JP2009174807A - Coordinated operation type opening and closing device and adsorption type heat pump provided with the same - Google Patents

Coordinated operation type opening and closing device and adsorption type heat pump provided with the same Download PDF

Info

Publication number
JP2009174807A
JP2009174807A JP2008015192A JP2008015192A JP2009174807A JP 2009174807 A JP2009174807 A JP 2009174807A JP 2008015192 A JP2008015192 A JP 2008015192A JP 2008015192 A JP2008015192 A JP 2008015192A JP 2009174807 A JP2009174807 A JP 2009174807A
Authority
JP
Japan
Prior art keywords
evaporator
adsorption
condensed water
float
float plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008015192A
Other languages
Japanese (ja)
Inventor
Kenichi Nakayama
賢一 中山
Masaki Kondo
正樹 今藤
Ichiro Otomo
一朗 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2008015192A priority Critical patent/JP2009174807A/en
Publication of JP2009174807A publication Critical patent/JP2009174807A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coordinated operation type opening and closing device and an adsorption type heat pump capable of controlling supply of condensed water from a condenser to an evaporator in response to an adsorption situation of adsorbers, while dispensing with external driving energy for open-close switching. <P>SOLUTION: Open-close switching of supply of water vapor from the evaporator 4 to the adsorbers 2A, 2B is carried out by gate valves V3, V4, and open-close switching of supply of the condensed water from the condenser 3 to the evaporator is carried out by a float plug 6. Middle portions of operation arms 72, 82 of the gate valves V3, V4 are swingably supported by support parts 9, 9, the float plug is pressed downward by ends of the operation arms of the gate valves in fully opened states against a communication hole 33 against buoyancy of the condensed water to carry out full closing. Following swinging of the gate valve to a close side, the float plug becomes floatable, the communication hole is unplugged, and the condensed water is dropped into the evaporator. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着式冷凍サイクルを利用した吸着式ヒートポンプにおいて用いられる連係作動式開閉装置及びこの連係作動式開閉装置を備えた吸着式ヒートポンプに関する。   The present invention relates to a linkage operation type switching device used in an adsorption type heat pump using an adsorption type refrigeration cycle and an adsorption type heat pump provided with this linkage operation type switching device.

従来、吸着式ヒートポンプとして、吸着と脱着とを交互に切換えるための2系統分の複数の吸着器と、吸着させるために水を蒸発させる蒸発器と、脱着された水蒸気を凝縮させる凝縮器とを備え、蒸発器での水蒸発に基づき蒸発用熱交換器から連続して冷熱取り出しを行い得るようにしたものが知られている(例えば特許文献1参照)。このものにおいては、蒸発器から吸着器に、あるいは、吸着器から凝縮器に対し吸着質である水蒸気を移動させるために多数の開閉弁が用いられ、又、凝縮器から蒸発器に対しては、両者を連通接続して凝縮器で凝縮された水をそのまま蒸発器に落とし込むようにしている。   Conventionally, as an adsorption heat pump, a plurality of adsorbers for two systems for alternately switching between adsorption and desorption, an evaporator for evaporating water for adsorption, and a condenser for condensing desorbed water vapor It is known that the cooling heat can be continuously taken out from the heat exchanger for evaporation based on water evaporation in the evaporator (see, for example, Patent Document 1). In this device, a number of on-off valves are used to move water vapor as an adsorbate from the evaporator to the adsorber or from the adsorber to the condenser, and from the condenser to the evaporator. Both are connected to each other so that the water condensed in the condenser is dropped into the evaporator as it is.

又、吸収冷凍機・冷温水機の分野において、凝縮器から蒸発器に連通する管路に対し、U字型管路による差圧シールに代えて、フロート弁による差圧シールを適用したものが知られている(例えば特許文献2参照)。   Also, in the field of absorption refrigerators / cooling / hot water machines, a pipe that communicates from a condenser to an evaporator uses a differential pressure seal using a float valve instead of a differential pressure seal using a U-shaped pipe. It is known (see, for example, Patent Document 2).

特開平6−180159号公報JP-A-6-180159 特許第3416289号公報Japanese Patent No. 3416289

ところで、上記従来の吸着式ヒートポンプにおいて、凝縮機から蒸発器に対し凝縮水を無制御に落下させると、蒸発による冷熱生成能力の目減りを招くおそれがある。すなわち、凝縮機から供給される凝縮水が、蒸発器において本来蒸発させたい蒸発用熱交換器以外の部位で蒸発してしまい、蒸発用熱交換器での蒸発によって冷熱生成を促進させるという蒸発器での冷却機能を有効に発揮させ得ない事態を招くおそれがある。   By the way, in the conventional adsorption heat pump, if the condensed water is dropped from the condenser to the evaporator in an uncontrolled manner, there is a risk that the cold heat generation capability may be reduced by evaporation. That is, the evaporator in which the condensed water supplied from the condenser evaporates in a portion other than the evaporating heat exchanger that is originally intended to evaporate in the evaporator and promotes the generation of cold by evaporating in the evaporating heat exchanger. There is a risk of causing a situation in which the cooling function cannot be effectively exhibited.

一方、電磁式のポンプや電磁弁等により凝縮器から蒸発器に対する凝縮水の供給を制御することも考えられるが、そのためには電力等の外部駆動エネルギーを要することになる。そこで、外部駆動エネルギーを用いずに凝縮水の供給を行う手段としてフロート栓を用いて、凝縮水が所定量溜まればその浮力により浮上して開変換し、これにより凝縮水が蒸発器に流れ落ちるようにすることが考えられる。しかしながら、かかるフロート栓を採用したとしても、それだけでは凝縮器から蒸発器への凝縮水の供給タイミングを正確に制御し得ずに、上記と同様に蒸発による冷熱生成能力の目減りを招くおそれがある。すなわち、蒸発器で蒸発した水蒸気が吸着器において盛んに吸着されている最中に、開変換により凝縮機から蒸発器に対し凝縮水が勢いよく流し込まれると、その凝縮水が蒸発器に流入した部位で蒸発してしまい、上記と同様に本来蒸発させたい蒸発用熱交換器以外の部位で蒸発してしまうことになる。   On the other hand, it is conceivable to control the supply of condensed water from the condenser to the evaporator by means of an electromagnetic pump, solenoid valve, or the like, but this requires external driving energy such as electric power. Therefore, a float plug is used as a means for supplying condensed water without using external driving energy, and when a predetermined amount of condensed water accumulates, it floats and opens by its buoyancy, which causes the condensed water to flow down to the evaporator. It is possible to do so. However, even if such a float plug is used, the supply timing of the condensed water from the condenser to the evaporator cannot be accurately controlled by itself, and there is a possibility that the cold heat generation capability due to evaporation may be reduced as described above. . That is, when the water vapor evaporated in the evaporator is actively adsorbed in the adsorber, if the condensed water is poured into the evaporator vigorously from the condenser by open conversion, the condensed water flows into the evaporator. It evaporates at the site and evaporates at a site other than the evaporating heat exchanger that is originally intended to evaporate in the same manner as described above.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、開閉切換のための外部駆動エネルギーを不要としつつ、吸着器での吸着状況に応じて蒸発器に対する凝縮器からの凝縮水の供給を制御し得る開閉装置及びこれを備えた吸着式ヒートポンプを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to condense the evaporator according to the adsorption state in the adsorber while eliminating the need for external drive energy for switching between opening and closing. Another object of the present invention is to provide a switchgear that can control the supply of condensed water from the vessel and an adsorption heat pump including the switchgear.

上記目的を達成するために、連係作動式開閉装置に係る発明では、一対の吸着器と凝縮器との間の一対の開口又は一対の吸着器と蒸発器との間の一対の開口を各別に仕切り差圧を受けて開閉作動する一対の仕切弁と、上側の凝縮器から下側の蒸発器への連通路を開閉可能に切換えて凝縮水の供給を切換えるフロート栓とを備え、上記一対の仕切弁をフロート栓の左右両側位置に左右対称に配置し、上記フロート栓として、下動することにより上記連通路を閉状態にする一方、凝縮水の浮力を受けて浮上することにより上記連通路を開状態にするように配設してなる構成とし、上記各仕切弁として、上記開口を開閉する弁部と、この弁部から上記フロート栓まで一体に延びる作動アームとを備え、かつ、上記作動アームの中間部位が水平軸回りに揺動回転可能に支持されて、上記弁部に差圧を受けて揺動回転することにより開閉作動する構成とする。そして、上記各仕切弁とフロート栓とを、仕切弁が全開状態まで揺動回転したとき弁部に受けた差圧が作動アームを介してフロート栓に対し下向きの押圧力として伝達され、かつ、この押圧力によりフロート栓が凝縮水の浮力に抗して連通路を閉状態に維持されるように連係させることとした(請求項1)。   In order to achieve the above object, in the invention according to the linkage operation type switching device, a pair of openings between the pair of adsorbers and the condenser or a pair of openings between the pair of the adsorbers and the evaporator is separately provided. A pair of gate valves that open and close in response to a partition differential pressure, and a float plug that switches the supply path of condensed water by switching the communication path from the upper condenser to the lower evaporator so as to be openable and closable. The gate valve is arranged symmetrically on both left and right positions of the float plug, and as the float plug, the communication path is closed by moving downward, while the communication path is lifted by receiving the buoyancy of condensed water. Each of the gate valves is provided with a valve portion that opens and closes the opening, and an operating arm that extends integrally from the valve portion to the float plug, and The middle part of the operating arm is around the horizontal axis Is swung rotatably supported, a configuration in which opening and closing operations by swinging rotated by the differential pressure to the valve unit. And each differential valve and the float plug, the differential pressure received in the valve portion when the gate valve swings and rotates to the fully open state is transmitted as a downward pressing force to the float plug via the operating arm, and With this pressing force, the float plug is linked so as to keep the communication path closed against the buoyancy of the condensed water (Claim 1).

本発明の場合、例えば蒸発器と吸着工程が行われる吸着器との間の仕切弁であれば、吸着工程の当初には蒸発器で蒸発された吸着質(例えば水蒸気)が盛んに吸着されるため、仕切弁を押し上げる蒸発器と吸着器との間の圧力差は大きくなり、この圧力差に基づく差圧を弁部に受けた仕切弁は全開状態まで揺動する。この揺動回転によって、その仕切弁の作動アームがフロート栓に対し連通路を閉状態に維持する下向きの押圧力を作用させることになる。このため、凝縮器から蒸発器へ凝縮水が落とし込まれることはなく、蒸発器での蒸発に基づく冷熱生成を阻害する事態の発生を回避し得る。一方、上記吸着工程が進行して吸着器での吸着能力が飽和しだすと差圧はより小さくなって仕切弁は閉側に揺動回転することになる。これに伴い、フロート栓に対する押圧力が解消されるため、フロート栓は凝縮水の浮力により浮上して連通路が開状態に変えられる。これにより、凝縮器側から蒸発器に対し凝縮水が落とし込まれ、蒸発の継続による蒸発器での冷熱生成が続けられることになる。以上より、差圧に基づき仕切弁が開閉切換されるため、仕切弁の開閉切換のための外部駆動エネルギーを不要とし得る一方、吸着器での吸着の進行状況に応じて差圧が変化して仕切弁が揺動回転され、この仕切弁の揺動回転に連係してフロート栓の開閉状態が変更されるため、蒸発器に対する凝縮器からの凝縮水の供給を吸着工程の進行状況に応じて制御し得ることになる。   In the case of the present invention, for example, if it is a gate valve between the evaporator and the adsorber in which the adsorption process is performed, the adsorbate (for example, water vapor) evaporated in the evaporator is actively adsorbed at the beginning of the adsorption process. Therefore, the pressure difference between the evaporator that pushes up the gate valve and the adsorber increases, and the gate valve that receives the differential pressure based on this pressure difference in the valve portion swings to the fully open state. This swinging rotation causes the operating arm of the gate valve to apply a downward pressing force that keeps the communication path closed with respect to the float plug. For this reason, the condensed water is not dropped from the condenser to the evaporator, and it is possible to avoid the occurrence of a situation that inhibits the generation of cold based on the evaporation in the evaporator. On the other hand, when the adsorption process proceeds and the adsorption capacity in the adsorber begins to saturate, the differential pressure becomes smaller and the gate valve swings and rotates to the closed side. Along with this, since the pressing force against the float plug is eliminated, the float plug is lifted by the buoyancy of the condensed water and the communication path is changed to the open state. Thereby, condensed water is dropped into the evaporator from the condenser side, and cold heat generation in the evaporator is continued by continuing evaporation. As described above, since the gate valve is switched on and off based on the differential pressure, external drive energy for switching the gate valve on and off may be unnecessary, while the differential pressure changes depending on the progress of adsorption in the adsorber. The gate valve is oscillated and rotated, and the open / close state of the float plug is changed in conjunction with the oscillating rotation of the gate valve so that the supply of condensed water from the condenser to the evaporator is made according to the progress of the adsorption process. It can be controlled.

上記の発明において、上記フロート栓が上記全開状態の仕切弁の作動アームから下向きの押圧力の伝達を受けたとき、弾性変形した状態で上記連通路を閉状態に維持する一方、上記仕切弁が全開状態から閉側に対し逆方向に揺動回転しても弾性変形状態から弾性復元するまでの間は上記フロート栓を閉状態に維持する閉状態維持部材を、さらに備えるようにしてもよい(請求項2)。このようにすることにより、仕切弁が全開状態のときから閉側に所定量揺動回転するまでの間に亘り、フロート栓を閉状態に維持することが可能となる。これにより、蒸発器に対する凝縮器からの凝縮水の供給開始タイミングを吸着工程の後半にずらすような供給制御をも行い得ることになる。   In the above invention, when the float plug receives a downward pressing force from the operating arm of the fully opened gate valve, the float passage maintains the communication path in a closed state in an elastically deformed state. A closed state maintaining member for maintaining the float plug in the closed state may be further provided until the elastic deformation state is restored to the elastic state even when swinging and rotating in the reverse direction with respect to the closed side from the fully open state ( Claim 2). By doing so, it is possible to maintain the float plug in the closed state from the time when the gate valve is fully opened to the time when the gate valve swings and rotates by a predetermined amount. Thereby, the supply control which shifts the supply start timing of the condensed water from the condenser with respect to an evaporator to the latter half of an adsorption | suction process can also be performed.

又、上記の発明において、上記凝縮器の底部に、下方に凹んで凝縮水が溜まる溜まり部を形成し、この溜まり部の底面に上記連通路の上端が開口するように接続し、上記フロート栓を上記溜まり部に対し上から内装して上記連通路の上端開口を覆うように配設することもできる(請求項3)。このようにすることにより、フロート栓が開状態にされたときに、蒸発器に対し凝縮水が一気に落とし込まれるのではなくて所定量ずつ継続して落とし込むようにすることが可能となる。   In the above invention, the bottom portion of the condenser is formed with a recessed portion that is recessed downward to accumulate condensed water, and is connected to the bottom surface of the reservoir portion so that the upper end of the communication passage is opened. It can also be arranged so as to cover the upper end opening of the communicating path by being installed from above with respect to the pool part. In this way, when the float plug is opened, the condensed water is not dropped into the evaporator at once, but can be continuously dropped by a predetermined amount.

そして、吸着工程と脱着工程とが交互に切換えられる一対の吸着器と、吸着工程にある吸着器に吸着させるために吸着質を蒸発させる蒸発器と、脱着工程にある吸着器で脱着された吸着質を凝縮させる凝縮器と、請求項1〜請求項3のいずれかに記載の連係作動式開閉装置とを備えてなる吸着式ヒートポンプとすることにより(請求項4)、以上の連係作動式開閉装置の適用に基づく作用を具現化した吸着式ヒートポンプを実現し得ることになる。   Then, a pair of adsorbers in which the adsorption process and the desorption process are alternately switched, an evaporator for evaporating adsorbate to be adsorbed by the adsorber in the adsorption process, and an adsorption desorbed by the adsorber in the desorption process By employing an adsorption heat pump comprising a condenser for condensing the quality and the linkage operation type switching device according to any one of claims 1 to 3 (Claim 4), the above linkage operation type switching operation is performed. An adsorption heat pump that embodies the action based on the application of the apparatus can be realized.

以上、説明したように、請求項1〜請求項3のいずれかの連係作動式開閉装置によれば、一対の吸着器と凝縮器との間の一対の開口又は一対の吸着器と蒸発器との間の一対の開口を各別に仕切る一対の仕切弁の開閉切換のための外部駆動エネルギーを不要にすることができる。その上に、差圧に基づき開閉作動させる仕切弁のその開閉作動に連係してフロート栓の開閉作動を行わせることができ、このフロート栓の開閉作動により凝縮器から蒸発器への凝縮水の供給切換の制御を行うことができる。以上より、開閉切換のための外部駆動エネルギーを不要としつつ、吸着器での吸着の進行状況に応じて蒸発器に対する凝縮器からの凝縮水の供給を制御することができるようになる。   As described above, according to the linkage operation type switching device according to any one of claims 1 to 3, a pair of openings between a pair of adsorbers and a condenser or a pair of adsorbers and an evaporator It is possible to eliminate the need for external drive energy for switching the opening and closing of the pair of gate valves that partition the pair of openings between the two. In addition, the float plug can be opened and closed in conjunction with the opening and closing operation of the gate valve that opens and closes based on the differential pressure. By the opening and closing operation of the float plug, the condensed water from the condenser to the evaporator can be opened and closed. Supply switching can be controlled. From the above, it becomes possible to control the supply of condensed water from the condenser to the evaporator according to the progress of adsorption in the adsorber, while eliminating the need for external drive energy for switching between opening and closing.

特に請求項2によれば、閉状態維持部材を設けることにより、仕切弁が全開状態のときから閉側に所定量揺動回転するまでの間に亘り、フロート栓を閉状態に維持することができ、これにより、蒸発器に対する凝縮器からの凝縮水の供給開始タイミングを吸着工程の後半にずらすような供給制御をも行うことができるようになる。   In particular, according to claim 2, by providing the closed state maintaining member, it is possible to maintain the float plug in the closed state from the time when the gate valve is fully opened to the time when the gate valve swings and rotates by a predetermined amount. Thus, it is possible to perform supply control such that the supply start timing of the condensed water from the condenser to the evaporator is shifted to the latter half of the adsorption process.

請求項3によれば、フロート栓が開状態にされたときに、溜まり部内から蒸発器に対し所定量ずつ継続して落とし込むようにすることができるようになる。   According to the third aspect, when the float plug is opened, it can be continuously dropped into the evaporator from the reservoir portion by a predetermined amount.

又、請求項4の吸着式ヒートポンプによれば、以上の請求項1〜請求項3のいずれかの連係作動式開閉装置に基づく効果を得ることができることになる。   Further, according to the adsorption heat pump of the fourth aspect, it is possible to obtain the effect based on the linkage operation type opening / closing device of any one of the first to third aspects.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態に係る吸着式ヒートポンプを示す原理図である。同図において、符号1はハウジング、2A,2Bは一対の吸着器、3は凝縮器、4は蒸発器である。一対の吸着器2A,2Bは、ハウジング1の左右両側部分がそれぞれ上下方向全長に延びる区画壁51,52により仕切られて独立した密閉空間である吸着/脱着室20A,20Bと、この吸着/脱着室20A,20Bに配設した吸着/脱着用熱交換器21,21とで構成されたものである。又、凝縮器3は上記一対の吸着器2A,2Bに挟まれた左右方向中間領域の上側部分に、蒸発器4は下側部分に互いに仕切られて配設されており、凝縮器3は独立した密閉空間とされた凝縮室30と、凝縮室30に内蔵された凝縮用熱交換器31とで構成され、蒸発器4は同様に独立した密閉空間とされた蒸発室40と、蒸発室40に内蔵された蒸発用熱交換器41とで構成されている。上記ハウジング1内は図示省略の真空ポンプ等により略真空状態に維持されて、内部には例えば水、アルコール、アンモニア等の吸着質が所要量封入されている。以下、吸着質として水が封入されているものとして説明を続ける。
<First Embodiment>
FIG. 1 is a principle diagram showing an adsorption heat pump according to the first embodiment of the present invention. In the figure, reference numeral 1 is a housing, 2A and 2B are a pair of adsorbers, 3 is a condenser, and 4 is an evaporator. The pair of adsorbers 2A and 2B includes adsorbing / desorbing chambers 20A and 20B, which are independent sealed spaces partitioned by partition walls 51 and 52 that extend from the left and right sides of the housing 1 to the entire length in the vertical direction. This is composed of adsorption / desorption heat exchangers 21 and 21 arranged in the chambers 20A and 20B. Further, the condenser 3 is disposed on the upper part of the intermediate region in the left-right direction between the pair of adsorbers 2A and 2B, and the evaporator 4 is partitioned on the lower part. The condenser 3 is independent. The condensing chamber 30 formed into a sealed space and the condensing heat exchanger 31 built in the condensing chamber 30, and the evaporator 4 is similarly formed as an independent sealed space, and the evaporation chamber 40. And an evaporating heat exchanger 41 built-in. The housing 1 is maintained in a substantially vacuum state by an unillustrated vacuum pump or the like, and a required amount of adsorbate such as water, alcohol, ammonia or the like is enclosed therein. Hereinafter, the description will be continued assuming that water is enclosed as an adsorbate.

上記一対の吸着器2A,2Bを構成する吸着/脱着用熱交換器21,21の外表面にはゼオライト,シリカゲルもしくは活性炭等の吸着剤が固定されている。そして、図示を省略しているが、各吸着/脱着用熱交換器21には、これに対し高温(例えば75℃)の熱媒又は低温(例えば32℃)の熱媒のいずれかが供給切換可能に循環供給されるように熱媒供給配管が接続されている。つまり、吸着/脱着用熱交換器21に低温の熱媒が循環供給されると、吸着器2A又は2Bは外表面の吸着剤が冷やされて気体状態の吸着質である水蒸気を吸着する吸着工程を行うことになり、逆に高温の熱媒が循環供給されると、吸着器2A又は2Bは、吸着剤に既に吸着されていた水蒸気を脱着(分離)させる脱着工程を行うようになる。   Adsorbents such as zeolite, silica gel or activated carbon are fixed on the outer surfaces of the adsorption / desorption heat exchangers 21 and 21 constituting the pair of adsorbers 2A and 2B. Although not shown, each adsorption / desorption heat exchanger 21 is supplied with either a high-temperature (for example, 75 ° C.) heat medium or a low-temperature (for example, 32 ° C.) heat medium. A heat medium supply pipe is connected so as to be circulated and supplied as possible. That is, when a low-temperature heat medium is circulated and supplied to the adsorption / desorption heat exchanger 21, the adsorber 2 </ b> A or 2 </ b> B is an adsorption process in which the adsorbent on the outer surface is cooled and adsorbs water vapor that is a gaseous adsorbate. Conversely, when a high-temperature heat medium is circulated and supplied, the adsorber 2A or 2B performs a desorption process for desorbing (separating) water vapor that has already been adsorbed by the adsorbent.

上記凝縮器3を構成する凝縮用熱交換器31には、凝縮作動用に所定温度(例えば32℃)の熱媒を循環供給する熱媒供給配管(図示省略)が接続されている。又、上記蒸発器4を構成する蒸発用熱交換器41には、蒸発作動用に所定温度(例えば20℃)の熱媒を循環供給する熱媒供給配管(図示省略)が接続されている。   A heat medium supply pipe (not shown) that circulates and supplies a heat medium having a predetermined temperature (for example, 32 ° C.) for condensing operation is connected to the heat exchanger 31 for condensing constituting the condenser 3. Further, a heating medium supply pipe (not shown) for circulating and supplying a heating medium at a predetermined temperature (for example, 20 ° C.) for the evaporation operation is connected to the evaporation heat exchanger 41 constituting the evaporator 4.

上記区画壁51にはハウジング1の中央寄りに凹む凹部511が形成され、区画壁52にも同様にハウジング1の中央寄りに凹む凹部521が形成されている。吸着/脱着室20Aと凝縮室30とを連通させる開口512が上記凹部511の上側に形成される一方、吸着/脱着室20Bと凝縮室30とを連通させる開口522が上記凹部521の上側に形成されている。そして、上記開口512,522には、吸着器2A又は2Bから脱着された水蒸気を凝縮器3に対し凝縮させるために送り込む仕切弁V1,V2が設けられている。又、蒸発室40と吸着/脱着室20Aとを連通させる開口513が上記凹部511の下側に形成される一方、蒸発室40と吸着/脱着室20Bとを連通させる開口523が上記凹部521の上側に形成されている。そして、上記開口513,523には、蒸発室40から蒸発した気体状態の吸着質である水蒸気を吸着器2A又は2Bに対し吸着のために送り込む仕切弁V3,V4が設けられている。さらに、上記凝縮室30の底面には、上記の両凹部511,521の左右間を凝縮室30から蒸発室40側に貫入するように凹まされた溜まり部32が区画形成され、この溜まり部32内にはフロート栓6が設けられている。このフロート栓6は、上記溜まり部32の底面を上下方向に貫通する連通路としての連通孔33を上記仕切弁V3,V4の開閉作動に連係して開閉させることにより、凝縮器3で凝縮された液体状態の吸着質である凝縮水を所定タイミングで蒸発器4に対し落とし込むようになっている。後に詳細に説明するように、フロート栓6と、一対の仕切弁V3,V4とによって本発明の連係作動式開閉装置が構成されている。   The partition wall 51 is formed with a recess 511 that is recessed toward the center of the housing 1, and the partition wall 52 is similarly formed with a recess 521 that is recessed toward the center of the housing 1. An opening 512 for communicating the adsorption / desorption chamber 20A and the condensation chamber 30 is formed above the recess 511, while an opening 522 for communicating the adsorption / desorption chamber 20B and the condensation chamber 30 is formed above the recess 521. Has been. The openings 512 and 522 are provided with gate valves V1 and V2 for feeding water vapor desorbed from the adsorber 2A or 2B to the condenser 3, respectively. An opening 513 for communicating the evaporation chamber 40 and the adsorption / desorption chamber 20A is formed below the recess 511, while an opening 523 for communicating the evaporation chamber 40 and the adsorption / desorption chamber 20B is formed in the recess 521. It is formed on the upper side. The openings 513 and 523 are provided with gate valves V3 and V4 for sending water vapor, which is a gaseous adsorbate evaporated from the evaporation chamber 40, to the adsorber 2A or 2B for adsorption. Further, the bottom of the condensing chamber 30 is partitioned and formed with a reservoir 32 that is recessed so as to penetrate the left and right of the concave portions 511 and 521 from the condensing chamber 30 toward the evaporation chamber 40. A float plug 6 is provided inside. The float plug 6 is condensed in the condenser 3 by opening and closing a communication hole 33 as a communication passage penetrating the bottom surface of the reservoir portion 32 in the vertical direction in conjunction with opening and closing operations of the gate valves V3 and V4. The condensed water, which is a liquid adsorbate, is dropped into the evaporator 4 at a predetermined timing. As will be described in detail later, the float stopper 6 and the pair of gate valves V3, V4 constitute the linkage operation type opening / closing device of the present invention.

上記仕切弁V1,V2は、それぞれ差圧を受けて開閉するフラップ式逆流防止弁により構成されて、脱着工程の吸着器2A又は2Bから凝縮器3への水蒸気の流れを許容するように開くものの、逆方向である凝縮器3の側から吸着器2A又は2Bへの流れに対しては閉じて阻止するようになっている。すなわち、仕切弁V1,V2は、脱着工程の吸着器2A又は2Bで脱着した水蒸気によりその吸着/脱着室20A又は20Bの内圧が凝縮室30のそれよりも高くなると、その内圧上昇分の差圧を受けて上向きに開いて脱着後の水蒸気を開口512又は522を通して凝縮室30側に流し(図1のV2参照)、逆に吸着/脱着室20A又は20Bの側の内圧が凝縮室30のそれよりも低くなると、その差圧と自重の作用により下向きに閉じて凝縮室30から吸着/脱着室20A,20B側への逆流を阻止するようになっている(図1のV1参照)。   The gate valves V1 and V2 are configured by flap-type backflow prevention valves that open and close in response to a differential pressure, respectively, and open to allow the flow of water vapor from the adsorber 2A or 2B in the desorption process to the condenser 3. The flow from the condenser 3 side in the reverse direction to the adsorber 2A or 2B is closed and prevented. That is, when the internal pressure of the adsorption / desorption chamber 20A or 20B becomes higher than that of the condensation chamber 30 due to the water vapor desorbed by the adsorber 2A or 2B in the desorption process, the gate valves V1 and V2 have a differential pressure corresponding to the increase in the internal pressure. In response to this, the desorbed water vapor flows upward through the opening 512 or 522 to the condensation chamber 30 side (see V2 in FIG. 1), and conversely the internal pressure on the adsorption / desorption chamber 20A or 20B side is that of the condensation chamber 30. If the pressure is lower than that, it closes downward by the action of the differential pressure and its own weight to prevent backflow from the condensation chamber 30 to the adsorption / desorption chambers 20A and 20B (see V1 in FIG. 1).

仕切弁V3,V4は、それぞれ差圧を受けて開閉するフラップ式逆流防止弁により構成される一方、その開閉作動によりフロート栓6を溜まり部32内の凝縮水の浮力に抗して閉状態に維持したり所定のタイミングで開変換させたりするようになっている。すなわち、差圧に基づく開閉作動として、蒸発器4で凝縮水が蒸発して蒸発室40の内圧が吸着/脱着室20A又は20Bのそれよりも高くなると、その蒸発室40の内圧上昇分の差圧を受けて上向きに開いて蒸発した水蒸気を開口513又は523を通して吸着/脱着室20A,20Bに流し(図1のV3参照)、逆に脱着工程の吸着器2A又は2Aでは脱着した水蒸気によりその吸着/脱着室20A又は20Bの内圧が蒸発室40のそれよりも高くなるため、その差圧と自重の作用により下向きに閉じて吸着/脱着室20A,20B側から蒸発室40への逆流を阻止するようになっている(図1のV4参照)。   The gate valves V3 and V4 are each constituted by a flap type backflow prevention valve that opens and closes by receiving a differential pressure, while the float plug 6 is closed against the buoyancy of the condensed water in the reservoir 32 by the opening and closing operation. It can be maintained or opened and converted at a predetermined timing. That is, as the opening / closing operation based on the differential pressure, if the condensed water evaporates in the evaporator 4 and the internal pressure of the evaporation chamber 40 becomes higher than that of the adsorption / desorption chamber 20A or 20B, the difference in the increase in internal pressure of the evaporation chamber 40 The water vapor that has been opened upward under pressure is allowed to flow through the openings 513 or 523 to the adsorption / desorption chambers 20A and 20B (see V3 in FIG. 1), and conversely in the adsorber 2A or 2A in the desorption process, Since the internal pressure of the adsorption / desorption chamber 20A or 20B is higher than that of the evaporation chamber 40, it closes downward due to the differential pressure and the action of its own weight to prevent backflow from the adsorption / desorption chamber 20A, 20B side to the evaporation chamber 40. (See V4 in FIG. 1).

又、仕切弁V3,V4は、図2(a)に詳細を示すように、弁部であるフラップ弁部71,81と、作動アーム72,82とを一体に備えたものであり、作動アーム72,82の中間部位が溜まり部32を構成する側壁(又は周壁)321,322に対し支持部9,9によって揺動可能に支持されている。そして、仕切弁V3,V4は、支持部9,9を支点として揺動することにより、上記フラップ弁部71,81が開口513,523を開閉させる一方、上記作動アーム72,82の端部がフロート栓6のフロート本体61の上端面に当接・離反してフロート栓6の開閉切換を行わせるようになっている。上記各支持部9は、作動アーム72,82を水平軸回りに揺動回転させ得るように支持すると共に、凝縮室30と吸着/脱着室20A,20Bとの間のシールを兼ねるものに構成されている。具体例としては図2(b)に詳細を示すように、各支持部9はVの字状又はYの字状の断面形状を有するゴム製等の支持片91,91からなり、作動アーム72,82を上下から挟んだ状態で各支持片91と作動アーム72,82とが接着等の手段により接合されている。   As shown in detail in FIG. 2A, the gate valves V3 and V4 are integrally provided with flap valve portions 71 and 81, which are valve portions, and operating arms 72 and 82. The intermediate portions 72 and 82 are supported by the support portions 9 and 9 so as to be swingable with respect to the side walls (or peripheral walls) 321 and 322 constituting the accumulation portion 32. The gate valves V3 and V4 swing around the support portions 9 and 9 so that the flap valve portions 71 and 81 open and close the openings 513 and 523, while the end portions of the operating arms 72 and 82 are The float plug 6 is switched between open and closed by contacting and separating from the upper end surface of the float main body 61 of the float plug 6. Each of the support portions 9 is configured to support the operating arms 72 and 82 so as to swing and rotate about a horizontal axis, and also serves as a seal between the condensing chamber 30 and the adsorption / desorption chambers 20A and 20B. ing. As a specific example, as shown in detail in FIG. 2 (b), each support portion 9 includes support pieces 91, 91 made of rubber or the like having a V-shaped or Y-shaped cross section, and an operating arm 72. , 82 are sandwiched from above and below, and each support piece 91 and the operating arms 72, 82 are joined together by means such as adhesion.

上記フロート栓6は、内部が空洞とされたフロート本体61と、このフロート本体61の下端面から連通孔33に挿入し得るように下方に突出されたガイド凸部62と、連通孔33の周囲を囲むようにフロート本体61の下端面に固定されたOリング等の弾性シール部材63とから構成されている。上記ガイド凸部62は、連通孔33よりも所定の隙間を残す程度に小径に設定され、フロート栓6が上下方向に浮上したり沈み込んだりする際に安定姿勢で上下動するようにガイドする一方、フロート栓6が開変換された際に溜まり部32内の凝縮水Wが連通孔33に対し所定の少量ずつ継続して流れ落ちるように調整し得るようになっている。又、上記弾性シール部材63は、後述の如く扁平に弾性変形した状態から元の円形断面にまで弾性復元するまでの間、連通孔33を閉状態に維持して、凝縮室30の側から蒸発室40への凝縮水Wの供給を遮断するようになっている。かかる弾性シール部材63によって閉状態維持部材が構成されている。   The float plug 6 includes a float body 61 having a hollow inside, a guide protrusion 62 projecting downward so as to be inserted into the communication hole 33 from the lower end surface of the float body 61, and the periphery of the communication hole 33. And an elastic seal member 63 such as an O-ring fixed to the lower end surface of the float main body 61 so as to surround. The guide protrusion 62 is set to have a small diameter so as to leave a predetermined gap from the communication hole 33 and guides the float plug 6 to move up and down in a stable posture when the float plug 6 floats and sinks in the vertical direction. On the other hand, when the float plug 6 is open-converted, the condensed water W in the reservoir portion 32 can be adjusted so as to continuously flow down to the communication hole 33 by a predetermined small amount. Further, the elastic seal member 63 evaporates from the condensation chamber 30 side while maintaining the communication hole 33 in a closed state until it is elastically restored from the flat elastic deformation state to the original circular cross section as will be described later. The supply of the condensed water W to the chamber 40 is cut off. The elastic seal member 63 constitutes a closed state maintaining member.

そして、仕切弁V3,V4の内、全開状態(弁開度100%;図2(a)に実線で示すV3参照)にある仕切弁V3又はV4(図2(a)ではV3)の作動アーム72又は82(図2(a)では72)がフロート栓6の上端面に当接して下向きに押圧力を加える結果、弾性シール部材63がフロート本体61と溜まり部32の底面323との間に挟まれて扁平形状に弾性変形した閉栓状態(栓開度0%)に維持される。逆に、全閉状態(弁開度0%;図2(a)に実線で示すV4参照)にある仕切弁V3,V4(同図ではV4)の作動アーム72,82(同図では82)はフロート栓6から上方に離れることになる。フロート栓6の閉栓状態、つまり連通孔33を閉じて流れを遮断した状態は、仕切弁V3又はV4が全開状態から全開と全閉との中間開閉状態まで維持され、それ以後、仕切弁V3又はV4が全閉状態まではフロート栓6は閉栓状態から開栓状態に移行して徐々に栓開度が大きくなるようになっている。すなわち、図2(c)に仕切弁V3の場合について示すように、仕切弁V3が全開状態では弾性シール部材63を弾性変形させた閉栓状態となり(同図に実線で示す状態参照)、仕切弁V3が全開状態から反時計方向に揺動していって中間揺動状態に至ると作動アーム72の揺動に伴いフロート栓6が凝縮水の浮力を受けて浮き上がり、弾性シール部材63が元の円形断面形状まで弾性復元することになる(同図に二点鎖線で示す状態参照)。この段階までフロート栓6の閉栓状態が維持される。そして、以後、さらに仕切弁V3が反時計方向に揺動して開口513を閉じた全閉状態までは作動アーム72の端部がさらに上方に移動するに従いフロート栓6も浮上して栓開度が大きくなる。なお、図例では仕切弁V3,V4として、フラップ弁部71,81と、作動アーム72,82との境界位置でくの字状に屈曲させた断面形状のものを示しているが、これに限らず、一直線状の断面形状のもので構成してもよい。   Then, among the gate valves V3 and V4, the operating arm of the gate valve V3 or V4 (V3 in FIG. 2A) in the fully opened state (valve opening degree 100%; see V3 shown by a solid line in FIG. 2A) 72 or 82 (72 in FIG. 2A) abuts against the upper end surface of the float plug 6 and applies a downward pressure, so that the elastic seal member 63 is interposed between the float main body 61 and the bottom surface 323 of the reservoir portion 32. It is maintained in a closed state (plug opening degree 0%) sandwiched and elastically deformed into a flat shape. Conversely, the operating arms 72 and 82 (82 in the figure) of the gate valves V3 and V4 (V4 in the figure) in the fully closed state (the valve opening degree 0%; see V4 indicated by the solid line in FIG. 2A). Will move upward from the float plug 6. The closed state of the float plug 6, that is, the state in which the communication hole 33 is closed and the flow is blocked, is maintained from the fully open state to the intermediate open / close state between the fully open state and the fully closed state. Until V4 is in the fully closed state, the float plug 6 shifts from the closed state to the open state, and the plug opening gradually increases. That is, as shown in FIG. 2 (c) for the gate valve V3, when the gate valve V3 is fully open, the elastic seal member 63 is elastically deformed (see the state shown by the solid line in FIG. 2). When V3 swings counterclockwise from the fully open state and reaches the intermediate swing state, the float plug 6 floats due to the buoyancy of the condensed water as the operating arm 72 swings, and the elastic seal member 63 returns to its original state. It will be elastically restored to a circular cross-sectional shape (see the state indicated by the two-dot chain line in the figure). Until this stage, the closed state of the float plug 6 is maintained. After that, until the gate valve V3 further swings counterclockwise and the opening 513 is closed, the float plug 6 rises as the end of the operating arm 72 moves further upward. Becomes larger. In the illustrated example, the gate valves V3 and V4 have a cross-sectional shape bent in a dogleg shape at the boundary between the flap valve portions 71 and 81 and the operating arms 72 and 82. Not limited to this, it may be configured with a straight cross-sectional shape.

以上の吸着式ヒートポンプを用いた、吸着式冷凍サイクルに基づく冷熱取り出しのための運転について説明する。この運転は、一対の吸着器2A,2Bで吸着工程と脱着工程とを交互に切換えるというバッチ処理方式によって連続した冷熱取り出しを可能とするものである。すなわち、あるサイクルでのバッチ処理として、蒸発器4から蒸発された水蒸気の供給を受けて一方の吸着器(例えば2A)で吸着工程を行うと同時に、他方の吸着器2Bで脱着工程を行って脱着後の水蒸気を凝縮器3に供給して凝縮させ、次のサイクルのバッチ処理では、一対の吸着器2A,2Bでの工程を互いに切換えて、上記の吸着器2Aで脱着工程を行わせると同時に上記の吸着器2Bで吸着工程を行わせる。つまり吸着器2Aでは前のサイクルで吸着させた水蒸気を脱着させて凝縮器3に供給し、吸着器2Bでは前のサイクルで脱着させた後の吸着剤に対し蒸発器4からの水蒸気を供給して吸着させるのである。このようなサイクルを交互に繰り返す。このようにすることにより、蒸発器4での蒸発と、凝縮器3での凝縮とが連続して行われ、蒸発器4に循環供給される熱媒が蒸発熱により冷却されて戻され、この冷却された熱媒によって冷熱を連続して取り出すことができるようになる。   An operation for taking out the cold based on the adsorption refrigeration cycle using the above adsorption heat pump will be described. This operation enables continuous cooling and taking out by a batch processing system in which the adsorption process and the desorption process are alternately switched by the pair of adsorbers 2A and 2B. That is, as a batch process in a certain cycle, an adsorption process is performed with one adsorber (for example, 2A) upon receiving the supply of vapor evaporated from the evaporator 4, and a desorption process is performed with the other adsorber 2B. The desorbed water vapor is supplied to the condenser 3 to be condensed, and in the batch processing of the next cycle, the steps in the pair of adsorbers 2A and 2B are switched to each other and the desorption step is performed in the adsorber 2A. At the same time, the adsorption process is performed in the adsorber 2B. That is, in the adsorber 2A, the water vapor adsorbed in the previous cycle is desorbed and supplied to the condenser 3, and in the adsorber 2B, the water vapor from the evaporator 4 is supplied to the adsorbent after desorption in the previous cycle. It is adsorbed. Such a cycle is repeated alternately. By doing in this way, the evaporation in the evaporator 4 and the condensation in the condenser 3 are continuously performed, and the heat medium circulated and supplied to the evaporator 4 is cooled by the evaporation heat and returned. The cold heat can be continuously taken out by the cooled heat medium.

かかる運転の際の仕切弁V1,V2,V3,V4の弁開度と、フロート栓6の栓開度との関係について図3を参照しつつ説明する。図3においては、各仕切弁V1,V2,V3,V4の弁開度の状態を実線で示し、フロート栓6の栓開度の状態を一点鎖線で示している。例えば吸着器2A(同図では単に「A」と表示)で吸着工程、吸着器2B(同図では単に「B」と表示)で脱着工程を行うサイクル1では、仕切弁V1が全閉状態に維持される一方、仕切弁V2が最初は全開状態になるものの徐々に閉側に移行して全閉状態に至ることになる。又、仕切弁V3は最初に全開状態になって徐々に閉側に移行して最後に全閉状態に至る一方、仕切弁V4は全閉状態に維持されることになる。このサイクル1でのフロート栓6の状況と、それに伴う凝縮水Wの蒸発器4への供給は次のようになる。すなわち、仕切弁V3が全開状態にある時点から閉側に移行して中間揺動状態に至るまではフロート栓6は閉栓状態(栓開度0%)を維持し、それ以後、仕切弁V3が全閉状態に至るまではフロート栓6は全開状態にまで徐々に栓開度を増大させることになる。このため、サイクル1の前半にはフロート栓6は閉栓状態を維持して凝縮器3から蒸発器4への凝縮水Wの供給はないが、サイクル1の後半になるとフロート栓6は開栓状態となって凝縮器3の溜まり部32から蒸発器4に対し凝縮水Wが流れ込ませることができるようになり、サイクル1の終盤に凝縮水Wの供給は最大量となる。   The relationship between the valve openings of the gate valves V1, V2, V3, V4 and the opening of the float plug 6 during such operation will be described with reference to FIG. In FIG. 3, the valve opening states of the gate valves V1, V2, V3, and V4 are indicated by solid lines, and the plug opening state of the float plug 6 is indicated by an alternate long and short dash line. For example, in the cycle 1 in which the adsorption process is performed by the adsorber 2A (simply indicated as “A” in the figure) and the desorption process is performed by the adsorber 2B (simply indicated as “B” in the figure), the gate valve V1 is fully closed. On the other hand, the gate valve V2 is initially fully opened, but gradually shifts to the closed side and reaches the fully closed state. Further, the gate valve V3 is first fully opened and gradually shifts to the closed side, and finally reaches the fully closed state, while the gate valve V4 is maintained in the fully closed state. The state of the float plug 6 in the cycle 1 and the supply of the condensed water W to the evaporator 4 are as follows. That is, the float plug 6 remains in the closed state (plug opening degree 0%) from the time when the gate valve V3 is in the fully opened state until the gate valve V3 moves to the closed side and reaches the intermediate swing state. Until the fully closed state, the float plug 6 gradually increases the opening degree of the plug until the fully closed state. For this reason, in the first half of cycle 1, the float plug 6 is kept closed and no condensed water W is supplied from the condenser 3 to the evaporator 4, but in the second half of the cycle 1, the float plug 6 is opened. Thus, the condensed water W can flow into the evaporator 4 from the pool portion 32 of the condenser 3, and the supply of the condensed water W becomes the maximum amount at the end of the cycle 1.

かかる変化を、蒸発器4と吸着工程にある吸着器2Aとの蒸発−吸着工程の状況との関係で見てみると、サイクル1の当初は、吸着器2Aの吸着/脱着用熱交換器2の吸着剤は未吸着状態であるので吸着能力は最も高く、これに吸着される蒸発器4側からの水蒸気の圧力、つまり仕切弁V3を上向きに押し上げる差圧が最も大きくなるため、仕切弁V3は全開状態になる。そして、吸着器2Aの吸着/脱着用熱交換器21の吸着剤に対する水蒸気の吸着が進行するにつれて吸着能力も低下していくため、サイクル1の進行に伴い蒸発器4からの仕切弁V3を押し上げる差圧も低下して、仕切弁V3は徐々に閉側に揺動する。このサイクル1の前半においてはフロート栓6が閉栓状態に維持されて凝縮水Wが蒸発器に対し新たに落とし込まれることもないため、蒸発器4内の蒸発用熱交換器41での蒸発による冷却に支障を与えることもない。そして、サイクル1の後半に入ると、仕切弁V3の閉側揺動に伴いフロート栓6が開いて凝縮水Wが蒸発器4の蒸発用熱交換器41に供給され、供給された凝縮水が蒸発器4で蒸発されることになる。この供給される凝縮水の蒸発によってサイクル1の後半においても蒸発用熱交換器41による冷熱取り出しを有効に継続させることができるようになる。   Looking at this change in relation to the state of the evaporation-adsorption process between the evaporator 4 and the adsorber 2A in the adsorption process, at the beginning of the cycle 1, the adsorption / desorption heat exchanger 2 of the adsorber 2A is used. Since the adsorbent is in an unadsorbed state, the adsorption capacity is the highest, and the pressure of water vapor from the evaporator 4 side adsorbed thereto, that is, the differential pressure that pushes up the gate valve V3 upward is the largest, so the gate valve V3 Is fully open. Then, as the adsorption of water vapor to the adsorbent of the adsorption / desorption heat exchanger 21 of the adsorber 2A progresses, the adsorbing capacity also decreases. Therefore, as the cycle 1 proceeds, the gate valve V3 from the evaporator 4 is pushed up. The differential pressure also decreases, and the gate valve V3 gradually swings to the closing side. In the first half of the cycle 1, the float plug 6 is maintained in the closed state, and the condensed water W is not newly dropped into the evaporator. Therefore, the evaporation by the evaporation heat exchanger 41 in the evaporator 4 is performed. There is no hindrance to cooling. Then, when entering the latter half of the cycle 1, the float plug 6 opens as the gate valve V3 swings closed, and the condensed water W is supplied to the evaporation heat exchanger 41 of the evaporator 4, and the supplied condensed water is supplied. It will be evaporated by the evaporator 4. By evaporating the supplied condensed water, it is possible to continue the extraction of the cold heat by the evaporating heat exchanger 41 even in the latter half of the cycle 1.

そして、工程切換により次のサイクル2(吸着器2Aが脱着工程、吸着器2Bが吸着工程)に入ると、仕切弁V1は全開状態から徐々に閉側に移行し、仕切弁V2は閉状態に維持され、仕切弁V3は閉状態に維持され,仕切弁V4はサイクル1における仕切弁V3と同様に最初に全開状態になって徐々に閉側に移行して最後に全閉状態に至ることになる。この場合も仕切弁V4の揺動に基づく全開から全閉までの変化に伴い、フロート栓6はサイクル2の前半には閉栓状態に維持され後半には徐々に全開の開栓状態まで開いて凝縮水Wを蒸発器4に供給することになる。以後、サイクル3、サイクル4、…と一対の吸着器2A,2Bの間で吸着と脱着の工程切換が行われ、上記のサイクル1とサイクル2の工程が繰り返される。   Then, when the next cycle 2 (the adsorber 2A is the desorption process and the adsorber 2B is the adsorption process) is entered by the process switching, the gate valve V1 gradually shifts from the fully opened state to the closed side, and the gate valve V2 enters the closed state. The gate valve V3 is maintained in the closed state, and the gate valve V4 is first fully opened in the same manner as the gate valve V3 in the cycle 1, gradually moves to the closed side, and finally reaches the fully closed state. Become. Also in this case, the float plug 6 is maintained in the closed state in the first half of the cycle 2 and gradually opened to the fully opened state in the second half in accordance with the change from the fully open to the fully closed state based on the swing of the gate valve V4. Water W is supplied to the evaporator 4. Thereafter, the adsorption and desorption process switching is performed between the cycle 3, the cycle 4,... And the pair of adsorbers 2A and 2B, and the processes of the cycle 1 and the cycle 2 are repeated.

以上の如く、吸着工程にある吸着器2A又は2Bでの吸着能力の変化状況に応じて蒸発器4に対する凝縮機3からの凝縮水の供給を制御することができ、これにより、蒸発器4での蒸発による冷熱生成を効率良く行うことができるようになる。   As described above, the supply of condensed water from the condenser 3 to the evaporator 4 can be controlled in accordance with the change in the adsorption capacity of the adsorber 2A or 2B in the adsorption process. Thus, it is possible to efficiently generate cold heat by evaporation.

<第2実施形態>
図4は一対の吸着器2A,2Bと、凝縮器3との間を連通・遮断する仕切弁V5,V6と、この仕切弁V5,V6の開閉作動に連係して開閉作動するフロート栓6との組み合わせによって本発明の連係作動式開閉装置が構成された、第2実施形態に係る吸着式ヒートポンプを示す。
Second Embodiment
FIG. 4 shows gate valves V5 and V6 that communicate and block between the pair of adsorbers 2A and 2B and the condenser 3, and a float plug 6 that opens and closes in conjunction with opening and closing operations of the gate valves V5 and V6. The adsorption | suction heat pump which concerns on 2nd Embodiment in which the linkage operation type | formula switchgear of this invention was comprised by combination of these is shown.

本実施形態の吸着式ヒートポンプは、ハウジング1の上下両側部をそれぞれ左右方向に延びる区画壁53,54により仕切って密閉空間にすることにより、上側部分に凝縮器3を、下側部分に蒸発器4を配設し、2つの区画壁53,54の間の上下方向中間部分を上下方向に延びる区画壁55によって仕切って密閉空間にすることにより、左右両側部分にそれぞれ吸着器2A,2Bを配設したものである。凝縮器3は凝縮室30と凝縮用熱交換器31とを備え、蒸発器4は蒸発室40と蒸発用熱交換器41とを備え、各吸着器2A,2Bは吸着/脱着室20A,20Bと吸着剤が固定された吸着/脱着用熱交換器21,21とを備えて、それぞれ構成されている点、ハウジング1内が略真空状態に維持されて吸着質(例えば水)が封入されている点、各熱交換器21,21に2種類の温度の熱媒の循環供給を切換えることで吸着と脱着との切換が行われる点、熱交換器31,41に所定温度の熱媒が循環供給される点等々は、第1実施形態と同様である。   The adsorption heat pump according to the present embodiment partitions the upper and lower side portions of the housing 1 by partition walls 53 and 54 extending in the left-right direction to form a sealed space, so that the condenser 3 is disposed in the upper portion and the evaporator is disposed in the lower portion. 4 and the adsorbers 2A and 2B are respectively arranged on the left and right side portions by partitioning the vertical intermediate portion between the two partition walls 53 and 54 by the partition wall 55 extending in the vertical direction into a sealed space. It is set. The condenser 3 includes a condensing chamber 30 and a condensing heat exchanger 31, the evaporator 4 includes an evaporating chamber 40 and an evaporating heat exchanger 41, and the adsorbers 2A and 2B are adsorbing / desorbing chambers 20A and 20B. And adsorption / desorption heat exchangers 21 and 21 to which the adsorbent is fixed, respectively, are configured, and the housing 1 is maintained in a substantially vacuum state and adsorbate (for example, water) is enclosed. The heat exchangers 21 and 21 are switched between adsorption and desorption by switching the circulation supply of the heat medium of two types to the heat exchangers 21 and 21, and the heat medium of a predetermined temperature is circulated in the heat exchangers 31 and 41. The supplied points are the same as in the first embodiment.

上記区画壁53には、吸着/脱着室20Aと凝縮室30とを連通させる開口531と、吸着/脱着室20Bと凝縮室30とを連通させる開口532とが形成されている。そして、上記開口531,532には、吸着器2A又は2Bから脱着された水蒸気を凝縮器3に対し凝縮させるために送り込む仕切弁V5,V6が設けられている。又、区画壁54には、蒸発室40と吸着/脱着室20Aとを連通させる開口541と、蒸発室40と吸着/脱着室20Bとを連通させる開口542とが形成されている。そして、上記開口541,542には、蒸発室40から蒸発した気体状態の吸着質である水蒸気を吸着器2A又は2Bに対し吸着のために送り込む仕切弁V7,V8が設けられている。さらに、上記凝縮室30の底面には、区画壁53から下方に凹まされた溜まり部32が区画形成され、この溜まり部32内にはフロート栓6が設けられている。上記溜まり部32には、その底面に上端が開口して下端が区画壁54を貫通して蒸発室40内の蒸発用熱交換器41の上方で開口する連通路としての連通管34が連通接続され、上記フロート栓6は連通管34を上記仕切弁V5,V6の開閉作動に連係して開閉させることにより、凝縮器3で凝縮された液体状態の吸着質である凝縮水を所定タイミングで蒸発器4に対し落とし込むようになっている。   In the partition wall 53, an opening 531 for communicating the adsorption / desorption chamber 20A and the condensation chamber 30 and an opening 532 for communicating the adsorption / desorption chamber 20B and the condensation chamber 30 are formed. The openings 531 and 532 are provided with gate valves V5 and V6 for sending water vapor desorbed from the adsorber 2A or 2B to the condenser 3 for condensation. Further, the partition wall 54 is formed with an opening 541 for communicating the evaporation chamber 40 and the adsorption / desorption chamber 20A, and an opening 542 for communicating the evaporation chamber 40 and the adsorption / desorption chamber 20B. The openings 541 and 542 are provided with gate valves V7 and V8 for sending water vapor, which is a gaseous adsorbate evaporated from the evaporation chamber 40, to the adsorber 2A or 2B for adsorption. Further, a reservoir 32 that is recessed downward from the partition wall 53 is defined on the bottom surface of the condensing chamber 30, and the float plug 6 is provided in the reservoir 32. The reservoir 32 is connected to a communication pipe 34 as a communication path that opens at the bottom of the reservoir 32 and passes through the partition wall 54 at the lower end and opens above the evaporation heat exchanger 41 in the evaporation chamber 40. The float plug 6 opens and closes the communication pipe 34 in conjunction with the opening and closing operations of the gate valves V5 and V6, thereby evaporating condensed water, which is a liquid adsorbate condensed by the condenser 3, at a predetermined timing. It is designed to drop into the vessel 4.

上記仕切弁V5,V6は第1実施形態における仕切弁V3,V4(図2参照)と同様構成を備えており、それぞれフラップ弁部71,81と作動アーム72,82とを備え支持部9,9によって溜まり部32を構成する側壁又は周壁に対し揺動可能に支持されている。又、フロート栓6の構成及びこのフロート栓6と仕切弁V5,V6との連係作動の関係も、第1実施形態におけるフロート栓6と仕切弁V3,V4との関係と同様に構成されている。さらに、仕切弁V7,V8は、第1実施形態における仕切弁V1,V2と同様の構成を備えたものであり、それぞれ差圧を受けて開閉するフラップ式逆流防止弁により構成されて、蒸発室4から吸着工程の吸着器2A又は2Bへの水蒸気の流れを許容するように開くものの、逆方向である吸着器2A又は2Bの側から蒸発器4への流れに対しては閉じて阻止するようになっている。すなわち、仕切弁V7,V8は、蒸発器4で蒸発した水蒸気により蒸発室40の内圧が吸着/脱着室20A又は20Bのそれよりも高くなると、その内圧上昇分の差圧を受けて上向きに開いて蒸発後の水蒸気を開口541又は542を通して吸着/脱着室20A,2B側に流し(図4のV8参照)、逆に吸着/脱着室20A又は20Bの側の内圧が蒸発室40のそれよりも高くなると、その差圧と自重の作用により下向きに閉じて吸着/脱着室20A,20Bから蒸発室40側への逆流を阻止するようになっている(図4のV7参照)。   The gate valves V5 and V6 have the same configuration as the gate valves V3 and V4 (see FIG. 2) in the first embodiment, and include flap valve portions 71 and 81 and operating arms 72 and 82, respectively. 9 is supported so as to be swingable with respect to the side wall or the peripheral wall constituting the pool portion 32. Further, the configuration of the float plug 6 and the relationship of the linkage operation between the float plug 6 and the gate valves V5 and V6 are configured similarly to the relationship between the float plug 6 and the gate valves V3 and V4 in the first embodiment. . Further, the gate valves V7 and V8 have the same configuration as that of the gate valves V1 and V2 in the first embodiment, and are configured by flap type backflow prevention valves that open and close by receiving differential pressure, respectively. 4 opens to allow the flow of water vapor to the adsorber 2A or 2B in the adsorption process, but closes and prevents the flow from the side of the adsorber 2A or 2B in the reverse direction to the evaporator 4. It has become. That is, when the internal pressure of the evaporation chamber 40 becomes higher than that of the adsorption / desorption chamber 20A or 20B due to the water vapor evaporated by the evaporator 4, the gate valves V7 and V8 receive the differential pressure corresponding to the increase in the internal pressure and open upward. Then, the evaporated water vapor flows through the opening 541 or 542 to the adsorption / desorption chambers 20A and 2B (see V8 in FIG. 4), and conversely, the internal pressure on the adsorption / desorption chamber 20A or 20B side is higher than that of the evaporation chamber 40. When it becomes higher, it closes downward by the action of the differential pressure and its own weight to prevent backflow from the adsorption / desorption chambers 20A, 20B to the evaporation chamber 40 side (see V7 in FIG. 4).

この第2実施形態の場合、吸着式冷凍サイクルに基づく冷熱取り出しのための運転は、第1実施形態の場合と同様に、一対の吸着器2A,2Bで吸着工程と脱着工程とを交互に切換えるというバッチ処理方式によって連続した冷熱取り出しが行われる。すなわち、あるサイクルでのバッチ処理として、蒸発器4から蒸発された水蒸気の供給を受けて一方の吸着器(例えば2A)で吸着工程を行うと同時に、他方の吸着器2Bで脱着工程を行って脱着後の水蒸気を凝縮器3に供給して凝縮させ、次のサイクルのバッチ処理では、一対の吸着器2A,2Bでの工程を互いに切換えて、上記の吸着器2Aで脱着工程を行わせると同時に上記の吸着器2Bで吸着工程を行わせる。つまり吸着器2Aでは前のサイクルで吸着させた水蒸気を脱着させて凝縮器3に供給し、吸着器2Bでは前のサイクルで脱着させた後の吸着剤に対し蒸発器4からの水蒸気を供給して吸着させるのである。このようなサイクルを交互に繰り返す。このようにすることにより、蒸発器4での蒸発と、凝縮器3での凝縮とが連続して行われ、蒸発器4に循環供給される熱媒が蒸発熱により冷却されて戻され、この冷却された熱媒によって冷熱を連続して取り出すことができるようになる。   In the case of this second embodiment, the operation for taking out cold heat based on the adsorption refrigeration cycle is switched alternately between the adsorption process and the desorption process by a pair of adsorbers 2A and 2B, as in the case of the first embodiment. A continuous cold extraction is performed by the batch processing method. That is, as a batch process in a certain cycle, an adsorption process is performed with one adsorber (for example, 2A) upon receiving the supply of vapor evaporated from the evaporator 4, and a desorption process is performed with the other adsorber 2B. The desorbed water vapor is supplied to the condenser 3 to be condensed, and in the batch processing of the next cycle, the steps in the pair of adsorbers 2A and 2B are switched to each other and the desorption step is performed in the adsorber 2A. At the same time, the adsorption process is performed in the adsorber 2B. That is, in the adsorber 2A, the water vapor adsorbed in the previous cycle is desorbed and supplied to the condenser 3, and in the adsorber 2B, the water vapor from the evaporator 4 is supplied to the adsorbent after desorption in the previous cycle. It is adsorbed. Such a cycle is repeated alternately. By doing in this way, the evaporation in the evaporator 4 and the condensation in the condenser 3 are continuously performed, and the heat medium circulated and supplied to the evaporator 4 is cooled by the evaporation heat and returned. The cold heat can be continuously taken out by the cooled heat medium.

かかる運転の際の仕切弁V5,V6,V7,V8の弁開度と、フロート栓6の栓開度との関係について図5を参照しつつ説明する。図5においては、各仕切弁V5,V6,V7,V8の弁開度の状態を実線で示し、フロート栓6の栓開度の状態を一点鎖線で示している。例えば吸着器2A(同図では単に「A」と表示)で脱着工程、吸着器2B(同図では単に「B」と表示)で吸着工程を行うサイクル1では、仕切弁V5が最初は全開状態になるものの徐々に閉側に移行して全閉状態に至ることになる一方、仕切弁V6が全閉状態に維持されることになる。又、仕切弁V7は全閉状態に維持されることになる一方、仕切弁V8は最初に全開状態になって徐々に閉側に移行して最後に全閉状態に至ることになる。そして、このサイクル1でのフロート栓6の状況と、それに伴う凝縮水Wの蒸発器4への供給は次のようになる。すなわち、仕切弁V5が全開状態にある時点から閉側に移行して中間揺動状態に至るまではフロート栓6は閉栓状態(栓開度0%)を維持し、それ以後、仕切弁V5が全閉状態に至るまではフロート栓6は全開状態にまで徐々に栓開度を増大させることになる。このため、サイクル1の前半にはフロート栓6は閉栓状態を維持して凝縮器3から蒸発器4への凝縮水Wの供給はないが、サイクル1の後半になるとフロート栓6は開栓状態となって凝縮器3の溜まり部32から蒸発器4に対し連通管34を通して凝縮水Wが流れ込ませることができるようになり、サイクル1の終盤に凝縮水Wの供給は最大量となる。   The relationship between the valve opening degree of the gate valves V5, V6, V7, V8 and the opening degree of the float plug 6 during the operation will be described with reference to FIG. In FIG. 5, the valve opening states of the gate valves V5, V6, V7, and V8 are indicated by solid lines, and the plug opening state of the float plug 6 is indicated by an alternate long and short dash line. For example, in the cycle 1 in which the desorption process is performed with the adsorber 2A (simply indicated as “A” in the figure) and the adsorbing process is performed with the adsorber 2B (simply indicated as “B” in the figure), the gate valve V5 is initially fully opened. However, it gradually shifts to the closed side and reaches the fully closed state, while the gate valve V6 is maintained in the fully closed state. Further, the gate valve V7 is maintained in the fully closed state, while the gate valve V8 is first fully opened, gradually moves to the closed side, and finally reaches the fully closed state. And the situation of the float plug 6 in this cycle 1 and the supply to the evaporator 4 of the condensed water W accompanying it are as follows. That is, the float plug 6 remains in the closed state (plug opening degree 0%) from the time when the gate valve V5 is in the fully open state until it shifts to the closed side and reaches the intermediate swing state. Until the fully closed state, the float plug 6 gradually increases the opening degree of the plug until the fully closed state. For this reason, in the first half of cycle 1, the float plug 6 is kept closed and no condensed water W is supplied from the condenser 3 to the evaporator 4, but in the second half of the cycle 1, the float plug 6 is opened. Thus, the condensed water W can flow from the reservoir 32 of the condenser 3 to the evaporator 4 through the communication pipe 34, and the supply of the condensed water W becomes the maximum amount at the end of the cycle 1.

以上の変化を、脱着工程にある吸着器2Aと、脱着後の水蒸気が凝縮される凝縮器3とによる脱着−凝縮工程の状況との関係で見てみると、サイクル1の当初は、吸着器2Aの吸着/脱着用熱交換器2の吸着剤に前のサイクルにてフルに吸着された状態から脱着されるため盛んに水蒸気が脱着されてその水蒸気の圧力、つまり仕切弁V5を上向きに押し上げる差圧が最も大きくなるため、仕切弁V5は全開状態になる。そして、吸着器2Aの吸着/脱着用熱交換器21の吸着剤からの脱着が進行するにつれて脱着量も低下していくため、サイクル1の進行に伴い仕切弁V5を押し上げる差圧も低下して、仕切弁V5は徐々に閉側に揺動する。このサイクル1の前半においてはフロート栓6が閉栓状態に維持されて凝縮水Wが蒸発器に対し新たに落とし込まれることもないため、蒸発器4内の蒸発用熱交換器41での蒸発による冷却に支障を与えることもない。そして、サイクル1の後半に入ると、仕切弁V5の閉側揺動に伴いフロート栓6が開いて凝縮水Wが連通管34を通して蒸発器4の蒸発用熱交換器41に供給され、供給された凝縮水が蒸発器4で蒸発されることになる。この供給される凝縮水の蒸発によってサイクル1の後半においても蒸発用熱交換器41による冷熱取り出しを有効に継続させることができるようになる。   Looking at the above changes in relation to the situation of the desorption-condensation process by the adsorber 2A in the desorption process and the condenser 3 in which the water vapor after desorption is condensed, at the beginning of the cycle 1, the adsorber Since it is desorbed from the state fully adsorbed in the previous cycle by the adsorbent of the 2A adsorption / desorption heat exchanger 2, water vapor is actively desorbed, and the pressure of the water vapor, that is, the gate valve V5 is pushed upward. Since the differential pressure becomes the largest, the gate valve V5 is fully opened. Since the desorption amount decreases as the desorption from the adsorbent of the adsorption / desorption heat exchanger 21 of the adsorber 2A proceeds, the differential pressure that pushes up the gate valve V5 also decreases as the cycle 1 proceeds. The gate valve V5 gradually swings to the closing side. In the first half of the cycle 1, the float plug 6 is maintained in the closed state, and the condensed water W is not newly dropped into the evaporator. Therefore, the evaporation by the evaporation heat exchanger 41 in the evaporator 4 is performed. There is no hindrance to cooling. Then, in the second half of the cycle 1, the float plug 6 opens as the gate valve V5 closes and the condensed water W is supplied to the evaporation heat exchanger 41 of the evaporator 4 through the communication pipe 34. The condensed water is evaporated by the evaporator 4. By evaporating the supplied condensed water, it is possible to continue the extraction of the cold heat by the evaporating heat exchanger 41 even in the latter half of the cycle 1.

そして、工程切換により次のサイクル2(吸着器2Aが吸着工程、吸着器2Bが脱着工程)に入ると、仕切弁V5が閉状態を維持し,仕切弁V6がサイクル1における仕切弁V5と同様に最初の全開状態から徐々に閉側に移行し、仕切弁V7は最初に全開状態になって徐々に閉側に移行して最後に全閉状態に至り、仕切弁V8は閉状態を維持することになる。この場合も仕切弁V6の揺動に基づく全開から全閉までの変化に伴い、フロート栓6はサイクル2の前半には閉栓状態に維持され後半には徐々に全開の開栓状態まで開いて凝縮水Wを蒸発器4に供給することになる。以後、サイクル3、サイクル4、…と一対の吸着器2A,2Bの間で脱着と吸着の工程切換が行われ、上記のサイクル1とサイクル2の工程が繰り返される。   When the next cycle 2 (the adsorber 2A is the adsorption process and the adsorber 2B is the desorption process) is entered by the process switching, the gate valve V5 is kept closed, and the gate valve V6 is the same as the gate valve V5 in cycle 1. The valve gradually shifts from the first fully opened state to the closed side, the gate valve V7 is first fully opened, gradually shifts to the closed side, and finally reaches the fully closed state, and the gate valve V8 maintains the closed state. It will be. In this case, the float plug 6 is maintained in the closed state in the first half of the cycle 2 and gradually opened to the fully opened state in the second half in accordance with the change from the fully open to the fully closed state based on the swing of the gate valve V6. Water W is supplied to the evaporator 4. Thereafter, desorption and adsorption processes are switched between cycle 3, cycle 4,... And the pair of adsorbers 2A, 2B, and the processes of cycle 1 and cycle 2 are repeated.

以上の各サイクルにおいて脱着工程にある吸着器2A又は2Bでの脱着状況の変化は吸着工程にある吸着器2B又は2Aの吸着能力の変化状況と同じ傾向であるため、かかる変化状況に応じて蒸発器4に対する凝縮機3からの凝縮水の供給を制御することができ、これにより、第1実施形態と同様に、蒸発器4での蒸発による冷熱生成を効率良く行うことができるようになる。   In each of the above cycles, the change in the desorption state in the adsorber 2A or 2B in the desorption process has the same tendency as the change in the adsorption capacity of the adsorber 2B or 2A in the adsorption process. It is possible to control the supply of condensed water from the condenser 3 to the evaporator 4, and as a result, it is possible to efficiently generate cold heat by evaporation in the evaporator 4 as in the first embodiment.

<他の実施形態>
なお、本発明は上記第1及び第2実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記第1又は第2実施形態では、フロート栓6を連係作動させる仕切弁V3,V4又はV5,V6の揺動支持として支持片91,91からなる支持部9を用いて行っているが、これに限らず、単に水平軸回りに回転可能に軸支するようにしてもよい。
<Other embodiments>
The present invention is not limited to the first and second embodiments described above, but includes other various embodiments. That is, in the first or second embodiment, the support portion 9 including the support pieces 91 and 91 is used as the swing support of the gate valves V3, V4 or V5 and V6 for linking the float plug 6. However, the present invention is not limited to this, and it may be simply pivotally supported around the horizontal axis.

又、上記実施形態では閉状態維持部材として弾性シール部材63を用いた場合を示したが、これに限らず、例えば作動アーム72,82の端部と、フロート栓6の上端面とのいずれか一方に取り付けた弾性部材を用いてもよい。かかる弾性部材としては、仕切弁が全開状態になれば、作動アーム72,82の端部とフロート栓6の上端面との間に挟み付けられて弾性変形し、仕切弁が閉側に揺動すれば弾性復元し、その弾性変形状態から弾性復元する間はフロート栓6に対し下向きの押圧力を作用させて閉状態に維持させるように構成すればよい。   Moreover, although the case where the elastic sealing member 63 was used as a closed state maintenance member was shown in the said embodiment, it is not restricted to this, For example, either the edge part of the operation arms 72 and 82 and the upper end surface of the float plug 6 An elastic member attached to one side may be used. As such an elastic member, when the gate valve is fully opened, it is sandwiched between the end portions of the operating arms 72 and 82 and the upper end surface of the float plug 6 and elastically deforms, and the gate valve swings to the closed side. In this case, the elastic restoration is performed, and while the elastic deformation is restored from the elastic deformation state, a downward pressing force is applied to the float plug 6 so as to be maintained in the closed state.

本発明の第1実施形態を示す端面状態の模式図である。It is a schematic diagram of the end surface state which shows 1st Embodiment of this invention. 図2(a)は図1のフロート栓等の拡大図であり、図2(b)は図2(a)の支持部の部分拡大図であり、図2(c)は図2(a)の弾性シール部材等の拡大図である。2 (a) is an enlarged view of the float plug and the like of FIG. 1, FIG. 2 (b) is a partially enlarged view of the support part of FIG. 2 (a), and FIG. 2 (c) is FIG. 2 (a). It is an enlarged view of the elastic seal member etc. 第1実施形態の各サイクルにおける各仕切弁及びフロート栓の開度変化を示すタイムチャートである。It is a time chart which shows the opening degree change of each gate valve and the float stopper in each cycle of 1st Embodiment. 第2実施形態を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows 2nd Embodiment. 第2実施形態の各サイクルにおける各仕切弁及びフロート栓の開度変化を示すタイムチャートである。It is a time chart which shows the opening degree change of each gate valve and the float stopper in each cycle of 2nd Embodiment.

符号の説明Explanation of symbols

2A,2B 吸着器
3 凝縮器
4 蒸発器
6 フロート栓(連係作動式開閉装置)
9 支持部
32 溜まり部
33 連通孔(連通路)
34 連通管(連通路)
63 弾性シール部材(閉状態維持部材)
71,81 フラップ弁部(弁部)
72,82 作動アーム
513,523,531,532 開口
V3,V4,V5,V6 仕切弁(連係作動式開閉装置)
2A, 2B Adsorber 3 Condenser 4 Evaporator 6 Float plug (interlocking switchgear)
9 Support part 32 Reservoir part 33 Communication hole (communication path)
34 Communication pipe (communication passage)
63 Elastic seal member (closed state maintaining member)
71,81 Flap valve part (valve part)
72, 82 Actuating arms 513, 523, 531, 532 Opening V3, V4, V5, V6 Gate valve (linkage-operated switchgear)

Claims (4)

一対の吸着器と凝縮器との間の一対の開口又は一対の吸着器と蒸発器との間の一対の開口を各別に仕切り差圧を受けて開閉作動する一対の仕切弁と、上側の凝縮器から下側の蒸発器への連通路を開閉可能に切換えて凝縮水の供給を切換えるフロート栓とを備え、
上記一対の仕切弁はフロート栓の左右両側位置に左右対称に配置され、
上記フロート栓は下動することにより上記連通路を閉状態にする一方、凝縮水の浮力を受けて浮上することにより上記連通路を開状態にするように配設され、
上記各仕切弁は、上記開口を開閉する弁部と、この弁部から上記フロート栓まで一体に延びる作動アームとを備え、かつ、上記作動アームの中間部位が水平軸回りに揺動回転可能に支持されて、上記弁部に差圧を受けて揺動回転することにより開閉作動するように構成され、
上記各仕切弁とフロート栓とは、仕切弁が全開状態まで揺動回転したとき弁部に受けた差圧が作動アームを介してフロート栓に対し下向きの押圧力として伝達され、かつ、この押圧力によりフロート栓が凝縮水の浮力に抗して連通路を閉状態に維持するように連係されている
ことを特徴とする連係作動式開閉装置。
A pair of gate valves for opening and closing a pair of openings between the pair of adsorbers and the condenser or a pair of openings between the pair of the adsorbers and the evaporator separately by receiving a partition differential pressure, and the upper condensation A float plug that switches the supply of condensed water by switching the communication path from the evaporator to the lower evaporator so that it can be opened and closed,
The pair of gate valves are arranged symmetrically at both left and right positions of the float plug,
The float plug is disposed to close the communication path by moving downward, and to open the communication path by floating by receiving the buoyancy of condensed water.
Each of the gate valves includes a valve portion that opens and closes the opening, and an operating arm that integrally extends from the valve portion to the float plug, and an intermediate portion of the operating arm can swing and rotate about a horizontal axis. Supported and configured to open and close by swinging and rotating upon receiving the differential pressure on the valve portion,
Each of the gate valves and the float plugs transmits a differential pressure received by the valve portion as a downward pressing force to the float plugs via the operating arm when the gate valve is swung to the fully opened state. A linkage actuated switchgear characterized in that the float plug is linked by pressure to keep the communication path closed against the buoyancy of the condensed water.
請求項1に記載の連係作動式開閉装置であって、
上記フロート栓が上記全開状態の仕切弁の作動アームから下向きの押圧力の伝達を受けたとき、弾性変形した状態で上記連通路を閉状態に維持する一方、上記仕切弁が全開状態から閉側に対し逆方向に揺動回転しても弾性変形状態から弾性復元するまでの間は上記フロート栓を閉状態に維持する閉状態維持部材を備えている、連係作動式開閉装置。
The linkage operation type opening and closing device according to claim 1,
When the float plug receives a downward pressing force from the operating arm of the gate valve in the fully opened state, the communication passage is kept in the closed state in an elastically deformed state, while the gate valve is closed from the fully opened state to the closed side. In contrast, the linkage-operated switchgear is provided with a closed state maintaining member that maintains the float plug in a closed state until it is elastically restored from the elastically deformed state even if it is swung in the opposite direction.
請求項1又は請求項2に記載の連係作動式開閉装置であって、
上記凝縮器の底部には下方に凹んで凝縮水が溜まる溜まり部が形成され、この溜まり部の底面に上記連通路の上端が開口するように接続され、
上記フロート栓は上記溜まり部に対し上から内装されて上記連通路の上端開口を覆うように配設されている、連係作動式開閉装置。
It is a linkage actuated switchgear according to claim 1 or claim 2,
The bottom of the condenser is formed with a recessed portion that is recessed downward to collect condensed water, and is connected to the bottom of the reservoir so that the upper end of the communication path opens.
The float-operated opening / closing device, wherein the float plug is installed from above with respect to the pool portion so as to cover the upper end opening of the communication path.
吸着工程と脱着工程とが交互に切換えられる一対の吸着器と、吸着工程にある吸着器に吸着させるために吸着質を蒸発させる蒸発器と、脱着工程にある吸着器で脱着された吸着質を凝縮させる凝縮器と、請求項1〜請求項3のいずれかに記載の連係作動式開閉装置とを備えてなる、吸着式ヒートポンプ。 A pair of adsorbers in which the adsorption process and the desorption process are alternately switched, an evaporator for evaporating the adsorbate to be adsorbed by the adsorber in the adsorption process, and an adsorbate desorbed by the adsorber in the desorption process An adsorption heat pump comprising a condenser to be condensed and the linkage operation type opening and closing device according to any one of claims 1 to 3.
JP2008015192A 2008-01-25 2008-01-25 Coordinated operation type opening and closing device and adsorption type heat pump provided with the same Withdrawn JP2009174807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015192A JP2009174807A (en) 2008-01-25 2008-01-25 Coordinated operation type opening and closing device and adsorption type heat pump provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015192A JP2009174807A (en) 2008-01-25 2008-01-25 Coordinated operation type opening and closing device and adsorption type heat pump provided with the same

Publications (1)

Publication Number Publication Date
JP2009174807A true JP2009174807A (en) 2009-08-06

Family

ID=41030081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015192A Withdrawn JP2009174807A (en) 2008-01-25 2008-01-25 Coordinated operation type opening and closing device and adsorption type heat pump provided with the same

Country Status (1)

Country Link
JP (1) JP2009174807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065922A (en) * 2008-09-10 2010-03-25 Fujitsu Ltd Adsorption type refrigerating machine and method of controlling the same
CN102052809A (en) * 2010-12-29 2011-05-11 中国科学院广州能源研究所 Novel steam valve for adsorptive refrigerating machine
US11189384B2 (en) * 2013-11-04 2021-11-30 The Regents Of The University Of California Systems and methods for enhancing isolation of high-temperature reactor containments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065922A (en) * 2008-09-10 2010-03-25 Fujitsu Ltd Adsorption type refrigerating machine and method of controlling the same
CN102052809A (en) * 2010-12-29 2011-05-11 中国科学院广州能源研究所 Novel steam valve for adsorptive refrigerating machine
US11189384B2 (en) * 2013-11-04 2021-11-30 The Regents Of The University Of California Systems and methods for enhancing isolation of high-temperature reactor containments

Similar Documents

Publication Publication Date Title
KR920001097B1 (en) Adsorption refrigeration system
JP4333627B2 (en) Adsorption heat pump device
JPH02230068A (en) Absorption freezer and its operating method
EP2669603B1 (en) Adsorber and adsorber-type heat pump
JP2009174807A (en) Coordinated operation type opening and closing device and adsorption type heat pump provided with the same
JPH09152221A (en) Adsorption type refrigerator
US10082321B2 (en) Adsorption heat pump system and cooling generation method
JP2017009173A (en) Adsorption type refrigerator and its operational method
JP6256170B2 (en) Adsorption heat pump system and cold heat generation method
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2009198163A (en) Adsorption type heat pump
JP2012127526A (en) Adsorption type refrigerating system
JP6364913B2 (en) Adsorption heat pump system and cold heat generation method
JP2017026162A (en) Absorption-type freezer unit and control method thereof
JP4565539B2 (en) Operation method of adsorption refrigerator
CN100414219C (en) Ice maker on fishing boat waste heat driven by and with double hot-pipe chemical adsorption
JP2010139145A (en) Thermal storage type heat transfer device
JP2019027715A (en) Heat storage system
JP2009275937A (en) Evacuating apparatus and operation control method for evacuating apparatus
JP2006052889A (en) Adsorption tower for adsorption type refrigeration system
JP6402645B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
JP6365016B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
US20180073783A1 (en) Adsoprtion heat pump
JP2503752B2 (en) Adsorption refrigerator
JP4300677B2 (en) Adsorption type refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405