JP2009175017A - Method and apparatus for analysis - Google Patents

Method and apparatus for analysis Download PDF

Info

Publication number
JP2009175017A
JP2009175017A JP2008014328A JP2008014328A JP2009175017A JP 2009175017 A JP2009175017 A JP 2009175017A JP 2008014328 A JP2008014328 A JP 2008014328A JP 2008014328 A JP2008014328 A JP 2008014328A JP 2009175017 A JP2009175017 A JP 2009175017A
Authority
JP
Japan
Prior art keywords
filter
optical filter
specimen
incident angle
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008014328A
Other languages
Japanese (ja)
Other versions
JP5274031B2 (en
Inventor
Ryosuke Yamada
亮介 山田
Masahiro Agawa
昌弘 阿河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008014328A priority Critical patent/JP5274031B2/en
Priority to US12/864,439 priority patent/US8310678B2/en
Priority to EP09703821A priority patent/EP2241877A1/en
Priority to CN2009801012018A priority patent/CN101878420B/en
Priority to PCT/JP2009/000219 priority patent/WO2009093453A1/en
Publication of JP2009175017A publication Critical patent/JP2009175017A/en
Application granted granted Critical
Publication of JP5274031B2 publication Critical patent/JP5274031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analytical method and an analyzer capable of reducing measurement errors due to the dependency of optical filters on the angle of incidence. <P>SOLUTION: Light from a specimen 2 carried by a test strip 3 is passed through an optical system having an optical filter 6 and received by an image sensor 7 provided with a plurality of pixels to acquire concentration information of the specimen in the analytical method. The angle θ of the filter incidence incident onto the optical filter 6 of the light which forms an image in the pixels A is computed. The amount of shift of the filter band of the optical filter 6 corresponding to the angle θ of the filter incidence is acquired to acquire a correction coefficient corresponding to the amount of shift. The correction coefficient is used to correct luminance. Concentration information of the specimen 2 is acquired on the basis of this corrected luminance value. Since it is possible to reduce measurement errors due to the dependency of the optical filter 6 on the angle of incidence by this analytical method, measurement accuracy and reliability at the time of analyzing the specimen 2 are improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、イメージセンサを用いて検体の濃度情報を得る分析方法および分析装置に関するものである。   The present invention relates to an analysis method and an analysis apparatus for obtaining concentration information of a specimen using an image sensor.

試験片に担持された検体の濃度情報を得る従来の分析装置の構成を図5に示す。従来の分析装置では、光源1からの光を、検体2が担持された試験片3に照射し、その試験片3からの散乱光(または透過光や反射光の場合もある)を、レンズ4、絞り5、光学フィルタ6等により構成される光学系を通して、CCDなどからなるイメージセンサ7に照射させて結像させ、イメージセンサ7の各画素(ここで、図5において、画素Oは光学系の中心軸線である光軸Zの位置にある画素を示し、画素Aは光軸から外れた画素を示す)にて得られる光の光量を画素出力値に変換して分析することで、試験片3に担持された検体2の濃度を定量化するよう構成されている(例えば、特許文献1参照)。
特開平7−5110号公報
FIG. 5 shows a configuration of a conventional analyzer that obtains concentration information of the specimen carried on the test piece. In the conventional analyzer, the light from the light source 1 is applied to the test piece 3 on which the specimen 2 is carried, and the scattered light (or transmitted light or reflected light in some cases) from the test piece 3 is used as the lens 4. The image sensor 7 formed of a CCD or the like is irradiated with an image through an optical system including the diaphragm 5, the optical filter 6 and the like to form an image, and each pixel of the image sensor 7 (here, the pixel O in FIG. 5 is the optical system). The pixel at the position of the optical axis Z, which is the central axis of the optical axis Z, and the pixel A indicates a pixel deviated from the optical axis). 3 is configured to quantify the concentration of the specimen 2 carried on the surface 3 (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 7-5110

前記従来構成の分析装置において、試験片3に担持された検体2の濃度を求めるには検体2からの光(散乱光量、透過光量、または反射光量)をイメージセンサ7の画素にて取得することが必要であり、その画素出力値は、それぞれ波長特性を持った光源1、検体2、およびイメージセンサ7において、光源1の光量と、検体2の散乱強度と、イメージセンサ7の感度との積から得られる波長特性のうち、光学フィルタ6の透過波長帯域を満たす範囲の積分値として得られる。   In the analyzer of the conventional configuration, in order to obtain the concentration of the sample 2 carried on the test piece 3, light from the sample 2 (scattered light amount, transmitted light amount, or reflected light amount) is acquired by the pixel of the image sensor 7. The pixel output value is the product of the light amount of the light source 1, the scattering intensity of the sample 2, and the sensitivity of the image sensor 7 in the light source 1, the sample 2, and the image sensor 7 each having wavelength characteristics. Among the wavelength characteristics obtained from the above, it is obtained as an integral value in a range satisfying the transmission wavelength band of the optical filter 6.

例えば、図6、図7に示すように、波長に対して図6(a)に示すような光量分布を持つ光源1と、図6(b)に示すような散乱特性を持つ検体2と、図6(c)に示すような感度分布を持つイメージセンサ7とを用いた場合、輝度を表す波長特性は図6(d)に示すような特性として得られる。さらに、図7(a)に示すような波長特性(図6(d)に示す特性と同じ)において、図7(b)に示すような透過特性を持つ光学フィルタ6により波長を制限すると、光学フィルタ6透過後の輝度を表す波長特性は、図7(c)に示すようになり、その積分値(図7(c)における斜線部の面積)がイメージセンサ7の画素出力値となる。   For example, as shown in FIGS. 6 and 7, a light source 1 having a light quantity distribution as shown in FIG. 6 (a) with respect to a wavelength, a specimen 2 having a scattering characteristic as shown in FIG. 6 (b), When the image sensor 7 having the sensitivity distribution as shown in FIG. 6C is used, the wavelength characteristic representing the luminance is obtained as a characteristic as shown in FIG. Further, in the wavelength characteristic as shown in FIG. 7A (same as the characteristic shown in FIG. 6D), when the wavelength is limited by the optical filter 6 having the transmission characteristic as shown in FIG. The wavelength characteristic representing the luminance after passing through the filter 6 is as shown in FIG. 7C, and the integrated value (the area of the hatched portion in FIG. 7C) becomes the pixel output value of the image sensor 7.

ところで、図5に示すように、光軸Z上に存在する検体2からの光(散乱光)は、光学フィルタ6に対してほぼ垂直に(すなわち光軸Zに沿って)入射して画素Oへ結像されるが、画素Aへ結像される、光軸Zから離れた検体2の散乱光は、光学フィルタ6に直交する垂線(光軸Z)に対して入射角度θが生じる。この時、光学フィルタ6は光の入射角度θの大きさに応じて透過波長帯域がマイナスの方向へシフトする、いわゆる入射角度依存性を持っているため、図8(b)において点線で示すように、画素Aにおいては画素Oに比べて結像される光の波長帯域がマイナスの方向へシフトしてしまう。その結果、図8(c)に示すように、画素Aでの輝度の波長特性もまた波長帯域がマイナスの方向へシフトし、しかも、波長に対して図8(a)に示すような変化量を持っている場合は、その変化量分だけ画素Aでの画素出力値も変化して(図8に示す場合は減少して)しまう。つまり、同一の検体2から得られる同一な光量の光であってもイメージセンサ7内の画素位置によって画素出力値が変わるため、測定誤差となってしまう。   Incidentally, as shown in FIG. 5, the light (scattered light) from the specimen 2 existing on the optical axis Z enters the optical filter 6 substantially perpendicularly (that is, along the optical axis Z) and enters the pixel O. However, the scattered light of the specimen 2 that is imaged on the pixel A and separated from the optical axis Z has an incident angle θ with respect to a perpendicular (optical axis Z) perpendicular to the optical filter 6. At this time, the optical filter 6 has a so-called incident angle dependency in which the transmission wavelength band shifts in the negative direction according to the incident angle θ of light, and therefore, as shown by a dotted line in FIG. 8B. In addition, in the pixel A, the wavelength band of the imaged light is shifted in the negative direction compared to the pixel O. As a result, as shown in FIG. 8C, the wavelength characteristic of the luminance at the pixel A is also shifted in the negative direction of the wavelength band, and the change amount as shown in FIG. , The pixel output value at the pixel A also changes by the amount of change (decreases in the case shown in FIG. 8). That is, even with the same amount of light obtained from the same specimen 2, the pixel output value changes depending on the pixel position in the image sensor 7, resulting in a measurement error.

本発明は、前記従来の課題を解決するもので、光学フィルタの入射角度依存性による測定誤差を低減できる分析方法および分析装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an analysis method and an analysis apparatus that can reduce a measurement error due to an incident angle dependency of an optical filter.

前記従来の課題を解決するために、本発明は、試験片に担持された検体からの光を、光学フィルタを有する光学系を通して、複数の画素を備えたイメージセンサにより受けて前記検体の濃度情報を得る分析方法であって、画素に結像する光の、光学フィルタに入射するフィルタ入射角度を検出するフィルタ入射角度検出ステップと、フィルタ入射角度に対応する光学フィルタのフィルタ帯域のシフト量を得るシフト量取得ステップと、前記シフト量に応じた補正係数を設定する補正係数設定ステップと、前記補正係数を用いて輝度値または輝度値に相当する値を補正する補正ステップと、前記補正ステップで補正した補正値に基づいて検体の濃度情報を得る濃度取得ステップとを有することを特徴とする。   In order to solve the above-described conventional problems, the present invention is configured to receive light from a specimen carried on a test piece through an optical system having an optical filter by an image sensor having a plurality of pixels, and to provide concentration information on the specimen. And a filter incident angle detection step for detecting a filter incident angle of light that forms an image on a pixel, and a shift amount of a filter band of the optical filter corresponding to the filter incident angle. A correction amount setting step that sets a correction coefficient in accordance with the shift amount, a correction step that corrects a luminance value or a value corresponding to the luminance value using the correction coefficient, and correction in the correction step And a concentration acquisition step of obtaining concentration information of the specimen based on the corrected value.

また、本発明は、試験片に担持された検体からの光を、光学フィルタを有する光学系を通して、複数の画素を備えたイメージセンサにより受けて前記検体の濃度情報を得る分析装置であって、画素に結像する光の、光学フィルタに入射するフィルタ入射角度を検出するフィルタ入射角度検出手段と、フィルタ入射角度に対応する光学フィルタのフィルタ帯域のシフト量を得るシフト量取得手段と、前記シフト量に応じた補正係数を設定する補正係数設定手段と、前記補正係数を用いて輝度値または輝度値に相当する値を補正する補正手段と、前記補正手段で補正した補正値に基づいて検体の濃度情報を得る濃度取得手段と
を備えたことを特徴とする。
Further, the present invention is an analyzer that obtains concentration information of the specimen by receiving light from the specimen carried on the test piece through an optical system having an optical filter by an image sensor having a plurality of pixels. Filter incident angle detecting means for detecting the filter incident angle of light that forms an image on the pixel and incident on the optical filter, shift amount acquiring means for obtaining the shift amount of the filter band of the optical filter corresponding to the filter incident angle, and the shift A correction coefficient setting means for setting a correction coefficient according to the amount; a correction means for correcting a luminance value or a value corresponding to the luminance value using the correction coefficient; and a correction value of the sample based on the correction value corrected by the correction means. And a density acquisition means for obtaining density information.

前記分析方法および分析装置によれば、試験片の検体をイメージセンサにより撮像して、イメージセンサの画素への光が光学フィルタに対して入射角度を有して(傾斜して)通る場合でも、この画素への光の入射角度に応じて、フィルタ入射角度に対応する光学フィルタのフィルタ帯域のシフト量および補正係数を得て、検体の濃度情報が良好に補正され、この結果、光学フィルタの入射角度依存性による測定誤差を低減することができる。   According to the analysis method and the analysis apparatus, even when the specimen of the test piece is imaged by the image sensor and the light to the pixel of the image sensor passes through the optical filter at an incident angle (tilt), According to the incident angle of light to the pixel, the filter band shift amount and the correction coefficient of the optical filter corresponding to the incident angle of the filter are obtained, and the concentration information of the specimen is corrected well. Measurement errors due to angle dependency can be reduced.

本発明の分析方法および分析装置によれば、光学フィルタの入射角度依存性による測定誤差を低減することができて、検体を分析する際の測定精度および信頼性が向上する。   According to the analysis method and the analysis apparatus of the present invention, it is possible to reduce the measurement error due to the incident angle dependency of the optical filter, and the measurement accuracy and reliability when analyzing the specimen are improved.

以下に、本発明の実施の形態に係る分析方法および分析装置を、図面とともに詳細に説明する。
図1は、本発明の実施の形態に係る分析装置の概略構成を示す正面図である。大まかな構成は、図5に示す従来の分析装置の構成と同じであり、同じ構成要素には同符号を付してその説明は省略する。なお、従来の分析装置と同様に、この分析装置においても、試験片3に光を照射する光源を有しているが、図1においては省いている。
Hereinafter, an analysis method and an analysis apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing a schematic configuration of an analyzer according to an embodiment of the present invention. The general configuration is the same as the configuration of the conventional analyzer shown in FIG. 5, and the same components are denoted by the same reference numerals and description thereof is omitted. As in the conventional analyzer, this analyzer has a light source for irradiating the test piece 3 with light, but is omitted in FIG.

ここで、本発明の実施の形態に係る分析装置が、従来の分析装置と異なる点は、イメージセンサ7の各画素からの画素出力値に補正をかけるための独自の補正アルゴリズムを実行する制御部(図示せず)が設けられていることである。この補正アルゴリズムを実行する制御部には、画素に結像する光の、光学フィルタ6に入射するフィルタ入射角度を検出するフィルタ入射角度検出手段と、フィルタ入射角度に対応する光学フィルタ6のフィルタ帯域のシフト量(移動量)を得るシフト量取得手段と、前記シフト量に応じた補正係数を設定する補正係数設定手段と、前記補正係数を用いて輝度値を補正する補正手段と、補正輝度値に基づいて検体の濃度情報を得る濃度取得手段とを備えている。   Here, the analysis device according to the embodiment of the present invention is different from the conventional analysis device in that a control unit that executes a unique correction algorithm for correcting the pixel output value from each pixel of the image sensor 7. (Not shown) is provided. The control unit that executes this correction algorithm includes a filter incident angle detection unit that detects a filter incident angle of light that forms an image on the pixel and is incident on the optical filter 6, and a filter band of the optical filter 6 that corresponds to the filter incident angle. Shift amount obtaining means for obtaining a shift amount (movement amount), correction coefficient setting means for setting a correction coefficient corresponding to the shift amount, correction means for correcting a luminance value using the correction coefficient, and a corrected luminance value Concentration acquisition means for obtaining concentration information of the specimen based on the above.

前記補正アルゴリズムについて、以下に詳しく説明する。
まず、第一に、検体2からの光が光学フィルタ6を通過する時の入射角度を検出する。図1は、レンズ4、絞り5、光学フィルタ6等により構成される光学系における光路を示した図である。図1において、光学フィルタ6への入射角度が垂直、つまり光学フィルタ6に直交する垂線に対して0°となる光の主光線を光学系の光軸Zであると定義し、光軸Z上に位置する検体2からの光は画素Oへ結像するとする。ここで、画素Oに結像する光は、絞り5の開口部5aを底面とした円錐内に無数に分布する光線の集合であるため、光軸以外の各光線は光学フィルタ6への若干の入射角度(光軸Zに対する傾斜角度)を持っているが、ここでは絞り径が十分に小さい場合を仮定して、つまり全ての光線を1本の光軸Zに近似した場合で考えることにする。この場合、画素Oに対応する光学フィルタ6の透過帯域は入射角度依存性を持たず、設計値通りの透過帯域であるため、画素Oにて得られる画素出力値は真値である。
The correction algorithm will be described in detail below.
First, the incident angle when the light from the specimen 2 passes through the optical filter 6 is detected. FIG. 1 is a diagram showing an optical path in an optical system including a lens 4, a diaphragm 5, an optical filter 6, and the like. In FIG. 1, the principal ray of light whose incident angle to the optical filter 6 is perpendicular, that is, 0 ° with respect to a perpendicular perpendicular to the optical filter 6 is defined as the optical axis Z of the optical system. It is assumed that the light from the sample 2 located at is formed on the pixel O. Here, the light that forms an image on the pixel O is a collection of light beams distributed innumerably in a cone with the opening 5a of the diaphragm 5 as a bottom surface, so that each light beam other than the optical axis is slightly applied to the optical filter 6. Although it has an incident angle (inclination angle with respect to the optical axis Z), it is assumed here that the aperture diameter is sufficiently small, that is, all light rays are approximated to one optical axis Z. . In this case, since the transmission band of the optical filter 6 corresponding to the pixel O has no incident angle dependency and is a transmission band as designed, the pixel output value obtained in the pixel O is a true value.

これに対して、光学フィルタ6への入射角度依存性を持つ画素Aへ結像する光の場合、画素Oの場合と同様に、全ての光線を主光線に近似した場合で考えると、入射角度θは以下の(式1)のようになる。   On the other hand, in the case of light that forms an image on the pixel A having an incident angle dependency on the optical filter 6, as in the case of the pixel O, the incident angle is considered when all light rays are approximated to chief rays. θ is as shown in (Equation 1) below.

θ=tan−1(H1/L) ・・・(式1)
ここで、Lは、試験片3と絞り5との間の距離(試験片・絞り間距離)、H1は画素Aに対する物体高(試験片3における画素Aに対応する検体2の部分の、光軸位置からの距離)である。
θ = tan −1 (H1 / L) (Formula 1)
Here, L is a distance between the test piece 3 and the diaphragm 5 (distance between the test piece and the diaphragm), and H1 is an object height with respect to the pixel A (light of the portion of the specimen 2 corresponding to the pixel A in the test piece 3). Distance from the axis position).

また、画素Aに対する物体高H1は、画素Aの像高(イメージセンサ7における光軸にZ対応する中心部から画素Aまでの距離)H2と、光学系の像倍率Bとから求めることができ、以下の(式2)のようになる。   The object height H1 with respect to the pixel A can be obtained from the image height of the pixel A (distance from the central portion corresponding to the optical axis Z to the pixel A in the image sensor 7) H2 and the image magnification B of the optical system. The following (Formula 2) is obtained.

H1=H2/B ・・・(式2)
よって、(式1)および(式2)より、画素Aに結像される光の入射角度θを求めることができる。
H1 = H2 / B (Formula 2)
Therefore, the incident angle θ of the light imaged on the pixel A can be obtained from (Expression 1) and (Expression 2).

次に、光学フィルタ6の角度依存性によって起こる透過帯域シフト量(透過帯域移動量)を求める。光学フィルタ6への入射角度θとそれに対する透過帯域シフト量とは、光学フィルタ6の仕様として決まっており、例えば光学フィルタ6の製造時の設計データとして、また光学フィルタ入手後に測定することで容易に入手が可能である。光学フィルタ6への入射角度θと透過帯域シフト量との関係は、例えば図2に示すような右下がりの曲線を描く。特性として、光学フィルタ6への入射角度が大きくなるほど透過帯域はマイナス方向にシフトする。このグラフを参照することにより、画素Aへ結像する光の波長帯域を知ることができる。   Next, a transmission band shift amount (transmission band movement amount) caused by the angle dependency of the optical filter 6 is obtained. The incident angle θ to the optical filter 6 and the transmission band shift amount with respect thereto are determined as the specifications of the optical filter 6. For example, it is easy to measure as design data at the time of manufacturing the optical filter 6 or after obtaining the optical filter. Is available. The relationship between the incident angle θ on the optical filter 6 and the transmission band shift amount draws a downward-sloping curve as shown in FIG. 2, for example. As a characteristic, the transmission band shifts in the minus direction as the incident angle to the optical filter 6 increases. By referring to this graph, the wavelength band of the light focused on the pixel A can be known.

次に、透過帯域シフト量に応じた補正係数の求め方について図3を用いて説明する。図3に示すグラフは、上述した図6の(d)に示した輝度の波長特性であり、この特性が光学フィルタ6の入射角度依存性による測定誤差の変化量を表すものであるため、補正係数を求めるにはこのグラフを用いる。   Next, how to obtain the correction coefficient according to the transmission band shift amount will be described with reference to FIG. The graph shown in FIG. 3 is the wavelength characteristic of the luminance shown in FIG. 6D described above, and this characteristic represents the amount of change in the measurement error due to the incident angle dependence of the optical filter 6, so that the correction is performed. This graph is used to obtain the coefficient.

まず、画素Oへ結像する光の波長帯域の中心波長をλoとすると、先ほど述べたようにこれは光学フィルタ6の透過帯域の設計値である。また、画素Aへ結像する光の波長帯域の中心波長をλaとすると、λaの値は入射角度と透過帯域シフト量とにより求めることができる。中心波長λoおよび中心波長λaでの輝度は、このグラフより求めることができ、それぞれIo、Iaとする。これは画素Aにおいて本来、輝度Ioとして得られるはずの輝度が光学フィルタ6の角度依存性による透過帯域シフトにより輝度Iaとして得られることを意味しており、補正を行うには輝度がIoとなるような補正係数を輝度Iaに乗算する必要がある。つまり、補正係数αaは以下のようになる。   First, assuming that the center wavelength of the wavelength band of light imaged on the pixel O is λo, this is the design value of the transmission band of the optical filter 6 as described above. If the central wavelength of the wavelength band of the light focused on the pixel A is λa, the value of λa can be obtained from the incident angle and the transmission band shift amount. The luminance at the center wavelength λo and the center wavelength λa can be obtained from this graph, and is assumed to be Io and Ia, respectively. This means that the luminance that should originally be obtained as the luminance Io in the pixel A is obtained as the luminance Ia by the transmission band shift due to the angle dependency of the optical filter 6, and the luminance becomes Io for correction. It is necessary to multiply the luminance Ia by such a correction coefficient. That is, the correction coefficient αa is as follows.

αa=Io/Ia ・・・(式3)
最後に、上記補正係数を用いた補正方法について、図4を用いて説明する。図4に示すように、光学フィルタ6の入射角度依存性の影響を受けている画素Aでの画素出力値に対して先ほどの補正係数αaを乗算する。すると各波長における輝度は補正係数αaを乗算した分だけ上がり、画素Oでの輝度と同じレベルになる。つまり、波長に対する輝度の積算値である画素Aでの画素出力値もまた画素Oでの画素出力値、つまり真値と近い値になり、光学フィルタ6の入射角度依存性の影響は補正されて、光学フィルタ6の入射角度依存性が無い状態に近づけられる。また、イメージセンサ7上の他の画素においても同様の過程にて補正係数を算出し、得られた画素出力値に対してそれぞれの画素位置に対応した補正係数を乗算することで、光学フィルタ6の入射角度依存性の影響を最小限に抑えることができる。
αa = Io / Ia (Formula 3)
Finally, a correction method using the correction coefficient will be described with reference to FIG. As shown in FIG. 4, the pixel output value of the pixel A that is affected by the incident angle dependency of the optical filter 6 is multiplied by the correction coefficient αa. Then, the luminance at each wavelength increases by the amount multiplied by the correction coefficient αa, and becomes the same level as the luminance at the pixel O. That is, the pixel output value at the pixel A, which is the integrated value of the luminance with respect to the wavelength, also becomes a pixel output value at the pixel O, that is, a value close to the true value, and the influence of the incident angle dependency of the optical filter 6 is corrected. Thus, the optical filter 6 can be brought close to the incident angle dependency. Further, the correction coefficient is calculated in the same process for other pixels on the image sensor 7, and the obtained pixel output value is multiplied by the correction coefficient corresponding to each pixel position to thereby obtain the optical filter 6. Can be minimized.

例えば、検体2の波長特性が時間もしくは環境等によって変化しないものである場合、輝度の波長特性も変化しないものであるため、各画素で持っておく補正係数は1パターンでよい。また、検体2が数種類ある場合は、それぞれの検体2の波長特性に対応した補正係数を事前に作成しておき、各検体2に対してその都度、補正係数のパターンを変更すればよい。   For example, when the wavelength characteristic of the specimen 2 does not change with time or the environment, the wavelength characteristic of luminance does not change, so the correction coefficient held in each pixel may be one pattern. Further, when there are several types of specimens 2, correction coefficients corresponding to the wavelength characteristics of the respective specimens 2 are created in advance, and the correction coefficient pattern may be changed for each specimen 2 each time.

以上のように、光学フィルタ6への入射角度を求め、その角度に対する光学フィルタ6の透過帯域シフト量を求め、そのシフト量に対する輝度の変化より求められた補正係数を対応する画素出力値へ乗算するというアルゴリズムを用いることで、イメージセンサ7上のどの画素においても真値に近い画素出力値を得ることができる。   As described above, the incident angle to the optical filter 6 is obtained, the transmission band shift amount of the optical filter 6 with respect to the angle is obtained, and the corresponding pixel output value is multiplied by the correction coefficient obtained from the change in luminance with respect to the shift amount. By using this algorithm, a pixel output value close to the true value can be obtained at any pixel on the image sensor 7.

このように、本発明の分析方法および分析装置によれば、光学フィルタ6の入射角度依存性による測定誤差を低減することができて、検体2を分析する際の測定精度および信頼性を向上させることができる。例えば、光を用いて被写体(検体2)の濃度を測定する指標として広く用いられている吸光度での測定誤差について観察した場合、光学フィルタ6への入射角度θが約30度の場合に、上記の補正を行わない場合には、検体7の測定誤差は5%以上あったが、上記アルゴリズムを用いて補正した場合には、検体2の濃度の測定誤差を0.2%〜0.3%に抑えることが可能となった。   Thus, according to the analysis method and the analysis apparatus of the present invention, the measurement error due to the incident angle dependency of the optical filter 6 can be reduced, and the measurement accuracy and reliability when analyzing the specimen 2 are improved. be able to. For example, when the measurement error in the absorbance widely used as an index for measuring the concentration of the subject (specimen 2) using light is observed, when the incident angle θ to the optical filter 6 is about 30 degrees, In the case where the correction is not performed, the measurement error of the sample 7 is 5% or more. However, when the correction is performed using the above algorithm, the measurement error of the concentration of the sample 2 is 0.2% to 0.3%. It became possible to suppress to.

なお、上記実施の形態では、補正係数を用いて輝度値を補正し、この輝度補正値に基づいて検体2の濃度情報を得たが、これに限るものではなく、輝度値に相当するデジタルデータ等を補正し、この補正データに基づいて検体2の濃度情報を得てもよい。   In the above embodiment, the luminance value is corrected using the correction coefficient, and the concentration information of the specimen 2 is obtained based on the luminance correction value. However, the present invention is not limited to this, and digital data corresponding to the luminance value is used. Etc. may be corrected, and the concentration information of the specimen 2 may be obtained based on the correction data.

本発明に係る分析方法および分析装置は、光学フィルタの入射角度依存性による測定誤差の低減機能を有し、高精度での濃度検出が必要な生化学分析方法および装置等に特に有用である。   The analysis method and analysis apparatus according to the present invention have a function of reducing measurement errors due to the incident angle dependency of an optical filter, and are particularly useful for biochemical analysis methods and apparatuses that require concentration detection with high accuracy.

本発明の実施の形態に係る分析装置の構成を概略的に示す正面図The front view which shows roughly the structure of the analyzer which concerns on embodiment of this invention 同実施の形態に係る分析装置および分析方法の光学フィルタへの入射角度と透過帯域シフト量との関係(特性)を示す図The figure which shows the relationship (characteristic) of the incident angle to the optical filter of the analyzer which concerns on the same embodiment, and an analysis method, and the amount of transmission band shifts 同実施の形態に係る分析装置および分析方法の輝度の波長特性を示す図The figure which shows the wavelength characteristic of the brightness | luminance of the analyzer and analysis method which concern on the same embodiment 同実施の形態に係る分析装置および分析方法の光学フィルタ透過後の輝度の波長特性を示す図The figure which shows the wavelength characteristic of the brightness | luminance after the optical filter transmission of the analyzer and analysis method which concern on the same embodiment 従来の分析装置の構成を概略的に示す斜視図A perspective view schematically showing the configuration of a conventional analyzer (a)〜(d)は、それぞれ分析装置の光源の波長特性を示す図、検体の散乱特性を示す図、イメージセンサの感度分布を示す図、輝度の波長特性を示す図(A)-(d) is the figure which shows the wavelength characteristic of the light source of an analyzer, respectively, the figure which shows the scattering characteristic of a test substance, the figure which shows the sensitivity distribution of an image sensor, and the figure which shows the wavelength characteristic of a brightness | luminance (a)〜(c)は、それぞれ、分析装置における、輝度の波長特性を示す図、光学フィルタの透過特性を示す図、光学フィルタ透過後の輝度の波長特性を示す図(A)-(c) is a figure which shows the wavelength characteristic of a brightness | luminance in an analyzer, respectively, The figure which shows the transmission characteristic of an optical filter, The figure which shows the wavelength characteristic of the brightness | luminance after optical filter transmission (a)〜(c)は、それぞれ、分析装置における、輝度の波長特性を示す図、光学フィルタの透過特性を示す図、光学フィルタ透過後の輝度の波長特性を示す図(A)-(c) is a figure which shows the wavelength characteristic of a brightness | luminance in an analyzer, respectively, The figure which shows the transmission characteristic of an optical filter, The figure which shows the wavelength characteristic of the brightness | luminance after optical filter transmission

符号の説明Explanation of symbols

1 光源
2 検体
3 試験片
4 レンズ
5 絞り
6 光学フィルタ
7 イメージセンサ
DESCRIPTION OF SYMBOLS 1 Light source 2 Sample 3 Test piece 4 Lens 5 Aperture 6 Optical filter 7 Image sensor

Claims (2)

試験片に担持された検体からの光を、光学フィルタを有する光学系を通して、複数の画素を備えたイメージセンサにより受けて前記検体の濃度情報を得る分析方法であって、
画素に結像する光の、光学フィルタに入射するフィルタ入射角度を検出するフィルタ入射角度検出ステップと、
フィルタ入射角度に対応する光学フィルタのフィルタ帯域のシフト量を得るシフト量取得ステップと、
前記シフト量に応じた補正係数を設定する補正係数設定ステップと、
前記補正係数を用いて輝度値または輝度値に相当する値を補正する補正ステップと、
前記補正ステップで補正した補正値に基づいて検体の濃度情報を得る濃度取得ステップと
を有する分析方法。
An analysis method for receiving light from a specimen carried on a test piece through an optical system having an optical filter by an image sensor having a plurality of pixels to obtain concentration information of the specimen,
A filter incident angle detecting step for detecting a filter incident angle of light that forms an image on the pixel and that enters the optical filter;
A shift amount obtaining step for obtaining a shift amount of the filter band of the optical filter corresponding to the filter incident angle;
A correction coefficient setting step for setting a correction coefficient according to the shift amount;
A correction step of correcting a luminance value or a value corresponding to the luminance value using the correction coefficient;
A concentration acquisition step of obtaining concentration information of the specimen based on the correction value corrected in the correction step.
試験片に担持された検体からの光を、光学フィルタを有する光学系を通して、複数の画素を備えたイメージセンサにより受けて前記検体の濃度情報を得る分析装置であって、
画素に結像する光の、光学フィルタに入射するフィルタ入射角度を検出するフィルタ入射角度検出手段と、
フィルタ入射角度に対応する光学フィルタのフィルタ帯域のシフト量を得るシフト量取得手段と、
前記シフト量に応じた補正係数を設定する補正係数設定手段と、
前記補正係数を用いて輝度値または輝度値に相当する値を補正する補正手段と、
前記補正手段で補正した補正値に基づいて検体の濃度情報を得る濃度取得手段と
を備えた分析装置。
An analyzer that receives light from a specimen carried on a test piece through an optical system having an optical filter by an image sensor having a plurality of pixels to obtain density information of the specimen,
Filter incident angle detection means for detecting a filter incident angle of light that forms an image on a pixel and is incident on an optical filter;
Shift amount acquisition means for obtaining the shift amount of the filter band of the optical filter corresponding to the filter incident angle;
Correction coefficient setting means for setting a correction coefficient according to the shift amount;
Correction means for correcting a luminance value or a value corresponding to the luminance value using the correction coefficient;
An analyzer comprising: a concentration acquisition unit that obtains concentration information of the specimen based on the correction value corrected by the correction unit.
JP2008014328A 2008-01-25 2008-01-25 Analysis method and analyzer Expired - Fee Related JP5274031B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008014328A JP5274031B2 (en) 2008-01-25 2008-01-25 Analysis method and analyzer
US12/864,439 US8310678B2 (en) 2008-01-25 2009-01-22 Analyzing device and analyzing method
EP09703821A EP2241877A1 (en) 2008-01-25 2009-01-22 Analysis device and analysis method
CN2009801012018A CN101878420B (en) 2008-01-25 2009-01-22 Analysis device and analysis method
PCT/JP2009/000219 WO2009093453A1 (en) 2008-01-25 2009-01-22 Analysis device and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014328A JP5274031B2 (en) 2008-01-25 2008-01-25 Analysis method and analyzer

Publications (2)

Publication Number Publication Date
JP2009175017A true JP2009175017A (en) 2009-08-06
JP5274031B2 JP5274031B2 (en) 2013-08-28

Family

ID=41030260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014328A Expired - Fee Related JP5274031B2 (en) 2008-01-25 2008-01-25 Analysis method and analyzer

Country Status (1)

Country Link
JP (1) JP5274031B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635240A (en) * 1986-06-23 1988-01-11 マイルス・ラボラトリ−ズ・インコ−ポレ−テッド Method of measuring reflectivity of sample in reflectivity measuring device and method of calibrating spectrophotometer
JPH075110A (en) * 1992-09-10 1995-01-10 Terametsukusu Kk Analytic method employing test piece and method for recognizing test piece
JPH09133628A (en) * 1995-11-12 1997-05-20 Terametsukusu Kk Analyzer provided with built-in composite element
JPH10142053A (en) * 1996-11-07 1998-05-29 Fuji Photo Film Co Ltd Correction method in spectral reflectance-measuring apparatus
JP2002335538A (en) * 2001-05-09 2002-11-22 Fuji Photo Film Co Ltd Color correction method of spectrum picture and spectrum picture image pickup unit using the same and program for executing the same
JP2006292582A (en) * 2005-04-12 2006-10-26 Canon Inc Multi-band image processor, multi-band image processing method and multi-band image photographing apparatus
JP2007093586A (en) * 2005-08-31 2007-04-12 Canon Inc Sensor and recording device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635240A (en) * 1986-06-23 1988-01-11 マイルス・ラボラトリ−ズ・インコ−ポレ−テッド Method of measuring reflectivity of sample in reflectivity measuring device and method of calibrating spectrophotometer
JPH075110A (en) * 1992-09-10 1995-01-10 Terametsukusu Kk Analytic method employing test piece and method for recognizing test piece
JPH09133628A (en) * 1995-11-12 1997-05-20 Terametsukusu Kk Analyzer provided with built-in composite element
JPH10142053A (en) * 1996-11-07 1998-05-29 Fuji Photo Film Co Ltd Correction method in spectral reflectance-measuring apparatus
JP2002335538A (en) * 2001-05-09 2002-11-22 Fuji Photo Film Co Ltd Color correction method of spectrum picture and spectrum picture image pickup unit using the same and program for executing the same
JP2006292582A (en) * 2005-04-12 2006-10-26 Canon Inc Multi-band image processor, multi-band image processing method and multi-band image photographing apparatus
JP2007093586A (en) * 2005-08-31 2007-04-12 Canon Inc Sensor and recording device using same

Also Published As

Publication number Publication date
JP5274031B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2009093453A1 (en) Analysis device and analysis method
US9383311B2 (en) Non-scanning SPR system
JP5676419B2 (en) Defect inspection method and apparatus
US20130222789A1 (en) Spectrophotometer
JP2006005360A (en) Method and system for inspecting wafer
EP3270120B1 (en) Measurement method, measurement device, and program
US20180238735A1 (en) Spatially variable light source and spatially variable detector systems and methods
CN102680097B (en) Dichroism measuring method and dichroism measurement mechanism
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
JP2020514751A (en) Lateral flow test system
US8699783B2 (en) Mask defect inspection method and defect inspection apparatus
JP4778990B2 (en) Antigen concentration detection apparatus and antigen concentration detection method
JP2007225389A (en) Surface plasmon resonance measuring device and measuring method
JP2003106980A (en) Measuring device and measuring method for minute particle group
JP6324114B2 (en) Optical system and gloss meter
JP2015079009A (en) Defect inspection method and defect inspection apparatus
EP3236241A1 (en) Method and device for measuring the optical characteristics of a sample
JP5274031B2 (en) Analysis method and analyzer
JP2010101715A (en) Analysis method and analyzer
JP5833963B2 (en) Light / dark inspection device, light / dark inspection method
JP2009222611A (en) Inspection apparatus and inspection method
JP2013174575A (en) Pattern inspection device, and method for controlling exposure equipment using the same
CN108700462A (en) The double light spectrum image-forming devices and its drift correcting method of no moving parts
JP2006003168A (en) Measurement method for surface shape and device therefor
US20240240933A1 (en) Film thickness measurement device and film thickness measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R151 Written notification of patent or utility model registration

Ref document number: 5274031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees