JP2007199032A - Correlation cell for gas detection, its manufacturing method, and infrared gas detection device - Google Patents

Correlation cell for gas detection, its manufacturing method, and infrared gas detection device Download PDF

Info

Publication number
JP2007199032A
JP2007199032A JP2006020871A JP2006020871A JP2007199032A JP 2007199032 A JP2007199032 A JP 2007199032A JP 2006020871 A JP2006020871 A JP 2006020871A JP 2006020871 A JP2006020871 A JP 2006020871A JP 2007199032 A JP2007199032 A JP 2007199032A
Authority
JP
Japan
Prior art keywords
gas
gas chamber
chamber
detection
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006020871A
Other languages
Japanese (ja)
Other versions
JP4700506B2 (en
Inventor
Hiroaki Sugiyama
浩昭 杉山
Kenzo Sasaki
謙三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2006020871A priority Critical patent/JP4700506B2/en
Publication of JP2007199032A publication Critical patent/JP2007199032A/en
Application granted granted Critical
Publication of JP4700506B2 publication Critical patent/JP4700506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correlation cell for gas detection (hereafter referred to as 'correlation cell') having high airtightness, and a low degree of gas leak at a gas sealing work, capable of acquiring surely expected function, a method capable of manufacturing the correlation cell surely with high workability, and infrared gas detection device capable of performing expected gas detection surely with high reliability. <P>SOLUTION: The correlation cell having a measuring gas chamber wherein the same kind of gas as detection object gas is sealed and a comparison gas chamber wherein comparison gas is sealed is acquired by sealing a gas sealing passage communicated respectively with the measuring gas chamber and the comparison gas chamber, and then by sealing each prescribed gas into the measuring gas chamber and the comparison gas chamber respectively. The infrared gas detection device is equipped with the correlation cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばガスフィルタ相関法方式を利用したガス検知装置において用いられるガス検知用相関セルおよびその作製方法、並びにこのガス検知用相関セルを備えた赤外線式ガス検知装置に関する。   The present invention relates to a gas detection correlation cell used in, for example, a gas detection apparatus using a gas filter correlation method, a method for manufacturing the same, and an infrared gas detection apparatus including the gas detection correlation cell.

現在、例えばCOやN2 Oなどのガス検知を行う方法として、赤外線が検知対象ガスによって吸収されることによる赤外線光量の減衰の程度に応じてガス濃度を検出する非分散型赤外線吸収法が知られているが、高い精度でかつ安定的にガス検知を行うことができることから、赤外線光源から放射される赤外光をガス検知用相関セル(ガス相関フィルタ)を介して導入する、ガスフィルタ相関法が利用されている。
ガス検知用相関セルは、適宜の駆動源によって回転駆動されて用いられ、一定濃度の検知対象ガスと同種のガス、赤外線に対して不活性なガスとがそれぞれ封入された2つのガス室が回転軸を中心に対称的に形成されてなるものである。
Currently, as a method for detecting gas such as CO and N 2 O, there is known a non-dispersive infrared absorption method for detecting a gas concentration according to the degree of attenuation of the amount of infrared light due to absorption of infrared light by a detection target gas. However, since gas detection can be performed with high accuracy and stability, infrared light emitted from an infrared light source is introduced through a gas detection correlation cell (gas correlation filter). The law is being used.
The gas detection correlation cell is rotated and used by an appropriate driving source, and two gas chambers each containing a certain concentration of detection target gas, the same kind of gas, and a gas inert to infrared rays are rotated. It is formed symmetrically about the axis.

ガスフィルタ相関法においては、ガス検知用相関セルが回転駆動されることにより2つのガス室が赤外線光源からサンプルセルに至る光路上を交互に通過し、検知対象ガスと同種のガスが封入されたガス室を透過した赤外光に係るセンサ信号と、不活性ガスが封入されたガス室を透過した赤外光に係るセンサ信号との差信号または信号比に基づいて、サンプルセル内に導入される被検ガス中に含まれる検知対象ガスの濃度が検出される。   In the gas filter correlation method, the gas detection correlation cell is driven to rotate, so that the two gas chambers alternately pass on the optical path from the infrared light source to the sample cell, and the same kind of gas as the detection target gas is enclosed. Based on the difference signal or signal ratio between the sensor signal related to the infrared light transmitted through the gas chamber and the sensor signal related to the infrared light transmitted through the gas chamber filled with the inert gas, it is introduced into the sample cell. The concentration of the detection target gas contained in the detected gas is detected.

このようなガス検知用相関セルは、例えばセル本体に形成された2つのガス室内に所定のガスを注入した後、当該ガス室内にガスを封入するためのガス封入用流路を気密に封止することにより作製することができるが、ガス封入作業は、例えばセル本体にパイプ材等を接続してガス室内を真空引きした後、所定のガスを注入し、当該パイプ材を例えばかしめ加工により気密に封止することにより行われている(例えば特許文献1参照)。   Such a correlation cell for gas detection, for example, injects a predetermined gas into two gas chambers formed in the cell body, and then hermetically seals a gas sealing channel for sealing the gas in the gas chamber. However, the gas filling operation can be performed, for example, by connecting a pipe material or the like to the cell body and evacuating the gas chamber, and then injecting a predetermined gas and air-tightening the pipe material by, for example, caulking. (See, for example, Patent Document 1).

特許第2862065号公報Japanese Patent No. 2862065

しかしながら、ガスをガス室に注入した後にガス封入用流路を気密に封止する方法では、ガス封入作業を行うに際してセル本体にパイプ材等を接続することが必要となるので、高い生産性でガス検知用相関セルを作製することができないばかりか、ガス封入用流路を気密に封止するまでに不可避的に生ずるガス漏れの程度が大きく、所期の性能を有するものとして構成することが困難である、という問題がある。   However, in the method of hermetically sealing the gas filling flow path after injecting the gas into the gas chamber, it is necessary to connect a pipe material or the like to the cell body when performing the gas filling operation. The correlation cell for gas detection cannot be produced, and the degree of gas leakage that inevitably occurs until the gas sealing flow path is hermetically sealed is large, so that it can be configured to have the expected performance. There is a problem that it is difficult.

本発明は、以上のような事情に基づいてなされたものであって、ガス封入作業時におけるガス漏れの程度が小さく、所期の機能を有するものとして確実に構成することができると共に、高い気密性を有するガス検知用相関セルを提供することを目的とする。
本発明の他の目的は、ガス封入作業時におけるガス漏れの程度を小さく抑制しながら、ガス封入作業を容易に行うことができると共に、気密性の高いシール構造を容易に形成することができ、従って、所期の機能を有するものを高い作業性で確実に作製することのできるガス検知用相関セルの作製方法を提供することにある。
また、本発明のさらに他の目的は、所期のガス検知を高い信頼性をもって確実に行うことのできる赤外線式ガス検知装置を提供することにある。
The present invention has been made on the basis of the above circumstances, and can be reliably configured to have a desired function with a small degree of gas leakage at the time of gas filling operation and high airtightness. An object of the present invention is to provide a correlation cell for gas detection having the property.
Another object of the present invention is to easily perform the gas filling operation while suppressing the degree of gas leakage during the gas filling operation, and to easily form a highly airtight seal structure. Accordingly, it is an object of the present invention to provide a method for producing a correlation cell for gas detection that can reliably produce a cell having an intended function with high workability.
Still another object of the present invention is to provide an infrared gas detection device capable of reliably performing desired gas detection with high reliability.

本発明のガス検知用相関セルは、検知対象ガスと同種のガスが封入された測定ガス室および比較ガスが封入された比較ガス室を有するガス検知用相関セルであって、
測定ガス室および比較ガス室の各々に連通するガス封入用流路を封止した後、測定ガス室および比較ガス室の各々に所定のガスを封入することにより得られたものであることを特徴とする。
The correlation cell for gas detection of the present invention is a correlation cell for gas detection having a measurement gas chamber in which the same kind of gas as the detection target gas is sealed and a comparison gas chamber in which a comparison gas is sealed,
It is obtained by sealing a gas-filling flow path communicating with each of the measurement gas chamber and the comparison gas chamber and then encapsulating a predetermined gas in each of the measurement gas chamber and the comparison gas chamber. And

本発明のガス検知用相関セルにおいては、閉塞部材がガス封入用流路内に収容され、さらに、当該ガス封入用流路内に固定用ネジが装着されることにより、ガス封入用流路が気密に封止された構成とされていることが好ましい。   In the correlation cell for gas detection of the present invention, the closing member is accommodated in the gas sealing flow path, and further, a fixing screw is mounted in the gas sealing flow path, whereby the gas sealing flow path is It is preferable that the structure is hermetically sealed.

本発明のガス検知用相関セルの作製方法は、測定ガス室形成用空間および比較ガス室形成用空間、並びに当該空間の各々に連通するガス封入用流路が形成されたセル本体を作製し、当該セル本体におけるガス封入用流路を閉塞部材によって封止して測定ガス室および比較ガス室を形成した後、測定ガス室および比較ガス室の各々に所定のガスを封入することを特徴とする。   The method for producing a correlation cell for gas detection of the present invention produces a cell main body in which a measurement gas chamber formation space and a comparison gas chamber formation space, and a gas filling passage communicating with each of the spaces are formed, A gas-filling flow path in the cell body is sealed with a closing member to form a measurement gas chamber and a comparison gas chamber, and then a predetermined gas is sealed in each of the measurement gas chamber and the comparison gas chamber. .

本発明のガス検知用相関セルの作製方法においては、樹脂製の閉塞部材を全体が収容された状態でガス封入用流路内に装着することにより測定ガス室および比較ガス室を形成し、ガス注入用管部材を閉塞部材に穿刺して先端部をガス室またはガス封入用流路内に突出させ、各々のガス室内を真空引きした後、当該ガス注入用管部材を利用して測定ガス室および比較ガスの各々に所定のガスを注入し、ガス封入用流路内に固定用ネジを装着することによりガス封入用流路を気密に封止することができる。   In the method for producing a correlation cell for gas detection according to the present invention, a measurement gas chamber and a comparison gas chamber are formed by mounting a resin-made blocking member in a gas-filled flow path in a state where the whole is accommodated. After the injection tube member is punctured into the closing member, the tip portion protrudes into the gas chamber or the gas-filling channel, and each gas chamber is evacuated, and then the measurement gas chamber is utilized using the gas injection tube member. In addition, by injecting a predetermined gas into each of the comparison gases and mounting a fixing screw in the gas sealing flow path, the gas sealing flow path can be hermetically sealed.

本発明の赤外線式ガス検知装置は、回転駆動されることにより測定ガス室および比較ガス室が赤外線光源から被検ガスが導入されるサンプルセルに至る光路を交互に通過するよう配設されたガス検知用相関セルを備えてなり、当該ガス検知用相関セルを介して赤外光がサンプルセルに供給され、前記測定ガス室を透過した赤外光に係るセンサ信号および前記比較ガス室を透過した赤外光に係るセンサ信号に基づいて、検知対象ガスの濃度を検出する赤外線式ガス検知装置において、
ガス検知用相関セルとして、上記のものが用いられていることを特徴とする。
The infrared type gas detection device of the present invention is a gas that is arranged so that the measurement gas chamber and the comparison gas chamber alternately pass through the optical path from the infrared light source to the sample cell into which the test gas is introduced by being driven to rotate. A correlation cell for detection is provided, and infrared light is supplied to the sample cell via the correlation cell for gas detection, and the sensor signal related to the infrared light transmitted through the measurement gas chamber and the comparison gas chamber are transmitted. In the infrared type gas detection device that detects the concentration of the detection target gas based on the sensor signal related to the infrared light,
The above-described cell is used as the correlation cell for gas detection.

本発明のガス検知用相関セルによれば、ガス封入用流路を封止した状態において所定のガスをガス室に封入して得られたものであることにより、ガス封入作業時において、ガス封入用流路を気密に封止するまで(最終的なシール構造を形成するまで)の間に不可避的に生ずるガス漏れの程度を可及的に小さく抑制することができるので、確実に所期の機能を有するものとなる。
また、閉塞部材がガス封入用流路内に装着された状態において、さらに、当該ガス封入用流路内に固定用ネジが装着された構造であることにより、気密性の高いシール構造を確実に形成することができる。
According to the correlation cell for gas detection of the present invention, it is obtained by sealing a predetermined gas in a gas chamber in a state where the gas sealing channel is sealed, so that the gas sealing is performed during the gas sealing operation. Since the degree of gas leakage that inevitably occurs until the working flow path is hermetically sealed (until the final seal structure is formed) can be suppressed as much as possible. It has a function.
In addition, in a state where the closing member is mounted in the gas sealing flow path, the structure in which the fixing screw is mounted in the gas sealing flow path ensures a highly airtight seal structure. Can be formed.

本発明のガス検知用相関セルの作製方法によれば、ガス封入用流路を予め封止した後にガスが注入されることにより、ガス封入流路を気密に封止するまで(最終的なシール構造を形成するまで)の間に不可避的に生ずるガス漏れの程度を小さく抑制することができるので、所期の機能を有するガス検知用相関セルを確実に得ることができる。
また、ガス注入用管部材を閉塞部材に穿刺してガスの注入を行うことにより、従来におけるガス封入作業において必要とされるパイプの接続等を行うことが不要であるので、ガス封入作業を容易に行うことができ、しかも、ガス封入用流路内に固定用ネジを装着することによりシール構造が形成されるので、ガス漏れを閉塞部材に形成されるガス注入用管部材の小さい孔から生ずる量の極めて小さい程度に抑制しながら、気密性の高いシール構造を容易に形成することができ、高い作業性を得ることができる。
According to the method for producing a correlation cell for gas detection of the present invention, a gas is injected after a gas sealing flow path is sealed in advance until the gas sealed flow path is hermetically sealed (final seal). Since the degree of gas leakage that inevitably occurs until the structure is formed can be suppressed small, a correlation cell for gas detection having an expected function can be obtained with certainty.
In addition, by puncturing the gas injection tube member into the closing member and injecting gas, it is not necessary to connect pipes or the like that are required in the conventional gas injection operation. In addition, since a sealing structure is formed by mounting a fixing screw in the gas sealing flow path, gas leakage occurs from a small hole in the gas injection tube member formed in the closing member. A highly airtight seal structure can be easily formed while suppressing the amount to an extremely small amount, and high workability can be obtained.

本発明の赤外線式ガス検知装置によれば、上記ガス検知用相関セルを具備しているので、所期のガス検知を高い信頼性をもって確実に行うことができる。   According to the infrared type gas detection device of the present invention, since the gas detection correlation cell is provided, desired gas detection can be reliably performed with high reliability.

図1は、本発明の赤外線式ガス検知装置の一例における構成の概略を示す説明図である。
この赤外線式ガス検知装置は、被検ガスが導入されるサンプルセル本体11内において、例えば凹面状の反射面16Aを有する第1の反射鏡16と、各々第1の反射鏡16における反射面16Aと同等の大きさの曲率半径を有する2つの凹面状の反射面17A,17Bを有する第2の反射鏡17とが、第2の反射鏡17における反射面17A,17Bの曲率中心位置の各々が第1の反射鏡16の反射面16A上に位置されるよう、互いに対向して配置されてなる、いわゆる『ホワイトセル型』のサンプルセル10を備えている。図1において、14はガス導入口、15はガス排出口である。
FIG. 1 is an explanatory diagram showing an outline of a configuration in an example of an infrared gas detection device of the present invention.
This infrared gas detection device includes, for example, a first reflecting mirror 16 having a concave reflecting surface 16A and a reflecting surface 16A of the first reflecting mirror 16 in the sample cell body 11 into which a test gas is introduced. And the second reflecting mirror 17 having the two concave reflecting surfaces 17A and 17B having the same radius of curvature as each other, and each of the curvature center positions of the reflecting surfaces 17A and 17B in the second reflecting mirror 17 is A so-called “white cell type” sample cell 10 is provided so as to face each other so as to be positioned on the reflecting surface 16A of the first reflecting mirror 16. In FIG. 1, 14 is a gas inlet and 15 is a gas outlet.

サンプルセル本体11には、赤外線光源20からの赤外光をサンプルセル10内に入射させる光入射部と、第1の凹面反射鏡16および第2の凹面反射鏡17により多重反射された赤外光をサンプルセル10の外部に出射させる光出射部とが形成されている。
サンプルセル10内には、サンプルセル10内に導入される赤外光を反射して第2の反射鏡17に入射させる光入射側ミラー18が光入射部を臨む位置に配設されていると共に、第1の反射鏡16および第2の反射鏡17により多重反射された赤外光を反射して赤外センサ25に入射させる光出射側ミラー19が光出射部を臨む位置に配設されている。
In the sample cell main body 11, infrared light that is multiple-reflected by the light incident portion that makes the infrared light from the infrared light source 20 enter the sample cell 10 and the first concave reflecting mirror 16 and the second concave reflecting mirror 17. A light emitting portion for emitting light to the outside of the sample cell 10 is formed.
In the sample cell 10, a light incident side mirror 18 that reflects infrared light introduced into the sample cell 10 and enters the second reflecting mirror 17 is disposed at a position facing the light incident portion. A light exit side mirror 19 that reflects the infrared light multiple-reflected by the first reflecting mirror 16 and the second reflecting mirror 17 and enters the infrared sensor 25 is disposed at a position facing the light emitting portion. Yes.

サンプルセル10と赤外センサ25の間には、検知対象ガスのガス分子固有の吸収波長域の赤外線に対してのみ高い透過率を有する光学フィルタ26が配設されている。   Between the sample cell 10 and the infrared sensor 25, an optical filter 26 having a high transmittance only with respect to infrared rays in an absorption wavelength region unique to gas molecules of the detection target gas is disposed.

赤外線光源20とサンプルセル10との間には、各々、例えばモータなどの駆動源21によって回転駆動されるガス検知用相関セル30およびチョッパ22が光照射方向に対してこの順で配設されている。   Between the infrared light source 20 and the sample cell 10, for example, a gas detection correlation cell 30 and a chopper 22 which are rotationally driven by a drive source 21 such as a motor are arranged in this order with respect to the light irradiation direction. Yes.

チョッパ22は、例えば赤外線光源20からの赤外光の通過を許容する切り欠き部が形成された2枚羽根の回転円板を備えてなり、例えば回転駆動されることにより赤外線光源20からの赤外光を断続的にサンプルセル10に供給する。   The chopper 22 includes, for example, a two-bladed rotating disk formed with a notch that allows the infrared light from the infrared light source 20 to pass therethrough. External light is intermittently supplied to the sample cell 10.

ガス検知用相関セル30は、図2および図3に示すように、一定濃度の検知対象ガスと同種のガスが封入された一方のガス室(以下、「測定ガス室32」という。)および赤外線に不活性なガスが封入された他方のガス室(以下、「比較ガス室33」という。)が回転中心軸Cを中心に対称的に形成されてなり、回転駆動されることによって測定ガス室32および比較ガス室33が赤外線光源20からサンプルセル10に至る光路上を交互に通過し、測定ガス室32または比較ガス室33を介して赤外光をサンプルセル10内に導入させる。   As shown in FIGS. 2 and 3, the gas detection correlation cell 30 includes one gas chamber (hereinafter referred to as “measurement gas chamber 32”) in which a gas of the same type as the detection target gas having a constant concentration is enclosed, and infrared rays. The other gas chamber (hereinafter referred to as “comparative gas chamber 33”) in which an inert gas is sealed is formed symmetrically about the rotation center axis C and is driven to rotate to thereby measure the gas chamber. 32 and the comparison gas chamber 33 alternately pass on the optical path from the infrared light source 20 to the sample cell 10, and infrared light is introduced into the sample cell 10 through the measurement gas chamber 32 or the comparison gas chamber 33.

ガス検知用相関セル30は、例えばアルミニウムよりなる円板状のセル本体31を具えてなり、このセル本体31には、図4に示すように、各々厚み方向に貫通する2つのガス室形成用空間32A,33Aが、回転中心軸Cと同心円上の径方向位置であって、回転中心軸Cを挟んで互いに対向した位置に、形成されている。この実施例におけるガス室形成用空間32A,33Aは、各々例えば半円弧状であって、周方向に沿って伸びるよう形成されているが、ガス室形成用空間32A,33Aの形状は、特に制限されるものではない。
セル本体31の両面には、ガス室形成用空間32A,33Aを含む回転中心軸Cを中心とした円領域に窓部材装着用凹所38が形成されており、この窓部材装着用凹所38の各々に、例えばサファイアよりなる窓部材40が装着されて2つのガス室形成用空間32A,33Aが塞がれている。窓部材40は、例えば接着剤によりセル本体31に接着されて固定されている。
The correlation cell 30 for gas detection includes a disk-shaped cell body 31 made of, for example, aluminum. As shown in FIG. 4, the cell body 31 is used for forming two gas chambers penetrating in the thickness direction. The spaces 32 </ b> A and 33 </ b> A are formed at radial positions concentric with the rotation center axis C and facing each other across the rotation center axis C. Each of the gas chamber forming spaces 32A and 33A in this embodiment has, for example, a semicircular arc shape and is formed to extend along the circumferential direction. However, the shape of the gas chamber forming spaces 32A and 33A is particularly limited. Is not to be done.
On both surfaces of the cell main body 31, a window member mounting recess 38 is formed in a circular region around the rotation center axis C including the gas chamber forming spaces 32A and 33A. Each of these is fitted with a window member 40 made of, for example, sapphire, thereby closing the two gas chamber forming spaces 32A and 33A. The window member 40 is bonded and fixed to the cell body 31 with an adhesive, for example.

セル本体31には、ガス室形成用空間32A,33Aと連通するガス封入用流路34がセル本体31の肉厚中を径方向に伸び、セル本体31の外周面位置に開口するよう形成されており、各々のガス封入用流路34の外端部には、閉塞部材装着部35が形成されている。
ガス封入用流路34における閉塞部材装着部35には、閉塞部材である例えばシリコーンゴムなどの樹脂よりなる止め栓45が全体が収容された状態で例えば圧入されて装着され、さらに、例えば真鍮やステンレス鋼などの金属よりなる固定用ネジ50が装着されており、これにより、ガス封入用流路34が閉塞されて各々のガス室形成用空間32A,33Aが気密に封止され、測定ガス室32および比較ガス室33が形成されている。
以上において、図2乃至図4中の符号39は、ガス検知用相関セル30を回転駆動させるための回転軸21Aを支持する回転軸支持部である。
The cell body 31 is formed with a gas-filling channel 34 communicating with the gas chamber forming spaces 32A and 33A so as to extend radially in the thickness of the cell body 31 and open to the outer peripheral surface of the cell body 31. A closing member mounting portion 35 is formed at the outer end of each gas sealing flow path 34.
A stopper plug 45 made of a resin such as silicone rubber, which is a blocking member, is fitted into the blocking member mounting portion 35 in the gas sealing flow path 34, for example, by being press-fitted, and further, for example, brass or A fixing screw 50 made of a metal such as stainless steel is attached, whereby the gas sealing flow path 34 is closed, and the gas chamber forming spaces 32A and 33A are hermetically sealed, and the measurement gas chambers are sealed. 32 and a comparative gas chamber 33 are formed.
In the above description, reference numeral 39 in FIGS. 2 to 4 denotes a rotating shaft support portion that supports the rotating shaft 21A for rotating the correlation cell 30 for gas detection.

以下、上記構成のガス検知用相関セル30の作製方法について説明する。
先ず、円板状のセル本体基材の所定の位置に、2つのガス室形成用空間32A,33A、閉塞部材装着部35を含むガス封入用流路34、回転軸支持部39および窓部材装着用凹所38を切削加工によって形成することによりセル本体31を作製し、このセル本体31における窓部材装着用凹所38に、窓部材40を例えばエポキシ系接着剤により接着して固定すると共に、ガス封入用流路34内の閉塞部材装着部35に止め栓45を圧入し、さらに、このガス封入用流路34内の閉塞部材装着部35に固定用ネジを装着することにより、ガス室形成用空間32A,33Aを封止し、測定ガス室32および比較ガス室33を形成する。このとき、固定用ネジとしては、中央部に貫通孔51が形成されてなり、ガス封入用治具としての機能を有する仮止め用のもの50Aが用いられる(図4参照)。
また、止め栓45は、接着剤によってセル本体31に接着、固定されることによって装着されてもよい。
Hereinafter, a method for manufacturing the gas detection correlation cell 30 having the above-described configuration will be described.
First, two gas chamber forming spaces 32A and 33A, a gas sealing flow path 34 including a closing member mounting portion 35, a rotary shaft support portion 39, and a window member are mounted at predetermined positions on the disk-shaped cell body base material. The cell body 31 is produced by forming the recess 38 by cutting, and the window member 40 is bonded and fixed to the window member mounting recess 38 in the cell body 31 by, for example, an epoxy adhesive, A stopper 45 is press-fitted into the closing member mounting portion 35 in the gas sealing flow path 34, and a fixing screw is mounted on the closing member mounting portion 35 in the gas sealing flow path 34 to form a gas chamber. The use spaces 32A and 33A are sealed, and the measurement gas chamber 32 and the comparison gas chamber 33 are formed. At this time, as a fixing screw, a through hole 51 is formed in the center portion, and a temporary fixing screw 50A having a function as a gas sealing jig is used (see FIG. 4).
Further, the stopper plug 45 may be mounted by being bonded and fixed to the cell body 31 with an adhesive.

次いで、例えばシリンジ針などの管径の大きさが小さい(細い)ガス注入用管部材を固定用ネジ50Aの貫通孔51を介して止め栓45に穿刺し、先端部をガス封入用流路34内またはガス室内に突出させ、例えば真空ポンプによってガス室内を真空引きした後、所定のガス、具体的には測定ガス室32に対しては所定濃度の検知対象ガスと同種のガス、比較ガス室33に対しては赤外光に対して不活性なガス例えばN2 ガスを注入する。ここに、ガス注入用管部材の外径の大きさは特に制限されるものではないが、シール構造を形成するまでの間に不可避的に生ずるガス漏れの程度を可及的に小さくすることおよび作業効率を高くすることの観点から、例えばφ0.5〜2mm程度であることが好ましい。また、測定ガス室32および比較ガス33室内のガス封入圧力は例えば常圧である。
その後、例えば仮止め用の固定用ネジ50Aを貫通孔を有さないシール構造形成用の固定用ネジ50(図2乃至図4参照)に付け替えることにより測定ガス室32および比較ガス室33を気密に封止し、これにより、上記構成のガス検知用相関セル30を得ることができる。ここに、ガス注入後にガス室を気密に封止する方法としては、例えば仮止め用の固定用ネジ50Aをそのまま使用し、固定用ネジ50Aの貫通孔51内に例えば樹脂材料等を充填する方法が用いられてもよい。
Next, for example, a small (thin) gas injection tube member such as a syringe needle is punctured into the stopper plug 45 through the through-hole 51 of the fixing screw 50A, and the distal end portion of the gas injection channel 34 is inserted. After the gas chamber is evacuated by, for example, a vacuum pump, a predetermined gas, specifically, the measurement gas chamber 32 is the same type of gas as the detection target gas having a predetermined concentration, a comparison gas chamber For the gas 33, an inert gas such as N 2 gas is injected. Here, the size of the outer diameter of the gas injection tube member is not particularly limited. However, the degree of gas leakage that inevitably occurs until the seal structure is formed is minimized. From the viewpoint of increasing the working efficiency, for example, it is preferably about φ0.5 to 2 mm. Further, the gas filling pressure in the measurement gas chamber 32 and the comparison gas 33 chamber is, for example, a normal pressure.
Thereafter, the measurement gas chamber 32 and the comparison gas chamber 33 are hermetically sealed by, for example, replacing the fixing screw 50A for temporary fixing with a fixing screw 50 for forming a seal structure (see FIGS. 2 to 4) that does not have a through hole. Thus, the gas detection correlation cell 30 having the above-described configuration can be obtained. Here, as a method of hermetically sealing the gas chamber after gas injection, for example, the fixing screw 50A for temporary fixing is used as it is, and the resin material or the like is filled in the through hole 51 of the fixing screw 50A, for example. May be used.

上記のガス検知用相関セルの作製方法によれば、ガス封入用流路34を予め封止した後にガスが注入されることにより、ガス封入流路34を気密に封止するまで(最終的なシール構造を形成するまで)の間に不可避的に生ずるガス漏れの程度を小さく抑制することができるので、所期の機能を有するガス検知用相関セル30を確実に得ることができる。
また、ガス注入用管部材を止め栓45に穿刺してガスの注入を行うことにより、従来におけるガス封入作業において必要とされるパイプの接続等を行うことが不要であるので、ガスの注入を容易に行うことができ、しかも、ガス封入用流路34内に固定用ネジ50を装着することによりシール構造が形成されるので、ガス漏れを止め栓45に形成されるガス注入用管部材の極めて小さい孔から生ずる量の極めて小さい程度に抑制しながら、気密性の高いシール構造を容易に形成することができ、高い作業性を得ることができる。
According to the above-described method for producing a correlation cell for gas detection, gas is injected after sealing the gas-filling flow path 34 in advance until the gas-filled flow path 34 is hermetically sealed (final). Since the degree of gas leakage that inevitably occurs until the seal structure is formed) can be suppressed, the correlation cell 30 for gas detection having an intended function can be obtained with certainty.
In addition, by inserting the gas injection tube member into the stopper plug 45 and injecting the gas, it is not necessary to connect a pipe that is required in the conventional gas filling operation. Since the sealing structure is formed by mounting the fixing screw 50 in the gas sealing flow path 34, the gas injection tube member formed in the stopper plug 45 can be prevented from leaking. A highly airtight seal structure can be easily formed while suppressing the amount generated from extremely small holes to a very small extent, and high workability can be obtained.

以上のようなガス検知用相関セル30を備えてなる赤外線ガス検知装置においては、次のようにしてガス検知が行われる。
すなわち、赤外線光源20が常時点灯状態となるよう駆動されると共に、ガス検知用相関セル30およびチョッパ22が駆動源21によって一定の周期で回転駆動されることにより、赤外線光源20からの赤外光がサンプルセル10に対して断続的に供給され、被検ガスが導入されたサンプルセル10内において、第1の凹面反射鏡16および第2の凹面反射鏡17によって多重反射された後、光学フィルタ26を介して赤外センサ25に入射される(図1参照)。
そして、ガス検知用相関セル30における測定ガス室32を透過した赤外光に係るセンサ信号と、ガス検知用相関セル30における比較ガス室33を透過した赤外光に係るセンサ信号との差信号または信号比に基づいて、被検ガスに含まれる検知対象ガスの濃度が検出される。
In the infrared gas detection apparatus including the gas detection correlation cell 30 as described above, gas detection is performed as follows.
That is, the infrared light source 20 is driven so as to be constantly lit, and the gas detection correlation cell 30 and the chopper 22 are rotated by the drive source 21 at a constant period, whereby the infrared light from the infrared light source 20 is emitted. Is intermittently supplied to the sample cell 10 and is subjected to multiple reflections by the first concave reflecting mirror 16 and the second concave reflecting mirror 17 in the sample cell 10 into which the test gas is introduced, and then the optical filter 26 is incident on the infrared sensor 25 through 26 (see FIG. 1).
Then, a difference signal between the sensor signal related to the infrared light transmitted through the measurement gas chamber 32 in the gas detection correlation cell 30 and the sensor signal related to the infrared light transmitted through the comparison gas chamber 33 in the gas detection correlation cell 30. Alternatively, the concentration of the detection target gas contained in the test gas is detected based on the signal ratio.

而して、上記構成のガス検知用相関セル30によれば、ガス封入用流路34を予め止め栓45によって封止し、ガス注入用管部材を止め栓45に穿刺してガスを封入することによって得られるものであることにより、シール構造を形成するまでの間に不可避的に生ずるガス漏れを止め栓45に形成されるガス注入用管部材の小さい孔から生ずる量の極めて小さい程度に抑制することができるので、確実に所期の機能を有するものとして構成することができ、しかも、ガスを注入した後、ガス封入用流路34内に固定用ネジ50が装着されることによりシール構造が形成されていることにより、当該固定用ネジ50とセル本体31との接合が螺合によって達成されるという構造上、高い気密性を有するものとなる。
従って、上記ガス検知用相関セル30を備えてなる赤外線式ガス検知装置によれば、所期のガス検知を高い信頼性をもって確実に行うことができる。
Thus, according to the correlation cell 30 for gas detection having the above-described configuration, the gas filling flow path 34 is sealed in advance by the stopper plug 45, and the gas injection tube member is punctured into the stopper plug 45 to enclose the gas. As a result, gas leakage that inevitably occurs until the seal structure is formed is suppressed to an extremely small amount that is generated from a small hole in the gas injection tube member formed in the stopper plug 45. Therefore, the sealing structure can be surely configured to have an intended function, and a fixing screw 50 is mounted in the gas-filling channel 34 after the gas is injected. As a result of the formation, the connection between the fixing screw 50 and the cell body 31 is achieved by screwing, so that the structure has high airtightness.
Therefore, according to the infrared gas detection apparatus provided with the gas detection correlation cell 30, the desired gas detection can be reliably performed with high reliability.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
例えば、ガス室の形状、大きさ(容積)およびその他の具体的な構成は、目的に応じて適宜に変更することができる。
また、ガス封入方法は上記方法に限定されるものではなく、図5および図6に示すように、止め栓45がガス封入用流路34内の所定の位置に装着状態とされたときに、当該止め栓45の周面を臨む位置に開口するガス注入用管部材挿入用孔36をセル本体31に形成し、ガス封入用流路34内に止め栓45およびシール構造形成用の固定用ネジ50を装着して当該ガス封入用流路34を気密に封止した状態において、ガス注入用管部材挿入用孔36を介してガス注入用管部材を止め栓45に穿刺してその先端部をガス封入用流路34内またはガス室内に突出させ、所定のガスをガス室に注入した後、ガス注入用管部材挿入用孔36を気密に封止する方法であってもよい。
ここに、ガス注入用管部材挿入用孔の径は、ガス注入用管部材である例えばシリンジ針が挿入可能な大きさであれば特に制限されない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
For example, the shape, size (volume), and other specific configurations of the gas chamber can be appropriately changed according to the purpose.
Further, the gas sealing method is not limited to the above method, and as shown in FIGS. 5 and 6, when the stopper plug 45 is mounted at a predetermined position in the gas sealing flow path 34, A gas injection tube member insertion hole 36 that opens to a position facing the peripheral surface of the stopper plug 45 is formed in the cell body 31, and the stopper plug 45 and a fixing screw for forming a seal structure are formed in the gas sealing flow path 34. In the state in which the gas sealing flow path 34 is hermetically sealed by mounting the gas injection pipe member 50, the gas injection pipe member is punctured into the stopper plug 45 through the gas injection pipe member insertion hole 36, and the distal end portion thereof is inserted. A method may be employed in which the gas injection tube member insertion hole 36 is hermetically sealed after projecting into the gas sealing flow path 34 or the gas chamber and injecting a predetermined gas into the gas chamber.
Here, the diameter of the gas injection tube member insertion hole is not particularly limited as long as it is a size in which, for example, a syringe needle which is a gas injection tube member can be inserted.

また、本発明の赤外線式ガス検知装置においては、ガス検知用相関セルとして、例えば図7および図8に示すように、窓部材40が装着されたセル本体31における入光側の面に、マスク材60がセル本体31に一体に固定されて装着されてなるものを用いることができる。
マスク材60は、各々のガス室に対向する領域内において、複数の透光用開口61が赤外線光源からの赤外光が当該開口61を介してガス室に入射されるよう、ガス室の形態に沿って互いに離間して並んだ位置に形成されたものであって、この実施例においては、測定ガス室32および比較ガス室33に対向する領域の各々について、3つの透光用開口61が互いに周方向(回転方向)に等間隔毎に離間して並んで形成された構成とされている。
このようなガス検知用相関セル30Aを備えた赤外線式ガス検知装置においては、測定ガス室32についての透光用開口61の各々を透過した赤外光に係るセンサ検知信号の複数の平均値と、比較ガス室33についての透光用開口61の各々を透過した赤外光に係るセンサ検知信号の複数の平均値との差信号または信号比に基づいて検知対象ガスの濃度が検出される。
Further, in the infrared type gas detection apparatus of the present invention, as a correlation cell for gas detection, for example, as shown in FIGS. A material in which the material 60 is fixed and attached to the cell body 31 integrally can be used.
The mask material 60 has a plurality of light-transmitting openings 61 in a region facing each gas chamber so that the infrared light from the infrared light source is incident on the gas chamber through the openings 61. In this embodiment, three light-transmitting openings 61 are formed in each of the regions facing the measurement gas chamber 32 and the comparison gas chamber 33. It is set as the structure formed in the circumferential direction (rotation direction) mutually spaced apart at equal intervals.
In the infrared type gas detection apparatus having such a gas detection correlation cell 30A, a plurality of average values of sensor detection signals relating to infrared light transmitted through each of the light transmission openings 61 for the measurement gas chamber 32 and The concentration of the detection target gas is detected based on a difference signal or a signal ratio with a plurality of average values of sensor detection signals related to infrared light transmitted through each of the light transmission openings 61 for the comparative gas chamber 33.

本発明の赤外線式ガス検知装置の一例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in an example of the infrared type gas detection apparatus of this invention. 本発明のガス検知用相関セルの一構成例における回転中心軸に直交する断面を示す横断面図である。It is a cross-sectional view which shows the cross section orthogonal to the rotation center axis in one structural example of the correlation cell for gas detection of this invention. 図2に示すガス検知用相関セルにおける回転中心軸に平行な断面の一部を示す拡大縦断面図である。FIG. 3 is an enlarged longitudinal sectional view showing a part of a cross section parallel to the rotation center axis in the gas detection correlation cell shown in FIG. 2. 図2に示すガス検知用相関セルの分解図である。It is an exploded view of the correlation cell for gas detection shown in FIG. 本発明のガス検知用相関セルの他の構成例における回転中心軸と直交する断面を示す横断面図である。It is a cross-sectional view which shows the cross section orthogonal to the rotation center axis | shaft in the other structural example of the correlation cell for gas detection of this invention. 図5に示すガス検知用相関セルにおける回転中心軸に平行な断面の一部を示す拡大縦断面図である。FIG. 6 is an enlarged longitudinal sectional view showing a part of a cross section parallel to the rotation center axis in the gas detection correlation cell shown in FIG. 5. 本発明のガス検知用相関セルのさらに他の構成例を示す平面図である。It is a top view which shows the further another structural example of the correlation cell for gas detection of this invention. 図7に示すガス検知用相関セルにおける回転中心軸に平行な断面の一部を示す拡大縦断面図である。FIG. 8 is an enlarged longitudinal sectional view showing a part of a cross section parallel to the rotation center axis in the gas detection correlation cell shown in FIG. 7.

符号の説明Explanation of symbols

10 サンプルセル
11 サンプルセル本体
14 ガス導入口
15 ガス排出口
16 第1の反射鏡
16A 反射面
17 第2の反射鏡
17A,17B 反射面
18 光入射側ミラー
19 光出射側ミラー
20 赤外線光源
21 駆動源
21A 回転軸
22 チョッパ
25 赤外センサ
26 光学フィルタ
30,30A ガス検知用相関セル
31 セル本体
32A,33A ガス室形成用空間
32 測定ガス室
33 比較ガス室
C 回転中心軸
34 ガス封入用流路
35 閉塞部材装着部
36 ガス注入用管部材挿入用孔
38 窓部材装着用凹所
39 回転軸支持部
40 窓部材
45 止め栓
50 固定用ネジ
50A 仮止め用の固定用ネジ
51 貫通孔
60 マスク材
61 透光用開口
DESCRIPTION OF SYMBOLS 10 Sample cell 11 Sample cell main body 14 Gas introduction port 15 Gas discharge port 16 1st reflecting mirror 16A Reflecting surface 17 2nd reflecting mirror 17A, 17B Reflecting surface 18 Light incident side mirror 19 Light emitting side mirror 20 Infrared light source 21 Drive Source 21A Rotating shaft 22 Chopper 25 Infrared sensor 26 Optical filter 30, 30A Correlation cell for gas detection 31 Cell body 32A, 33A Gas chamber forming space 32 Measuring gas chamber 33 Comparison gas chamber C Rotating central shaft 34 Gas filling flow path 35 Closing member mounting portion 36 Gas injection tube member insertion hole 38 Window member mounting recess 39 Rotating shaft support portion 40 Window member 45 Stopping plug 50 Fixing screw 50A Temporary fixing screw 51 Through hole 60 Mask material 61 Translucent aperture

Claims (5)

検知対象ガスと同種のガスが封入された測定ガス室および比較ガスが封入された比較ガス室を有するガス検知用相関セルであって、
測定ガス室および比較ガス室の各々に連通するガス封入用流路を封止した後、測定ガス室および比較ガス室の各々に所定のガスを封入することにより得られたものであることを特徴とするガス検知用相関セル。
A correlation cell for gas detection having a measurement gas chamber in which the same kind of gas as the detection target gas is sealed and a comparison gas chamber in which a comparison gas is sealed,
It is obtained by sealing a gas-filling flow path communicating with each of the measurement gas chamber and the comparison gas chamber and then encapsulating a predetermined gas in each of the measurement gas chamber and the comparison gas chamber. Correlation cell for gas detection.
閉塞部材がガス封入用流路内に収容され、さらに、当該ガス封入用流路内に固定用ネジが装着されることにより、ガス封入用流路が気密に封止されていることを特徴とする請求項1に記載のガス検知用相関セル。   The closing member is accommodated in the gas sealing flow path, and the gas sealing flow path is hermetically sealed by mounting a fixing screw in the gas sealing flow path. The correlation cell for gas detection according to claim 1. 測定ガス室形成用空間および比較ガス室形成用空間、並びに当該空間の各々に連通するガス封入用流路が形成されたセル本体を作製し、当該セル本体におけるガス封入用流路を閉塞部材によって封止して測定ガス室および比較ガス室を形成した後、測定ガス室および比較ガス室の各々に所定のガスを封入することを特徴とするガス検知用相関セルの作製方法。   A measurement gas chamber forming space, a comparison gas chamber forming space, and a cell main body formed with a gas sealing flow path communicating with each of the spaces are manufactured, and the gas sealing flow path in the cell main body is formed by a blocking member. A method for producing a correlation cell for gas detection, comprising sealing and forming a measurement gas chamber and a comparison gas chamber, and then encapsulating a predetermined gas in each of the measurement gas chamber and the comparison gas chamber. 樹脂製の閉塞部材を全体が収容された状態でガス封入用流路内に装着することにより測定ガス室および比較ガス室を形成し、ガス注入用管部材を閉塞部材に穿刺して先端部をガス室またはガス封入用流路内に突出させ、各々のガス室内を真空引きした後、当該ガス注入用管部材を利用して測定ガス室および比較ガスの各々に所定のガスを注入し、ガス封入用流路内に固定用ネジを装着することによりガス封入用流路を気密に封止することを特徴とする請求項3に記載のガス検知用相関セルの作製方法。   A measuring gas chamber and a comparative gas chamber are formed by mounting the resin-made closing member in the gas sealing flow path in a state where the entire sealing member is accommodated, and the gas injection tube member is punctured into the closing member, and the tip portion is After projecting into the gas chamber or the gas-filling flow path and evacuating each gas chamber, a predetermined gas is injected into each of the measurement gas chamber and the comparison gas using the gas injection pipe member, 4. The method for producing a correlation cell for gas detection according to claim 3, wherein the gas sealing channel is hermetically sealed by mounting a fixing screw in the sealing channel. 回転駆動されることにより測定ガス室および比較ガス室が赤外線光源から被検ガスが導入されるサンプルセルに至る光路を交互に通過するよう配設されたガス検知用相関セルを備えてなり、当該ガス検知用相関セルを介して赤外光がサンプルセルに供給され、前記測定ガス室を透過した赤外光に係るセンサ信号および前記比較ガス室を透過した赤外光に係るセンサ信号に基づいて、検知対象ガスの濃度を検出する赤外線式ガス検知装置において、
ガス検知用相関セルが請求項1または請求項2に記載のものよりなることを特徴とする赤外線式ガス検知装置。
The measurement gas chamber and the comparison gas chamber are provided with a correlation cell for gas detection arranged so as to alternately pass through the optical path from the infrared light source to the sample cell into which the test gas is introduced by being driven to rotate. Infrared light is supplied to the sample cell via the correlation cell for gas detection, and based on the sensor signal related to the infrared light transmitted through the measurement gas chamber and the sensor signal related to the infrared light transmitted through the comparison gas chamber. In the infrared type gas detection device that detects the concentration of the detection target gas,
An infrared type gas detection apparatus, wherein the correlation cell for gas detection comprises the one according to claim 1 or 2.
JP2006020871A 2006-01-30 2006-01-30 Correlation cell for gas detection, method for producing the same, and infrared gas detection apparatus Expired - Fee Related JP4700506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020871A JP4700506B2 (en) 2006-01-30 2006-01-30 Correlation cell for gas detection, method for producing the same, and infrared gas detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020871A JP4700506B2 (en) 2006-01-30 2006-01-30 Correlation cell for gas detection, method for producing the same, and infrared gas detection apparatus

Publications (2)

Publication Number Publication Date
JP2007199032A true JP2007199032A (en) 2007-08-09
JP4700506B2 JP4700506B2 (en) 2011-06-15

Family

ID=38453766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020871A Expired - Fee Related JP4700506B2 (en) 2006-01-30 2006-01-30 Correlation cell for gas detection, method for producing the same, and infrared gas detection apparatus

Country Status (1)

Country Link
JP (1) JP4700506B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174868A (en) * 2008-01-21 2009-08-06 Dkk Toa Corp Correlation cell, gas analyzer, and assembling method of correlation cell
JP2010249725A (en) * 2009-04-17 2010-11-04 Shimadzu Corp Gas cell
KR101840813B1 (en) * 2016-11-15 2018-03-21 호남대학교 산학협력단 Multi-gas detecting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429862U (en) * 1990-06-29 1992-03-10
JPH0618798U (en) * 1992-08-19 1994-03-11 株式会社巴川製紙所 Grease lubricator for easy air removal
JPH07294432A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Gas correlative cell
JP2000060970A (en) * 1998-08-21 2000-02-29 Terumo Corp Medicine contained syringe
JP2001124671A (en) * 1999-10-27 2001-05-11 Sekisui Chem Co Ltd Housing body for analyzing gas
JP2004333170A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Gas sealing method for analysis gas filled device, and analysis gas filled device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429862U (en) * 1990-06-29 1992-03-10
JPH0618798U (en) * 1992-08-19 1994-03-11 株式会社巴川製紙所 Grease lubricator for easy air removal
JPH07294432A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Gas correlative cell
JP2000060970A (en) * 1998-08-21 2000-02-29 Terumo Corp Medicine contained syringe
JP2001124671A (en) * 1999-10-27 2001-05-11 Sekisui Chem Co Ltd Housing body for analyzing gas
JP2004333170A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Gas sealing method for analysis gas filled device, and analysis gas filled device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174868A (en) * 2008-01-21 2009-08-06 Dkk Toa Corp Correlation cell, gas analyzer, and assembling method of correlation cell
JP2010249725A (en) * 2009-04-17 2010-11-04 Shimadzu Corp Gas cell
KR101840813B1 (en) * 2016-11-15 2018-03-21 호남대학교 산학협력단 Multi-gas detecting apparatus

Also Published As

Publication number Publication date
JP4700506B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US8383047B2 (en) Fibre optic sensor
CN100542478C (en) Be used for measuring the probe of oxygen content of biological tissue and the conduit that has this probe
JP4700506B2 (en) Correlation cell for gas detection, method for producing the same, and infrared gas detection apparatus
JP2011257146A (en) Cell for optical measurement
KR100597138B1 (en) Cell for analyzing fluid and analyzing apparatus using the same
US20050156387A1 (en) Vented seal having redundant sealing components
CN105115954A (en) Fluorescence spectrophotometer based on optical integrating sphere
JP2003139701A (en) Infrared gas analyzer
EP2116842B1 (en) An X-ray fluorescence analyzer with gas-filled chamber
KR101041897B1 (en) Gas sensing member and gas detection apparatus suitable therefor
JP4278569B2 (en) Pressure measuring instrument
JP2005147962A (en) Optical gas concentration detector
JP4138306B2 (en) Absorber capsule and infrared gas analyzer
JP3891966B2 (en) Oil mist concentration detector
JP5661859B2 (en) Apparatus and method for measuring permeability of barrier element and super-barrier element
JP2004333170A (en) Gas sealing method for analysis gas filled device, and analysis gas filled device
RU2538420C2 (en) Device to control tightness of microstructure
KR200490024Y1 (en) Cell measuring ozone gas
JP2007256243A (en) Infrared gas detector
JP4120557B2 (en) Infrared gas analyzer
JP3610870B2 (en) Infrared gas analyzer
US10712502B2 (en) Probe for optical measurement and method of producing the same
JP2003083891A (en) Infrared gas analyzer
JP2007285915A (en) Gas sensor
JPH10332579A (en) Golay cell and 13c measuring apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R150 Certificate of patent or registration of utility model

Ref document number: 4700506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees