JP2009174963A - Cooling air outlet louver of heating element storage facility - Google Patents

Cooling air outlet louver of heating element storage facility Download PDF

Info

Publication number
JP2009174963A
JP2009174963A JP2008012956A JP2008012956A JP2009174963A JP 2009174963 A JP2009174963 A JP 2009174963A JP 2008012956 A JP2008012956 A JP 2008012956A JP 2008012956 A JP2008012956 A JP 2008012956A JP 2009174963 A JP2009174963 A JP 2009174963A
Authority
JP
Japan
Prior art keywords
cooling air
louver
air outlet
flow path
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012956A
Other languages
Japanese (ja)
Other versions
JP4983620B2 (en
Inventor
Manabu Kishimoto
学 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008012956A priority Critical patent/JP4983620B2/en
Publication of JP2009174963A publication Critical patent/JP2009174963A/en
Application granted granted Critical
Publication of JP4983620B2 publication Critical patent/JP4983620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Furnace Details (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a temperature rise of a building frame concrete of a cooling air outlet part. <P>SOLUTION: Air channels for cooling 34a, 34b and 34c are set on an outer side face of a louver end support column 23. Cooling air outlet louvers 32a, 32b, 32c are formed by connecting a cooling air line 35, in which an air inlet 41a is disposed in a lower plenum part 15 of a cell chamber 5, to the lower ends of the respective cooling air channel 34a, 34b, 34c, and by communicatively connecting an upper channel forming box 42 having air outlets 44a, 44b, 44c of the side face downstream in the cooling air flow direction to the upper end. The heat conducted from a louver plate 27 exposed to the high temperature cooling air 22a at the cooling air outlet 18 to the louver end support column 23 is cooled by leading the low temperature cooling air 22 of the lower plenum part 15 to flow to the cooling air channel 34a, 34b, 34c using the pressure difference between the high temperature cooling air 22a after used for cooling a solidified glass and the low temperature cooling air 22 in the lower plenum part15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放射性物質を収納してなる発熱体をセル室に貯蔵して、放射性物質より発せられる崩壊熱を自然換気方式により流通させる冷却空気により除去させるようにしてある発熱体貯蔵施設における上記セル室の冷却空気出口に設ける冷却空気出口ルーバに関するものである。   The present invention provides a heating element storage facility in which a heating element containing a radioactive substance is stored in a cell chamber, and decay heat generated from the radioactive substance is removed by cooling air that is circulated by a natural ventilation system. The present invention relates to a cooling air outlet louver provided at a cooling air outlet of a cell chamber.

原子力プラントにおいて廃棄される放射性物質(放射性廃棄物)のうち、高レベル放射性廃液は、該廃液を脱硝、乾燥、仮焼した後、得られる仮焼体をガラス原料と混合して溶融させ、溶融物をステンレス製のキャニスタに流し込んで固化させるガラス固化処理を行うことにより、ガラス固化体を形成させるようにしてある。   Among radioactive materials (radioactive waste) discarded in nuclear power plants, high-level radioactive liquid waste is melted by denitrating, drying, and calcining the waste liquid, and then mixing the resulting calcined body with glass raw material to melt it. A vitrified body is formed by performing a vitrification process in which an object is poured into a stainless canister and solidified.

又、不燃性の廃棄物は、低レベルの放射性廃棄物となるため、ディスク状に圧縮成形した後、このディスク状の圧縮成形体を所要枚数ずつ上記キャニスタと同様の容器に封入して、放射性廃棄体とするようにしてある。   Since non-combustible waste becomes low-level radioactive waste, after compression-molding into a disk shape, the required number of the disk-shaped compression-molded bodies are sealed in the same container as the above canister, and radioactive. It is supposed to be a waste body.

上記ガラス固化体や放射性廃棄体は、地下の処分場にて最終処分を行うものとされている。又、ガラス固化体や放射性廃棄体を上記処分場等に最終処分するまでの間、処分場とは別に設けられる貯蔵施設に貯蔵することが考えられている。更に、上記ガラス固化体や放射性廃棄体は放射性物質の崩壊熱によって比較的高温を発する発熱体となるため、かかるガラス固化体や放射性廃棄体の如き放射性物質を収納してなる発熱体は、上記貯蔵施設において、発生する崩壊熱を適切に除去しながら貯蔵するようにすることが考えられている。   The above-mentioned vitrified body and radioactive waste are supposed to be finally disposed of in an underground disposal site. Further, it is considered that the vitrified body or radioactive waste is stored in a storage facility provided separately from the disposal site until final disposal at the disposal site. Furthermore, since the vitrified body or radioactive waste is a heating element that emits a relatively high temperature due to the decay heat of the radioactive substance, the heating element containing the radioactive substance such as vitrified body or radioactive waste is In a storage facility, it is considered to store while appropriately removing the decay heat generated.

上記発熱体として、たとえば、ガラス固化体を、放射性物質の崩壊熱を適切に除去しながら貯蔵するための発熱体貯蔵施設(ガラス固化体貯蔵施設)としては、図5にその一例の概略を示す如き構成のものが従来提案されている。   As the heating element, for example, as a heating element storage facility (a glass solid storage facility) for storing the vitrified material while appropriately removing the decay heat of the radioactive substance, an outline of an example is shown in FIG. Such a configuration has been conventionally proposed.

すなわち、図5に示す発熱体貯蔵施設は、建屋2内に、クレーンを用いてガラス固化体1を取り扱うための搬送室3を設け、該搬送室3の床スラブ4の直下に、ガラス固化体1の貯蔵区域として厚いコンクリート遮蔽壁にて包囲してなるセル室(貯蔵室)5が構築してある。該セル室5の内部には、ガラス固化体1を収納するための多数の筒状の収納管6を、前後左右方向に所要の間隔で配列すると共に、該各収納管6を、上端が上記搬送室3側に開口するようにしてセル室5の天井部となる上記床スラブ4より吊り下げて支持させた構成としてある。これにより、それぞれの収納管6内に上方より多数のガラス固化体1を積み重ね状態に収納させた後、該各収納管6の上端部内に収納管プラグ7を詰めて上端開口部を収納管蓋8によって閉塞することで、収納管6内にガラス固化体1を封入するようにしてある。   That is, the heating element storage facility shown in FIG. 5 is provided with a transfer chamber 3 for handling the vitrified body 1 using a crane in the building 2, and the vitrified body immediately below the floor slab 4 of the transfer chamber 3. A cell room (storage room) 5 surrounded by a thick concrete shielding wall is constructed as one storage area. Inside the cell chamber 5, a large number of cylindrical storage tubes 6 for storing the vitrified body 1 are arranged at required intervals in the front-rear and left-right directions, and the upper ends of the storage tubes 6 are arranged at the upper ends. It is configured to be suspended from and supported by the floor slab 4 serving as a ceiling portion of the cell chamber 5 so as to open to the transfer chamber 3 side. As a result, a large number of glass solid bodies 1 are stored in a stacked state in the respective storage tubes 6 from above, and then the storage tube plugs 7 are packed in the upper ends of the respective storage tubes 6 so that the upper end openings are stored in the storage tube lids. The vitrified body 1 is sealed in the storage tube 6 by being closed by 8.

更に、ガラス固化体1から発生する放射性物質の崩壊熱を適切に除去するために、上記各収納管6の周囲に通風管(外筒)9をそれぞれ配置して、該各通風管9の所要高さ個所を、セル室5内に設けた図示しない支持架構にて支持させることにより、各収納管6の外周に、通風管9との間で筒状流路10をそれぞれ形成させるようにしてある。更に、互いに隣接する各通風管9の上端部同士及びセル室5の側壁内面に沿わせて設けた側壁流路形成板11との間を上部プレナム形成板12で閉塞して、上記筒状流路10の上方に上部プレナム部13が区画形成するようにしてある。又、同様に、互いに隣接する各通風管9の下端部同士及び側壁流路形成板11との間を下部プレナム形成板14で閉塞して、上記筒状流路10の下方に下部プレナム部15を区画形成するようにしてある。   Further, in order to appropriately remove the decay heat of the radioactive material generated from the vitrified body 1, a ventilation pipe (outer cylinder) 9 is arranged around each of the storage pipes 6, and the required ventilation pipes 9 are required. By supporting the height portion with a support frame (not shown) provided in the cell chamber 5, a cylindrical flow path 10 is formed between the outer circumference of each storage pipe 6 and the ventilation pipe 9. is there. Further, the upper plenum forming plate 12 closes the upper ends of the adjacent ventilation pipes 9 and the side wall flow path forming plate 11 provided along the inner surface of the side wall of the cell chamber 5. An upper plenum portion 13 is defined above the passage 10. Similarly, the lower plenum portion 15 is closed below the cylindrical flow path 10 by closing the lower end portions of the adjacent ventilation pipes 9 and the side wall flow path forming plate 11 with the lower plenum forming plate 14. Is defined as a partition.

上記下部プレナム部15の一端部となるセル室5の一側壁(図上、右側壁)の下端部には、冷却空気入口16を設けて、上下方向に所要寸法延び且つ上端部を大気中に開放させた入口シャフト(給気通路)17の下端部が連通接続してある。又、上記上部プレナム部13における上記冷却空気入口16とは反対側の端部となるセル室5の他側壁(図上、左側壁)の上端部には、冷却空気出口18を設けて、上記入口シャフト17よりも高い位置まで上下方向に延びる煙突状の出口シャフト(排気塔)19の下端部を連通接続してなる構成としてある。これにより、上記入口シャフト17の上端部より取り入れる外気(大気)を、該入口シャフト17を通して下方へ導いた後、冷却空気入口16を経て下部プレナム部15へ取り入れて、該下部プレナム部15より、冷却空気20として上記各収納管6の外周の筒状流路10へそれぞれ導くことができるようにして、この筒状流路10へ導かれる冷却空気20によって、放射性物質の崩壊熱によって発熱する上記ガラス固化体1を、収納管6を介して間接的に冷却できるようにしてある。   A cooling air inlet 16 is provided at the lower end of one side wall (the right side wall in the figure) of the cell chamber 5 which is one end of the lower plenum portion 15 and extends in the vertical direction, and the upper end extends into the atmosphere. The lower end portion of the opened inlet shaft (air supply passage) 17 is connected in communication. Further, a cooling air outlet 18 is provided at the upper end of the other side wall (left side wall in the figure) of the cell chamber 5 which is the end of the upper plenum 13 opposite to the cooling air inlet 16. A lower end portion of a chimney-shaped outlet shaft (exhaust tower) 19 extending in the vertical direction to a position higher than the inlet shaft 17 is configured to be connected in communication. As a result, outside air (atmosphere) taken in from the upper end of the inlet shaft 17 is guided downward through the inlet shaft 17 and then taken into the lower plenum portion 15 through the cooling air inlet 16. The cooling air 20 can be guided to the cylindrical flow path 10 on the outer periphery of each of the storage tubes 6, and the cooling air 20 guided to the cylindrical flow path 10 generates heat due to decay heat of the radioactive material. The glass solid body 1 can be indirectly cooled via the storage tube 6.

上記各筒状流路10にてガラス固化体1の間接冷却に供される冷却空気20は、上記放射性物質の崩壊熱を吸収することにより加熱されて浮力が生じるようになる。このため、上記ガラス固化体1の冷却に供された後の高温の冷却空気20aは、上記各筒状流路10から上部プレナム部13へ上昇した後、冷却空気出口18を経て出口シャフト19へ導かれ、該出口シャフト19内を更に上昇して大気中へ放出されるようになる。   The cooling air 20 used for indirect cooling of the vitrified body 1 in each of the cylindrical flow paths 10 is heated by absorbing the decay heat of the radioactive substance, thereby generating buoyancy. For this reason, the high-temperature cooling air 20a after being used for cooling the vitrified body 1 rises from each cylindrical flow path 10 to the upper plenum portion 13, and then passes through the cooling air outlet 18 to the outlet shaft 19. Then, it is further raised in the outlet shaft 19 and released into the atmosphere.

この際、上記入口シャフト17よりも出口シャフト19の方が高くなるよう設定してあるため、上記ガラス固化体1の冷却に供されることにより加熱された出口シャフト19内の高温の冷却空気20aと、上記入口シャフト17より冷却空気入口16を経て下部プレナム部15に導かれる低温(常温)の冷却空気20との圧力差に起因するドラフト力を利用した自然換気方式により、上記下部プレナム部15から上記各筒状流路10への新たな冷却空気20の取り込みを連続的に行って、貯蔵中のガラス固化体1の冷却を連続的に行うことができるようにしてある。   At this time, since the outlet shaft 19 is set to be higher than the inlet shaft 17, the high-temperature cooling air 20a in the outlet shaft 19 heated by being used for cooling the vitrified body 1 is used. And the lower plenum portion 15 by a natural ventilation method using a draft force resulting from a pressure difference with the low-temperature (normal temperature) cooling air 20 guided from the inlet shaft 17 through the cooling air inlet 16 to the lower plenum portion 15. In this way, new cooling air 20 is continuously taken into the respective cylindrical flow paths 10 so that the vitrified body 1 during storage can be continuously cooled.

21は上記入口シャフト17及び出口シャフト19の長手方向所要個所に設けた遮蔽板(迷路板)である(たとえば、特許文献1参照)。   Reference numeral 21 denotes a shielding plate (maze plate) provided at a required position in the longitudinal direction of the inlet shaft 17 and the outlet shaft 19 (see, for example, Patent Document 1).

又、上記と同様の構成としてある発熱体貯蔵施設(放射性汚染物収納体貯蔵庫)において、冷却空気入口16と冷却空気出口18に、冷却空気20,20aの円滑な流通を確保する一方、セル室5内に貯蔵されるガラス固化体1中の放射性物質より発せられる放射線の通過は阻止できるようにするためのルーバをそれぞれ設けた構成とすることも考えられている(たとえば、特許文献2参照)。   Further, in a heating element storage facility (radiocontaminant container storage) having the same configuration as described above, while ensuring a smooth flow of the cooling air 20 and 20a to the cooling air inlet 16 and the cooling air outlet 18, the cell chamber It is also considered that a louver is provided so as to prevent passage of radiation emitted from the radioactive material in the vitrified body 1 stored in the glass 5 (see, for example, Patent Document 2). .

上記冷却空気入口16と冷却空気出口18に設けられる各ルーバのうち、冷却空気出口18に設ける冷却空気出口ルーバとして、本出願人は、図6及び図7にその一例の概略を示す如き構成のものを計画している。   Among the louvers provided at the cooling air inlet 16 and the cooling air outlet 18, the present applicant has a configuration as shown in FIG. 6 and FIG. 7 as an outline of an example of the cooling air outlet louver provided at the cooling air outlet 18. Are planning things.

すなわち、図6及び図7に示す冷却空気出口ルーバ22a,22b,22cは、上記冷却空気出口18における冷却空気流通方向に直角な幅方向の両側壁18aに沿って底部から天井部まで上下方向に延びる1対のルーバ端部支柱23を配置すると共に、上記冷却空気出口18の幅寸法に応じて、上記各ルーバ端部支柱23の間に冷却空気出口18の底部から天井部まで上下方向に延びるルーバ中間支柱24を、幅方向所要間隔で所要数、たとえば、4本配置して、該各支柱23,24の上端部同士、及び、下端部同士を、上記冷却空気出口18の天井面に沿って幅方向に延びる天板25、及び、冷却空気出口18の底面に沿って幅方向に延びる底板26によりそれぞれ連結してある。   That is, the cooling air outlet louvers 22a, 22b, and 22c shown in FIGS. 6 and 7 are vertically moved from the bottom to the ceiling along the side walls 18a in the width direction perpendicular to the cooling air flow direction in the cooling air outlet 18. A pair of extending louver end struts 23 are arranged and extend vertically from the bottom of the cooling air outlet 18 to the ceiling between the louver end struts 23 according to the width dimension of the cooling air outlet 18. The required number, for example, four of the louver intermediate struts 24 are arranged at a required interval in the width direction, and the upper end portions and the lower end portions of the struts 23 and 24 are arranged along the ceiling surface of the cooling air outlet 18. Are connected by a top plate 25 extending in the width direction and a bottom plate 26 extending in the width direction along the bottom surface of the cooling air outlet 18.

上記ルーバ端部支柱23と、その内側に隣接するルーバ中間支柱24との間、及び、互いに隣接するルーバ中間支柱24同士の間には、SUS等の遮蔽能を有する材質製のルーバ板27を、冷却空気流通方向の上流側から下流側へ向けて所要角度傾斜させた状態で、上下方向所要間隔でそれぞれ多段に取り付けた構成としてある。なお、図7では、上記冷却空気出口18に、冷却空気流通方向の上流側から下流側へ向けて所要角度下向き傾斜するルーバ板27を具備してなる形式の第1の冷却空気出口ルーバ22aと、該第1の冷却空気出口ルーバ22aとは逆に冷却空気流通方向の上流側から下流側へ向けて所要角度上向き傾斜するルーバ板27を具備してなる形式の第2の冷却空気出口ルーバ22bと、上記第1の冷却空気出口ルーバ22aと同様に冷却空気流通方向の上流側から下流側へ向けて所要角度下向き傾斜するルーバ板27を具備してなる第3の冷却空気出口ルーバ22cとを、冷却空気流通方向の上流側から順に並べて三連に配設した構成としてある。これにより、上記第1と第3の冷却空気出口ルーバ22a,22cにおいて上下方向に隣接する各ルーバ板27同士の間に形成される冷却空気流通方向に沿って所要角度上向き傾斜する空気流路と、上記第2の冷却空気出口ルーバ22bにおいて上下方向に隣接する各ルーバ板27同士の間に形成される冷却空気流通方向に沿って所要角度下向き傾斜する空気流路とが交互に連なるようにすることで、上記三連に設けた冷却空気出口ルーバ22a,22b,22c全体では、冷却空気流通方向に沿って各空気流路が上下方向に交互に屈曲しながら連なる形状となるようにして、上記セル室5側から冷却空気出口18に達する放射線が、ルーバ板27によって確実に遮蔽されるようにしてある。   A louver plate 27 made of a material having a shielding ability such as SUS is provided between the louver end column 23 and the louver intermediate column 24 adjacent to the louver end column 23 and between the louver intermediate columns 24 adjacent to each other. In the state in which the required angle is inclined from the upstream side to the downstream side in the cooling air flow direction, the components are attached in multiple stages at the required intervals in the vertical direction. In FIG. 7, the cooling air outlet 18 includes a first cooling air outlet louver 22a having a louver plate 27 that is inclined downward at a required angle from the upstream side to the downstream side in the cooling air flow direction. Contrary to the first cooling air outlet louver 22a, a second cooling air outlet louver 22b comprising a louver plate 27 inclined upward at a required angle from the upstream side to the downstream side in the cooling air flow direction. And a third cooling air outlet louver 22c comprising a louver plate 27 inclined downward by a required angle from the upstream side to the downstream side in the cooling air flow direction in the same manner as the first cooling air outlet louver 22a. In this configuration, the cooling air circulation direction is arranged in order from the upstream side and arranged in triplicate. Thereby, the air flow path inclined at a required angle along the cooling air flow direction formed between the louver plates 27 adjacent in the vertical direction in the first and third cooling air outlet louvers 22a and 22c, and In the second cooling air outlet louver 22b, the air flow passages inclined downward by a required angle along the cooling air flow direction formed between the louver plates 27 adjacent in the vertical direction are alternately connected. Thus, the cooling air outlet louvers 22a, 22b, and 22c provided in the above-mentioned three stations are formed in a continuous shape while alternately bending each air flow path in the vertical direction along the cooling air circulation direction. Radiation reaching the cooling air outlet 18 from the cell chamber 5 side is reliably shielded by the louver plate 27.

上記各冷却空気出口ルーバ22a,22b,22cの最上段のルーバ板27の下端寄り部分の上方には、SUS等の遮蔽能を有する材質により最上段のルーバ板27の上端部よりも低い位置に下端部を有する所要形状に形成した頂部遮蔽材28、たとえば、上記最上段のルーバ板27の上端部よりも低い位置にて該最上段のルーバ板27の下端寄り部分と所要の間隔を隔てて対面する下端部傾斜面を有する側面形状横向き台形状の頂部遮蔽材28を、幅方向の全長に亘り配置して、該頂部遮蔽材28の上端部を、その上側に位置する天板25に取り付けた構成としてある。更に、上記最上段のルーバ板27と天板25との間に、断熱材29を、上記頂部遮蔽材28を覆うように介装させて設けてなる構成としてある。   Above the lower end portion of the uppermost louver plate 27 of each of the cooling air outlet louvers 22a, 22b, 22c, a lower position than the upper end portion of the uppermost louver plate 27 is made of a material having a shielding ability such as SUS. A top shielding member 28 formed in a required shape having a lower end portion, for example, at a position lower than the upper end portion of the uppermost louver plate 27, with a required distance from the lower end portion of the uppermost louver plate 27. A side-shaped laterally trapezoidal top-shaped shielding member 28 having an inclined surface at the lower end facing each other is arranged over the entire length in the width direction, and the upper end of the top-shielding material 28 is attached to the top plate 25 positioned on the upper side. As a configuration. Further, a heat insulating material 29 is interposed between the uppermost louver plate 27 and the top plate 25 so as to cover the top shielding material 28.

又、上記各冷却空気出口ルーバ22a,22b,22cの底板26の最下段のルーバ板27の上端寄り部分の下方には、SUS等の遮蔽能を有する材質により最下段のルーバ板27の下端部よりも高い位置に上端部を有する所要形状に形成した底部遮蔽材30、たとえば、上記最下段のルーバ板27の下端部よりも高い位置にて該最下段のルーバ板27の上端寄り部分と所要の間隔を隔てて対面する上端部傾斜面を有する側面形状横向き台形状の底部遮蔽材30を、幅方向の全長に亘り配置して、該底部遮蔽材30の下端部を、その下側に位置する底板26に取り付けた構成としてある。更に、上記最下段のルーバ板27と底板26との間に、断熱材29を、上記底部遮蔽材30を覆うように介装させて設けてなる構成としてある。これにより、上記最上段のルーバ板27の上方を通過する放射線は、上記頂部遮蔽材28で遮蔽できるようにすると共に、最下段のルーバ板27の下方を通過する放射線は、上記底部遮蔽材30で遮蔽することができるようにしてある。更に、上記発熱体貯蔵施設のセル室5にてガラス固化体1(図5参照)の冷却に供された後に上部プレナム部13へ導かれる冷却空気20aは、85℃程度に加熱されていることから、該加熱されて高温となった冷却空気20aを、上記セル室5の上部プレナム部13より上記冷却空気出口18の冷却空気出口ルーバ22を経て出口シャフト19(図5参照)へ送る際に、該高温の冷却空気20aから上記冷却空気出口18の天井面及び底面を形成している躯体コンクリートへの伝熱を、上記最上段のルーバ板27の上側に配設した断熱材29と、最下段のルーバ板27の下側に配設した断熱材によって抑制することができるようにしてある。31は上記冷却空気出口18の周壁における上記冷却空気出口ルーバ22a,22b,22cの取付個所を除く個所の表面に取り付けた図示しないカバー付きの断熱材である。又図6及び図7において、図5に示したものと同一のものには同一符号が付してある。   Further, below the lower end portion of the lowermost louver plate 27 of the bottom plate 26 of each of the cooling air outlet louvers 22a, 22b, 22c, the lower end portion of the lowermost louver plate 27 is made of a material having shielding ability such as SUS. A bottom shielding member 30 formed in a required shape having an upper end at a higher position, for example, a portion closer to the upper end of the lowermost louver plate 27 at a position higher than the lower end of the lowermost louver plate 27 A side-shaped sideways trapezoidal bottom shielding material 30 having an upper end inclined surface facing each other at an interval is disposed over the entire length in the width direction, and the lower end of the bottom shielding material 30 is positioned below the bottom shielding material 30. It is set as the structure attached to the baseplate 26 to do. Further, a heat insulating material 29 is provided between the lowermost louver plate 27 and the bottom plate 26 so as to cover the bottom shielding material 30. Accordingly, the radiation passing above the uppermost louver plate 27 can be shielded by the top shielding member 28, and the radiation passing below the lowermost louver plate 27 can be shielded by the bottom shielding member 30. It can be shielded with. Furthermore, the cooling air 20a guided to the upper plenum part 13 after being used for cooling the vitrified body 1 (see FIG. 5) in the cell chamber 5 of the heating element storage facility is heated to about 85 ° C. From the upper plenum portion 13 of the cell chamber 5, the cooling air 20a heated to high temperature is sent to the outlet shaft 19 (see FIG. 5) through the cooling air outlet louver 22 of the cooling air outlet 18. The heat transfer from the high-temperature cooling air 20a to the frame concrete forming the ceiling surface and the bottom surface of the cooling air outlet 18 is provided with a heat insulating material 29 arranged on the upper side of the uppermost louver plate 27; It can be suppressed by a heat insulating material disposed below the lower louver plate 27. Reference numeral 31 denotes a heat insulating material with a cover (not shown) attached to the surface of the peripheral wall of the cooling air outlet 18 except for the mounting locations of the cooling air outlet louvers 22a, 22b, 22c. 6 and 7, the same components as those shown in FIG. 5 are denoted by the same reference numerals.

特開2007−155510号公報JP 2007-155510 A 特開2000−193795号公報Japanese Unexamined Patent Publication No. 2000-193895

ところが、上記図6及び図7に示した構成の冷却空気出口ルーバ22a,22b,22cでは、ルーバ板27が取り付けてあるルーバ端部支柱23を、冷却空気出口18の両側壁18aに沿わせて設置するようにしてあるため、上記したようにセル室5におけるガラス固化体1の冷却に供されることで加熱された85℃程度の高温の冷却空気20aに曝される上記ルーバ板27よりルーバ端部支柱23に伝わる熱が、該冷却空気出口18の両側壁18aにそのまま移動されるようになる。そのために、躯体コンクリートは、一般に、その温度を65℃以下に制限することが望まれるが、上記構成の冷却空気出口ルーバ22a,22b,22cでは、冷却空気出口18の両側壁18a部分を中心として、該冷却空気出口ルーバ22a,22b,22cの設置個所の周りの広域な部分でコンクリート温度が制限を超える虞が懸念されるというのが実状である。   However, in the cooling air outlet louvers 22 a, 22 b, and 22 c configured as shown in FIGS. 6 and 7, the louver end column 23 to which the louver plate 27 is attached is placed along both side walls 18 a of the cooling air outlet 18. Since it is installed, as described above, the louver than the louver plate 27 exposed to the high-temperature cooling air 20a of about 85 ° C. heated by being used for cooling the vitrified body 1 in the cell chamber 5. The heat transmitted to the end column 23 is moved to the both side walls 18a of the cooling air outlet 18 as it is. Therefore, it is generally desirable to limit the temperature of the frame concrete to 65 ° C. or less. However, in the cooling air outlet louvers 22a, 22b, and 22c having the above-described configuration, the both side walls 18a of the cooling air outlet 18 are centered. Actually, there is a concern that the concrete temperature may exceed the limit in a wide area around the place where the cooling air outlet louvers 22a, 22b, and 22c are installed.

そこで、本発明は、発熱体貯蔵施設のセル室にてガラス固化体や放射性廃棄体の如き放射性物質を収納してなる発熱体の冷却に供された後、冷却空気出口へ導かれる高温の冷却空気に曝されるルーバ板が取り付けてあるルーバ端部支柱から、冷却空気出口の両側壁へ伝えられる熱を低減させることができるような改良を施して、冷却空気出口部分のコンクリート温度が制限を超える虞を未然に防止できるようにした発熱体貯蔵施設の冷却空気出口ルーバを提供しようとするものである。   Therefore, the present invention provides a high-temperature cooling led to a cooling air outlet after being used for cooling a heating element containing a radioactive substance such as a vitrified substance or radioactive waste in a cell room of a heating element storage facility. The concrete temperature at the cooling air outlet is limited by making improvements so as to reduce the heat transferred from the louver end strut to which the louver plate exposed to air is attached to both sides of the cooling air outlet. An object of the present invention is to provide a cooling air outlet louver of a heating element storage facility that can prevent the possibility of exceeding.

本発明は、上記課題を解決するために、請求項1に係る発明に対応して、セル室内に発熱体を貯蔵して、入口シャフトより上記セル室の下端部の下部プレナム部へ導入する低温の冷却空気と、該冷却空気が上記発熱体の冷却に供されることで加熱されて上記セル室の上端部の上部プレナム部へ上昇した後、冷却空気出口を通して出口シャフトへ導かれる高温の冷却空気との圧力差に基づくドラフト力を利用した自然換気方式により、上記下部プレナム部への新たな冷却空気の取り込みを連続的に行って、貯蔵中の発熱体の冷却を連続的に行うことができるようにしてある発熱体貯蔵施設における上記冷却空気出口に設ける冷却空気出口ルーバにおいて、冷却空気出口の幅方向両端部に上下方向に延びるよう配設してその内側面にルーバ板が多段に取り付けてあるルーバ端部支柱に、冷却空気用流路を上下方向の全長に亘り付設し、且つ該冷却空気用流路の一端部に、低温の冷却空気を導くための冷却空気導入ラインを接続すると共に、上記冷却用空気流路の他端部を、上記冷却空気出口におけるルーバ設置個所の下流側に連通させてなる構成とする。   In order to solve the above problems, the present invention, corresponding to the invention according to claim 1, stores a heating element in the cell chamber and introduces it into the lower plenum portion at the lower end of the cell chamber from the inlet shaft. Cooling air and high-temperature cooling that is heated by being supplied to the cooling of the heating element and is raised to the upper plenum part at the upper end of the cell chamber and then led to the outlet shaft through the cooling air outlet It is possible to continuously cool the heating element during storage by continuously taking in new cooling air into the lower plenum by the natural ventilation method using the draft force based on the pressure difference with air. In the cooling air outlet louver provided at the cooling air outlet in the heating element storage facility that can be formed, the cooling air outlet is arranged to extend vertically at both ends in the width direction of the cooling air outlet, and there are many louver plates on the inner surface thereof. A cooling air flow path is attached to the louver end strut attached to the entire length in the vertical direction, and a cooling air introduction line for guiding low-temperature cooling air to one end of the cooling air flow path is provided. The other end of the cooling air flow path is connected to the downstream side of the louver installation location at the cooling air outlet.

又、上記構成における冷却空気用流路の一端部に接続する冷却空気導入ラインを、セル室の下部プレナム部の低温の冷却空気を導くことができるものとした構成とする。   In addition, the cooling air introduction line connected to one end of the cooling air flow path in the above configuration is configured to guide the low-temperature cooling air in the lower plenum portion of the cell chamber.

更に、上記各構成において、ルーバ端部支柱の外側面に、上下方向の全長に亘りチャンネルボックスを取り付けて、ルーバ端部支柱とチャンネルボックスの間に冷却用空気流路を設けると共に、上記ルーバ端部支柱を、上記チャンネルボックスを介して発熱体貯蔵施設の冷却空気出口の両側壁に配設するようにした構成とする。   Further, in each of the above configurations, a channel box is attached to the outer surface of the louver end column over the entire length in the vertical direction, and a cooling air flow path is provided between the louver end column and the channel box, and the louver end The column support is configured to be disposed on both side walls of the cooling air outlet of the heating element storage facility via the channel box.

上述の各構成において、ルーバ端部支柱の下端部内側における最下段のルーバ板の下側に、下部流路形成ボックスを設けて、該下部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の下端部と連通する下部連通口を設けると共に、下部流路形成ボックスの冷却空気流通方向の上流側面部に設けた空気入口に、発熱体貯蔵施設のセル室の下部プレナム部に開口する空気取入口を備え且つ下部プレナム形成板と上部プレナム形成板を貫通して上下方向に延びる冷却空気導入管の上端部を接続した構成とする。   In each configuration described above, a lower flow path forming box is provided on the lower side of the lowermost louver plate inside the lower end of the louver end column, and the lower flow path forming box is attached to the louver end column. The lower plenum portion of the cell chamber of the heating element storage facility is provided at the air inlet provided in the upstream side surface portion in the cooling air flow direction of the lower flow path forming box while providing a lower communication port communicating with the lower end portion of the cooling air flow path And an upper end portion of a cooling air introduction pipe extending in the vertical direction through the lower plenum forming plate and the upper plenum forming plate is connected.

更に、上記構成において、ルーバ端部支柱の上端部内側における最上段のルーバ板の上側に、上部流路形成ボックスを設けて、該上部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の上端部と連通する上部連通口を設けると共に、上流路形成ボックスにおける冷却空気流通方向の下流側面部に空気出口を設けるようにした構成とする。   Further, in the above configuration, an upper channel forming box is provided above the uppermost louver plate inside the upper end of the louver end column, and the upper channel forming box is provided with the cooling attached to the louver end column. The upper communication port that communicates with the upper end of the air flow channel is provided, and the air outlet is provided on the downstream side surface of the upper flow channel forming box in the cooling air flow direction.

本発明の発熱体貯蔵施設の冷却空気出口ルーバによれば、以下の如き優れた効果を発揮する。
(1)セル室内に発熱体を貯蔵して、入口シャフトより上記セル室の下端部の下部プレナム部へ導入する低温の冷却空気と、該冷却空気が上記発熱体の冷却に供されることで加熱されて上記セル室の上端部の上部プレナム部へ上昇した後、冷却空気出口を通して出口シャフトへ導かれる高温の冷却空気との圧力差に基づくドラフト力を利用した自然換気方式により、上記下部プレナム部への新たな冷却空気の取り込みを連続的に行って、貯蔵中の発熱体の冷却を連続的に行うことができるようにしてある発熱体貯蔵施設における上記冷却空気出口に設ける冷却空気出口ルーバにおいて、冷却空気出口の幅方向両端部に上下方向に延びるよう配設してその内側面にルーバ板が多段に取り付けてあるルーバ端部支柱に、冷却空気用流路を上下方向の全長に亘り付設し、且つ該冷却空気用流路の一端部に、低温の冷却空気を導くための冷却空気導入ラインを接続すると共に、上記冷却用空気流路の他端部を、上記冷却空気出口におけるルーバ設置個所の下流側に連通させてなる構成、より具体的には、上記冷却空気用流路の一端部に接続する冷却空気導入ラインを、セル室の下部プレナム部の低温の冷却空気を導くことができるものとした構成としてあるので、上記と同様の、セル室にてガラス固化体の冷却に供されることで加熱された状態で上記冷却空気出口に設けてある冷却空気出口ルーバを通過した後の高温の冷却空気と、上記下部プレナム部の低温の冷却空気との圧力差に起因するドラフト力に基づいて、下部プレナム部の低温の冷却空気を、上記冷却空気導入ラインを通してルーバ端部支柱に付設してある冷却空気用流路へ連続的に導いて、該冷却用流路を流通させた後、上記冷却空気出口におけるルーバ設置個所の下流側に排出させることができる。これにより、上記冷却空気出口を流通する高温の冷却空気に曝されるルーバ板よりルーバ端部支柱へ伝えられる熱を、上記冷却用流路を流通させる低温の冷却空気と熱交換させて奪うことができる。よって、上記ルーバ端部支柱の冷却を行うことができることから、冷却空気出口における上記冷却空気出口ルーバ設置個所の周りの躯体コンクリートの温度の上昇を抑えることができて、冷却空気出口部分のコンクリート温度が制限を超える虞を未然に防止することが可能になる。(2)ルーバ端部支柱の外側面に、上下方向の全長に亘りチャンネルボックスを取り付けて、ルーバ端部支柱とチャンネルボックスの間に冷却用空気流路を設けると共に、上記ルーバ端部支柱を、上記チャンネルボックスを介して発熱体貯蔵施設の冷却空気出口の両側壁に配設するようにした構成とすることにより、上記ルーバ端部支柱に、冷却用空気流路を付設する構成を容易に実現できる。
(3)ルーバ端部支柱の下端部内側における最下段のルーバ板の下側に、下部流路形成ボックスを設けて、該下部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の下端部と連通する下部連通口を設けると共に、下部流路形成ボックスの冷却空気流通方向の上流側面部に設けた空気入口に、発熱体貯蔵施設のセル室の下部プレナム部に開口する空気取入口を備え且つ下部プレナム形成板と上部プレナム形成板を貫通して上下方向に延びる冷却空気導入管の上端部を接続し、更に、ルーバ端部支柱の上端部内側における最上段のルーバ板の上側に、上部流路形成ボックスを設けて、該上部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の上端部と連通する上部連通口を設けると共に、上流路形成ボックスにおける冷却空気流通方向の下流側面部に空気出口を設けるようにした構成とすることにより、冷却空気出口に複数の冷却空気出口ルーバを連ねて設置する場合にも、各冷却空気出口ルーバのルーバ端部支柱にそれぞれ付設する各冷却用空気流路の下端部へ、上記セル室の下部プレナム部の低温の冷却空気を導く構成を容易に実現できると共に、上記各冷却空気出口ルーバのルーバ端部支柱に付設した各冷却用空気流路の上端部より排出される冷却空気を、冷却空気出口におけるルーバ設置個所の下流側に排出させる構成を容易に実現できる。
According to the cooling air outlet louver of the heating element storage facility of the present invention, the following excellent effects are exhibited.
(1) By storing a heating element in the cell chamber and introducing it from the inlet shaft to the lower plenum part at the lower end of the cell chamber, the cooling air is used for cooling the heating element. The lower plenum is heated by a natural ventilation system using a draft force based on a pressure difference with high-temperature cooling air that is led to the outlet shaft through the cooling air outlet after being heated and raised to the upper plenum at the upper end of the cell chamber. Cooling air outlet louver provided at the cooling air outlet in the heating element storage facility in which new cooling air is continuously taken into the unit so that the heating element during storage can be continuously cooled. , The cooling air flow path is arranged in the vertical direction on the louver end column, which is arranged to extend in the vertical direction at both ends in the width direction of the cooling air outlet and the louver plate is attached in multiple stages on the inner surface thereof. A cooling air introduction line for connecting the cooling air passage is connected to one end of the cooling air passage and the other end of the cooling air passage is connected to the cooling air. A structure formed by communicating with the downstream side of the louver installation location at the outlet, more specifically, a cooling air introduction line connected to one end of the cooling air flow path is connected to the low-temperature cooling air in the lower plenum portion of the cell chamber As described above, the cooling air outlet louver provided at the cooling air outlet in a heated state by being used for cooling the glass solidified body in the cell chamber. Based on the draft force resulting from the pressure difference between the high-temperature cooling air after passing through and the low-temperature cooling air in the lower plenum, the low-temperature cooling air in the lower plenum is passed through the cooling air introduction line. Continuously leading to the cooling air flow path that is annexed to the server end posts, after circulating the cooling flow path can be discharged to the downstream side of the louver installation location of the cooling air outlet. As a result, heat transferred from the louver plate exposed to the high-temperature cooling air flowing through the cooling air outlet to the louver end strut is exchanged for heat exchange with the low-temperature cooling air flowing through the cooling flow path. Can do. Therefore, since the louver end column can be cooled, an increase in the temperature of the concrete around the cooling air outlet louver installation location at the cooling air outlet can be suppressed, and the concrete temperature of the cooling air outlet portion can be suppressed. It is possible to prevent the risk of exceeding the limit. (2) A channel box is attached to the outer surface of the louver end strut over the entire length in the vertical direction, a cooling air flow path is provided between the louver end strut and the channel box, and the louver end strut is By adopting a configuration that is arranged on both side walls of the cooling air outlet of the heating element storage facility via the channel box, a configuration in which a cooling air flow path is attached to the louver end column can be easily realized. it can.
(3) A lower flow path forming box is provided below the lowermost louver plate inside the lower end of the louver end strut, and cooling air attached to the lower flow path forming box is attached to the louver end strut. A lower communication port that communicates with the lower end of the flow path is provided, and an air inlet provided on an upstream side surface of the lower flow path forming box in the cooling air flow direction opens to a lower plenum portion of a cell chamber of the heating element storage facility. An uppermost louver plate having an air intake and connecting an upper end portion of a cooling air introduction pipe extending vertically through the lower plenum forming plate and the upper plenum forming plate, and further inside the upper end portion of the louver end column An upper flow path forming box is provided above the upper flow path, and the upper flow path forming box is provided with an upper communication port that communicates with the upper end of the cooling air flow path attached to the louver end column. Bock In the case where a plurality of cooling air outlet louvers are connected to the cooling air outlet, the louver end of each cooling air outlet louver It is possible to easily realize a configuration for guiding the low-temperature cooling air of the lower plenum portion of the cell chamber to the lower end portion of each cooling air flow path attached to each supporting column, and the louver end column of each cooling air outlet louver The structure which discharges the cooling air discharged | emitted from the upper end part of each cooling air flow path attached to to the downstream of the louver installation location in a cooling air exit is easily realizable.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1乃至図4は本発明の発熱体貯蔵施設の冷却空気出口ルーバの実施の一形態として、図5に示したと同様の発熱体としてのガラス固化体1を貯蔵する発熱体貯蔵施設に適用する場合の例を示すもので、図6及び図7に示した冷却空気出口ルーバ22a,22b,22cと同様に、冷却空気出口18の幅方向に、1対のルーバ端部支柱23と、その間に所要間隔で配置したルーバ中間支柱24とを備え、且つ上記ルーバ端部支柱23と、それに隣接するルーバ中間支柱24との間、及び、隣接するルーバ中間支柱24同士の間に、冷却空気流通方向の上流側から下流側へ向けて所要角度傾斜するルーバ板27を多段に取り付けてなる構成において、上記各ルーバ端部支柱23を、冷却空気出口18の両側壁18aに直接沿わせて配設する構成に代えて、各ルーバ端部支柱23の外側面に、チャンネルボックス33を上下方向の全長に亘りそれぞれ取り付けて、該各ルーバ端部支柱23と、その外側のチャンネルボックス33との間に冷却用空気流路34a,34b,34cを形成すると共に、上記各ルーバ端部支柱23を、それぞれ対応するチャンネルボックス33を介在させた状態で冷却空気出口18の両側壁18aに沿って配設する。更に、上記各ルーバ端部支柱23の外側に形成した上記冷却空気用流路34a,34b,34cの一端部となる下端部へ、発熱体貯蔵施設のセル室5の下部プレナム部15よりセル室5内に貯蔵される発熱体としてのガラス固化体1(図5参照)の冷却に供される前の低温(常温)の冷却空気20を導くための冷却空気導入ライン35を備えると共に、上記冷却空気用流路34a,34b,34cの他端部となる上端部を、上記冷却空気出口18におけるルーバ設置個所の下流側に連通させて冷却空気出口ルーバ32a,32b,32cを構成する。これにより、発熱体貯蔵施設のセル室5にて貯蔵されたガラス固化体1の冷却に供されることで加熱される85℃程度の高温の冷却空気20aが、該セル室5の上部プレナム部13より、上記冷却空気出口ルーバ32a,32b,32cが設けてある冷却空気出口18を経て出口シャフト19(図5参照)へ送られる際に、上記高温の冷却空気20aに曝される上記冷却空気出口ルーバ32a,32b,32cの各ルーバ板27より熱が伝えられるルーバ端部支柱23を、セル室5の下部プレナム部15より冷却空気導入ライン35を経て上記冷却空気用流路34a,34b,34cへ導く低温の冷却空気20と熱交換させて、該ルーバ端部支柱23を冷却できるようにしてある。   1 to 4 show an embodiment of the cooling air outlet louver of the heating element storage facility of the present invention, which is applied to a heating element storage facility for storing the glass solidified body 1 as a heating element similar to that shown in FIG. FIG. 6 shows an example of the case, like the cooling air outlet louvers 22a, 22b, and 22c shown in FIGS. 6 and 7, a pair of louver end struts 23 in the width direction of the cooling air outlet 18, and between them. Louver intermediate struts 24 arranged at required intervals, and between the louver end struts 23 and the adjacent louver intermediate struts 24, and between adjacent louver intermediate struts 24, the cooling air flow direction In the configuration in which the louver plates 27 inclined at a required angle from the upstream side to the downstream side are attached in multiple stages, the louver end struts 23 are arranged along the side walls 18a of the cooling air outlet 18 directly. Constitution Instead, the channel box 33 is attached to the outer surface of each louver end column 23 over the entire length in the vertical direction, and cooling air is provided between each louver end column 23 and the outer channel box 33. The flow paths 34a, 34b, and 34c are formed, and the louver end support columns 23 are disposed along the side walls 18a of the cooling air outlet 18 with the corresponding channel boxes 33 interposed therebetween. Further, a cell chamber is formed from the lower plenum portion 15 of the cell chamber 5 of the heating element storage facility to the lower end portion which is one end portion of the cooling air flow paths 34a, 34b, 34c formed outside the louver end column 23. 5 is provided with a cooling air introduction line 35 for guiding the cooling air 20 at a low temperature (normal temperature) before being used for cooling the glass solidified body 1 (see FIG. 5) as a heating element stored in the cooling unit 5. The cooling air outlet louvers 32a, 32b, and 32c are configured by communicating the upper ends of the air flow paths 34a, 34b, and 34c to the downstream side of the louver installation location in the cooling air outlet 18. Thereby, the high-temperature cooling air 20a of about 85 ° C. heated by being used for cooling the vitrified body 1 stored in the cell chamber 5 of the heating element storage facility is the upper plenum portion of the cell chamber 5 13, the cooling air exposed to the high-temperature cooling air 20a when being sent to the outlet shaft 19 (see FIG. 5) through the cooling air outlet 18 provided with the cooling air outlet louvers 32a, 32b, 32c. The louver end column 23 to which heat is transmitted from the louver plates 27 of the outlet louvers 32a, 32b, and 32c passes through the cooling air introduction line 35 from the lower plenum portion 15 of the cell chamber 5 and the cooling air flow paths 34a, 34b, The louver end column 23 can be cooled by exchanging heat with the low-temperature cooling air 20 led to 34c.

詳述すると、上記冷却空気出口18には、図6及び図7に示したものと同様に、冷却空気流通方向に沿って所要角度下向き傾斜するルーバ板27を具備した形式の第1の冷却空気出口ルーバ32aと、冷却空気流通方向に沿って所要角度上向き傾斜するルーバ板27を具備した形式の第2の冷却空気出口ルーバ32bと、上記第1の冷却空気出口ルーバ32aと同様に冷却空気流通方向に沿って所要角度下向き傾斜するルーバ板27を具備した形式の第3の冷却空気出口ルーバ32cとを、冷却空気流通方向の上流側から並べて三連に配設した構成としてある。   More specifically, the cooling air outlet 18 is provided with a louver plate 27 having a louver plate 27 inclined downward by a required angle along the cooling air flow direction, similar to that shown in FIGS. Like the first cooling air outlet louver 32a, the second cooling air outlet louver 32b having the outlet louver 32a, the second cooling air outlet louver 32b having the louver plate 27 inclined at a required angle upward along the cooling air circulation direction, and the cooling air circulation. A third cooling air outlet louver 32c having a louver plate 27 inclined downward by a required angle along the direction is arranged in a triple from the upstream side in the cooling air flow direction.

上記各冷却空気出口ルーバ32a,32b,32cのルーバ端部支柱23と、その内側に隣接するルーバ中間支柱24との間の下端部における最下段のルーバ板27の下側位置に、各々の最下段のルーバ板27の傾斜に応じて上下方向に交互に屈曲する天井部を備えた冷却空気流通方向に一連の下部流路形成ボックス36を、底板26に一体に且つ気密に取り付ける。更に、上記各冷却空気出口ルーバ32a,32b,32cの各ルーバ端部支柱23の下端部と、上記下部流路形成ボックス36の対応する片側の側壁に、該下部流路形成ボックス36の内部と、上記各ルーバ端部支柱23の外側面部に設けた冷却用空気流路34a,34b,34cの下端部とをそれぞれ連通させるための下部連通口37a,37b,37cを穿設する。   Each cooling air outlet louver 32a, 32b, 32c has a lowermost louver plate 27 at a lower position between the louver end column 23 and the louver intermediate column 24 adjacent to the inside thereof. A series of lower flow path forming boxes 36 are integrally and airtightly attached to the bottom plate 26 in the cooling air circulation direction provided with a ceiling portion that is alternately bent in the vertical direction according to the inclination of the lower louver plate 27. Further, on the lower end portion of each louver end column 23 of each of the cooling air outlet louvers 32a, 32b, 32c, and on the corresponding one side wall of the lower flow passage forming box 36, the inside of the lower flow passage forming box 36 and Lower communication ports 37a, 37b, and 37c are formed to communicate with the lower ends of the cooling air flow paths 34a, 34b, and 34c provided on the outer surface of each louver end column 23, respectively.

更に、上記下部流路形成ボックス36の冷却空気流通方向上流側端面の上部位置に、冷却空気出口18の幅方向の外側から3つの空気入口38a,38b,38cをほぼ等間隔に設ける。且つ上記下部流路形成ボックス36の内側には、流路形成用のL字型の仕切り壁39を二重に設けて、該下部流路形成ボックス36内に、上記3つの空気入口38a,38b,38cを上記3つの下部連通口37a,37b,37cに個別に連通させるための分割流路36a,36b,36cを形成した構成としてある。   Further, three air inlets 38a, 38b, and 38c are provided at substantially equal intervals from the outer side in the width direction of the cooling air outlet 18 at the upper position on the upstream end face in the cooling air flow direction of the lower flow path forming box 36. In addition, a double L-shaped partition wall 39 for forming a flow path is provided inside the lower flow path forming box 36, and the three air inlets 38a and 38b are formed in the lower flow path forming box 36. , 38c are formed with divided flow paths 36a, 36b, 36c for individually communicating with the three lower communication ports 37a, 37b, 37c.

上記下部流路形成ボックス36の各空気入口38a,38b,38cには、発熱体貯蔵施設の冷却空気出口18の内底面と平行にセル室5まで延びる個別の接続ダクト40の下流側端部となる一端部がそれぞれ連通接続してある。なお、図では冷却空気出口18の幅方向に並ぶ3つの上記接続ダクト40を一体に連結してなる構成例が示してあるが、上記冷却空気出口18の幅方向に並ぶ3つの接続ダクト40を個別に分離させるようにしてもよい。   Each air inlet 38a, 38b, 38c of the lower flow path forming box 36 has a downstream end portion of an individual connection duct 40 extending to the cell chamber 5 in parallel with the inner bottom surface of the cooling air outlet 18 of the heating element storage facility. One end portion is connected in communication. In the drawing, a configuration example in which the three connection ducts 40 arranged in the width direction of the cooling air outlet 18 are integrally connected is shown. However, the three connection ducts 40 arranged in the width direction of the cooling air outlet 18 are shown. You may make it isolate | separate separately.

更に、上記セル室5の下端部の下部プレナム部15に開口する空気取入口41aを備えてなる3本の冷却空気導入管41を、セル室5における冷却空気出口18側の側壁に沿って、下部プレナム形成板14と上部プレナム形成板12を貫通させて上下方向に延びるように配設する。この際、該各冷却空気導入管41は、長手方向の所要個所を、セル室5内の所要の固定部、たとえば、セル室5の内部に通風管9(図5参照)を支持させるために設けてある支持架構46に取り付けて支持させるようにすればよい。上記各冷却空気導入管41の上端部は、上記各接続ダクト40の上流側端部となる他端部にそれぞれ接続するようにしてある。これにより、上記各冷却空気出口ルーバ32a,32b,32cにてルーバ端部支柱23の外側面部にそれぞれ設けてある各冷却用空気流路34a,34b,34cの下端部の各下部連通口37a,37b,37cごとに、上記下部プレナム部15に配してある空気取入口41aより、冷却空気導入管41、接続ダクト40、下部流路形成ボックス36内の分割流路36a,36b,36cを順に経て個別に冷却空気20を導くことができるようにした冷却空気導入ライン35を構成してある。   Furthermore, three cooling air introduction pipes 41 each having an air intake 41a that opens to the lower plenum portion 15 at the lower end of the cell chamber 5 are arranged along the side wall on the cooling air outlet 18 side in the cell chamber 5, The lower plenum forming plate 14 and the upper plenum forming plate 12 are disposed so as to extend in the vertical direction. At this time, the respective cooling air introduction pipes 41 are provided in order to support the ventilation pipes 9 (see FIG. 5) at required places in the longitudinal direction within a required fixing portion in the cell chamber 5, for example, inside the cell chamber 5. What is necessary is just to make it attach and support to the support frame 46 provided. The upper end portion of each cooling air introduction pipe 41 is connected to the other end portion which is the upstream end portion of each connection duct 40. Thereby, the lower communication ports 37a, 34a, 34b, 34c at the lower ends of the cooling air flow paths 34a, 34b, 34c respectively provided on the outer surface of the louver end column 23 at the cooling air outlet louvers 32a, 32b, 32c. The cooling air introduction pipe 41, the connection duct 40, and the divided flow paths 36a, 36b, and 36c in the lower flow path forming box 36 are sequentially arranged from the air inlet 41a disposed in the lower plenum portion 15 for each of 37b and 37c. Then, a cooling air introduction line 35 that can individually guide the cooling air 20 is configured.

上記各冷却空気出口ルーバ32a,32b,32cのルーバ端部支柱23と、その内側に隣接するルーバ中間支柱24との間の上端部における最上段のルーバ板27の上側位置には、各々の最上段のルーバ板27の傾斜に応じて上下方向に交互に屈曲する底部を備えた冷却空気流通方向に一連の上部流路形成ボックス42を、天板25に一体に且つ気密に取り付ける。更に、上記各冷却空気出口ルーバ32a,32b,32cの各ルーバ端部支柱23の上端部と、上記上部流路形成ボックス42の対応する片側の側壁に、該上部流路形成ボックス42の内部と、上記各ルーバ端部支柱23の外側面部に設けた冷却用空気流路34a,34b,34cの上端部をそれぞれ連通させるための上部連通口43a,43b,43cを穿設する。   The uppermost position of the uppermost louver plate 27 at the upper end between the louver end struts 23 of the cooling air outlet louvers 32a, 32b, and 32c and the louver intermediate strut 24 adjacent to the inner side of each louver end louver A series of upper flow path forming boxes 42 are attached to the top plate 25 integrally and in an airtight manner in the cooling air flow direction provided with bottom portions alternately bent in the vertical direction according to the inclination of the upper louver plate 27. Further, the upper end of each louver end column 23 of each of the cooling air outlet louvers 32a, 32b, 32c and the corresponding one side wall of the upper flow path forming box 42 are connected to the inside of the upper flow path forming box 42. Upper communication ports 43a, 43b, and 43c are formed for communicating the upper end portions of the cooling air flow paths 34a, 34b, and 34c provided on the outer surface of each louver end column 23, respectively.

更に、上記上部流路形成ボックス42の冷却空気流通方向下流側端面の下部位置に、冷却空気出口18の幅方向の内側から、3つの空気出口44a,44b,44cをほぼ等間隔に設ける。且つ上記上部流路形成ボックス42の内側には、流路形成用のL字型の仕切り壁45を二重に設けて、該上部流路形成ボックス42内に、上記3つの上部連通口43a,43b,43cを上記3つの空気出口44a,44b,44cに個別に連通させるための分割流路42a,42b,42cを形成した構成としてある。これにより、上記各冷却空気出口ルーバ32a,32b,32cの各ルーバ端部支柱23の外側面部に設けた冷却用空気流路34a,34b,34cより上部連通口43a,43b,43cを通して排出される冷却空気20を、それぞれ個別に対応する上部流路形成ボックス42内の分割流路42a,42b,42cと、空気出口44a,44b,44cとを経て、上記冷却空気出口18における冷却空気出口ルーバ32a,32b,32cよりも下流側の領域へ放出できるようにしてある。   Further, three air outlets 44a, 44b, and 44c are provided at substantially equal intervals from the inner side in the width direction of the cooling air outlet 18 at a lower position on the downstream end face in the cooling air flow direction of the upper flow path forming box 42. In addition, an L-shaped partition wall 45 for forming a flow path is provided double inside the upper flow path forming box 42, and the three upper communication ports 43a, 43a, The divided flow paths 42a, 42b, and 42c for individually communicating 43b and 43c with the three air outlets 44a, 44b, and 44c are formed. As a result, the cooling air outlet louvers 32a, 32b, and 32c are discharged from the cooling air passages 34a, 34b, and 34c provided on the outer surface of the louver end column 23 through the upper communication ports 43a, 43b, and 43c. The cooling air 20 passes through the divided flow paths 42a, 42b, 42c and the air outlets 44a, 44b, 44c in the corresponding upper flow path forming boxes 42, and the cooling air outlet louvers 32a in the cooling air outlet 18 respectively. , 32b, 32c can be discharged to a region downstream.

なお、上記上部流路形成ボックス42と、下部流路形成ボックス36の内部には、図6及び図7に示したと同様の配置で頂部遮蔽材28と底部遮蔽材30を配設してなる構成として、上記各冷却空気出口ルーバ32a,32b,32cにおける最上段のルーバ板27の上側に設けてある上記上部流路形成ボックス42と、最下段のルーバ板27の下側に設けてある上記下部流路形成ボックス36のいずれにおいても、セル室5側からの放射線を確実に遮蔽することができるようにしてある。   A configuration in which the top shielding material 28 and the bottom shielding material 30 are arranged in the same manner as shown in FIGS. 6 and 7 inside the upper flow path forming box 42 and the lower flow path forming box 36. As described above, the upper flow path forming box 42 provided above the uppermost louver plate 27 in each of the cooling air outlet louvers 32a, 32b, 32c, and the lower portion provided below the lowermost louver plate 27. In any of the flow path forming boxes 36, radiation from the cell chamber 5 side can be reliably shielded.

図1における符号47は上記各冷却空気導入管41の外周を覆う断熱材、48は各接続ダクト40の周りを覆う断熱材である。更に、図示してないが、下部流路形成ボックス36の天井部の表面も断熱材で覆った構成としてあり、これにより、セル室5の下部プレナム部15の低温の冷却空気20が、各空気取入口41aより取り入れられた後、各冷却空気導入管41、各接続ダクト40、下部流路形成ボックス36内の各分割流路36a,36b,36c、下部連通口37a,37b,37cを経て冷却用空気流路34a,34b,34cに至る間の昇温を抑えることができるようにしてある。   In FIG. 1, reference numeral 47 is a heat insulating material that covers the outer periphery of each cooling air introduction pipe 41, and 48 is a heat insulating material that covers the periphery of each connection duct 40. Further, although not shown, the surface of the ceiling portion of the lower flow path forming box 36 is also covered with a heat insulating material, so that the low-temperature cooling air 20 in the lower plenum portion 15 of the cell chamber 5 is supplied to each air. After being taken in from the intake port 41a, it is cooled through the cooling air introduction pipes 41, the connection ducts 40, the divided flow paths 36a, 36b, 36c in the lower flow path formation box 36, and the lower communication ports 37a, 37b, 37c. The temperature rise between the air flow paths 34a, 34b and 34c can be suppressed.

その他の構成は図6及び図7に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 6 and 7, and the same components are denoted by the same reference numerals.

以上の構成としてある冷却空気出口ルーバ32a,32b,32cを冷却空気出口18に設けてなる発熱体貯蔵施設では、図5に示した発熱体貯蔵施設と同様に、セル室5に貯蔵するガラス固化体1の冷却に供されることにより加熱された後、冷却空気出口18を経て出口シャフト19へ導かれる高温の冷却空気20aと、入口シャフト17より冷却空気入口16を経て下部プレナム部15に導かれる低温(常温)の冷却空気20との圧力差に起因するドラフト力を利用した自然換気方式により、上記下部プレナム部15から各筒状流路10への新たな冷却空気20の取り込みを連続的に行って、貯蔵中のガラス固化体1の冷却を連続的に行うと(図5参照)、上記と同様の、セル室5にてガラス固化体1の冷却に供されることで加熱された状態で上記冷却空気出口18に設けてある冷却空気出口ルーバ32a,32b,32cを通過した後、出口シャフト19へ向かう高温の冷却空気20aと、上記下部プレナム部15の低温の冷却空気20との圧力差に起因するドラフト力に基づいて、下部プレナム部15の低温の冷却空気20が、各空気取入口41aより取り入れられた後、図4に示すように(図4では冷却空気20の流れを図示する便宜上、接続ダクト40の天井面、各ルーバ板27、天板25の記載を省略してある)、各冷却空気導入管41、各接続ダクト40を経て、下部流路形成ボックス36内の各分割流路36a,36b,36cへ流入させられる。該各分割流路36a,36b,36cを通過した後の冷却空気20は、下部連通口37a,37b,37cを経て冷却用空気流路34a,34b,34cへ導かれて、該各冷却用空気流路34a,34b,34cを下方から上方へ流通させられる。その後、上記各冷却用空気流路34a,34b,34cを通過した冷却空気20は、上部連通口43a,43b,43cを経て上部流路形成ボックス42内の各分割流路42a,42b,42cへ導かれ、該各分割流路42a,42b,42cを流通させられた後、各空気出口44a,44b,44cを通して、上記冷却空気出口18における冷却空気出口ルーバ32a,32b,32cよりも下流側の領域へ放出されるようになる。   In the heating element storage facility in which the cooling air outlet louvers 32a, 32b, and 32c having the above-described configuration are provided at the cooling air outlet 18, the glass solidification stored in the cell chamber 5 is the same as the heating element storage facility shown in FIG. After being heated by being used for cooling the body 1, the high-temperature cooling air 20 a led to the outlet shaft 19 through the cooling air outlet 18 and led to the lower plenum portion 15 from the inlet shaft 17 through the cooling air inlet 16. Continuous intake of new cooling air 20 from the lower plenum portion 15 into each cylindrical flow path 10 by a natural ventilation method using a draft force resulting from a pressure difference with the low-temperature (normal temperature) cooling air 20 to be applied. When the glass solid body 1 during storage was continuously cooled (see FIG. 5), it was heated by being used for cooling the glass solid body 1 in the cell chamber 5 as described above. After passing through the cooling air outlet louvers 32a, 32b, 32c provided in the cooling air outlet 18, the high-temperature cooling air 20a toward the outlet shaft 19 and the low-temperature cooling air 20 of the lower plenum portion 15 After the low-temperature cooling air 20 in the lower plenum portion 15 is introduced from each air intake 41a based on the draft force resulting from the pressure difference, as shown in FIG. 4 (in FIG. 4, the flow of the cooling air 20 is For convenience of illustration, the ceiling surface of the connection duct 40, each louver plate 27, and the top plate 25 are not shown), each cooling air introduction pipe 41, each connection duct 40, and the inside of the lower flow path formation box 36. It is made to flow into each divided flow path 36a, 36b, 36c. The cooling air 20 after passing through each of the divided flow paths 36a, 36b, 36c is guided to the cooling air flow paths 34a, 34b, 34c via the lower communication ports 37a, 37b, 37c, and the respective cooling airs. The flow paths 34a, 34b, and 34c are circulated from below to above. Thereafter, the cooling air 20 that has passed through the cooling air flow paths 34a, 34b, and 34c passes through the upper communication ports 43a, 43b, and 43c to the divided flow paths 42a, 42b, and 42c in the upper flow path forming box 42. After being guided and circulated through each of the divided flow paths 42a, 42b, 42c, it passes through the air outlets 44a, 44b, 44c and is located downstream of the cooling air outlet louvers 32a, 32b, 32c in the cooling air outlet 18. Will be released into the area.

この際、上記したようにガラス固化体1の冷却に供された後の高温の冷却空気20aが、セル室5の上部プレナム部15より上記冷却空気出口18に設けてある上記冷却空気出口ルーバ32a,32b,32cを通過するようになるため、該各冷却空気出口ルーバ32a,32b,32cでは、上記高温の冷却空気20aに曝される各ルーバ板27が加熱されて、該各ルーバ板27の熱が各ルーバ端部支柱23に伝えられるようになるが、該各ルーバ端部支柱23は、上記したように、その外側面部に設けてある各冷却用空気流路34a,34b,34cに上記セル室5の下部プレナム部15より導いた低温の冷却空気20を流通させるようにしてあることから、該低温の冷却空気20との熱交換により、上記各ルーバ端部支柱23の冷却が行われるようになる。   At this time, as described above, the high-temperature cooling air 20 a after being used for cooling the vitrified body 1 is provided in the cooling air outlet 18 from the upper plenum portion 15 of the cell chamber 5. 32b, 32c, the louver plates 27 exposed to the high temperature cooling air 20a are heated in the cooling air outlet louvers 32a, 32b, 32c, and the louver plates 27 Heat is transmitted to each louver end column 23, and each louver end column 23 is connected to each cooling air flow path 34a, 34b, 34c provided on the outer side surface thereof as described above. Since the low-temperature cooling air 20 guided from the lower plenum portion 15 of the cell chamber 5 is circulated, the louver end column 23 is cooled by heat exchange with the low-temperature cooling air 20. So divide.

したがって、上記各ルーバ端部支柱23より、その外側面に取り付けてあるチャンネルボックス33を介して冷却空気出口18の両側壁18aへ伝えられる熱が低減される。   Therefore, the heat transmitted from each louver end column 23 to the both side walls 18a of the cooling air outlet 18 through the channel box 33 attached to the outer surface thereof is reduced.

更に、上記各冷却空気出口ルーバ32a,32b,32cにおけるルーバ端部支柱23と、その内側に隣接するルーバ中間支柱24との間の上端部及び下端部には、それぞれ内部に分割流路42a,42b,42c及び分割流路36a,36b,36cを備えた上部流路形成ボックス42及び下部流路形成ボックス36がそれぞれ設けてあり、且つ該各流路形成ボックス42及び36の上記各分割流路42a,42b,42c及び分割流路36a,36b,36cには、上記したようにセル室5の下部プレナム部15より導く低温の冷却空気20を流通させるようにしてあるため、冷却空気出口18を通る高温の冷却空気20aより該各流路形成ボックス42及び36へ伝えられる熱は、それぞれの内部の分割流路42a,42b,42c及び分割流路36a,36b,36cを流通する上記低温の冷却空気20との熱交換によって奪われるようになることから、該上部と下部の各流路形成ボックス42及び36を介して冷却空気出口18の天井面や底面に伝えられる熱も低減されるようになる。   Further, the upper and lower ends of the cooling air outlet louvers 32a, 32b and 32c between the louver end struts 23 and the louver intermediate struts 24 adjacent to the inside thereof are respectively divided into flow paths 42a, 42b, 42c and upper flow path forming box 42 and lower flow path forming box 36 each provided with divided flow paths 36a, 36b, 36c are provided, and each divided flow path of each flow path forming box 42, 36 is provided. Since the low-temperature cooling air 20 guided from the lower plenum portion 15 of the cell chamber 5 is circulated through the 42a, 42b, 42c and the divided flow paths 36a, 36b, 36c as described above, the cooling air outlet 18 is provided. The heat transferred from the high-temperature cooling air 20a passing through to the flow path forming boxes 42 and 36 is divided into the internal divided flow paths 42a, 42b, 42c and the like. Since the heat is exchanged with the low-temperature cooling air 20 flowing through the divided flow paths 36a, 36b, and 36c, the cooling air outlet 18 passes through the upper and lower flow path forming boxes 42 and 36. The heat transferred to the ceiling and bottom of the machine is also reduced.

以上により、上記冷却空気出口ルーバ32a,32b,32cによれば、冷却空気出口18における上記各冷却空気出口ルーバ32a,32b,32cの設置個所の周りの躯体コンクリートの温度の上昇を抑えることができて、冷却空気出口18部分のコンクリート温度が制限を超える虞を未然に防止することが可能になる。   As described above, according to the cooling air outlet louvers 32a, 32b, and 32c, it is possible to suppress an increase in the temperature of the concrete in the cooling air outlet 18 around the places where the cooling air outlet louvers 32a, 32b, and 32c are installed. Thus, the possibility that the concrete temperature at the cooling air outlet 18 exceeds the limit can be prevented.

なお、本発明は上記実施の形態のみに限定されるものではなく、発熱体貯蔵施設の冷却空気出口18の上下寸法や幅寸法に応じて冷却出口ルーバ32a,32b,32cの上下寸法や幅寸法は適宜変更してよく、この際、幅寸法に応じて、ルーバ端部支柱23間に設けるルーバ中間支柱24の数を増減したり、間隔を変更するようにしてもよい。   In addition, this invention is not limited only to the said embodiment, The vertical dimension and width dimension of cooling outlet louver 32a, 32b, 32c according to the vertical dimension and width dimension of the cooling air outlet 18 of a heat generating body storage facility. May be changed as appropriate. At this time, the number of louver intermediate struts 24 provided between the louver end struts 23 may be increased or decreased or the interval may be changed according to the width dimension.

又、冷却空気出口18に冷却空気出口ルーバ32a,32b,32cを3連に設けた例を示したが、冷却空気出口ルーバを1基のみ設ける場合、あるいは、2連又は4連以上の配置で冷却空気出口ルーバを設ける場合にも適用できる。この場合、冷却空気出口ルーバの設置数に応じて、冷却空気導入ライン35の数、すなわち、下部流路形成ボックス36内における流路の分割数や、接続ダクト40及び冷却空気導入管40の数を適宜増減させるようにしてよく、更には、上部流路形成ボックス42内における流路の分割数を適宜増減させるようにしてよい。   In addition, although the cooling air outlet 18 is provided with three cooling air outlet louvers 32a, 32b, 32c, only one cooling air outlet louver is provided, or two or four or more stations are arranged. The present invention can also be applied when a cooling air outlet louver is provided. In this case, according to the number of installed cooling air outlet louvers, the number of cooling air introduction lines 35, that is, the number of divisions of flow paths in the lower flow path formation box 36, the number of connection ducts 40 and cooling air introduction pipes 40, and the like. May be increased or decreased as appropriate, and further, the number of divisions of the flow paths in the upper flow path forming box 42 may be increased or decreased as appropriate.

冷却空気出口ルーバ32a,32b,32cの幅方向両端部にてルーバ板27を支持するルーバ端部支柱23に、長手方向の全長に亘り冷却空気20流通させるための冷却用空気流路34a,34b,34cを付設できれば、たとえば、ルーバ端部支柱23自体を管状構造とする等、ルーバ端部支柱23の外側面にチャンネルボックス33を取り付ける構造以外のいかなる構造を採用してもよい。   Cooling air flow paths 34a, 34b for allowing the cooling air 20 to flow through the entire length in the longitudinal direction to the louver end column 23 supporting the louver plate 27 at both ends in the width direction of the cooling air outlet louvers 32a, 32b, 32c. 34c, any structure other than the structure in which the channel box 33 is attached to the outer surface of the louver end column 23 may be adopted, for example, the louver end column 23 itself has a tubular structure.

冷却空気出口ルーバ32a,32b,32cの幅方向両端部にてルーバ板27を支持するルーバ端部支柱23に付設した冷却用空気流路34a,34b,34cへ、セル室5の下部プレナム部15より低温の冷却空気20を導くことができる冷却空気導入ライン35としてあれば、下部流路形成ボックス36内の分割流路36a,36b,36cの位置を変更したり、接続ダクト40の形状を変更したり、冷却空気導入管41の配管経路や、下部プレナム部15内における空気取入口41の配置を変更する等、いかなる構成の冷却空気導入ライン35を採用してもよい。   The lower plenum portion 15 of the cell chamber 5 is connected to the cooling air flow paths 34a, 34b, 34c attached to the louver end column 23 that supports the louver plate 27 at both ends in the width direction of the cooling air outlet louvers 32a, 32b, 32c. If the cooling air introduction line 35 can guide the cooling air 20 at a lower temperature, the positions of the divided flow paths 36a, 36b, 36c in the lower flow path forming box 36 are changed, and the shape of the connection duct 40 is changed. Alternatively, the cooling air introduction line 35 having any configuration may be employed, such as changing the piping path of the cooling air introduction pipe 41 or the arrangement of the air intake ports 41 in the lower plenum portion 15.

その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Of course, various changes can be made without departing from the scope of the present invention.

本発明の発熱体貯蔵施設の冷却空気出口ルーバの実施の一形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows one Embodiment of the cooling air exit louver of the heat generating body storage facility of this invention. 図1のA−A方向矢視図である。It is an AA direction arrow line view of FIG. 図1のB−B方向矢視図である。It is a BB direction arrow line view of FIG. 図1の冷却空気出口ルーバにおける低温の冷却空気の流れを示す概要図である。It is a schematic diagram which shows the flow of the low temperature cooling air in the cooling air exit louver of FIG. 従来提案されているガラス固化体貯蔵施設の一例の概略を示す概略切断側面図である。It is a general | schematic cutting side view which shows the outline of an example of the vitrified body storage facility proposed conventionally. 本出願人が従来計画していた発熱体処理施設の冷却空気出口ルーバの一例を示す概略切断側面図である。It is a general | schematic cutting side view which shows an example of the cooling air exit louver of the heat generating body processing facility which this applicant has planned conventionally. 図6のC−C方向矢視図である。It is CC direction arrow line view of FIG.

符号の説明Explanation of symbols

1 ガラス固化体(発熱体)
5 セル室
12 上部プレナム形成板
13 上部プレナム部
14 下部プレナム形成板
15 下部プレナム部
17 入口シャフト
18 冷却空気出口
18a 側壁
19 出口シャフト
20 冷却空気
20a 高温の冷却空気
23 ルーバ端部支柱
27 ルーバ板
32a,32b,32c 冷却空気出口ルーバ
33 チャンネルボックス
34a,34b,34c 冷却空気用流路
35 冷却空気導入ライン
36 下部流路形成ボックス
37a,37b,37c 下部連通口
38a,38b,38c 空気入口
41 冷却空気導入管
41a 空気取入口
42 上部流路形成ボックス
43a,43b,43c 上部連通口
44a,44b,44c 空気出口
1 Vitrified body (heating element)
5 Cell Chamber 12 Upper Plenum Forming Plate 13 Upper Plenum Part 14 Lower Plenum Forming Plate 15 Lower Plenum Part 17 Inlet Shaft 18 Cooling Air Outlet 18a Side Wall 19 Outlet Shaft 20 Cooling Air 20a Hot Cooling Air 23 Louver End Column 27 Louver Plate 32a , 32b, 32c Cooling air outlet louver 33 Channel box 34a, 34b, 34c Cooling air flow path 35 Cooling air introduction line 36 Lower flow path forming box 37a, 37b, 37c Lower communication port 38a, 38b, 38c Air inlet 41 Cooling air Inlet pipe 41a Air intake port 42 Upper flow path forming box 43a, 43b, 43c Upper communication port 44a, 44b, 44c Air outlet

Claims (5)

セル室内に発熱体を貯蔵して、入口シャフトより上記セル室の下端部の下部プレナム部へ導入する低温の冷却空気と、該冷却空気が上記発熱体の冷却に供されることで加熱されて上記セル室の上端部の上部プレナム部へ上昇した後、冷却空気出口を通して出口シャフトへ導かれる高温の冷却空気との圧力差に基づくドラフト力を利用した自然換気方式により、上記下部プレナム部への新たな冷却空気の取り込みを連続的に行って、貯蔵中の発熱体の冷却を連続的に行うことができるようにしてある発熱体貯蔵施設における上記冷却空気出口に設ける冷却空気出口ルーバにおいて、冷却空気出口の幅方向両端部に上下方向に延びるよう配設してその内側面にルーバ板が多段に取り付けてあるルーバ端部支柱に、冷却空気用流路を上下方向の全長に亘り付設し、且つ該冷却空気用流路の一端部に、低温の冷却空気を導くための冷却空気導入ラインを接続すると共に、上記冷却用空気流路の他端部を、上記冷却空気出口におけるルーバ設置個所の下流側に連通させてなる構成を有することを特徴とする発熱体貯蔵施設の冷却空気出口ルーバ。   A heating element is stored in the cell chamber, and introduced into the lower plenum part at the lower end of the cell chamber from the inlet shaft, and the cooling air is heated by being used for cooling the heating element. After rising to the upper plenum part at the upper end of the cell chamber, the natural ventilation system using the draft force based on the pressure difference with the high-temperature cooling air led to the outlet shaft through the cooling air outlet, In the cooling air outlet louver provided at the cooling air outlet in the heating element storage facility that continuously takes in new cooling air and continuously cools the heating element during storage. The cooling air flow path is arranged in the vertical direction on the louver end strut, which is arranged so as to extend in the vertical direction at both ends in the width direction of the air outlet and the louver plate is attached to the inner side surface in multiple stages. And connecting a cooling air introduction line for guiding the low-temperature cooling air to one end of the cooling air flow path, and connecting the other end of the cooling air flow path to the cooling air outlet. A cooling air outlet louver for a heating element storage facility, characterized in that the louver has a configuration communicating with a downstream side of a louver installation location. 冷却空気用流路の一端部に接続する冷却空気導入ラインを、セル室の下部プレナム部より低温の冷却空気を導くことができるものとした請求項1記載の発熱体貯蔵施設の冷却空気出口ルーバ。   The cooling air outlet louver for a heating element storage facility according to claim 1, wherein a cooling air introduction line connected to one end of the cooling air flow path can guide cooling air having a lower temperature than the lower plenum portion of the cell chamber. . ルーバ端部支柱の外側面に、上下方向の全長に亘りチャンネルボックスを取り付けて、ルーバ端部支柱とチャンネルボックスの間に冷却用空気流路を設けると共に、上記ルーバ端部支柱を、上記チャンネルボックスを介して発熱体貯蔵施設の冷却空気出口の両側壁に配設するようにした請求項1又は2記載の発熱体貯蔵施設の冷却空気出口ルーバ。   A channel box is attached to the outer surface of the louver end column over the entire length in the vertical direction, and a cooling air flow path is provided between the louver end column and the channel box, and the louver end column is connected to the channel box. The cooling air outlet louver of the heating element storage facility according to claim 1 or 2, wherein the cooling air outlet louver of the heating element storage facility is arranged on both side walls of the cooling air outlet of the heating element storage facility. ルーバ端部支柱の下端部内側における最下段のルーバ板の下側に、下部流路形成ボックスを設けて、該下部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の下端部と連通する下部連通口を設けると共に、下部流路形成ボックスの冷却空気流通方向の上流側面部に設けた空気入口に、発熱体貯蔵施設のセル室の下部プレナム部に開口する空気取入口を備え且つ下部プレナム形成板と上部プレナム形成板を貫通して上下方向に延びる冷却空気導入管の上端部を接続した請求項1、2又は3記載の発熱体貯蔵施設の冷却空気出口ルーバ。   A lower flow path forming box is provided below the lowermost louver plate inside the lower end of the louver end strut, and a cooling air flow path attached to the louver end strut is provided in the lower flow path forming box. An air inlet provided in the lower plenum part of the cell chamber of the heating element storage facility is provided in the air inlet provided in the upstream side face part in the cooling air flow direction of the lower flow path forming box, with a lower communication port communicating with the lower end part A cooling air outlet louver for a heating element storage facility according to claim 1, wherein an upper end portion of a cooling air introduction pipe extending through the lower plenum forming plate and the upper plenum forming plate is connected. ルーバ端部支柱の上端部内側における最上段のルーバ板の上側に、上部流路形成ボックスを設けて、該上部流路形成ボックスに、上記ルーバ端部支柱に付設した冷却用空気流路の上端部と連通する上部連通口を設けると共に、上流路形成ボックスにおける冷却空気流通方向の下流側面部に空気出口を設けるようにした請求項4記載の発熱体貯蔵施設の冷却空気出口ルーバ。   An upper channel forming box is provided on the upper side of the uppermost louver plate inside the upper end of the louver end column, and the upper end of the cooling air channel attached to the louver end column is provided in the upper channel forming box. 5. The cooling air outlet louver for a heating element storage facility according to claim 4, wherein an upper communication port communicating with said portion is provided, and an air outlet is provided at a downstream side surface portion in the cooling air flow direction in the upper flow path forming box.
JP2008012956A 2008-01-23 2008-01-23 Cooling air outlet louver of heating element storage facility Active JP4983620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012956A JP4983620B2 (en) 2008-01-23 2008-01-23 Cooling air outlet louver of heating element storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012956A JP4983620B2 (en) 2008-01-23 2008-01-23 Cooling air outlet louver of heating element storage facility

Publications (2)

Publication Number Publication Date
JP2009174963A true JP2009174963A (en) 2009-08-06
JP4983620B2 JP4983620B2 (en) 2012-07-25

Family

ID=41030211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012956A Active JP4983620B2 (en) 2008-01-23 2008-01-23 Cooling air outlet louver of heating element storage facility

Country Status (1)

Country Link
JP (1) JP4983620B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013295A (en) * 1999-06-30 2001-01-19 Mitsubishi Heavy Ind Ltd Radioactive waste storage facility
JP2001356192A (en) * 2001-04-27 2001-12-26 Hitachi Ltd Radioactive material dry storage method
JP2007046994A (en) * 2005-08-09 2007-02-22 Taisei Corp Spent fuel storage installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013295A (en) * 1999-06-30 2001-01-19 Mitsubishi Heavy Ind Ltd Radioactive waste storage facility
JP2001356192A (en) * 2001-04-27 2001-12-26 Hitachi Ltd Radioactive material dry storage method
JP2007046994A (en) * 2005-08-09 2007-02-22 Taisei Corp Spent fuel storage installation

Also Published As

Publication number Publication date
JP4983620B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US4634875A (en) Transitory storage for highly-radioactive wastes
JP5119982B2 (en) Heating element storage facility
JP4983620B2 (en) Cooling air outlet louver of heating element storage facility
JP2010217091A (en) Containment vessel passive cooling system and liquid-metal-cooled reactor
JP2001033590A (en) Heat-generating body storage facility
JP2017201260A (en) Radioactive waste storage facility
JPH0348560Y2 (en)
JP2007046994A (en) Spent fuel storage installation
JP3810589B2 (en) Radioactive waste storage facility
JP2000056071A (en) Spent fuel storage module, auxiliary block and spent fuel storage facility
JPH0821899A (en) Highly radioactive waste solidified body storage facility
JP2001027696A (en) Heating body storage facility
JP2001033591A (en) Heat-generating body storage facility
JP2001021690A (en) Glass solidified body storage equipment
JP4630878B2 (en) Radioactive waste storage equipment
JPH10311896A (en) Cooler for cell chamber
JP4609291B2 (en) Equipment for reducing pressure loss in radioactive material storage facilities
JP6801427B2 (en) Radioactive waste storage device
JP4961502B2 (en) Radioactive material storage method
JP2001021691A (en) Heat emitting body storage facility
JP2013253894A (en) Radioactive material storage facility
JP2001027695A (en) Heating body storage facility
JP2001033589A (en) Heat-generating body storage facility
JPH0590399U (en) Radioactive material storage device
JP2007155510A (en) Heating element storage facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250