JP2009174889A - Structure for installing thermocouple in tube wall and method for installing thermocouple - Google Patents

Structure for installing thermocouple in tube wall and method for installing thermocouple Download PDF

Info

Publication number
JP2009174889A
JP2009174889A JP2008011129A JP2008011129A JP2009174889A JP 2009174889 A JP2009174889 A JP 2009174889A JP 2008011129 A JP2008011129 A JP 2008011129A JP 2008011129 A JP2008011129 A JP 2008011129A JP 2009174889 A JP2009174889 A JP 2009174889A
Authority
JP
Japan
Prior art keywords
thermocouple
sheath
groove
mounting structure
concave groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011129A
Other languages
Japanese (ja)
Other versions
JP5045454B2 (en
Inventor
Masahiko Morinaga
雅彦 森永
Takeshi Takahashi
高橋  毅
Nobuyuki Wakabayashi
信行 若林
Masayuki Kitamura
正幸 北村
Takashige Inada
孝成 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Yamari Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Yamari Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008011129A priority Critical patent/JP5045454B2/en
Publication of JP2009174889A publication Critical patent/JP2009174889A/en
Application granted granted Critical
Publication of JP5045454B2 publication Critical patent/JP5045454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure and a method for installing a thermocouple in a tube wall which enable avoidance of puncture of a sheath due to an output of welding or others and can make installation work efficient, while enabling embedment of the thermocouple in a groove without forming a gap, and which enable avoidance of irregularity of temperature distribution and improvement of the accuracy in temperature measurement. <P>SOLUTION: The width of a recess groove 10 is set to be a prescribed one larger than a sheath diameter of a sheathed thermocouple 1 to be installed internally and a holding plate 2 to be fitted in the recess groove 10 is provided. A first storing groove 20 having a curved surface R1 for compactly storing a half 1a of the cross-sectional outer side of the sheathed thermocouple 1 is formed almost in the central part of the inside of the holding plate 2, while a second storing groove 30 having a curved surface R2 for compactly storing about a half 1b of the cross-sectional inner side of the sheathed thermocouple 1 being the remaining portion thereof is formed almost in the central part of the bottom side 10c of the recess groove 10. The sheathed thermocouple 1 is embedded in the recess groove 10 in a state that it is held compactly between the first storing groove 20 and the second storing groove 30 in this structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ボイラーの水管等の加熱された管壁の温度を測定するための熱電対の取付構造に係り、より詳しくは、管壁の外周面に沿って凹溝を形成し、該凹溝内にシース熱電対を埋め込んでなる熱電対取付構造及び取付方法に関する。   The present invention relates to a thermocouple mounting structure for measuring the temperature of a heated tube wall such as a water tube of a boiler, and more specifically, forming a groove along the outer peripheral surface of the tube wall. The present invention relates to a thermocouple mounting structure and a mounting method in which a sheath thermocouple is embedded.

この種の熱電対取付構造としては、従来、たとえば管壁の円周面に沿って管厚の許容限度内の深さとその約2倍の巾の溝を穿削し、この溝の断面積よりも僅かに小さい断面積の熱電対を溝内に嵌合し、熱電対を上方より加圧変形して溝底に密接すると共に、管壁の外周面と等高にして溶接等によって固定したものが提案されている(例えば、特許文献1参照。)。これは、埋め込み加工した溝底との密着良好であるとともに管壁外面に余分な張り出しがなく管の真温に近い温度測定が可能であり、パッド方式のような温度分布の乱れやコーダル方式のような機械的強度劣化のない構造が提供できる。   As this type of thermocouple mounting structure, conventionally, for example, a groove having a depth within the allowable limit of the tube thickness and a width approximately twice that of the tube thickness is drilled along the circumferential surface of the tube wall. A thermocouple with a slightly smaller cross-sectional area is fitted in the groove, and the thermocouple is pressed and deformed from above to be in close contact with the groove bottom, and is fixed to the outer peripheral surface of the tube wall by welding or the like. Has been proposed (see, for example, Patent Document 1). It has good adhesion to the embedded groove bottom and can be used to measure the temperature close to the true temperature of the tube without extra protrusion on the outer surface of the tube wall. A structure without such mechanical strength deterioration can be provided.

しかしながら、この特許文献1の構造は、熱電対を溝内に嵌合して加圧成形した後、管壁と熱電対を直接溶接して固定するため、シースをパンク(熱破壊)させてしまう虞があった。そこで、実際には、図14(a),(b)に示すように、溝110内に嵌合した熱電対101をさらに外側から押える押さえ板102を設け、その押さえ板102を管壁Wに溶接するような構造が採用されていた。しかし、このような押さえ板102を介して固定する構造においては、シースを直接溶接する構造に比べて熱破壊はある程度防止できるものの、管壁Wに形成できる溝の深さが所定寸法内に規定されている関係上、押さえ板102の厚さには限界があり、溶接出力が大きすぎると容易に熱電対101のシースにアークが飛び、パンクさせてしまうことから取付作業が困難であるとともに、平板状の押さえ板102と曲面を有する加圧変形された熱電対101との間には隙間s1,s1が生じるため、温度分布の乱れが生じて温度計測精度が低下するといった課題があった。   However, in the structure of Patent Document 1, since the thermocouple is fitted into the groove and press-molded, the tube wall and the thermocouple are directly welded and fixed, so that the sheath is punctured (thermal destruction). There was a fear. Therefore, in practice, as shown in FIGS. 14A and 14B, a pressing plate 102 that further presses the thermocouple 101 fitted in the groove 110 from the outside is provided, and the pressing plate 102 is attached to the tube wall W. A welded structure was used. However, in such a structure that is fixed via the pressing plate 102, the thermal damage can be prevented to some extent as compared with the structure in which the sheath is directly welded, but the depth of the groove that can be formed in the tube wall W is defined within a predetermined dimension. Therefore, the thickness of the holding plate 102 is limited, and if the welding output is too large, the arc easily jumps and punctures the sheath of the thermocouple 101. Since the gaps s1 and s1 are generated between the flat pressing plate 102 and the pressure-deformed thermocouple 101 having a curved surface, there is a problem in that temperature measurement is disturbed and temperature measurement accuracy is lowered.

また、他の構造として、管の外周面に管の軸方向に直角な円周方向の環状溝を刻設し、管の環状溝に嵌着できる半割り円弧状の埋込み板の内周面に刻設した収納溝に先端感温部を偏平断面に形成したシースを収納し、この埋込み板及び内周面に収納溝のない他方半割り円弧状の埋込み板を両者の埋込み板の外周面と管の外周面とが同一面になるようにして前記管の環状溝に嵌着し、埋込み板と管の接合外周面に溶接により固着するものが提案されている(例えば、特許文献2参照。)。このような埋込み板は、上記した押さえ板102に比べて収納溝を有する分だけ全体の厚みを大きくすることができ、管壁との溶接の際に熱電対シースにアークが飛ぶといった問題を回避でき、取付作業を容易に行うことができるといったメリットがある。しかしながら、埋込み溝内周面の収納溝に熱電対を収納した状態で環状溝に嵌め込むため、環状溝底面に当たる側の熱電対と収納溝との間に隙間が生じるため、温度分布の乱れが生じて温度計測精度が低下するといった上記構造と同じ課題を抱えている。   As another structure, an annular groove in the circumferential direction perpendicular to the axial direction of the pipe is formed on the outer peripheral surface of the pipe, and the inner peripheral surface of the half-arc-shaped embedded plate that can be fitted into the annular groove of the pipe. A sheath having a tip temperature sensing portion formed in a flat cross section is stored in the engraved storage groove, and this embedded plate and the other half-divided arc-shaped embedded plate having no storage groove on the inner peripheral surface are connected to the outer peripheral surface of both embedded plates. It has been proposed that the tube is fitted in the annular groove of the tube so that the outer peripheral surface of the tube is the same surface, and is fixed to the joint outer peripheral surface of the embedding plate and the tube by welding (for example, see Patent Document 2). ). Such an embedded plate can be made thicker than the above-described holding plate 102 by the amount of the storage groove, and avoids the problem of an arc flying to the thermocouple sheath during welding with the tube wall. There is an advantage that the mounting work can be easily performed. However, since the thermocouple is housed in the storage groove on the inner circumferential surface of the embedded groove and is fitted into the annular groove, a gap is generated between the thermocouple on the side facing the bottom surface of the annular groove and the storage groove. It has the same problem as the above-mentioned structure that the temperature measurement accuracy is reduced.

特公昭56−4849号公報Japanese Patent Publication No. 56-4849 実公昭59−20656号公報Japanese Utility Model Publication No.59-20656

そこで、本発明が前述の状況に鑑み、解決しようとするところは、管壁に形成した溝内にシース熱電対を埋め込んでなる熱電対取付構造において、溶接等の出力によるシースのパンクを回避でき、取付作業の効率化を図ることができるとともに、溝内に隙間を生じることなく熱電対を埋め込むことができ、温度分布の乱れを回避して温度計測精度の向上を図ることができる管壁への熱電対取付構造及び取付方法を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem that the sheath puncture due to the output of welding or the like can be avoided in the thermocouple mounting structure in which the sheath thermocouple is embedded in the groove formed in the tube wall. To the tube wall that can improve the efficiency of installation work, and can embed a thermocouple without creating a gap in the groove, avoiding disturbance of temperature distribution and improving temperature measurement accuracy The thermocouple mounting structure and mounting method are provided.

本発明は、前述の課題解決のために、管壁の外周面に沿って凹溝を形成し、該凹溝内にシース熱電対を埋め込んでなる熱電対取付構造において、前記凹溝を内装されるシース熱電対のシース径より広い所定幅に設定するとともに、前記凹溝内に嵌着される押さえ板を設け、該押さえ板の内面側の略中央部に、シース熱電対の断面視外側略半分を隙間なく収納するための曲面を備えた第1の収納溝を形成し、前記凹溝の底面、又は前記凹溝の底側に嵌合される支持板の外面の略中央部に、シース熱電対の残りの部分である断面視内側略半分を隙間なく収納するための曲面を備えた第2の収納溝を形成してなることを特徴とする管壁への熱電対取付構造を提供する。   In order to solve the above-described problems, the present invention provides a thermocouple mounting structure in which a concave groove is formed along the outer peripheral surface of a tube wall, and a sheath thermocouple is embedded in the concave groove, and the concave groove is internally provided. A presser plate that is set to a predetermined width wider than the sheath diameter of the sheathed thermocouple, and is provided with a presser plate that is fitted into the concave groove, and the outer side in a cross-sectional view of the sheathed thermocouple is substantially at the substantially central portion on the inner surface side of the presser plate. A first storage groove having a curved surface for storing the half without a gap is formed, and a sheath is formed at a substantially central portion of the bottom surface of the concave groove or the outer surface of the support plate fitted to the bottom side of the concave groove. Provided is a thermocouple mounting structure on a tube wall, characterized in that a second storage groove having a curved surface for storing the inner half of the remaining portion of the thermocouple, which is substantially the inner side in cross section, is stored without a gap. .

ここで、前記押さえ板の外面を、前記凹溝内に嵌着した状態で前記管壁の外周面と略面一となるように設定した構造が好ましい。   Here, a structure in which the outer surface of the pressing plate is set so as to be substantially flush with the outer peripheral surface of the tube wall in a state of being fitted into the concave groove is preferable.

また、前記押さえ板と支持板との間にシース熱電対を挟持させた後、当該挟持体を前記凹溝内に嵌着することが好ましく、特に、前記挟持体を構成する押さえ板及び支持板をレーザ溶接により互いに一体化することが好ましい。   In addition, it is preferable that a sheath thermocouple is sandwiched between the pressing plate and the support plate, and then the clamping body is fitted into the concave groove, and in particular, the pressing plate and the support plate constituting the clamping body. Are preferably integrated with each other by laser welding.

また、前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を先端の温接点からプラス側およびマイナス側の各素線が基端側に向けて同じ側に延びる構造のものとし、このシース熱電対の先端側に、シース内に熱電対素線及び無機絶縁物を収納したダミー管を連結し、当該シース熱電対及びダミー管よりなる連結体を、前記第1の収納溝及び第2の収納溝により全周にわたって装着した構造が好ましい。   In addition, the concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple has a structure in which each of the plus and minus strands extends from the hot junction at the distal end to the same side toward the proximal end. A dummy tube containing a thermocouple wire and an inorganic insulator is connected to the distal end side of the sheath thermocouple, and a connected body composed of the sheath thermocouple and the dummy tube is connected to the first housing. A structure in which the entire circumference is mounted by the groove and the second storage groove is preferable.

或いは、前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を、シース軸方向途中部に位置する温接点からプラス側およびマイナス側の各素線がシース両端に向けて互いに反対側に延びる構造のものとし、このシース熱電対を前記第1の収納溝及び第2の収納溝により全周にわたって装着した構造も好ましい実施例である。   Alternatively, the concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple is connected so that each of the strands on the plus side and the minus side from the hot junction located in the middle of the sheath axial direction faces both ends of the sheath. A structure in which the sheath thermocouples are extended to opposite sides and the sheath thermocouple is attached to the entire circumference by the first storage groove and the second storage groove is also a preferred embodiment.

更に、前記シース熱電対を、シース外周側に軟質金属層を設けた二重管構造とすることが好ましい。   Furthermore, it is preferable that the sheath thermocouple has a double tube structure in which a soft metal layer is provided on the outer periphery side of the sheath.

また、本発明は、前記シース熱電対を断面視偏平な状態に装着する上記した本発明の熱電対取付構造において、前記シース熱電対を、断面視偏平な状態に予め成形した後、前記第1の収納溝及び第2の収納溝で形成される同じく偏平な内部空間に装着する熱電対の取付方法をも提供する。   According to the present invention, in the above-described thermocouple mounting structure of the present invention in which the sheath thermocouple is mounted in a flat state in cross section, the sheath thermocouple is molded in advance in a flat state in cross section, and then the first There is also provided a method of attaching a thermocouple to be mounted in the same flat inner space formed by the storage groove and the second storage groove.

以上にしてなる本願発明に係る熱電対取付構造は、押さえ板の内面側の略中央部に、シース熱電対の断面視外側略半分を隙間なく収納するための曲面を備えた第1の収納溝を形成したので、図14で示した従来の押さえ板に比べて厚みを厚く設定でき、したがって溶接作業中に熱電対のシースにアークが飛んでパンクさせるといったことを防止でき、作業の効率化を図ることができるとともに、溶け込みを深くでき、押さえ板と管壁との一体化が向上する。また、本願発明は、熱電対の断面視外側略半分を押さえ板に形成した曲面を有する第1の収納溝に収納し、且つ残りの内側略半分を凹溝の底面又は前記凹溝の底側に嵌合される支持板に形成した曲面を有する第2の収納溝に収納し、これら第1の収納溝と第2の収納溝で熱電対を隙間無く挟み込む構造としたので、従来から提案されている種々の構造に見られるような隙間が発生せず、従って温度分布の乱れが生じず、温度計測精度を向上させることができるのである。   In the thermocouple mounting structure according to the present invention as described above, the first storage groove having a curved surface for storing the outer half in a sectional view of the sheath thermocouple without a gap at the substantially central portion on the inner surface side of the holding plate. Therefore, the thickness can be set larger than that of the conventional pressing plate shown in FIG. 14, and therefore, it is possible to prevent the arc from jumping and puncturing the thermocouple sheath during welding work, thereby improving work efficiency. In addition to being able to achieve this, the penetration can be deepened, and the integration of the holding plate and the tube wall is improved. In the present invention, the outer half of the thermocouple in a sectional view is accommodated in a first housing groove having a curved surface formed on a holding plate, and the remaining inner half is disposed on the bottom surface of the groove or on the bottom side of the groove. It has been proposed in the past because it is housed in a second housing groove having a curved surface formed on a support plate fitted to the base plate, and the thermocouple is sandwiched between the first housing groove and the second housing groove without any gap. As a result, there are no gaps as seen in the various structures, and therefore, the temperature distribution is not disturbed and the temperature measurement accuracy can be improved.

また、前記凹溝の底側に支持板を嵌合させる場合には、押さえ板と支持板との間にシース熱電対を挟持させた後に、当該挟持体を前記凹溝内に嵌着するようにしたので、取付けが容易となり、作業効率を向上できる。この場合、挟持体を構成する押さえ板及び支持板をレーザ溶接により互いに一体化しておけば、熱電対に対する密着性を確実に維持できることとなる。   Further, when the support plate is fitted to the bottom side of the concave groove, a sandwich thermocouple is sandwiched between the pressing plate and the support plate, and then the sandwiched body is fitted into the concave groove. As a result, installation is easy and work efficiency can be improved. In this case, if the pressing plate and the support plate constituting the sandwiching body are integrated with each other by laser welding, the adhesion to the thermocouple can be reliably maintained.

また、前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を先端の温接点からプラス側およびマイナス側の各素線が基端側に向けて同じ側に延びる構造のものとし、このシース熱電対の先端側に、シース内に熱電対素線及び無機絶縁物を収納したダミー管を連結し、当該シース熱電対及びダミー管よりなる連結体を、前記第1の収納溝及び第2の収納溝により全周にわたって装着したので、その他の部材でシース熱電対先端側の凹溝を塞ぐ構造に比べて、当該先端側に隙間が生じることを未然に回避でき、しかもダミー管はシース熱電対と同一構成であるので、熱伝導率もほぼ同じとなり、温度分布の乱れを生じさせずに、温度計測精度を向上を図ることができる。   In addition, the concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple has a structure in which each of the plus and minus strands extends from the hot junction at the distal end to the same side toward the proximal end. A dummy tube containing a thermocouple wire and an inorganic insulator is connected to the distal end side of the sheath thermocouple, and a connected body composed of the sheath thermocouple and the dummy tube is connected to the first housing. Since the entire circumference is mounted by the groove and the second storage groove, it is possible to avoid the occurrence of a gap on the distal end side compared to a structure in which the concave groove on the distal end side of the sheath thermocouple is closed by other members, and the dummy. Since the tube has the same configuration as the sheathed thermocouple, the thermal conductivity is substantially the same, and the temperature measurement accuracy can be improved without causing a disturbance in the temperature distribution.

また、前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を、シース軸方向途中部に位置する温接点からプラス側およびマイナス側の各素線がシース両端に向けて互いに反対側に延びる構造のものとし、このシース熱電対を前記第1の収納溝及び第2の収納溝により全周にわたって装着したので、凹溝がすべてシース熱電対で塞がれ、別部材やダミー管を設けることなく安定した温度分布になるとともに、シース断面を通過する一対あたりの素線の数が1/2となるため断面積を小さくすることができ、凹溝や押え板の幅も小さくて済むことから温度分布の乱れが少なく測定精度が著しく向上することとなり、また断面あたりの素線の数が1/2となるので装着或いは変形させる際に素線の位置を確認する必要性が少なくなり(特に素線が1本の場合は位置合わせが不要となる。)、コスト削減・作業効率アップにも貢献する。   In addition, the concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple is connected so that each of the strands on the plus side and the minus side from the warm junction located in the middle of the sheath axial direction faces both ends of the sheath. Since the sheath thermocouple is mounted over the entire circumference by the first storage groove and the second storage groove, all the concave grooves are closed by the sheath thermocouple, and another member or Without providing a dummy tube, the temperature distribution is stable, and the number of strands per pair passing through the sheath cross-section is halved, so that the cross-sectional area can be reduced, and the width of the groove and presser plate is also reduced. Because it is small, the temperature distribution is less disturbed and the measurement accuracy is remarkably improved, and the number of strands per cross section is halved, so it is necessary to check the position of the strands when mounting or deforming But Eliminated (in particular unnecessary strands alignment For one position.), It contributes to cost reduction and work efficiency.

また、前記シース熱電対を、シース外周側に軟質金属層を設けた二重管構造としたので、当該シース熱電対が当接する収納溝の各内壁に微小隙間があっても前記軟質金属層が柔らかく変形して微小隙間を埋めて密着性を向上し、これにより接触熱抵抗を小さくできるので、温度計測精度をより向上させることができる。   In addition, since the sheath thermocouple has a double tube structure in which a soft metal layer is provided on the outer periphery side of the sheath, the soft metal layer is formed even if there is a minute gap in each inner wall of the storage groove with which the sheath thermocouple contacts. Since it deforms softly and fills a minute gap to improve adhesion, thereby reducing the contact thermal resistance, the temperature measurement accuracy can be further improved.

また、前記シース熱電対を断面視偏平な状態に装着してなる場合において、前記シース熱電対を、断面視偏平な状態に予め成形した後、前記第1の収納溝及び第2の収納溝で形成される同じく偏平な内部空間に装着することとしたので、組付けが容易となり、良好な密着性を確実に維持できる。   In the case where the sheath thermocouple is mounted in a flat state in cross section, after the sheath thermocouple is pre-formed in a flat state in cross section, the first storage groove and the second storage groove Since it is mounted in the same flat inner space to be formed, assembly is facilitated and good adhesion can be reliably maintained.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る熱電対取付構造を採用した全体構成を示す図であり、図1〜10は第1実施形態及びその変形例を、図11〜13は第2実施形態を示し、図中符号Sは熱電対取付構造、Wは管壁、1はシース熱電対、2は押さえ板、10は凹溝、20は第1の収納溝、30は第2の収納溝をそれぞれ示している。   FIG. 1 is a diagram showing an overall configuration employing a thermocouple mounting structure according to the present invention, FIGS. 1 to 10 show the first embodiment and its modifications, FIGS. 11 to 13 show the second embodiment, In the figure, reference numeral S denotes a thermocouple mounting structure, W denotes a tube wall, 1 denotes a sheath thermocouple, 2 denotes a pressing plate, 10 denotes a concave groove, 20 denotes a first storage groove, and 30 denotes a second storage groove. Yes.

本発明に係る管壁への熱電対取付構造Sは、図1及び図2に示すように、管壁Wの外周面に沿って凹溝10を形成し、該凹溝10内にシース熱電対1を埋め込んでなる構造であり、具体的には、凹溝10が内装されるシース熱電対1のシース径よりも広い所定幅に設定され、凹溝10内に嵌着される押さえ板2が設けられ、図2に示すように、該押さえ板2の内面側の略中央部には、シース熱電対1の断面視外側略半分1aを隙間なく収納するための曲面R1を備えた第1の収納溝20が形成されるとともに、凹溝10の底面10cの略中央部には、シース熱電対1の残りの部分である断面視内側略半分1bを隙間なく収納するための曲面R2を備えた第2の収納溝30が形成され、シース熱電対1を第1の収納溝20と第2の収納溝30の間に隙間無く挟み込んだ状態で凹溝10内に埋め込むものである。   As shown in FIGS. 1 and 2, the thermocouple mounting structure S to the tube wall according to the present invention forms a concave groove 10 along the outer peripheral surface of the tube wall W, and a sheath thermocouple in the concave groove 10. 1 is embedded. Specifically, the pressing plate 2 is set to a predetermined width wider than the sheath diameter of the sheath thermocouple 1 in which the concave groove 10 is housed, and is fitted into the concave groove 10. As shown in FIG. 2, a first central portion provided with a curved surface R <b> 1 for accommodating the outer half 1 a in a sectional view of the sheath thermocouple 1 without a gap is provided at a substantially central portion on the inner surface side of the pressing plate 2. A storage groove 20 is formed, and a substantially central portion of the bottom surface 10c of the concave groove 10 is provided with a curved surface R2 for storing the remaining half of the sheath thermocouple 1 which is the inner half 1b in a sectional view without gaps. A second storage groove 30 is formed, and the sheath thermocouple 1 is connected to the first storage groove 20 and the second storage groove 30. Those embedded in the groove 10 in the gap without sandwiched state.

管壁Wに形成する凹溝10は、軸方向に垂直に周方向全周にわたって刻設され、底面10cの略中央部に形成される前記第2の収納溝30も含めて、その最大深さは規定により定められている。尚、本例では上記したように軸方向垂直な方向に凹溝10を形成しているが、軸方向に対して斜めに形成したものや、全周に設けずに途中までとすることも可能である。凹溝10の幅は、偏平断面に変形される熱電対よりも所定幅大きく設定され、これに同幅の押さえ板2が嵌着されている。底面10cに形成される第2の収納溝30の形状は、変形される熱電対の形状に合わせて設定され、本例では幅方向両端隅部に曲面R2が形成され、偏平に変形した熱電対の外周面が密着し得る形状に構成されている。   The concave groove 10 formed in the tube wall W is engraved over the entire circumference in the circumferential direction perpendicular to the axial direction, and includes the second storage groove 30 formed at a substantially central portion of the bottom surface 10c. Is determined by regulations. In this example, the concave groove 10 is formed in the direction perpendicular to the axial direction as described above. However, the groove 10 may be formed obliquely with respect to the axial direction, or may be halfway without being provided on the entire circumference. It is. The width of the concave groove 10 is set to be a predetermined width larger than that of the thermocouple deformed into a flat cross section, and the pressing plate 2 having the same width is fitted thereto. The shape of the second storage groove 30 formed on the bottom surface 10c is set in accordance with the shape of the thermocouple to be deformed. In this example, the curved surface R2 is formed at both corners in the width direction, and the thermocouple is deformed flat. It is comprised in the shape which the outer peripheral surface of can closely_contact | adhere.

押さえ板2は、厚みが、凹溝10の第1の収納溝20を除く深さと略同じ寸法に設定され、幅が該凹溝10と略同じ幅に設定され、当該押さえ板2を凹溝10内に嵌着した状態で、押さえ板2の外面が管壁Wの外周面と略面一となるように設定されている。内面側の略中央部に形成される第1の収納溝20の形状は、上述した第2の収納溝30の場合と同様、変形される熱電対の形状に合わせて設定され、本例では幅方向両端隅部に曲面R1が形成され、偏平に変形した熱電対の外周面が密着し得る形状に構成されている。押さえ板2の素材は、熱伝導率の違いによる温度分布の乱れを避けるべく、管壁Wと同材質が好ましいが、他の材質を採用することも可能である。   The presser plate 2 is set to have a thickness substantially the same as the depth of the concave groove 10 excluding the first storage groove 20, a width is set to be substantially the same as the concave groove 10, and the presser plate 2 is recessed to the concave groove 10. 10, the outer surface of the pressing plate 2 is set so as to be substantially flush with the outer peripheral surface of the tube wall W. The shape of the first storage groove 20 formed in the substantially central portion on the inner surface side is set in accordance with the shape of the thermocouple to be deformed, as in the case of the second storage groove 30 described above. Curved surfaces R1 are formed at the corners at both ends in the direction, and the outer peripheral surface of the thermocouple deformed into a flat shape is configured to be in close contact. The material of the pressing plate 2 is preferably the same material as the tube wall W in order to avoid disturbance of the temperature distribution due to the difference in thermal conductivity, but other materials can also be adopted.

シース熱電対1は、従来から公知のものを広く用いることができ、図3(a)の縦断面図に示すように、金属シース11の内部に、先端側などに温接点12aを備え、基端側に向けて同一方向に延びる少なくとも一対の熱電対素線12、12およびこれら熱電対素線12と金属シース11との隙間を埋める無機絶縁物13を収容して構成されている。金属シース11としては、オーステナイト系ステンレス鋼(SUS304、SUS316等)やニッケルクローム系耐熱合金(インコネル)等を用いることができ、シース内に充填する無機絶縁物13として、酸化マグネシウム(MgO)等を用いることができる。熱電対素線12は、たとえばプラス側素線にニッケル−クロム合金、マイナス側素線にニッケル合金が用いることができるが、とくに限定されるものではない。また、本例では、熱電対素線12,12を一対のみ収容したもの例示しているが、複数対内挿したものでも勿論よい。   Conventionally known sheath thermocouples 1 can be widely used. As shown in the longitudinal sectional view of FIG. 3A, the sheath thermocouple 1 is provided with a hot contact 12a inside the metal sheath 11 on the tip side and the like. It is configured to accommodate at least a pair of thermocouple wires 12, 12 extending in the same direction toward the end side, and an inorganic insulator 13 that fills the gap between the thermocouple wires 12 and the metal sheath 11. As the metal sheath 11, austenitic stainless steel (SUS304, SUS316, etc.), nickel chrome heat resistant alloy (Inconel) or the like can be used, and magnesium oxide (MgO) or the like is used as the inorganic insulator 13 filled in the sheath. Can be used. The thermocouple element 12 can be made of, for example, a nickel-chromium alloy for the plus element and a nickel alloy for the minus element, but is not particularly limited. In this example, only one pair of thermocouple wires 12 and 12 is accommodated, but a plurality of pairs may be inserted as a matter of course.

本例では、図1に示すように、シース熱電対1が凹溝10に沿って管壁の略半周の位置まで装着され、当該半周の位置を先端の温接点12aで計測するようにした構造であり、温度分布の乱れを避けるためには、当該シース熱電対1の先端側の凹溝10の空間を塞がなければならない。このため、例えば図3(b)に示すように、押さえ板2の代わりに、内面側に前記第2の収納溝に嵌合する凸部21を設けた嵌合板2Aを準備し、これを凹溝10のシース熱電対先端側の余剰空間に嵌めこむことが好ましいが、このような嵌合板2Aは、シース熱電対1と熱伝導率が異なること、及びシース熱電対1の先端との間に隙間が生じる可能性があることから、温度分布の乱れが多少なりとも発生してしまう。   In this example, as shown in FIG. 1, the sheath thermocouple 1 is mounted along the concave groove 10 up to a substantially half circumference position of the tube wall, and the half circumference position is measured by the hot junction 12a at the tip. In order to avoid the disturbance of the temperature distribution, the space of the concave groove 10 on the distal end side of the sheath thermocouple 1 must be closed. For this reason, for example, as shown in FIG. 3 (b), instead of the presser plate 2, a fitting plate 2A provided with a convex portion 21 to be fitted into the second storage groove on the inner surface side is prepared, and this is recessed. It is preferable to fit in the surplus space on the sheath thermocouple tip side of the groove 10, but such a fitting plate 2 </ b> A has a thermal conductivity different from that of the sheath thermocouple 1 and between the sheath thermocouple 1 tip. Since there is a possibility that a gap is generated, the temperature distribution is somewhat disturbed.

そこで、本例では、図3(a)に示すように、シース熱電対1の先端側に、金属シース11内に熱電対素線12及び無機絶縁物13を収納したダミー管4を溶接で連結一体化し、当該シース熱電対1及びダミー管4よりなる連結体5を、前記第1の収納溝20及び第2の収納溝30により全周にわたって装着している。このようなダミー管4は、シース熱電対1の先端との間に隙間なく接合しておくことができ、しかも双方同一の構成を有し、熱伝導率がほぼ等しくなることから、温度分布の乱れを回避し、温度測定精度をより向上させることが可能となるのである。   Therefore, in this example, as shown in FIG. 3A, the dummy tube 4 in which the thermocouple element 12 and the inorganic insulator 13 are housed in the metal sheath 11 is connected to the distal end side of the sheath thermocouple 1 by welding. The connecting body 5 which is integrated and made up of the sheath thermocouple 1 and the dummy tube 4 is mounted over the entire circumference by the first storage groove 20 and the second storage groove 30. Such a dummy tube 4 can be joined to the tip of the sheath thermocouple 1 without a gap, and both have the same configuration and have substantially the same thermal conductivity. Disturbance can be avoided and the temperature measurement accuracy can be further improved.

そして、このシース熱電対1及びダミー管4よりなる連結体5は、図4に示すように、収納溝20、30の形状に合わせたプレス金型70、71を用いて、少なくとも凹溝10内に埋め込まれる部分を全長にわたって予め偏平な断面構造に加圧変形した上で、押さえ板2を叩き込みながら凹溝10の第1の収納溝20及び第2の収納溝30の間に嵌め込み装着され、叩き込んだ押さえ板2は、Tig溶接やレーザ溶接により管壁Wに固定される。   As shown in FIG. 4, the connecting body 5 composed of the sheath thermocouple 1 and the dummy tube 4 has at least the inside of the concave groove 10 using press dies 70 and 71 that match the shape of the storage grooves 20 and 30. The portion to be embedded in is pressure-deformed in advance into a flat cross-sectional structure over the entire length, and then fitted into and fitted between the first storage groove 20 and the second storage groove 30 of the concave groove 10 while striking the pressing plate 2, The pressed plate 2 is fixed to the tube wall W by Tig welding or laser welding.

このように予めプレス金型70、71を用いて変形しておくことで取付作業が容易となり、密着性も確実に維持できるが、本発明はこれに何ら限定されず、予め変形させるのではなく断面円形のシース熱電対を、装着時に加圧して変形させるようにしてもよい。具体的には、図5に示すように、押さえ板2で最初から加圧する方法や、ロール圧縮などで凹溝10の第2の収納溝30内に断面円形のシース熱電対1を加圧して嵌め込んでおき、さらに押さえ板2で最終押さえ込んで第1の収納溝20及び第2の収納溝30の間に密着状態で収納させるようにしても良い。   As described above, by performing the deformation using the press dies 70 and 71 in advance, the mounting work becomes easy and the adhesion can be reliably maintained. However, the present invention is not limited to this and is not deformed in advance. A sheath thermocouple having a circular cross section may be deformed by applying pressure at the time of mounting. Specifically, as shown in FIG. 5, the sheath thermocouple 1 having a circular cross section is pressed into the second storage groove 30 of the concave groove 10 by a method of pressurizing from the beginning with the pressing plate 2 or by roll compression. It may be inserted and further pressed down by the presser plate 2 and stored in a tight contact state between the first storage groove 20 and the second storage groove 30.

また、図6に示すように、前記シース熱電対1を、シース外周側に軟質金属層14を設けた二重管構造とすることも好ましい実施例である。このような軟質金属層14は、当該シース熱電対1が収納溝20、30内に挟持された際、柔らかく変形することが可能であり、当接する収納溝20、30の各内壁との間に表面の粗さ等によって微小隙間が存在しても、これを埋めて密着性を向上させ、当該当接部における接触熱抵抗を小さくすることができる。   Moreover, as shown in FIG. 6, it is also a preferred embodiment that the sheath thermocouple 1 has a double tube structure in which a soft metal layer 14 is provided on the outer periphery side of the sheath. Such a soft metal layer 14 can be deformed softly when the sheath thermocouple 1 is sandwiched between the storage grooves 20 and 30, and is interposed between the inner walls of the storage grooves 20 and 30 that contact each other. Even if there is a minute gap due to the roughness of the surface or the like, it can be filled to improve adhesion, and the contact thermal resistance at the contact portion can be reduced.

このような軟質金属層14の素材としては、熱抵抗も小さく二重管にしても温度計測に影響が少ない素材がより好ましい。例えば、このように柔らかく熱伝達の良好な軟質金属素材として、銅(Cu)やアルミニウム(Al)、ニッケル(Ni)などを採用することが好ましい。先端側にダミー管を接続する場合には、このダミー管も同一素材の軟質金属層を形成することが好ましいことは云うまでもない。このような二重管構造は、熱電対素線12及び無機絶縁物13を収容した長尺な内側シース11を縮径加工して、軟質金属層14を構成する同じく長尺な外側シース管の内部に挿着し、さらに当該二重管を一体的に縮径加工することにより所定径に調整する。この縮径加工は、例えば全体をシース長手方向にわたり径方向に加圧した後、ドローイング又はスエージ加工により所定径に縮径させることが好ましく、これにより内側のシース11と軟質金属層14を構成する外側シース同士が互いに密着することとなる。   As a material for such a soft metal layer 14, a material that has a small thermal resistance and has little influence on temperature measurement even if it is a double tube is more preferable. For example, it is preferable to employ copper (Cu), aluminum (Al), nickel (Ni) or the like as the soft metal material that is soft and has good heat transfer. Needless to say, when a dummy tube is connected to the distal end side, it is preferable to form a soft metal layer of the same material for the dummy tube. Such a double-pipe structure is formed by reducing the diameter of the long inner sheath 11 containing the thermocouple element 12 and the inorganic insulator 13 and forming the soft metal layer 14. It is inserted into the interior, and further, the diameter of the double pipe is integrally reduced to adjust to a predetermined diameter. In this diameter reduction processing, for example, it is preferable to pressurize the whole in the radial direction over the longitudinal direction of the sheath and then reduce the diameter to a predetermined diameter by drawing or swaging, thereby forming the inner sheath 11 and the soft metal layer 14. The outer sheaths are in close contact with each other.

本例では、埋設するシース熱電対1を偏平な形状としたが、サイズによっては、図7に示すように、断面円形のシース熱電対1をそのままの断面形状で埋設する構造としてもよい。また、図8に示すようにシース熱電対1をシース11の軸方向途中部に温接点12aを有し、該温接点12aからプラス側およびマイナス側の各素線12,12がシース両端に向けて互いに反対側に延びる所謂「単軸型」の構造とし、このシース熱電対1を、図9に示すように凹溝10に沿って全周にわたり装着することも好ましい。この場合、温接点を適宜な位置にセットして配置すればよく、予め上記したダミー管などを設ける必要もなく測定精度を向上させることができ、その断面は図10に示すようにコンパクトとなり、それにより温度分布の乱れが小さくなるとともに凹溝10や押さえ板2の幅等も必要最小限ですみコスト低減も可能となる。   In this example, the sheathed thermocouple 1 to be embedded has a flat shape. However, depending on the size, as shown in FIG. 7, the sheathed thermocouple 1 having a circular section may be embedded in the same sectional shape. Further, as shown in FIG. 8, the sheath thermocouple 1 has a warm junction 12a in the middle of the sheath 11 in the axial direction, and the plus and minus strands 12 and 12 are directed toward both ends of the sheath from the warm contact 12a. It is also preferable to adopt a so-called “single-axis type” structure extending in opposite directions, and to attach the sheath thermocouple 1 along the concave groove 10 as shown in FIG. In this case, it is only necessary to set and arrange the hot junction at an appropriate position, it is possible to improve the measurement accuracy without the need to previously provide a dummy tube or the like, and the cross section becomes compact as shown in FIG. As a result, the disturbance of the temperature distribution is reduced and the width of the concave groove 10 and the holding plate 2 can be minimized and the cost can be reduced.

次に、図11〜13に基づき第2実施形態を説明する。   Next, 2nd Embodiment is described based on FIGS.

本実施形態は、図11及び図12に示すように、第2の収納溝30を凹溝10の底面に形成する代わりに、凹溝10の底側に嵌合される支持板3の外面の略中央部に形成し、押さえ板2と前記支持板3の各収納溝20,30の間に熱電対1を挟み込んだ構造である。本例では、図13に示すように、あらかじめ押さえ板2と支持板3との間にシース熱電対1を挟み込み、レーザ溶接、特にレーザ微細溶接により互いに一体化することにより挟持体6を構成した後、当該挟持体6を凹溝10内に嵌着される。このように挟持体6を構成してから凹溝10内に嵌め込むようにすれば、取付が容易となり、密着性も確実に維持できるが、特にこのような取付方法に限定されない。   In this embodiment, as shown in FIGS. 11 and 12, instead of forming the second storage groove 30 on the bottom surface of the concave groove 10, the outer surface of the support plate 3 fitted to the bottom side of the concave groove 10 is used. The thermocouple 1 is sandwiched between the holding plate 20 and the storage grooves 20 and 30 of the support plate 3 and formed in a substantially central portion. In this example, as shown in FIG. 13, the sandwich body 6 is configured by sandwiching the sheath thermocouple 1 between the pressing plate 2 and the support plate 3 in advance and integrating them with each other by laser welding, particularly laser fine welding. Thereafter, the sandwiching body 6 is fitted into the concave groove 10. If the sandwiching body 6 is configured in this manner and then fitted into the concave groove 10, the attachment becomes easy and the adhesion can be reliably maintained. However, the attachment method is not particularly limited.

尚、このような挟持体6を構成した後、必要に応じて、凹溝10の寸法に合わせて押さえ板2と支持板3の両面又は片面を研削して寸法を調整すればよい。そして、挟持体6は凹溝10内に嵌め込まれた後、第1実施形態と同様、Tig溶接やレーザ溶接で管壁Wに固定される。その他の構造については、上記第1実施形態と基本的には同じであるため、同一構造については同一符号を付して、その説明を省略する。   In addition, after constructing such a sandwiching body 6, the dimensions may be adjusted by grinding both sides or one side of the pressing plate 2 and the supporting plate 3 according to the dimension of the concave groove 10 as necessary. And after the clamping body 6 is engage | inserted in the concave groove 10, it is fixed to the pipe wall W by Tig welding or laser welding similarly to 1st Embodiment. Since the other structure is basically the same as that of the first embodiment, the same structure is denoted by the same reference numeral, and the description thereof is omitted.

以上本発明の各実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

次に、図15に示す熱電対取付構造のモデルに基づき、以下の表1、2に示す材料データ、解析条件を用いて有限要素法による2次元定常伝熱解析を実施した。熱電対埋め込み部空隙の条件として隙間なし、上下隙間有り、下側のみ隙間有り、上側のみ隙間有りの4条件を設定し、図15の点線部(熱電対中央部)について管壁の厚さ方向における温度分布を求めた。   Next, based on the thermocouple mounting structure model shown in FIG. 15, a two-dimensional steady heat transfer analysis by a finite element method was performed using the material data and analysis conditions shown in Tables 1 and 2 below. Four conditions are set for the thermocouple embedded part gap: no gap, upper and lower gaps, only the lower side has a gap, and only the upper side has a gap, and the thickness direction of the tube wall for the dotted line part (thermocouple central part) in FIG. The temperature distribution at was determined.

Figure 2009174889
Figure 2009174889

Figure 2009174889
Figure 2009174889

結果、隙間無しの条件の場合、管壁内表面(温度約416℃)から管壁外表面(温度約493℃)まで、管壁厚さ方向の位置(mm)に応じて、直線的に温度上昇する分布を示した。これに対し、隙間がある条件では、図16に示すように、隙間がない条件と比較して温度差が生じた。具体的には、上下隙間有り、下側のみ隙間有りの条件の場合、いずれも4.5mm付近から温度差が生じはじめ、熱電対(埋め込み)深さ位置で約−0.4℃の差となった。また、上側のみ隙間有りの条件の場合、大きな差異は見られなかったが、熱電対(埋め込み)深さ位置を過ぎた付近から若干の温度差が生じた。
以上のことから、熱電対と収納溝の間に隙間があると温度分布の乱れ、温度計測精度が低下することが分かる。特に特許文献2のように下側の隙間が避けられない構造のものでは、この温度分布の乱れが大きくなることが予想できる。
As a result, in the case of no gap condition, the temperature linearly varies from the inner surface of the tube wall (temperature about 416 ° C) to the outer surface of the tube wall (temperature about 493 ° C) depending on the position (mm) in the tube wall thickness direction. An increasing distribution was shown. On the other hand, under the condition with a gap, as shown in FIG. 16, a temperature difference occurred as compared with the condition without a gap. Specifically, in the case where there is a gap between the upper and lower sides, and there is a gap only on the lower side, a temperature difference starts to occur around 4.5 mm, and a difference of about −0.4 ° C. at the thermocouple (embedding) depth position. became. In addition, in the condition where there was a gap only on the upper side, a large difference was not seen, but a slight temperature difference occurred from the vicinity past the thermocouple (embedding) depth position.
From the above, it can be seen that if there is a gap between the thermocouple and the storage groove, the temperature distribution is disturbed and the temperature measurement accuracy is lowered. In particular, in the case of a structure in which the lower gap is inevitable as in Patent Document 2, it can be expected that the temperature distribution is greatly disturbed.

本発明の第1実施形態に係る熱電対取付構造を示す全体図。1 is an overall view showing a thermocouple mounting structure according to a first embodiment of the present invention. 同じく熱電対取付構造の要部を示す断面図であり、(a)は分解状態、(b)は組付状態を示す。It is sectional drawing which similarly shows the principal part of a thermocouple attachment structure, (a) shows a decomposition | disassembly state and (b) shows an assembly | attachment state. (a)は熱電対の先端にダミー管を接続した連結体を示す縦断面図、(b)は凹溝内における熱電対先端側に嵌合板を取り付けた変形例を示す断面図。(A) is a longitudinal cross-sectional view which shows the coupling body which connected the dummy tube to the front-end | tip of a thermocouple, (b) is sectional drawing which shows the modification which attached the fitting board to the thermocouple front-end | tip side in a ditch | groove. プレス金型で熱電対を予め偏平断面に加工する様子を示す説明図。Explanatory drawing which shows a mode that a thermocouple is beforehand processed into a flat cross section with a press die. 熱電対を予め偏平断面に加工するのではなく、押さえ板の嵌め込みと同時に加圧して偏平断面にする変形例を示す説明図。Explanatory drawing which shows the modification which does not process a thermocouple beforehand in a flat cross section, but pressurizes simultaneously with the fitting of a pressing board, and makes it a flat cross section. 熱電対を二重管構造とした変形例を示す断面図であり、(a)は分解状態、(b)は組付状態を示す。It is sectional drawing which shows the modification which made the thermocouple the double tube structure, (a) shows a decomposition | disassembly state and (b) shows an assembly | attachment state. 円形断面の熱電対を組み込む変形例を示す断面図であり、(a)は分解状態、(b)は組付状態を示す。It is sectional drawing which shows the modification which incorporates the thermocouple of a circular cross section, (a) shows a decomposition | disassembly state, (b) shows an assembly | attachment state. (a),(b)はシース熱電対を単軸型とした例を示す説明図。(A), (b) is explanatory drawing which shows the example which made the sheath thermocouple the single axis | shaft type. 同じく単軸型のシース熱電対の取付構造を示す全体図。The whole figure which similarly shows the attachment structure of a single axis | shaft type sheath thermocouple. 同じく熱電対取付構造の要部を示す断面図。Sectional drawing which shows the principal part of a thermocouple attachment structure similarly. 第2実施形態に係る熱電対取付構造を示す全体図。The whole figure which shows the thermocouple attachment structure which concerns on 2nd Embodiment. 同じく第2実施形態の熱電対取付構造の要部を示す断面図であり、(a)は分解状態、(b)は組付状態を示す。Similarly, it is sectional drawing which shows the principal part of the thermocouple attachment structure of 2nd Embodiment, (a) shows a decomposition | disassembly state and (b) shows an assembly | attachment state. 予め挟持体を構成する様子を示す説明図。Explanatory drawing which shows a mode that a clamping body is comprised previously. (a),(b)は、それぞれ従来の熱電対取付構造を示す断面図。(A), (b) is sectional drawing which shows the conventional thermocouple mounting structure, respectively. 2次元定常伝熱解析に用いた熱電対取付構造のモデルを示す図。The figure which shows the model of the thermocouple attachment structure used for the two-dimensional steady heat transfer analysis. 各条件について空隙無し条件との温度差の分布を示すグラフ。The graph which shows distribution of the temperature difference with no space | gap conditions about each condition.

符号の説明Explanation of symbols

S 熱電対取付構造
R1 曲面
R2 曲面
s1,s1 隙間
W 管壁
1 シース熱電対
1a 断面視外側略半分
1b 断面視内側略半分
2 押さえ板
2A 嵌合板
3 支持板
4 ダミー管
5 連結体
6 挟持体
10 凹溝
10c 底面
11 金属シース
12 熱電対素線
12a 温接点
13 無機絶縁物
14 軟質金属層
20 収納溝
21 凸部
30 収納溝
70,71 プレス金型
101 熱電対
102 押さえ板
110 溝
S Thermocouple mounting structure R1 Curved surface R2 Curved surface s1, s1 Clearance W Tube wall 1 Sheath thermocouple 1a Cross section outer half 1b Cross section inner half 2 Holding plate 2A Fitting plate 3 Support plate 4 Dummy tube 5 Connector 6 Holding body DESCRIPTION OF SYMBOLS 10 Concave groove 10c Bottom face 11 Metal sheath 12 Thermocouple element 12a Warm contact 13 Inorganic insulator 14 Soft metal layer 20 Storage groove 21 Convex part 30 Storage groove 70, 71 Press die 101 Thermocouple 102 Holding plate 110 Groove

Claims (8)

管壁の外周面に沿って凹溝を形成し、該凹溝内にシース熱電対を埋め込んでなる熱電対取付構造において、
前記凹溝を内装されるシース熱電対のシース径より広い所定幅に設定するとともに、
前記凹溝内に嵌着される押さえ板を設け、
該押さえ板の内面側の略中央部に、シース熱電対の断面視外側略半分を隙間なく収納するための曲面を備えた第1の収納溝を形成し、
前記凹溝の底面、又は前記凹溝の底側に嵌合される支持板の外面の略中央部に、シース熱電対の残りの部分である断面視内側略半分を隙間なく収納するための曲面を備えた第2の収納溝を形成してなることを特徴とする管壁への熱電対取付構造。
In the thermocouple mounting structure in which a concave groove is formed along the outer peripheral surface of the tube wall, and a sheath thermocouple is embedded in the concave groove,
While setting the concave groove to a predetermined width wider than the sheath diameter of the sheathed thermocouple built in,
Provide a pressing plate to be fitted in the groove,
Forming a first storage groove having a curved surface for storing the outer half of the sheath thermocouple in a substantially central portion on the inner surface side of the pressing plate without a gap;
A curved surface for accommodating the inner half of the sheath thermocouple, which is the remaining portion of the sheathed thermocouple, in a substantially central portion of the outer surface of the support plate fitted to the bottom surface of the concave groove or the bottom side of the concave groove without gaps. A thermocouple mounting structure to a tube wall, characterized in that a second storage groove provided with is formed.
前記押さえ板の外面を、前記凹溝内に嵌着した状態で前記管壁の外周面と略面一となるように設定してなる請求項1記載の熱電対取付構造。   The thermocouple mounting structure according to claim 1, wherein an outer surface of the pressing plate is set so as to be substantially flush with an outer peripheral surface of the tube wall in a state of being fitted in the concave groove. 前記押さえ板と支持板との間にシース熱電対を挟持させた後、当該挟持体を前記凹溝内に嵌着してなる請求項1又は2記載の熱電対取付構造。   The thermocouple mounting structure according to claim 1 or 2, wherein a sheath thermocouple is sandwiched between the pressing plate and the support plate, and then the sandwiched body is fitted into the concave groove. 前記挟持体を構成する押さえ板及び支持板をレーザ溶接により互いに一体化してなる請求項3記載の熱電対取付構造。   The thermocouple mounting structure according to claim 3, wherein the holding plate and the support plate constituting the sandwiching body are integrated with each other by laser welding. 前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を先端の温接点からプラス側およびマイナス側の各素線が基端側に向けて同じ側に延びる構造のものとし、このシース熱電対の先端側に、シース内に熱電対素線及び無機絶縁物を収納したダミー管を連結し、当該シース熱電対及びダミー管よりなる連結体を、前記第1の収納溝及び第2の収納溝により全周にわたって装着してなる請求項1〜4の何れか1項に記載の熱電対取付構造。   The concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple has a structure in which the plus and minus strands extend from the hot junction at the distal end to the same side toward the proximal end. A dummy tube containing a thermocouple wire and an inorganic insulator is connected to the distal end side of the sheath thermocouple, and a connecting body including the sheath thermocouple and the dummy tube is connected to the first storage groove and The thermocouple mounting structure according to any one of claims 1 to 4, wherein the thermocouple mounting structure is mounted over the entire circumference by the second storage groove. 前記凹溝を前記管壁外周面の全周にわたって形成するとともに、シース熱電対を、シース軸方向途中部に位置する温接点からプラス側およびマイナス側の各素線がシース両端に向けて互いに反対側に延びる構造のものとし、このシース熱電対を前記第1の収納溝及び第2の収納溝により全周にわたって装着してなる請求項1〜4の何れか1項に記載の熱電対取付構造。   The concave groove is formed over the entire circumference of the outer peripheral surface of the tube wall, and the sheath thermocouple is formed so that the plus and minus strands from the hot junction located in the middle of the sheath axial direction are opposite to each other toward the sheath ends. The thermocouple mounting structure according to any one of claims 1 to 4, wherein the thermocouple mounting structure has a structure extending to a side, and the sheath thermocouple is mounted over the entire circumference by the first storage groove and the second storage groove. . 前記シース熱電対を、シース外周側に軟質金属層を設けた二重管構造としてなる請求項1〜6の何れか1項に記載の熱電対取付構造。   The thermocouple mounting structure according to any one of claims 1 to 6, wherein the sheath thermocouple has a double tube structure in which a soft metal layer is provided on an outer peripheral side of the sheath. 前記シース熱電対を、断面視偏平な状態に装着してなる請求項1〜7の何れか1項に記載の熱電対取付構造において、前記シース熱電対を、断面視偏平な状態に予め成形した後、前記第1の収納溝及び第2の収納溝で形成される同じく偏平な内部空間に装着する熱電対の取付方法。   The thermocouple mounting structure according to any one of claims 1 to 7, wherein the sheath thermocouple is mounted in a flat state in cross section, and the sheath thermocouple is pre-shaped in a flat state in cross section. A method of attaching a thermocouple to be mounted in the same flat inner space formed by the first storage groove and the second storage groove.
JP2008011129A 2008-01-22 2008-01-22 Thermocouple mounting structure to tube wall and thermocouple mounting method Active JP5045454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011129A JP5045454B2 (en) 2008-01-22 2008-01-22 Thermocouple mounting structure to tube wall and thermocouple mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011129A JP5045454B2 (en) 2008-01-22 2008-01-22 Thermocouple mounting structure to tube wall and thermocouple mounting method

Publications (2)

Publication Number Publication Date
JP2009174889A true JP2009174889A (en) 2009-08-06
JP5045454B2 JP5045454B2 (en) 2012-10-10

Family

ID=41030149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011129A Active JP5045454B2 (en) 2008-01-22 2008-01-22 Thermocouple mounting structure to tube wall and thermocouple mounting method

Country Status (1)

Country Link
JP (1) JP5045454B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242227A (en) * 2011-05-19 2012-12-10 Hugle International Inc Temperature detection wafer
JP2014169809A (en) * 2013-03-01 2014-09-18 Sumitomo Precision Prod Co Ltd Laminate structure
KR20160032577A (en) * 2014-09-16 2016-03-24 부산대학교 산학협력단 device for surface heat flux measurement and manufacturing method thereof
KR101682141B1 (en) 2016-03-16 2016-12-02 부산대학교 산학협력단 device for simultaneous measurement of temperature and pressure and manufacturing method thereof
KR101823905B1 (en) 2016-07-11 2018-01-31 국민대학교산학협력단 Thermocouple tube and manufacturing the same
KR101965635B1 (en) * 2018-09-16 2019-04-03 주식회사 스탠더드시험연구소 Method of Installing Thermocouple on Heat Pipe of Heat Exchanger
WO2019143067A1 (en) * 2018-01-18 2019-07-25 삼성에스디아이 주식회사 Thermocouple, bonding tool for thermocouple, battery module, method for manufacturing thermocouple, and method for bonding thermocouple
JP2021009066A (en) * 2019-07-01 2021-01-28 株式会社八洲測器 Wafer type temperature sensor
CN113624353A (en) * 2021-07-07 2021-11-09 哈尔滨工程大学 Device capable of preventing thermocouple from penetrating through casing pipe and adjusting insertion depth in multiple stages

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332782A (en) * 1976-09-08 1978-03-28 Hitachi Ltd Sheathed type thermocouple provided protecting tube
JPS55112536A (en) * 1980-01-24 1980-08-30 Yamari Sangyo Kk Mounting method of thermocouple onto tube wall
JPS56110326U (en) * 1980-01-25 1981-08-26
JPS60244825A (en) * 1984-05-21 1985-12-04 Okazaki Seisakusho:Kk Temperature measuring sensor
JPH034237U (en) * 1989-05-31 1991-01-17
JP2000258256A (en) * 1999-03-10 2000-09-22 Babcock Hitachi Kk Thermocouple for measuring temperature of pipe wall and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332782A (en) * 1976-09-08 1978-03-28 Hitachi Ltd Sheathed type thermocouple provided protecting tube
JPS55112536A (en) * 1980-01-24 1980-08-30 Yamari Sangyo Kk Mounting method of thermocouple onto tube wall
JPS56110326U (en) * 1980-01-25 1981-08-26
JPS60244825A (en) * 1984-05-21 1985-12-04 Okazaki Seisakusho:Kk Temperature measuring sensor
JPH034237U (en) * 1989-05-31 1991-01-17
JP2000258256A (en) * 1999-03-10 2000-09-22 Babcock Hitachi Kk Thermocouple for measuring temperature of pipe wall and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242227A (en) * 2011-05-19 2012-12-10 Hugle International Inc Temperature detection wafer
JP2014169809A (en) * 2013-03-01 2014-09-18 Sumitomo Precision Prod Co Ltd Laminate structure
KR20160032577A (en) * 2014-09-16 2016-03-24 부산대학교 산학협력단 device for surface heat flux measurement and manufacturing method thereof
KR101606747B1 (en) * 2014-09-16 2016-03-28 부산대학교 산학협력단 device for surface heat flux measurement and manufacturing method thereof
KR101682141B1 (en) 2016-03-16 2016-12-02 부산대학교 산학협력단 device for simultaneous measurement of temperature and pressure and manufacturing method thereof
KR101823905B1 (en) 2016-07-11 2018-01-31 국민대학교산학협력단 Thermocouple tube and manufacturing the same
WO2019143067A1 (en) * 2018-01-18 2019-07-25 삼성에스디아이 주식회사 Thermocouple, bonding tool for thermocouple, battery module, method for manufacturing thermocouple, and method for bonding thermocouple
US11223082B2 (en) 2018-01-18 2022-01-11 Samsung Sdi Co., Ltd. Thermocouple, bonding tool for thermocouple, battery module, method for manufacturing thermocouple, and method for bonding thermocouple
KR101965635B1 (en) * 2018-09-16 2019-04-03 주식회사 스탠더드시험연구소 Method of Installing Thermocouple on Heat Pipe of Heat Exchanger
JP2021009066A (en) * 2019-07-01 2021-01-28 株式会社八洲測器 Wafer type temperature sensor
CN113624353A (en) * 2021-07-07 2021-11-09 哈尔滨工程大学 Device capable of preventing thermocouple from penetrating through casing pipe and adjusting insertion depth in multiple stages
CN113624353B (en) * 2021-07-07 2023-12-19 哈尔滨工程大学 Thermocouple penetration casing anti-flying-out multi-stage adjustable insertion depth device

Also Published As

Publication number Publication date
JP5045454B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5045454B2 (en) Thermocouple mounting structure to tube wall and thermocouple mounting method
JP5556575B2 (en) Thermocouple for temperature measurement and manufacturing method thereof
JP4536065B2 (en) Glow plug
JP4897467B2 (en) Glow plug and manufacturing method thereof
JP3703627B2 (en) Gas sensor
JP2016165968A (en) Manufacturing method of headrest stay
JP2012509452A5 (en)
JP5814991B2 (en) Temperature sensor
JP4967770B2 (en) Double sheath type thermocouple and manufacturing method thereof
JP5129599B2 (en) Gas sensor and manufacturing method thereof
JP2010139147A (en) Glow plug with combustion pressure sensor
RU2336505C2 (en) Viscoelastic measuring element and method of its connection
JP6515584B2 (en) Mounting structure of sheath thermocouple, pad used for the mounting structure, and method of mounting sheath thermocouple
JP4590354B2 (en) Gas sensor manufacturing method and gas sensor
JP6711997B1 (en) Manufacturing method of mold temperature sensor
JP4634301B2 (en) Gas sensor and gas sensor manufacturing method
JP2010181057A (en) Sealed pipe and method of sealing thin pipe
JP2011117831A (en) Method for manufacturing gas sensor and gas sensor
JP2004132688A (en) Glow plug
JP2009208120A (en) Manufacturing method of electric resistance welded tube
JP4398823B2 (en) Capsule type strain gauge installation method
JP5557488B2 (en) Ceramic glow plug
JP5176774B2 (en) Glow plug
KR102431640B1 (en) Tube structure with protective sensor and method of manufacturing tube structure with protective sensor
JP6016506B2 (en) Ceramic glow plug with combustion pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5045454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250