JP2009174868A - Correlation cell, gas analyzer, and assembling method of correlation cell - Google Patents

Correlation cell, gas analyzer, and assembling method of correlation cell Download PDF

Info

Publication number
JP2009174868A
JP2009174868A JP2008010712A JP2008010712A JP2009174868A JP 2009174868 A JP2009174868 A JP 2009174868A JP 2008010712 A JP2008010712 A JP 2008010712A JP 2008010712 A JP2008010712 A JP 2008010712A JP 2009174868 A JP2009174868 A JP 2009174868A
Authority
JP
Japan
Prior art keywords
gas
cell
correlation
sealing member
communication path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010712A
Other languages
Japanese (ja)
Other versions
JP5007674B2 (en
Inventor
Shuichi Yamakawa
修一 山川
Masayuki Watanabe
昌之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2008010712A priority Critical patent/JP5007674B2/en
Publication of JP2009174868A publication Critical patent/JP2009174868A/en
Application granted granted Critical
Publication of JP5007674B2 publication Critical patent/JP5007674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correlation cell capable of suppressing the occurrence of a gas leak after a gas is sealed, a gas analyzer, and an assembling method of the correlation cell. <P>SOLUTION: A wheel 4 has a communication passage 44 extending in a radial direction from the outer peripheral surface to form a female screw and an almost flatly formed attaching surface 46. A window plate 5 is a light pervious plate material having a predetermined thickness. A screw member 6 has a male screw part 63, the end part 61 being the leading end of the male screw part 63, and a screw head 62 of which the diameter is larger than that of the male screw part 63. In relation to the length direction of the communication passage 44 of the wheel 4, the position of the end part 47 of the wheel 4 is nearer to a measuring gas chamber 42 or a comparing gas chamber 43 than the position of the end part 61 of the screw member 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガス相関法による赤外線吸収方式の測定装置に用いられる相関セル、ガス分析装置及び相関セルの組み立て方法に関するものである。   The present invention relates to a correlation cell, a gas analyzer, and a method for assembling a correlation cell, which are used in an infrared absorption measurement apparatus using a gas correlation method.

従来から、CO,CO2を始めとした各種のガス濃度の測定にガス相関法が使用されている。このガス相関法は、赤外線吸収方式の測定法であり、具体的には、CO等の測定対象ガスを封入した測定対象ガス室とN2等の不活性ガス(ゼロガス、比較ガス)を封入した比較ガス室とを併有するガス相関セル(相関セル)を用いてガス濃度の測定を行う。すなわち、この相関セルを、測定対象ガスを含む試料ガスが導入される試料セルとこの試料セルに赤外光を入射させる赤外光源との間に配置する。そして、相関セルを回転させて、赤外光の光路上に測定対象ガスが介在するときの試料セルの透過赤外光量と不活性ガスが介在するときの試料セルの透過赤外光量との差を求め、これにより、試料ガス中の測定対象ガス濃度を測定する。 Conventionally, a gas correlation method has been used for measuring various gas concentrations including CO and CO 2 . This gas correlation method is an infrared absorption measurement method. Specifically, a measurement target gas chamber in which a measurement target gas such as CO is sealed and an inert gas (zero gas, comparison gas) such as N 2 are sealed. The gas concentration is measured using a gas correlation cell (correlation cell) that also has a comparative gas chamber. That is, this correlation cell is arranged between a sample cell into which a sample gas containing a measurement target gas is introduced and an infrared light source that causes infrared light to enter the sample cell. Then, by rotating the correlation cell, the difference between the transmitted infrared light amount of the sample cell when the measurement target gas is present on the optical path of the infrared light and the transmitted infrared light amount of the sample cell when the inert gas is present Thus, the concentration of the measurement target gas in the sample gas is measured.

このようなガス相関法で用いる相関セルについては、従来から種々の構造のものが提案されている(例えば、特許文献1参照)。
この特許文献1には、ガス封入作業時におけるガス漏れの程度が小さい相関セル等が開示されている。すなわち、この相関セルは、検知対象ガスと同種のガスが封入された測定ガス室および比較ガスが封入された比較ガス室を有するものであって、測定ガス室および比較ガス室の各々に連通するガス封入用流路を封止した後、測定ガス室および比較ガス室の各々に所定のガスを封入することにより得られたものである。
As the correlation cell used in such a gas correlation method, those having various structures have been conventionally proposed (for example, see Patent Document 1).
This Patent Document 1 discloses a correlation cell or the like with a small degree of gas leakage during gas filling operation. That is, this correlation cell has a measurement gas chamber in which the same kind of gas as the detection target gas is sealed and a comparison gas chamber in which a comparison gas is sealed, and communicates with each of the measurement gas chamber and the comparison gas chamber. This is obtained by sealing a gas sealing flow path and then sealing a predetermined gas in each of the measurement gas chamber and the comparison gas chamber.

特開2007−199032号公報JP 2007-199032 A

ここで、相関セルについてのガス漏れは、ガス封入作業時のほかにガス封入後にも問題になる。ガス封入後のガス漏れは、測定精度に悪影響を及ぼしてしまうことから、気密性が経時的に変化せずに保持される相関セルが求められる。このようなガス封入後のガス漏れの原因としては、種々の原因が考えられるが、例えば、ガス室を仕切るための複数の部材同士を接着する接着面に歪みがある場合が考えられる。
ガス封入作業時でのガス漏れについては、従来から提案されている技術で対応することが可能であるが、ガス封入後のガス漏れについては提案されていない。
Here, the gas leakage about the correlation cell becomes a problem not only during the gas filling operation but also after the gas filling. Since gas leakage after gas filling has an adverse effect on measurement accuracy, a correlation cell in which the airtightness is maintained without change over time is required. Various causes are conceivable as the cause of such gas leakage after gas filling. For example, there may be a case where the bonding surface for bonding a plurality of members for partitioning the gas chamber is distorted.
About the gas leakage at the time of gas filling operation, it is possible to cope with the conventionally proposed technology, but no gas leakage after gas filling has been proposed.

本発明は、以上のような技術的課題を解決するためになされたものであり、その目的とするところは、ガスを封入した後のガス漏れ発生を抑制可能な相関セル、ガス分析装置及び相関セルの組み立て方法を提供することにある。   The present invention has been made to solve the technical problems as described above, and an object of the present invention is to provide a correlation cell, a gas analyzer, and a correlation that can suppress the occurrence of gas leakage after the gas is sealed. It is to provide a method for assembling a cell.

かかる目的のもと、本発明が適用される相関セルは、セル本体と当該セル本体に取り付けられる透光性の板材とを含み、当該セル本体と当該板材とにより複数のガス室が形成される相関セルであって、前記セル本体に設けられ、前記板材を取り付ける取付面と、前記複数のガス室の各々に対応して前記セル本体に設けられ、当該ガス室に連通する複数の連通路と、前記複数の連通路の各々に挿入されて当該連通路を気密に封止する封止部材と、を含み、前記連通路に連通する前記ガス室に近い前記封止部材の端部の位置は、当該連通路の長さ方向に関する前記取付面の端部の位置よりも当該ガス室から遠いことを特徴とするものである。   For this purpose, a correlation cell to which the present invention is applied includes a cell main body and a translucent plate attached to the cell main body, and a plurality of gas chambers are formed by the cell main body and the plate. A correlation cell, which is provided in the cell body, to which the plate member is attached, and a plurality of communication paths which are provided in the cell body corresponding to each of the plurality of gas chambers and communicate with the gas chamber; A sealing member that is inserted into each of the plurality of communication passages and hermetically seals the communication passage, and the position of the end of the sealing member close to the gas chamber communicating with the communication passage is In addition, the position is farther from the gas chamber than the position of the end portion of the mounting surface in the length direction of the communication path.

ここで、前記複数の連通路の各々に雌ねじが形成され、前記封止部材には、前記雌ねじに対応する雄ねじが形成されていることを特徴とすることができる。また、前記封止部材は、前記雄ねじよりも大径のねじ頭を有し、前記ねじ頭が前記セル本体と係合することにより、当該封止部材が当該セル本体に対して位置決めされることを特徴とすることができる。また、前記セル本体は、前記封止部材の前記ねじ頭を受け入れる凹形状の座ぐり部を有することを特徴とすることができる。   Here, a female screw is formed in each of the plurality of communication paths, and a male screw corresponding to the female screw is formed in the sealing member. Further, the sealing member has a screw head having a diameter larger than that of the male screw, and the sealing member is positioned with respect to the cell main body by engaging the screw head with the cell main body. Can be characterized. The cell body may include a concave counterbore portion that receives the screw head of the sealing member.

他の観点から捉えると、本発明が適用されるガス分析装置は、ガス相関法の赤外線吸収方式を用い、試料ガスを分析するガス分析装置であって、赤外線光を出射する光源と、前記光源が入射すると共に試料ガスが導入されるセルパイプと、セル本体と当該セル本体に取り付けられる透光性の板材とを含み、当該セル本体と当該板材とにより複数のガス室が形成され、前記光源からの赤外線光が前記セルパイプに入射する前に透過するように配置される相関セルと、前記相関セルを回転駆動する駆動源と、前記セルパイプに入射した赤外線光を受けて当該赤外線光の光量に対応する電気信号に変換する検出器と、を含み、前記相関セルは、前記複数のガス室の各々に対応して前記セル本体に設けられ、当該ガス室に連通する複数の連通路と、前記複数の連通路の各々に挿入されて当該連通路を気密に封止する封止部材と、を含み、前記連通路に連通する前記ガス室に近い前記封止部材の端部の位置は、当該連通路の長さ方向に関する前記板材の端部の位置よりも当該ガス室から遠いことを特徴とするものである。   From another point of view, a gas analyzer to which the present invention is applied is a gas analyzer that analyzes a sample gas using an infrared absorption method of a gas correlation method, and includes a light source that emits infrared light, and the light source. And a cell pipe into which the sample gas is introduced, a cell main body and a translucent plate attached to the cell main body, and a plurality of gas chambers are formed by the cell main body and the plate material. Correlation cell arranged to transmit infrared light before being incident on the cell pipe, a drive source for rotationally driving the correlation cell, and receiving infrared light incident on the cell pipe to correspond to the amount of the infrared light The correlation cell is provided in the cell body corresponding to each of the plurality of gas chambers, and a plurality of communication passages communicating with the gas chambers; A sealing member that is inserted into each of the plurality of communication paths and hermetically seals the communication path, and the position of the end of the sealing member close to the gas chamber communicating with the communication path is The position is farther from the gas chamber than the position of the end portion of the plate member in the length direction of the communication path.

ここで、前記複数の連通路の各々に雌ねじが形成され、前記封止部材には、前記雌ねじに対応する雄ねじが形成されていることを特徴とすることができる。   Here, a female screw is formed in each of the plurality of communication paths, and a male screw corresponding to the female screw is formed in the sealing member.

更に本発明を別の観点から捉えると、本発明が適用される相関セルの組み立て方法は、複数のガス室と、当該複数のガス室の各々に対応して設けられると共に当該ガス室に連通する複数の連通路と、当該ガス室を仕切るための板材を取り付ける取付面と、を有するセル本体に当該板材を固定してなる相関セルの組み立て方法であって、前記連通路の内面に係合させると共に前記取付面の端部の位置に対応する当該連通路の位置に達しないように封止部材を挿入して当該連通路を気密に閉塞し、前記取付面の歪みを除去し、前記板材を前記取付面に固定することを特徴とするものである。   Further, from another viewpoint, the method for assembling a correlation cell to which the present invention is applied is provided with a plurality of gas chambers corresponding to each of the plurality of gas chambers and communicates with the gas chambers. A method for assembling a correlation cell, wherein a plate body is fixed to a cell body having a plurality of communication paths and a mounting surface to which a plate material for partitioning the gas chamber is attached, and is engaged with the inner surface of the communication path. In addition, a sealing member is inserted so as not to reach the position of the communication path corresponding to the position of the end of the mounting surface, the communication path is hermetically closed, distortion of the mounting surface is removed, and the plate material is removed. It fixes to the said attachment surface, It is characterized by the above-mentioned.

ここで、前記複数の連通路の各々に雌ねじが形成され、前記封止部材は、前記雌ねじに対応する雄ねじが形成される雄ねじ部を有することを特徴とすることができる。   Here, a female screw is formed in each of the plurality of communication passages, and the sealing member has a male screw portion in which a male screw corresponding to the female screw is formed.

本発明によれば、ガスを封入した後のガス漏れ発生を抑制することが可能になる。   According to the present invention, it is possible to suppress the occurrence of gas leakage after the gas is sealed.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1及び図2は、本実施の形態に係るガス分析装置1を示す概略構成図である。図1は、ガス分析装置1の上側から見た断面図であり、図2の(a)は、ガス分析装置1を試料ガス出口23側から見た縦断面図であり、図2の(b)は、ガス分析装置1を多重反射ミラー25側から見た側面図である。なお、図1及び図2の(a)では、赤外線光の光路を破線で図示している。
図1及び図2に示すように、ガス分析装置1は、ガス相関法によりガス濃度を測定するものであり、赤外線光を出射(照射)する赤外線光源11と、赤外線光源11からの赤外線光が入射されるセルパイプ2と、赤外線光源11とセルパイプ2との間の赤外線光の光路上に配置される外形が円盤状の相関セル3と、相関セル3とセルパイプ2との間に位置すると共に相関セル3に取り付けられるチョッパ12と、相関セル3及びチョッパ12を一定の速度で回転させるための駆動力を発生するモータ13と、セルパイプ2に入射される赤外線光を受光して電気信号に変換する赤外線光検出器14と、を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG.1 and FIG.2 is a schematic block diagram which shows the gas analyzer 1 which concerns on this Embodiment. 1 is a cross-sectional view of the gas analyzer 1 as viewed from the upper side, and FIG. 2A is a vertical cross-sectional view of the gas analyzer 1 as viewed from the sample gas outlet 23 side. ) Is a side view of the gas analyzer 1 as viewed from the multiple reflection mirror 25 side. In FIG. 1 and FIG. 2A, the optical path of the infrared light is indicated by a broken line.
As shown in FIGS. 1 and 2, the gas analyzer 1 measures a gas concentration by a gas correlation method, and an infrared light source 11 that emits (irradiates) infrared light, and infrared light from the infrared light source 11 is received. The incident cell pipe 2 and the outer shape arranged on the optical path of the infrared light between the infrared light source 11 and the cell pipe 2 are positioned between the correlation cell 3 having a disk shape, and between the correlation cell 3 and the cell pipe 2 and correlated. A chopper 12 attached to the cell 3, a motor 13 for generating a driving force for rotating the correlation cell 3 and the chopper 12 at a constant speed, and infrared light incident on the cell pipe 2 are received and converted into electrical signals. An infrared photodetector 14.

セルパイプ2は、内部空間21と、試料ガス(サンプル、測定対象ガス)を内部空間21に導入するための試料ガス入口22と、内部空間21の試料ガスを排出するための試料ガス出口23と、を備えている。すなわち、試料ガス入口22から連続的に導入された試料ガスは、内部空間21を通って試料ガス出口23から連続的に排気される。なお、ここにいう試料ガスの一例としては、大気中の一酸化炭素濃度を連続的に測定するための大気ガス等を挙げることができる。   The cell pipe 2 includes an internal space 21, a sample gas inlet 22 for introducing a sample gas (sample, measurement target gas) into the internal space 21, a sample gas outlet 23 for discharging the sample gas in the internal space 21, It has. That is, the sample gas continuously introduced from the sample gas inlet 22 passes through the internal space 21 and is continuously exhausted from the sample gas outlet 23. An example of the sample gas mentioned here includes atmospheric gas for continuously measuring the carbon monoxide concentration in the atmosphere.

また、セルパイプ2は、赤外線光の指向性が維持されるように内部空間21の中に配置された複数の反射面を備えている。具体的に説明すると、セルパイプ2は、チョッパ12を通過して内部空間21に入射される赤外線光の光路を変える反射ミラー24と、互いに対向して配置される2つの多重反射ミラー25,26と、2つの多重反射ミラー25,26での反射を順に繰り返した赤外線光が最終的に赤外線光検出器14に向かうように光路を変える反射ミラー27と、を備えている。   The cell pipe 2 includes a plurality of reflecting surfaces arranged in the internal space 21 so that the directivity of infrared light is maintained. Specifically, the cell pipe 2 includes a reflection mirror 24 that changes the optical path of infrared light that passes through the chopper 12 and is incident on the internal space 21, and two multiple reflection mirrors 25 and 26 that are arranged to face each other. And a reflection mirror 27 that changes the optical path so that infrared light, which is sequentially reflected by the two multiple reflection mirrors 25 and 26, is finally directed to the infrared light detector 14.

更に説明すると、内部空間21に入射された赤外線光は、内部空間21から出射されるまでの間に試料ガスによって吸収されるので、赤外線光量の減衰の程度を検出することにより試料ガスでのガス濃度を測定している。このため、光路長を長く確保すれば、それだけ測定精度を高めることが可能になる。本実施の形態でのセルパイプ2は、上述したように内部空間21の中を複数回反射させる構成を採用することで、セルパイプ2の外形をコンパクトにしつつ光路長を長くすることが可能になり、ガス分析装置1の小型化を図ることが可能になる。   More specifically, since the infrared light incident on the internal space 21 is absorbed by the sample gas before being emitted from the internal space 21, the gas in the sample gas is detected by detecting the degree of attenuation of the amount of infrared light. The concentration is measured. For this reason, if a long optical path length is secured, the measurement accuracy can be increased accordingly. As described above, the cell pipe 2 in the present embodiment adopts a configuration in which the interior space 21 is reflected a plurality of times, so that the optical path length can be increased while making the outer shape of the cell pipe 2 compact. It is possible to reduce the size of the gas analyzer 1.

本実施の形態での相関セル3は、所定濃度の測定対象ガスと同種のガスが封入された測定ガス室(測定対象ガス室)42(図4参照)と、赤外線に対して不活性な比較対象ガスが封入された比較ガス室43(図4参照)と、を備えている。この相関セル3の具体的な構造については後述する。   The correlation cell 3 in the present embodiment is compared with a measurement gas chamber (measurement target gas chamber) 42 (see FIG. 4) in which a gas of the same type as the measurement target gas having a predetermined concentration is sealed, and inactive to infrared rays. And a comparison gas chamber 43 (see FIG. 4) in which the target gas is sealed. A specific structure of the correlation cell 3 will be described later.

チョッパ12は、ノイズを低減するために赤外線光をチョッピングしてセルパイプ2に導入するために設けられたものであり、赤外線光を断続させるための図示しない複数のスリットを有する。   The chopper 12 is provided for chopping infrared light and introducing it into the cell pipe 2 in order to reduce noise, and has a plurality of slits (not shown) for interrupting the infrared light.

モータ13は、図示しない制御部により制御されるものであり、その出力軸には、カップリング(回転軸)15が固定して取り付けられている。このため、モータ13の駆動力は、出力軸からカップリング(回転軸)15を介して相関セル3に伝達される。これにより、相関セル3は、チョッパ12と共に一定の速度で一方向に回転する。付言すると、赤外線光源11から出射された赤外線光は、相関セル3を通過した後にチョッパ12により通過が許容されると、セルパイプ2に入射することになる。
なお、モータ13とセルパイプ2との間には、カップリング15、赤外線光源11、相関セル3及びチョッパ12を覆うカバー16が配設されている。カバー16は、図1では一点鎖線で図示され、図2の(b)では実線で図示されている。
The motor 13 is controlled by a control unit (not shown), and a coupling (rotary shaft) 15 is fixedly attached to the output shaft. For this reason, the driving force of the motor 13 is transmitted from the output shaft to the correlation cell 3 via the coupling (rotating shaft) 15. Thereby, the correlation cell 3 rotates in one direction with the chopper 12 at a constant speed. In other words, the infrared light emitted from the infrared light source 11 enters the cell pipe 2 when it is allowed to pass by the chopper 12 after passing through the correlation cell 3.
A cover 16 that covers the coupling 15, the infrared light source 11, the correlation cell 3, and the chopper 12 is disposed between the motor 13 and the cell pipe 2. The cover 16 is illustrated by a one-dot chain line in FIG. 1, and is illustrated by a solid line in FIG.

赤外線光検出器14は、ホルダ部材17を介してプリント基板18に実装されている。そして、プリント基板18は、カバー19内に配設されており、これにより、外部からの光を遮断している。なお、赤外線光検出器14としては、例えばPbSe素子などの赤外線光に感度を有する素子で構成することが考えられる。   The infrared photodetector 14 is mounted on the printed circuit board 18 via the holder member 17. The printed circuit board 18 is disposed in the cover 19, thereby blocking light from the outside. The infrared light detector 14 may be composed of an element having sensitivity to infrared light, such as a PbSe element.

本実施の形態に係るガス分析装置1では、赤外線光源11からの赤外線光が、相関セル3及びチョッパ12を通過した後に、セルパイプ2を通って赤外線光検出器14に入り、光量に比例した電気信号に変換される。これにより、試料ガス中の測定対象ガス濃度を所定の演算で求めることができる。   In the gas analyzer 1 according to the present embodiment, the infrared light from the infrared light source 11 passes through the correlation cell 3 and the chopper 12 and then enters the infrared light detector 14 through the cell pipe 2 and is proportional to the amount of light. Converted to a signal. Thereby, the measurement object gas concentration in sample gas can be calculated | required by predetermined | prescribed calculation.

図3は、相関セル3の概略構成図である。
図3に示すように、相関セル3は、セル本体としてのホイール4と、ホイール4の両面に接着剤にて接着(固着)される透光性の板材としての窓板5と、ホイール4の連通路44に形成されている雌ねじに対応する雄ねじ部63を有するねじ部材6と、を備えている。
なお、ホイール4の材質は、常温付近での熱膨張率がサファイアに近い材質(例えばコバール)であり、窓板5の材質は、サファイアであり、ねじ部材6の材質はステンレスである。
FIG. 3 is a schematic configuration diagram of the correlation cell 3.
As shown in FIG. 3, the correlation cell 3 includes a wheel 4 as a cell body, a window plate 5 as a translucent plate adhered (fixed) to both surfaces of the wheel 4 with an adhesive, And a screw member 6 having a male screw portion 63 corresponding to the female screw formed in the communication path 44.
The wheel 4 is made of a material having a coefficient of thermal expansion close to that of sapphire (for example, Kovar) near room temperature, the window plate 5 is made of sapphire, and the screw member 6 is made of stainless steel.

窓板5は、所定の厚さを有する板材であり、中央に貫通穴51を有する。この貫通穴51は、ホイール4の回転穴41に対応する形状である。また、窓板5は、円形状に形成されており、外周面としての端部52を有する。窓板5の外径寸法は、ホイール4の取付面46の外径寸法と略同一である。窓板5の表面及び裏面は、平たんに形成されている。   The window plate 5 is a plate material having a predetermined thickness, and has a through hole 51 in the center. The through hole 51 has a shape corresponding to the rotation hole 41 of the wheel 4. The window plate 5 is formed in a circular shape and has an end 52 as an outer peripheral surface. The outer diameter of the window plate 5 is substantially the same as the outer diameter of the mounting surface 46 of the wheel 4. The front and back surfaces of the window plate 5 are formed flat.

ねじ部材6は、雄ねじ部63と、雄ねじ部63の先端である端部61と、雄ねじ部63よりも大径のねじ頭62と、を有する。言い換えると、ねじ部材6の一端が端部61であり、他端がねじ頭62である。更に説明すると、ねじ部材6は、連通路44と螺合し、これにより、連通路44を閉塞する。このため、ねじ部材6を用いると、連通路44を気密に封止することが可能である。したがって、ねじ部材6を、封止部材ないしシール部材と言うことができる。
付言すると、ねじ部材6が連通路44と螺合すると、端部61が最も奥側(測定ガス室42又は比較ガス室43に近接する側)に位置している。また、本実施の形態では、シール部材としてのねじ部材6をねじ締結によりホイール4の連通路44に固定している。
The screw member 6 includes a male screw portion 63, an end portion 61 that is a tip of the male screw portion 63, and a screw head 62 having a larger diameter than the male screw portion 63. In other words, one end of the screw member 6 is the end portion 61 and the other end is the screw head 62. More specifically, the screw member 6 is screwed into the communication path 44, thereby closing the communication path 44. For this reason, when the screw member 6 is used, the communication path 44 can be hermetically sealed. Therefore, it can be said that the screw member 6 is a sealing member or a sealing member.
In other words, when the screw member 6 is screwed into the communication passage 44, the end portion 61 is located on the farthest side (the side close to the measurement gas chamber 42 or the comparison gas chamber 43). Moreover, in this Embodiment, the screw member 6 as a sealing member is being fixed to the communicating path 44 of the wheel 4 by screw fastening.

ここで、ホイール4とねじ部材6との相対的な位置関係について説明する。ホイール4の連通路44の長さ方向(図3の左右方向、ホイール4の半径方向)に関して、ホイール4の端部47の位置は、ねじ部材6の端部61の位置よりも測定ガス室42又は比較ガス室43に近い。言い換えると、ねじ部材6の端部61は、ホイール4の端部47の位置よりも測定ガス室42又は比較ガス室43から遠くに位置している。なお、ホイール4の端部47と窓板5の端部52との相対的な位置は、略同一である。   Here, the relative positional relationship between the wheel 4 and the screw member 6 will be described. With respect to the length direction of the communication path 44 of the wheel 4 (left and right direction in FIG. 3, radial direction of the wheel 4), the position of the end portion 47 of the wheel 4 is larger than the position of the end portion 61 of the screw member 6. Or it is close to the comparison gas chamber 43. In other words, the end 61 of the screw member 6 is located farther from the measurement gas chamber 42 or the comparison gas chamber 43 than the position of the end 47 of the wheel 4. Note that the relative positions of the end 47 of the wheel 4 and the end 52 of the window plate 5 are substantially the same.

更に説明すると、ホイール4の端部47とねじ部材6の端部61とは、ホイール4の連通路44の長さ方向に関して、互いに離間している。すなわち、端部47と端部61とは、距離δだけ離間している。   More specifically, the end portion 47 of the wheel 4 and the end portion 61 of the screw member 6 are separated from each other with respect to the length direction of the communication path 44 of the wheel 4. That is, the end portion 47 and the end portion 61 are separated by a distance δ.

このように、本実施の形態では、ねじ部材6を相関セル3に螺合する場合に、ねじ部材6の端部61がホイール4と窓板5とを互いに接着する接着面(取付面46)まで到達しない構造を採用している。したがって、ねじ部材6をホイール4の連通路44に締め込むことでホイール4が応力を受けたときに、その応力がホイール4の取付面46に及ぼす影響が軽減される。このため、ねじ部材6をホイール4に螺合させることに伴う接着面の歪みの発生を防止することができる。   As described above, in this embodiment, when the screw member 6 is screwed into the correlation cell 3, the end surface 61 of the screw member 6 adheres the wheel 4 and the window plate 5 to each other (attachment surface 46). Adopted a structure that does not reach. Therefore, when the screw 4 is stressed by tightening the screw member 6 in the communication path 44 of the wheel 4, the influence of the stress on the mounting surface 46 of the wheel 4 is reduced. For this reason, generation | occurrence | production of the distortion of the adhesion surface accompanying screwing the screw member 6 to the wheel 4 can be prevented.

図4は、ホイール4を説明する図であり、(a)は正面図であり、(b)は(a)の線IVb−IVbによる断面図である。
図4の(a)及び(b)に示すように、ホイール4は、所定の厚さの円盤形状であり、中心部に厚さ方向に延びる回転穴41を有する。また、ホイール4は、回転穴41の周りに位置する測定ガス室42及び比較ガス室43を有する。すなわち、測定ガス室42及び比較ガス室43は、外周面4aと回転穴41との間に位置している。この測定ガス室42と比較ガス室43とは、互いに同じ形状であり、かつ、回転穴41に対する位置関係も同じである。
4A and 4B are diagrams for explaining the wheel 4, in which FIG. 4A is a front view, and FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG.
As shown in FIGS. 4A and 4B, the wheel 4 has a disk shape with a predetermined thickness, and has a rotation hole 41 extending in the thickness direction at the center. Further, the wheel 4 has a measurement gas chamber 42 and a comparison gas chamber 43 that are positioned around the rotation hole 41. That is, the measurement gas chamber 42 and the comparison gas chamber 43 are located between the outer peripheral surface 4 a and the rotation hole 41. The measurement gas chamber 42 and the comparison gas chamber 43 have the same shape, and the positional relationship with respect to the rotation hole 41 is the same.

ホイール4は、外周面4aから半径方向に延びる連通路44を2つ有する。2つの連通路44の一方は、測定ガス室42に連通するものであり、他方は、比較ガス室43に連通するものである。これら連通路44の各々には、雌ねじが形成されている。この連通路44の雌ねじは、上述したように、ねじ部材6の雄ねじ部63(図3又は図5参照)に対応するものである。
また、各連通路44の外周面4aの側には、凹形状の座ぐり45が形成されている。この座ぐり45は、ねじ部材6のねじ頭62を受け入れ可能な外径寸法である。
The wheel 4 has two communication paths 44 extending radially from the outer peripheral surface 4a. One of the two communication passages 44 communicates with the measurement gas chamber 42, and the other communicates with the comparison gas chamber 43. Each of these communication passages 44 is formed with a female screw. As described above, the internal thread of the communication path 44 corresponds to the external thread portion 63 (see FIG. 3 or 5) of the screw member 6.
A concave counterbore 45 is formed on the outer peripheral surface 4 a side of each communication passage 44. The counterbore 45 has an outer diameter that can receive the screw head 62 of the screw member 6.

ホイール4は、略平たんに形成された取付面46を有する。この取付面46は、ホイール4の他の面よりも平たん度が高くなるように形成されている。そして、取付面46は、窓板5が接着剤にて取り付けられる面(接着面)である。   The wheel 4 has a mounting surface 46 formed substantially flat. The mounting surface 46 is formed to have a flatness higher than that of the other surface of the wheel 4. The attachment surface 46 is a surface (adhesion surface) to which the window plate 5 is attached with an adhesive.

更に説明すると、ホイール4の取付面46に窓板5が取り付けられると、測定ガス室42及び比較ガス室43の両側が外部と仕切られる。これにより、測定ガス室42及び比較ガス室43は、連通路44を介して外部に連通することになる。   More specifically, when the window plate 5 is attached to the attachment surface 46 of the wheel 4, both sides of the measurement gas chamber 42 and the comparison gas chamber 43 are partitioned from the outside. As a result, the measurement gas chamber 42 and the comparison gas chamber 43 communicate with the outside via the communication path 44.

ホイール4は、チョッパ12を取り付けるための取付穴48を有する。取付穴48は、回転穴41と同じ方向に延びている。なお、チョッパ12には、ホイール4の取付穴48に対応する図示しない取付穴が形成されている。   The wheel 4 has a mounting hole 48 for mounting the chopper 12. The attachment hole 48 extends in the same direction as the rotation hole 41. The chopper 12 has a mounting hole (not shown) corresponding to the mounting hole 48 of the wheel 4.

図5は、相関セル3の組み立て方法を説明するための分解斜視図である。
相関セル3の組み立てに際し、図5に示すように、ホイール4、2つの窓板5及び2つのねじ部材6を用意する。これらホイール4、窓板5及びねじ部材6は、上述した構造のものである。
FIG. 5 is an exploded perspective view for explaining a method of assembling the correlation cell 3.
In assembling the correlation cell 3, as shown in FIG. 5, a wheel 4, two window plates 5, and two screw members 6 are prepared. The wheel 4, the window plate 5, and the screw member 6 have the above-described structure.

ここで、ホイール4の端部47と座ぐり45とは、半径方向に関して距離Tだけ離間して位置している。また、ねじ部材6の雄ねじ部63の長さは、長さSである。付言すると、図3に示す距離δは、距離Tから長さSを減じた値である。すなわち、δ=T−Sである。   Here, the end portion 47 of the wheel 4 and the spot facing 45 are located apart from each other by a distance T in the radial direction. Further, the length of the male screw portion 63 of the screw member 6 is the length S. In other words, the distance δ shown in FIG. 3 is a value obtained by subtracting the length S from the distance T. That is, δ = T−S.

相関セル3の組み立ての手順としては、まずホイール4の連通路44にねじ部材6を締め込み、その後に、ホイール4の取付面46についての仕上げ工程に入る。この取付面46は、高精度で加工されて平たんになっているものの、ねじ部材6を締め込むことに起因して歪みが発生する場合が想定される。更に説明すると、ホイール4の連通路44にねじ部材6を締め込んでも、ねじ部材6の端部61が取付面46の端部47には到達しないので、歪みの発生が抑制される。しかしながら、歪みが全く発生しないということは必ずしも言えない。仮に、そのような歪みが発生した場合に、その歪みが残存している状態で窓板5をホイール4の取付面46に接着すると、ガス封入後にガス漏れが起こる可能性がある。仕上げ工程は、このようにして発生した取付面46の歪みを除去することで、ガス封入後のガス漏れを防止して気密性の高い相関セルを製造するための作業である。   As a procedure for assembling the correlation cell 3, first, the screw member 6 is tightened in the communication path 44 of the wheel 4, and then a finishing process for the mounting surface 46 of the wheel 4 is started. Although the mounting surface 46 is processed and flattened with high accuracy, a case in which distortion occurs due to tightening of the screw member 6 is assumed. More specifically, even if the screw member 6 is tightened in the communication passage 44 of the wheel 4, the end 61 of the screw member 6 does not reach the end 47 of the mounting surface 46, so that the occurrence of distortion is suppressed. However, it cannot always be said that no distortion occurs. If such distortion occurs, if the window plate 5 is adhered to the mounting surface 46 of the wheel 4 with the distortion remaining, gas leakage may occur after gas filling. The finishing process is an operation for producing a highly airtight correlation cell by removing the distortion of the mounting surface 46 generated in this way, thereby preventing gas leakage after gas filling.

具体的に説明すると、仕上げ工程は、ホイール4にねじ部材6を締め込んだ状態で取付面46を、例えば耐水ペーパにて磨る。このように、ガス封入口としての連通路44にねじ部材6を予め締め込んでから取付面46を仕上げることにより、仮に取付面46に歪みが生じたとしても、窓板5を取付面46に接着する前の段階で取付面46の歪みを除去することが可能になる。取付面46の歪みが除去されたか否かは、目視により連通路44の近傍の取付面46に接着剤による干渉縞が観察されるかどうかで判断することができる。   More specifically, in the finishing step, the mounting surface 46 is polished with, for example, water-resistant paper in a state where the screw member 6 is fastened to the wheel 4. Thus, even if the mounting surface 46 is distorted by finishing the mounting surface 46 after the screw member 6 is tightened in advance in the communication passage 44 as a gas filling port, the window plate 5 is attached to the mounting surface 46. It is possible to remove the distortion of the mounting surface 46 at a stage before bonding. Whether or not the distortion of the attachment surface 46 has been removed can be determined by whether or not interference fringes due to the adhesive are observed on the attachment surface 46 in the vicinity of the communication path 44 by visual observation.

仕上げ工程の終了後には、例えば紫外線硬化樹脂の接着剤をホイール4の取付面46に塗布し、取付面46に窓板5を取り付けて紫外線を照射することで、ホイール4に窓板5を接着する。これにより、相関セル3の組み立てが完了する。   After finishing the finishing process, for example, an adhesive of UV curable resin is applied to the mounting surface 46 of the wheel 4, and the window plate 5 is attached to the mounting surface 46 and irradiated with ultraviolet rays, so that the window plate 5 is bonded to the wheel 4. To do. Thereby, the assembly of the correlation cell 3 is completed.

付言すると、このような相関セル3の組み立てが完了した後に、ガス封入工程を行う。このガス封入工程としては、まず、工具を用いてねじ部材6をホイール4から取り外す。そして、連通路44から相関セル3の測定ガス室42に測定対象ガスを充填した後にねじ部材6を連通路44に締め込む。これにより、測定対象ガスが測定ガス室42に封入される。なお、封入する際にねじ部材6を締め込む場合に、締め付けトルクが所定の値になるようにすると好ましい。
同様に、連通路44から相関セル3の比較ガス室43に比較ガスを充填した後にねじ部材6を連通路44に締め込んで比較ガスを比較ガス室43に封入する。ねじ部材6の締め込み後に、例えば紫外線硬化樹脂の接着剤をホイール4の座ぐり45に充填する。これにより、ねじ部材6の緩みを防止することができる。なお、このようなガス封入工程は、専用の容器内で行われる。
In other words, the gas filling step is performed after the assembly of the correlation cell 3 is completed. In this gas filling step, first, the screw member 6 is removed from the wheel 4 using a tool. Then, after filling the measurement gas chamber 42 of the correlation cell 3 from the communication path 44 with the measurement target gas, the screw member 6 is tightened into the communication path 44. As a result, the measurement target gas is sealed in the measurement gas chamber 42. In addition, when tightening the screw member 6 at the time of sealing, it is preferable that the tightening torque be a predetermined value.
Similarly, after the comparison gas chamber 43 of the correlation cell 3 is filled with the comparison gas from the communication path 44, the screw member 6 is tightened into the communication path 44 and the comparison gas is sealed in the comparison gas chamber 43. After the screw member 6 is tightened, for example, an ultraviolet curable resin adhesive is filled in the counterbore 45 of the wheel 4. Thereby, loosening of the screw member 6 can be prevented. In addition, such a gas filling process is performed in a dedicated container.

本実施の形態に係るガス分析装置1は、例えば、大気中の一酸化炭素(CO)濃度を連続して測定する測定装置に組み込むことが可能である。この大気中一酸化炭素測定装置は、大気汚染防止法による常時監視や環境アセスメント(環境影響評価)に主に使用されるものであり、測定データをテレメータを介して観測局(中央監視センタ)へ送信したり、各種入出力信号をテレメータを介して送受信したりする構成が採用される場合がある。なお、この大気中一酸化炭素測定装置では、一酸化炭素を含む大気ガスを試料ガスとするが、セルパイプ2に導入する前に、種々の処理を行う。具体的には、大気ガスに含まれる塵埃をフィルタで除去したり、パーマピュアドライヤで赤外線光を吸収する水分を除去したりする処理等である。   The gas analyzer 1 according to the present embodiment can be incorporated into a measuring device that continuously measures the carbon monoxide (CO) concentration in the atmosphere, for example. This atmospheric carbon monoxide measuring device is mainly used for continuous monitoring and environmental assessment (environmental impact assessment) by the Air Pollution Control Act, and the measurement data is sent to an observation station (central monitoring center) via a telemeter. There is a case in which a configuration for transmitting or transmitting / receiving various input / output signals via a telemeter may be employed. In this atmospheric carbon monoxide measuring apparatus, atmospheric gas containing carbon monoxide is used as a sample gas, but various processes are performed before introduction into the cell pipe 2. Specifically, it is a process of removing dust contained in the atmospheric gas with a filter or removing moisture that absorbs infrared light with a perm pure dryer.

本実施の形態に係るガス分析装置を示す概略構成図である。It is a schematic block diagram which shows the gas analyzer which concerns on this Embodiment. 本実施の形態に係るガス分析装置を示す概略構成図である。It is a schematic block diagram which shows the gas analyzer which concerns on this Embodiment. 相関セルの概略構成図である。It is a schematic block diagram of a correlation cell. ホイールを説明する図であり、(a)は正面図であり、(b)は(a)の線IVb−IVbによる断面図である。It is a figure explaining a wheel, (a) is a front view, (b) is a sectional view by line IVb-IVb of (a). 相関セルの組み立て方法を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the assembly method of a correlation cell.

符号の説明Explanation of symbols

1…ガス分析装置、11…赤外線光源、12…チョッパ、13…モータ、14…赤外線光検出器、15…カップリング、16,19…カバー、17…ホルダ部材、18…プリント基板、2…セルパイプ、21…内部空間、22…試料ガス入口、23…試料ガス出口、24,27…反射ミラー、25,26…多重反射ミラー、3…相関セル、4…ホイール、4a…外周面、41…回転穴、42…測定ガス室、43…比較ガス室、44…連通路、45…座ぐり、46…取付面、47,52,61…端部、48…取付穴、5…窓板、51…貫通穴、6…ねじ部材、62…ねじ頭、63…雄ねじ部、S…長さ、T…距離、δ…距離 DESCRIPTION OF SYMBOLS 1 ... Gas analyzer, 11 ... Infrared light source, 12 ... Chopper, 13 ... Motor, 14 ... Infrared photodetector, 15 ... Coupling, 16, 19 ... Cover, 17 ... Holder member, 18 ... Printed circuit board, 2 ... Cell pipe 21 ... Internal space, 22 ... Sample gas inlet, 23 ... Sample gas outlet, 24,27 ... Reflection mirror, 25,26 ... Multi-reflection mirror, 3 ... Correlation cell, 4 ... Wheel, 4a ... Outer peripheral surface, 41 ... Rotation Hole, 42 ... Measurement gas chamber, 43 ... Comparison gas chamber, 44 ... Communication passage, 45 ... Spot face, 46 ... Mounting surface, 47, 52, 61 ... End, 48 ... Mounting hole, 5 ... Window plate, 51 ... Through hole, 6 ... screw member, 62 ... screw head, 63 ... male screw part, S ... length, T ... distance, δ ... distance

Claims (8)

セル本体と当該セル本体に取り付けられる透光性の板材とを含み、当該セル本体と当該板材とにより複数のガス室が形成される相関セルであって、
前記セル本体に設けられ、前記板材を取り付ける取付面と、
前記複数のガス室の各々に対応して前記セル本体に設けられ、当該ガス室に連通する複数の連通路と、
前記複数の連通路の各々に挿入されて当該連通路を気密に封止する封止部材と、
を含み、
前記連通路に連通する前記ガス室に近い前記封止部材の端部の位置は、当該連通路の長さ方向に関する前記取付面の端部の位置よりも当該ガス室から遠いことを特徴とする相関セル。
A correlation cell including a cell body and a translucent plate attached to the cell body, wherein a plurality of gas chambers are formed by the cell body and the plate,
A mounting surface provided on the cell body, to which the plate member is attached;
A plurality of communication passages provided in the cell body corresponding to each of the plurality of gas chambers, and communicating with the gas chambers;
A sealing member that is inserted into each of the plurality of communication paths and hermetically seals the communication path;
Including
The position of the end of the sealing member close to the gas chamber communicating with the communication path is farther from the gas chamber than the position of the end of the mounting surface in the length direction of the communication path. Correlation cell.
前記複数の連通路の各々に雌ねじが形成され、
前記封止部材には、前記雌ねじに対応する雄ねじが形成されていることを特徴とする請求項1に記載の相関セル。
An internal thread is formed in each of the plurality of communication paths,
2. The correlation cell according to claim 1, wherein a male screw corresponding to the female screw is formed on the sealing member.
前記封止部材は、前記雄ねじよりも大径のねじ頭を有し、
前記ねじ頭が前記セル本体と係合することにより、当該封止部材が当該セル本体に対して位置決めされることを特徴とする請求項2に記載の相関セル。
The sealing member has a screw head having a larger diameter than the male screw,
The correlation cell according to claim 2, wherein the sealing member is positioned with respect to the cell body by engaging the screw head with the cell body.
前記セル本体は、前記封止部材の前記ねじ頭を受け入れる凹形状の座ぐり部を有することを特徴とする請求項3に記載の相関セル。   The correlation cell according to claim 3, wherein the cell body has a concave counterbore portion that receives the screw head of the sealing member. ガス相関法の赤外線吸収方式を用い、試料ガスを分析するガス分析装置であって、
赤外線光を出射する光源と、
前記光源が入射すると共に試料ガスが導入されるセルパイプと、
セル本体と当該セル本体に取り付けられる透光性の板材とを含み、当該セル本体と当該板材とにより複数のガス室が形成され、前記光源からの赤外線光が前記セルパイプに入射する前に透過するように配置される相関セルと、
前記相関セルを回転駆動する駆動源と、
前記セルパイプに入射した赤外線光を受けて当該赤外線光の光量に対応する電気信号に変換する検出器と、
を含み、
前記相関セルは、
前記複数のガス室の各々に対応して前記セル本体に設けられ、当該ガス室に連通する複数の連通路と、
前記複数の連通路の各々に挿入されて当該連通路を気密に封止する封止部材と、
を含み、
前記連通路に連通する前記ガス室に近い前記封止部材の端部の位置は、当該連通路の長さ方向に関する前記板材の端部の位置よりも当該ガス室から遠いことを特徴とするガス分析装置。
A gas analyzer for analyzing a sample gas using an infrared absorption method of a gas correlation method,
A light source that emits infrared light;
A cell pipe into which the light source is incident and sample gas is introduced;
A plurality of gas chambers are formed by the cell body and the plate material, and infrared light from the light source is transmitted before entering the cell pipe. Correlation cells arranged as follows:
A drive source for rotationally driving the correlation cell;
A detector that receives the infrared light incident on the cell pipe and converts it into an electrical signal corresponding to the amount of the infrared light; and
Including
The correlation cell is
A plurality of communication passages provided in the cell body corresponding to each of the plurality of gas chambers, and communicating with the gas chambers;
A sealing member that is inserted into each of the plurality of communication paths and hermetically seals the communication path;
Including
The gas is characterized in that the position of the end of the sealing member close to the gas chamber communicating with the communication path is farther from the gas chamber than the position of the end of the plate member in the length direction of the communication path. Analysis equipment.
前記複数の連通路の各々に雌ねじが形成され、
前記封止部材には、前記雌ねじに対応する雄ねじが形成されていることを特徴とする請求項5に記載のガス分析装置。
An internal thread is formed in each of the plurality of communication paths,
The gas analyzer according to claim 5, wherein the sealing member is formed with a male screw corresponding to the female screw.
複数のガス室と、当該複数のガス室の各々に対応して設けられると共に当該ガス室に連通する複数の連通路と、当該ガス室を仕切るための板材を取り付ける取付面と、を有するセル本体に当該板材を固定してなる相関セルの組み立て方法であって、
前記連通路の内面に係合させると共に前記取付面の端部の位置に対応する当該連通路の位置に達しないように封止部材を挿入して当該連通路を気密に閉塞し、
前記取付面の歪みを除去し、
前記板材を前記取付面に固定することを特徴とする相関セルの組み立て方法。
A cell body having a plurality of gas chambers, a plurality of communication passages provided corresponding to each of the plurality of gas chambers and communicating with the gas chambers, and a mounting surface to which a plate material for partitioning the gas chambers is attached A method of assembling a correlation cell in which the plate material is fixed to
Engaging the inner surface of the communication path and inserting a sealing member so as not to reach the position of the communication path corresponding to the position of the end portion of the mounting surface, and the communication path is hermetically closed;
Removing distortion of the mounting surface;
A method of assembling a correlation cell, wherein the plate material is fixed to the mounting surface.
前記複数の連通路の各々に雌ねじが形成され、
前記封止部材は、前記雌ねじに対応する雄ねじが形成される雄ねじ部を有することを特徴とする請求項7に記載の相関セルの組み立て方法。
An internal thread is formed in each of the plurality of communication paths,
8. The correlation cell assembling method according to claim 7, wherein the sealing member has a male screw portion in which a male screw corresponding to the female screw is formed.
JP2008010712A 2008-01-21 2008-01-21 Correlation cell, gas analyzer, and method of assembling correlation cell Active JP5007674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010712A JP5007674B2 (en) 2008-01-21 2008-01-21 Correlation cell, gas analyzer, and method of assembling correlation cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010712A JP5007674B2 (en) 2008-01-21 2008-01-21 Correlation cell, gas analyzer, and method of assembling correlation cell

Publications (2)

Publication Number Publication Date
JP2009174868A true JP2009174868A (en) 2009-08-06
JP5007674B2 JP5007674B2 (en) 2012-08-22

Family

ID=41030128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010712A Active JP5007674B2 (en) 2008-01-21 2008-01-21 Correlation cell, gas analyzer, and method of assembling correlation cell

Country Status (1)

Country Link
JP (1) JP5007674B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717843A (en) * 1980-07-05 1982-01-29 Horiba Ltd Rotating gas filter cell
JPS577379B2 (en) * 1977-10-15 1982-02-10
JPH07294432A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Gas correlative cell
JPH0943143A (en) * 1995-07-28 1997-02-14 Shimadzu Corp Gas-correlated spectroscope
JPH09178655A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JP2790702B2 (en) * 1990-03-19 1998-08-27 新日本製鐵株式会社 Metal bolt for measuring permeated hydrogen
JP2000028520A (en) * 1998-07-14 2000-01-28 Horiba Ltd Filler gas sealing method of instrument for gas analyzer
JP3424364B2 (en) * 1994-12-29 2003-07-07 株式会社島津製作所 Gas concentration measurement device
JP2004333170A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Gas sealing method for analysis gas filled device, and analysis gas filled device
JP2007199032A (en) * 2006-01-30 2007-08-09 Riken Keiki Co Ltd Correlation cell for gas detection, its manufacturing method, and infrared gas detection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577379B2 (en) * 1977-10-15 1982-02-10
JPS5717843A (en) * 1980-07-05 1982-01-29 Horiba Ltd Rotating gas filter cell
JP2790702B2 (en) * 1990-03-19 1998-08-27 新日本製鐵株式会社 Metal bolt for measuring permeated hydrogen
JPH07294432A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Gas correlative cell
JP3424364B2 (en) * 1994-12-29 2003-07-07 株式会社島津製作所 Gas concentration measurement device
JPH0943143A (en) * 1995-07-28 1997-02-14 Shimadzu Corp Gas-correlated spectroscope
JPH09178655A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JP2000028520A (en) * 1998-07-14 2000-01-28 Horiba Ltd Filler gas sealing method of instrument for gas analyzer
JP2004333170A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Gas sealing method for analysis gas filled device, and analysis gas filled device
JP2007199032A (en) * 2006-01-30 2007-08-09 Riken Keiki Co Ltd Correlation cell for gas detection, its manufacturing method, and infrared gas detection device

Also Published As

Publication number Publication date
JP5007674B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5868615B2 (en) Integrated IR source and acoustic detector for photoacoustic gas sensors
US20050259262A1 (en) Gas sensor arrangement in an integrated construction
JP2529661B2 (en) Particle detector
US3926527A (en) Rotating gas correlation cell
EP3007001B1 (en) Color wheel assembly and related light source system thereof
JPH07151684A (en) Infrared ray type gas analyzer
JP2005292009A (en) Infrared gas detector and detection method
US8661874B2 (en) Photoacoustic detector with background signal correction
US11835451B2 (en) Gas sensor
JP5007674B2 (en) Correlation cell, gas analyzer, and method of assembling correlation cell
US20100208239A1 (en) Chlorine dioxide sensor
CN209821053U (en) Device for detecting SO2 gas in atmosphere by photoacoustic spectroscopy
US10996201B2 (en) Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances
CN110553987A (en) gas detection method and system
JPH08271336A (en) Photo-acoustic spectroscopic device
CN100419408C (en) Infrared-ray gas analyser
WO2003076910A8 (en) Method and device for polarimetric measurement of the mueller matrix coefficients of a sample in the far ultraviolet to visible spectral range
JP3909396B2 (en) Infrared gas analyzer
JP3654224B2 (en) Infrared gas analyzer
JP2006084342A (en) Gas detector calibrating apparatus
CN220626170U (en) Gas detection module capable of denoising
CN211014011U (en) Multi-channel automobile exhaust analyzer
CN218331218U (en) Self-calibration device for methane telemeter and methane telemeter
CN212748725U (en) Multi-component wide-range gas analyzer
CN219957333U (en) Micro infrared light source and photoacoustic gas sensor for multi-gas measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

R150 Certificate of patent or registration of utility model

Ref document number: 5007674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250