm wound in a range of 3 mm in 120 turns (comparative example) An output voltage far higher than that of 1) was obtained. Similarly, after winding a coil around this rod-shaped core, an antenna (comparative example) was formed by applying to the both ends of the core via the outside of the coil wound with resin and iron powder slurry. In 2), it was found that the same output voltage can be obtained.

Figure 2009177293
Figure 2009177293

(実施例4)
実施例1で製作したアンテナの指向性について調査した。図2に結果を示す。
x軸はコイルを巻いた軸方向の出力電圧であり、y軸はその垂直方向の出力電圧である。x軸の方向の出力電圧を1とすると、x軸から75度ずれた位置でも、x軸の方向に対して0.35倍以上の出力電圧が得られていた。
これに対して、(比較例2)のアンテナで同様に指向性を測定したところ、図2の破線に示すように、x軸から60度ずれた位置で、x軸の方向に対して0.35倍未満の出力電圧しか得られていない。
この実験から、本発明の円環状コアを用いたアンテナは指向性が低く、同一平面状であればほぼ全方向からの電波を受信できることがわかった。
Example 4
The directivity of the antenna manufactured in Example 1 was investigated. The results are shown in FIG.
The x-axis is the output voltage in the axial direction around which the coil is wound, and the y-axis is the output voltage in the vertical direction. Assuming that the output voltage in the x-axis direction is 1, an output voltage of 0.35 times or more with respect to the x-axis direction was obtained even at a position shifted by 75 degrees from the x-axis.
On the other hand, when the directivity was measured in the same manner with the antenna of (Comparative Example 2), as shown by the broken line in FIG. Only an output voltage less than 35 times is obtained.
From this experiment, it was found that the antenna using the annular core of the present invention has low directivity and can receive radio waves from almost all directions as long as it is in the same plane.

(実施例5)
材料の違いによるアンテナ特性の影響について調べた。実施例2のアンテナと、Ni-Zn系フェライト材(日立金属製フェライトNL40S)を材料として使用した以外は実施例3と同様に製造したアンテナ(実施例5)とのアンテナ特性を比較した。アンテナの出力電圧と周波数の関係を図3に併記する。実施例5のNi-Zn系フェライト材(比透磁率400)を用いたほうが、Mn-Zn系フェライト材(比透磁率2500)を用いた実施例2のアンテナよりも高い出力電圧が得られた。
(Example 5)
The effect of antenna characteristics due to the difference of materials was investigated. The antenna characteristics of the antenna of Example 2 were compared with those of the antenna (Example 5) manufactured in the same manner as Example 3 except that a Ni—Zn ferrite material (Hitachi Metals ferrite NL40S) was used as a material. The relationship between the antenna output voltage and frequency is also shown in FIG. A higher output voltage was obtained when the Ni—Zn ferrite material (relative permeability 400) of Example 5 was used than when the antenna of Example 2 using Mn—Zn ferrite material (relative permeability 2500) was used. .

(実施例6)
環状コアのコイル軸方向のコア幅Dxとその垂直方向のコア幅Dyの比Dx/Dyを変えて、指向性について検討した。
比Dmin/Dmaxが0.5以上2以下であれば、巻いたコイルの軸方向に対して60度以上斜めから入る磁束に対して、巻いたコイルの軸方向の出力電圧に対して、0.35倍以上の出力電圧が得られた。また、比Dmin/Dmaxが0.7以上1.5以下であれば、65度以上斜めから入る磁束に対して、巻いたコイルの軸方向の出力電圧に対して、0.35倍以上の出力電圧が得られた。さらに、比Dmin/Dmaxが0.8以上1.3以下であれば、70度以上斜めから入る磁束に対して、巻いたコイルの軸方向の出力電圧に対して、0.35倍以上の出力電圧が得られた。
(Example 6)
The directivity was examined by changing the ratio Dx / Dy between the core width Dx in the coil axis direction of the annular core and the core width Dy in the vertical direction.
When the ratio Dmin / Dmax is 0.5 or more and 2 or less, with respect to the magnetic flux entering obliquely by 60 degrees or more with respect to the axial direction of the wound coil, the output voltage in the axial direction of the wound coil is 0. An output voltage of 35 times or more was obtained. Further, when the ratio Dmin / Dmax is 0.7 or more and 1.5 or less, the output is 0.35 times or more with respect to the output voltage in the axial direction of the wound coil with respect to the magnetic flux entering obliquely by 65 degrees or more. A voltage was obtained. Further, when the ratio Dmin / Dmax is 0.8 or more and 1.3 or less, the output is 0.35 times or more with respect to the output voltage in the axial direction of the wound coil with respect to the magnetic flux entering obliquely by 70 degrees or more. A voltage was obtained.

(実施例7)
本発明の別の形状のアンテナについて説明する。
図5は四角形状の受信アンテナの模式図である。図5(a)は比Dx/Dyが0.6のフェライトコアを用いた受信アンテナである。また、図5(b)は比Dx/Dyが1.3のフェライトコアを用いた受信アンテナである。角は丸くなっており、フェライトコアを圧縮成形した時に金型から抜けやすい形状となっている。また、コイルを巻いた位置とは反対側の部分にクラックを設け、磁気的なギャップをおくことで磁束の還流がコイル側に流れ込むようにしている。
図6は、コアの一部に電波を収束するための受信補強部材4を設けた受信アンテナの一例である。図6(a)は凸型のコアにFe系アモルファス薄帯の積層体からなる受信補強部材4aをコイル2の軸方向と平行に設置したものである。図6(a)はC型のコアに同材料の補助コア材5を組み合わせたものであり、その補助コア材5の側面にFe系アモルファス薄帯の積層体からなる受信補強部材4bをコイル2の軸方向と平行に設置したものである。図6(b)はFe系アモルファス薄帯の積層体からなるコアであり、図のような形状に打ち抜いたFe系アモルファス薄帯を20枚積層したコアを用いている。
(Example 7)
An antenna having another shape according to the present invention will be described.
FIG. 5 is a schematic diagram of a rectangular receiving antenna. FIG. 5A shows a receiving antenna using a ferrite core having a ratio Dx / Dy of 0.6. FIG. 5B shows a receiving antenna using a ferrite core having a ratio Dx / Dy of 1.3. The corners are rounded, and the shape is easy to come out of the mold when the ferrite core is compression molded. In addition, a crack is provided in a part opposite to the position where the coil is wound, and a magnetic gap is provided so that the return of the magnetic flux flows into the coil side.
FIG. 6 is an example of a receiving antenna provided with a reception reinforcing member 4 for converging radio waves in a part of the core. FIG. 6A shows a reception reinforcing member 4 a made of a laminate of Fe-based amorphous ribbons arranged on a convex core in parallel with the axial direction of the coil 2. FIG. 6A shows a combination of a C-shaped core and an auxiliary core material 5 made of the same material, and a reception reinforcing member 4b made of a laminate of an Fe-based amorphous ribbon is attached to the side surface of the auxiliary core material 5 as a coil 2. It was installed in parallel with the axial direction. FIG. 6B shows a core made of a laminate of Fe-based amorphous ribbons, and uses a core in which 20 sheets of Fe-based amorphous ribbons punched into the shape shown in the figure are stacked.

(実施例7)
図8は本発明の受信アンテナのコアの別の形状を示す図である。図8(a)は、薄帯状の軟磁性材料を巻いて端部同士を重ねたものである。図8(b)は、打ち抜いた板状の軟磁性材料を曲げて端部同士を重ねたものである。図8(c)は、薄帯状の軟磁性材料を巻いたものであるが、端部が腹部よりも半分以下の幅とした薄帯を用いたものであり、両端部の細い部分を端部と腹部の境の肩部分に担持させたものである。両端部の細い部分はそのまま伸ばして受信補強部材とすることができる。図8(d)は、薄帯状の軟磁性材料を巻き回したものである。内径側の端部がコアの側面から外径側に伸びており、また、外径側の端部は逆方向に伸びて、この両端部が受信補強部材として用いられる。
(Example 7)
FIG. 8 is a diagram showing another shape of the core of the receiving antenna of the present invention. FIG. 8 (a) shows a structure in which thin strips of soft magnetic material are wound and the ends are overlapped. FIG. 8B is a diagram in which the punched plate-like soft magnetic material is bent and the ends are overlapped. FIG. 8C shows a ribbon-shaped soft magnetic material wrapped with a ribbon whose end is half or less than the abdomen. The narrow portions at both ends are end portions. It is carried on the shoulder of the border of the abdomen. The narrow portions at both ends can be stretched as they are to form reception reinforcing members. FIG. 8 (d) is obtained by winding a ribbon-like soft magnetic material. The inner diameter side end portion extends from the side surface of the core to the outer diameter side, and the outer diameter side end portion extends in the opposite direction, and both end portions are used as reception reinforcing members.

(実施例8)
図9は電波修正時計の模式図であり、受信アンテナ10の配置などは分かりやすいようにあえて実線で示している。電波腕時計は金属製(例えばステンレス製)の筐体ケース21と、ムーブメント22と周辺部品、ガラス製の蓋23と、金属製(例えばステンレス製)の裏蓋24とからなり、受信アンテナ10をムーブメント22と裏蓋24との間に配置している。
従来の受信アンテナは複雑な構造をしているものが多く、電子基板などに固定するためにボビンなどの部材を用いたり、溶接などの複雑な工程で固着したりと、設置に多大な手間がかかっていた。本発明の受信アンテナは比較的簡易な形状であるため、筐体内に設置することが容易である。
本発明の受信アンテナを用いた実施例によれば、閉磁路共振型の受信アンテナであるために、筐体の近く配置してもコアからの漏れ磁束による渦電流の発生が無く、電波の検出感度を下げることがない。
(Example 8)
FIG. 9 is a schematic diagram of the radio-controlled timepiece, and the arrangement of the receiving antenna 10 and the like is intentionally shown by a solid line for easy understanding. The radio-controlled wristwatch includes a metal (for example, stainless steel) case 21, a movement 22, peripheral components, a glass lid 23, and a metal (for example, stainless steel) back cover 24. It arrange | positions between 22 and the back cover 24. FIG.
Many conventional receiving antennas have a complicated structure, such as using a member such as a bobbin to fix it to an electronic board, etc., or fixing it by a complicated process such as welding. It was hanging. Since the receiving antenna of the present invention has a relatively simple shape, it can be easily installed in the housing.
According to the embodiment using the receiving antenna of the present invention, since it is a closed magnetic circuit resonance type receiving antenna, there is no generation of eddy current due to leakage magnetic flux from the core even if it is placed near the casing, and detection of radio waves. Sensitivity is not lowered.

図10は、筐体ケース21の内周面に沿ってアモルファス薄帯を巻いたコアを使用した一例である。図9と同様、正面図のアンテナの図示は配置などが分かりやすいようにあえて実線で示している。電波腕時計は金属製(例えばステンレス製)の筐体ケース21と、ムーブメント22と周辺部品、ガラス製の蓋23と、金属製(例えばステンレス製)の裏蓋24とからなり、アンテナ10をムーブメント22と裏蓋24との間に配置している。
コアは幅1mmのCo系アモルファス薄帯(厚さ18μm)を円形状に巻いたものであり、そのコアに巻き線を施してコイルとし、かつそのコイルに平行にコンデンサを設けている。また、コアの外周側に第2のコイル6とそのコイル内を通った磁束による誘起電圧を測定するための測定手段(図示せず)が備えられている。
時計は駆動機能を集約したムーブメントが大部分の容積を占有し、また人間に対する表示面(文字盤)も必須である。このためアンテナは裏蓋近くに配置することを余儀なくされる。従来の受信アンテナでは周囲を金属部品により囲まれることになるが、本発明の受信アンテナを用いた実施例によれば、閉磁路共振型の受信アンテナであるために、筐体の近く配置してもコアからの漏れ磁束による渦電流の発生が無く、電波の検出感度を下げることがない。また、筐体外部から流入する磁束のほぼ全方位に対して受信することができる。さらに、コアの軸方向に通る磁束を受信するための第2のコイル6を、コアの外周側に巻いているため、内部の電子部品(図示せず)から発生した磁場が、コアがヨーク材の役割を果たすために、第2のコイルに影響を与えることがない。そのため、比較的検出が困難なコアの軸方向の電波受信が阻害されず、3軸方向全ての電波を金属筐体内で受信することができる。
FIG. 10 is an example using a core wound with an amorphous ribbon along the inner peripheral surface of the housing case 21. As in FIG. 9, the antenna in the front view is shown by a solid line so that the arrangement and the like can be easily understood. The radio-controlled wristwatch includes a metal (for example, stainless steel) case 21, a movement 22, peripheral components, a glass lid 23, and a metal (for example, stainless steel) back cover 24, and the antenna 10 is moved to the movement 22. And the back cover 24.
The core is a 1 mm wide Co-based amorphous ribbon (thickness: 18 μm) wound in a circular shape. The core is wound into a coil, and a capacitor is provided in parallel with the coil. Further, the second coil 6 and measuring means (not shown) for measuring the induced voltage due to the magnetic flux passing through the coil are provided on the outer peripheral side of the core.
A watch is a movement that consolidates driving functions and occupies most of the volume, and a display surface (clockface) for humans is also essential. For this reason, the antenna must be arranged near the back cover. In the conventional receiving antenna, the periphery is surrounded by metal parts. However, according to the embodiment using the receiving antenna of the present invention, since it is a closed magnetic circuit resonance type receiving antenna, it is arranged near the casing. There is no generation of eddy currents due to magnetic flux leaking from the core, and the detection sensitivity of radio waves is not lowered. Moreover, it can receive with respect to almost all directions of the magnetic flux which flows in from the exterior of a housing | casing. Furthermore, since the second coil 6 for receiving the magnetic flux passing in the axial direction of the core is wound around the outer peripheral side of the core, the magnetic field generated from the internal electronic components (not shown) Therefore, the second coil is not affected. Therefore, reception of radio waves in the axial direction of the core, which is relatively difficult to detect, is not hindered, and all radio waves in the three axial directions can be received in the metal casing.

(実施例9)
本発明のアンテナを内蔵したRFIDタグの一種であるキーレスエントリーシステム用のキー本体の正面図を図11に示す。正面図のアンテナの図示は配置などが分かりやすいようにあえて実線で示している。キー本体は金属製の筐体ケース74と、キーの開閉ボタン73と、受発信のための回路基板71と、受信アンテナ10から主に構成されている。受信アンテナはコアの外周側に周方向に巻かれた第2のコア6が設けられている。コアは、図示するように筐体ケースの内面形状に合わせるように巻かれた幅1mm、巻き数10回のアモルファス薄帯からなるものである。キー本体は外周が略円弧形状に形成され、キー本体内のスペースを有効活用できるようにしている。受信アンテナのコアの内周側には、プリント配線基板71が配置されている。プリント配線基板は多種多様な配線および回路部品が組み込まれる。
Example 9
FIG. 11 shows a front view of a key body for a keyless entry system, which is a kind of RFID tag incorporating the antenna of the present invention. In the front view, the antenna is shown by a solid line for easy understanding of the arrangement. The key body mainly includes a metal case 74, a key opening / closing button 73, a circuit board 71 for receiving / transmitting, and the receiving antenna 10. The receiving antenna is provided with a second core 6 wound in the circumferential direction on the outer peripheral side of the core. As shown in the figure, the core is made of an amorphous ribbon having a width of 1 mm and a number of turns of 10 wound so as to match the inner shape of the housing case. The outer periphery of the key body is formed in a substantially arc shape so that the space in the key body can be used effectively. A printed wiring board 71 is disposed on the inner peripheral side of the core of the receiving antenna. A printed wiring board incorporates a wide variety of wiring and circuit components.

本発明のアンテナは、電波時計に用いられる電波受信用アンテナや自動車、住宅等のキーレスエントリーシステム、RFIDタグシステムに用いることができる。特に形状の自由度が大きいので電波腕時計に適している。   The antenna of the present invention can be used for radio wave receiving antennas used in radio timepieces, keyless entry systems such as automobiles and houses, and RFID tag systems. In particular, it is suitable for radio wristwatches because of its great freedom of shape.

本発明の1実施例を示す受信アンテナの概略構造図である。1 is a schematic structural diagram of a receiving antenna showing one embodiment of the present invention. 本発明の受信アンテナの指向性の低さを示す図である。It is a figure which shows the low directivity of the receiving antenna of this invention. 周波数と検出電圧の関係を示す図である。It is a figure which shows the relationship between a frequency and a detection voltage. 本発明の別の実施例を示す受信アンテナの概略構造図である。It is a schematic structure figure of the receiving antenna which shows another example of the present invention. 本発明の別の実施例を示す受信アンテナの概略構造図である。It is a schematic structure figure of the receiving antenna which shows another example of the present invention. 本発明の別の実施例を示す受信アンテナの概略構造図である。It is a schematic structure figure of the receiving antenna which shows another example of the present invention. 本発明の受信アンテナが外部からの磁束を受信する様子を模式的に示した図である。It is the figure which showed typically a mode that the receiving antenna of this invention received the magnetic flux from the outside. 本発明の受信アンテナの別のコア形状の例を示す図である。It is a figure which shows the example of another core shape of the receiving antenna of this invention. 本発明の受信アンテナを用いた電波腕時計の概略構造図である。1 is a schematic structural diagram of a radio-controlled wristwatch using a receiving antenna of the present invention. 本発明の別の受信アンテナを用いた電波腕時計の概略構造図である。FIG. 6 is a schematic structural diagram of a radio-controlled wristwatch using another receiving antenna of the present invention. 本発明の受信アンテナを用いたRFIDシステムの概略構造図である。1 is a schematic structural diagram of an RFID system using a receiving antenna of the present invention. 従来のアンテナの概略構造図である。It is a schematic structure figure of the conventional antenna. 本発明のアンテナの等価回路を示す図である。It is a figure which shows the equivalent circuit of the antenna of this invention. 本発明の実施例を試験した装置の模式図である。1 is a schematic diagram of an apparatus in which an embodiment of the present invention was tested.

符号の説明Explanation of symbols

1:磁心、2:コイル、3:コンデンサ、4:受信補強部材、5:補助コア材、6:第2のコイル、10:アンテナ、21:金属製筐体、22:ムーブメント、23:ガラス製蓋、
24:裏蓋、25:樹脂製筐体、26:周辺部品、30:磁束、70:金属製筐体
1: magnetic core, 2: coil, 3: capacitor, 4: reception reinforcing member, 5: auxiliary core material, 6: second coil, 10: antenna, 21: metal casing, 22: movement, 23: glass lid,
24: Back cover, 25: Resin casing, 26: Peripheral parts, 30: Magnetic flux, 70: Metal casing

Claims (11)

磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、コイルの軸方向のコア幅Dxとその垂直方向のコア幅Dyの比Dx/Dyが0.5〜2であることを特徴とする受信アンテナ。 A receiving antenna of a resonance type closed magnetic circuit having an annular core made of a magnetic material, a coil wound around at least a part of the core, and a capacitor connected in parallel to the coil, the axial direction of the coil A receiving antenna, wherein the ratio Dx / Dy of the core width Dx of the core and the core width Dy in the vertical direction thereof is 0.5-2. 磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、前記コアは実質的に円環状であることを特徴とする受信アンテナ。 A resonant closed magnetic circuit receiving antenna having an annular core made of a magnetic material, a coil wound around at least a part of the core, and a capacitor connected in parallel to the coil, wherein the core is substantially Receiving antenna characterized by being circular in shape. 磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナであって、前記コアはフェライト材からなり、かつ前記コアは角が丸い多角形状であることを特徴とする受信アンテナ。 A receiving antenna having a resonant closed magnetic circuit having an annular core made of a magnetic material, a coil wound around at least a part of the core, and a capacitor connected in parallel to the coil, wherein the core is a ferrite A receiving antenna comprising a material and the core having a polygonal shape with rounded corners. 前記コアは、コイルが巻かれていない部分で磁気的なギャップを有することを特徴とする請求項1乃至請求項3に記載の受信アンテナ。 The receiving antenna according to claim 1, wherein the core has a magnetic gap at a portion where no coil is wound. 前記コアは、コイルが巻かれている部分の断面積よりも、コイルが巻かれていない部分の断面積が小さくなる形状であることを特徴とする請求項1乃至請求項4に記載の受信アンテナ。 5. The receiving antenna according to claim 1, wherein the core has a shape in which a cross-sectional area of a portion where the coil is not wound is smaller than a cross-sectional area of a portion where the coil is wound. . 前記受信アンテナは、前記コアの軸平面に対して実質的に平行に第2のコイルが巻かれ、かつ前記第2のコイルの内部を通った磁束によって誘起される誘起電圧を計る測定手段が備えられることを特徴とする請求項1乃至請求項5に記載の受信アンテナ。 The receiving antenna includes measurement means for measuring an induced voltage that is induced by a magnetic flux that is wound around a second coil substantially parallel to the axial plane of the core and that passes through the inside of the second coil. The receiving antenna according to any one of claims 1 to 5, wherein the receiving antenna is provided. 前記コアはフェライト材であり、かつ前記フェライト材の比透磁率は1500以下であることを特徴とする請求項1乃至請求項4に記載の受信アンテナ。 5. The receiving antenna according to claim 1, wherein the core is made of a ferrite material, and the relative permeability of the ferrite material is 1500 or less. 磁性体からなる環状のコアと、前記コアの少なくとも一部に巻かれたコイルと、前記コイルに対して並列に繋がれたコンデンサを有する共振型閉磁路の受信アンテナと、前記コアの内径部に配置された電子部品を有することを特徴とする受信装置。 An annular core made of a magnetic material, a coil wound around at least a part of the core, a receiving antenna of a resonance type closed magnetic circuit having a capacitor connected in parallel to the coil, and an inner diameter portion of the core A receiving apparatus comprising an electronic component arranged. 前記コアの軸平面に対して実質的に平行に第2のコイルが巻かれ、かつ前記第2のコイルの両端の誘起電圧を計る測定手段をもつ請求項8に記載の受信装置。 9. The receiving apparatus according to claim 8, further comprising a measuring means for measuring an induced voltage at both ends of the second coil, the second coil being wound substantially parallel to the axial plane of the core. 前記第2のコイルは、前記コアの外周側に巻かれていることを特徴とする請求項9に記載の受信装置。 The receiving device according to claim 9, wherein the second coil is wound around an outer peripheral side of the core. 前記コアは軟磁性薄帯もしくは軟磁性ワイヤーを巻いたものであることを特徴とする請求項8乃至請求項10に記載の受信装置。
The receiving device according to claim 8, wherein the core is formed by winding a soft magnetic ribbon or a soft magnetic wire.
JP2008011283A 2008-01-22 2008-01-22 Receiving antenna and receiving apparatus using the same Expired - Fee Related JP5163941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011283A JP5163941B2 (en) 2008-01-22 2008-01-22 Receiving antenna and receiving apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011283A JP5163941B2 (en) 2008-01-22 2008-01-22 Receiving antenna and receiving apparatus using the same

Publications (2)

Publication Number Publication Date
JP2009177293A true JP2009177293A (en) 2009-08-06
JP5163941B2 JP5163941B2 (en) 2013-03-13

Family

ID=41031967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011283A Expired - Fee Related JP5163941B2 (en) 2008-01-22 2008-01-22 Receiving antenna and receiving apparatus using the same

Country Status (1)

Country Link
JP (1) JP5163941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077824A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Antenna device, radio wave receiving apparatus, and method of manufacturing the antenna device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131042U (en) * 1981-02-12 1982-08-16
JP2000286761A (en) * 1998-12-31 2000-10-13 Casio Comput Co Ltd Data communication equipment, wrist type electronic device and authentication system
JP2005102023A (en) * 2003-09-26 2005-04-14 Citizen Watch Co Ltd Antenna structure and radio-controlled clock
WO2005107006A1 (en) * 2004-04-27 2005-11-10 Colder Products Company Antenna for radio frequency identification reader
JP2006081140A (en) * 2003-12-11 2006-03-23 Hitachi Metals Ltd Antenna, radio clock using the same, keyless entry system, and rfid system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131042U (en) * 1981-02-12 1982-08-16
JP2000286761A (en) * 1998-12-31 2000-10-13 Casio Comput Co Ltd Data communication equipment, wrist type electronic device and authentication system
JP2005102023A (en) * 2003-09-26 2005-04-14 Citizen Watch Co Ltd Antenna structure and radio-controlled clock
JP2006081140A (en) * 2003-12-11 2006-03-23 Hitachi Metals Ltd Antenna, radio clock using the same, keyless entry system, and rfid system
WO2005107006A1 (en) * 2004-04-27 2005-11-10 Colder Products Company Antenna for radio frequency identification reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077824A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Antenna device, radio wave receiving apparatus, and method of manufacturing the antenna device

Also Published As

Publication number Publication date
JP5163941B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP2007013862A (en) Antenna, radio clock using the same, keyless entry system, and rfid system
US8847839B2 (en) Resonance-type, receiving antenna and receiving apparatus
US8259024B2 (en) Radio wave receiver with an antenna structure
JP2005345480A (en) Remote control wrist watch
JP4695088B2 (en) Electronics
JP2009296296A (en) Antenna device, radio receiver, and antenna device manufacturing method
JP2006333183A (en) Antenna and electronic equipment
JP2010048605A (en) Built-in antenna-type electronic timepiece
JP4304672B2 (en) Radio clock antenna and radio clock using the same
JP4592001B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP5163941B2 (en) Receiving antenna and receiving apparatus using the same
JP2006191525A (en) Antenna, radio-controlled watch using the same, keyless entry system, and rfid system
JP4826706B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP2005164354A (en) Electronic apparatus
JP4202878B2 (en) Antenna structure and radio wave correction watch
JP2006340101A (en) Antenna structure and radio wave correction clock
JP4692875B2 (en) Antenna, radio clock using the antenna, and RFID system
JP5712695B2 (en) Electronic clock with built-in antenna
JP4905844B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP2011139195A (en) Antenna device and radio receiving apparatus equipped with the antenna device
JP5262311B2 (en) Electronics
JP4535185B2 (en) Radio wave watch
JP2006105864A (en) Antenna and radio controlled timepiece
JP2005117465A (en) Antenna and wrist watch
JP2004343625A (en) Electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees