JP2009174629A - Vehicle driving device - Google Patents

Vehicle driving device Download PDF

Info

Publication number
JP2009174629A
JP2009174629A JP2008013608A JP2008013608A JP2009174629A JP 2009174629 A JP2009174629 A JP 2009174629A JP 2008013608 A JP2008013608 A JP 2008013608A JP 2008013608 A JP2008013608 A JP 2008013608A JP 2009174629 A JP2009174629 A JP 2009174629A
Authority
JP
Japan
Prior art keywords
drive gear
shaft
drive
gear shaft
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013608A
Other languages
Japanese (ja)
Inventor
Makoto Taniguchi
真 谷口
Mitsutaka Tsuchida
充孝 土田
Shinichi Baba
伸一 馬場
Shinichiro Suenaga
真一郎 末永
Sunao Takabayashi
直生 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008013608A priority Critical patent/JP2009174629A/en
Publication of JP2009174629A publication Critical patent/JP2009174629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Gear Transmission (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle driving device capable of relieving an impact load while restraining a dimensional increase in the axial direction of a rotor shaft and an increase in the bearing number. <P>SOLUTION: This driving device 2 has a driving gear shaft 14 integrally rotatably provided with a driving gear 15, a rotor shaft 13 for installing a rotor 12 of a motor generator 4 on the outer periphery and forming a through-hole 13a capable of inserting the driving gear shaft 14 in the axis Ax direction, and a pair of bearings 21 and 22 capable of rotatably supporting the driving gear shaft 14. The driving gear shaft 14 and the rotor shaft 13 are coaxially and integrally rotatably combined so that the rotor shaft 13 is positioned between the pair of bearings 21 and 22 in a state of interposing a spline joining part 25 capable of relieving the impact load transmitted between the driving gear shaft 14 and the rotor shaft 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、駆動源として設けられた回転電機の動力を車両の駆動輪に出力できる車両の駆動装置に関する。   The present invention relates to a vehicle drive device that can output the power of a rotating electrical machine provided as a drive source to drive wheels of a vehicle.

電動機やモータジェネレータ等の回転電機が駆動源として設けられた車両は周知である。例えば、電動機のみを駆動源として搭載した電気自動車やモータジェネレータの他に内燃機関を駆動源として搭載したハイブリッド自動車等がある。このような車両には回転電機の動力を車両の駆動輪に出力するために回転電機から駆動輪までの動力伝達経路にギア列を含んだ駆動装置が設けられている。   A vehicle provided with a rotating electrical machine such as an electric motor or a motor generator as a drive source is well known. For example, there are an electric vehicle equipped with only an electric motor as a drive source, a hybrid vehicle equipped with an internal combustion engine as a drive source in addition to a motor generator and the like. Such a vehicle is provided with a drive device including a gear train in a power transmission path from the rotary electric machine to the drive wheel in order to output the power of the rotary electric machine to the drive wheel of the vehicle.

ところで、こうした車両がギャップを超える際に一瞬路面から離れた駆動輪が再度接地する場合、平地を走行中の車両が急坂を登坂する走行に切り替わる場合、あるいはパーキングロック状態で坂路に停車した車両のパーキングロックを解除する場合等に、駆動輪側から回転電機側へ向かう衝撃荷重が駆動装置に発生することがある。そのような衝撃荷重は駆動装置内の回転要素の回転軸線と交差するラジアル成分及びその軸線方向のスラスト成分の他に、その軸線回りの回転成分も含む。そのため衝撃荷重が発生すると回転電機のロータの慣性によりそのロータが装着されるロータ軸、ロータ軸の回転を伝達する駆動ギア及びロータ軸を支持する軸受等の各部材に負荷がかかる。   By the way, when such a vehicle crosses the gap, the driving wheel that is momentarily separated from the road surface touches again, the vehicle that is traveling on the flat ground switches to traveling that climbs a steep slope, or the vehicle that has stopped on the slope in a parking lock state When the parking lock is released, an impact load from the drive wheel side toward the rotating electrical machine side may be generated in the drive device. Such an impact load includes a rotational component around the axis in addition to the radial component intersecting with the rotational axis of the rotating element in the driving device and the axial thrust component. For this reason, when an impact load is generated, load is applied to each member such as a rotor shaft on which the rotor is mounted, a drive gear that transmits the rotation of the rotor shaft, and a bearing that supports the rotor shaft due to inertia of the rotor of the rotating electrical machine.

そのような衝撃荷重の発生に伴う各部材の負荷を低減するため、ロータ及びロータ軸の少なくとも一方をマグネシウム又はマグネシウム合金を基材として構成した回転電機(特許文献1)を用いることが可能である。また、駆動ギアが設けられた駆動ギア軸とロータ軸とを別部品で構成し、ロータ軸の延長上に駆動ギア軸をスプライン結合した駆動装置も知られている(特許文献2)。   In order to reduce the load on each member accompanying the generation of such an impact load, it is possible to use a rotating electrical machine (Patent Document 1) in which at least one of the rotor and the rotor shaft is made of magnesium or a magnesium alloy as a base material. . There is also known a drive device in which a drive gear shaft provided with a drive gear and a rotor shaft are configured as separate parts, and the drive gear shaft is spline-coupled on the extension of the rotor shaft (Patent Document 2).

特開2004−274968号公報JP 2004-274968 A 特開平10−278603号公報Japanese Patent Laid-Open No. 10-278603

特許文献1の回転電機を用いる場合は、ロータやロータ軸をマグネシウム又はマグネシウム合金を基材として構成することによりロータ及びロータ軸が軽量化されるのでロータの慣性が低下する。そのため衝撃荷重に伴う駆動装置の各部材の負荷を低減できる。しかし、マグネシウム又はマグネシウム合金は強度が鉄よりも劣るため、ロータ及びロータ軸を鉄で構成した場合と同等の強度を確保するためには体格を大きくする必要がある。従って、効率的にロータの慣性を低下させることが難しい。また、特許文献2の駆動装置は、駆動ギア軸がロータ軸の延長上に結合されているため軸線方向の寸法が増大する。そのうえ、スプライン結合された部位は曲げモーメントを十分に受けることができないので、ロータ軸の延長上に位置するスプライン結合された部位を軸受で支持することが必要になる。その結果、駆動ギア軸とロータ軸とを組み合わせた状態で、その組み合わせ軸の両端部及びスプライン結合された部位の少なくとも3箇所を軸受で支持することになって軸受数が増加する。   When using the rotary electric machine of patent document 1, since a rotor and a rotor axis | shaft are reduced in weight by comprising a rotor and a rotor axis | shaft as a base material, a rotor and a rotor axis | shaft reduce. Therefore, the load of each member of the drive device accompanying the impact load can be reduced. However, since magnesium or a magnesium alloy is inferior in strength to iron, it is necessary to increase the physique in order to ensure the same strength as when the rotor and the rotor shaft are made of iron. Therefore, it is difficult to efficiently reduce the inertia of the rotor. Moreover, since the drive gear shaft is coupled to the extension of the rotor shaft in the drive device of Patent Document 2, the dimension in the axial direction increases. In addition, since the splined portion cannot receive a sufficient bending moment, it is necessary to support the splined portion located on the extension of the rotor shaft with a bearing. As a result, in a state where the drive gear shaft and the rotor shaft are combined, at least three of the both ends of the combined shaft and the splined portion are supported by the bearing, and the number of bearings increases.

そこで、本発明は、ロータ軸の軸線方向の寸法増大及び軸受数の増加を抑えつつ衝撃荷重を緩和できる車両の駆動装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle drive device that can alleviate an impact load while suppressing an increase in the axial dimension of the rotor shaft and an increase in the number of bearings.

本発明の駆動装置は、駆動源として設けられた回転電機の動力を車両の駆動輪に出力できる車両の駆動装置であって、前記回転電機から前記駆動輪までの動力伝達経路内に配置された駆動ギアが一体回転可能に設けられた駆動ギア軸と、前記回転電機のロータが外周に装着され、かつ前記駆動ギア軸が軸線の方向に挿入され得る貫通孔が形成されたロータ軸と、前記駆動ギア軸を回転自在に支持することができ、かつ前記駆動ギア軸の軸線の方向に所定間隔を開けて配置された一対の軸受と、を備え、前記駆動ギア軸と前記ロータ軸とは、前記駆動ギア軸と前記ロータ軸との間を伝達する衝撃荷重を緩和できる低剛性結合手段を介在させた状態で、前記駆動ギア軸を支持する前記一対の軸受間に前記ロータ軸が位置するようにして同軸かつ一体回転可能に組み合わされていることにより、上述した課題を解決する(請求項1)。   The drive device of the present invention is a vehicle drive device capable of outputting the power of a rotating electrical machine provided as a drive source to a drive wheel of a vehicle, and is disposed in a power transmission path from the rotating electrical machine to the drive wheel. A drive gear shaft provided with a drive gear so as to rotate integrally; a rotor shaft on which a rotor of the rotating electrical machine is mounted on an outer periphery; and a through-hole into which the drive gear shaft can be inserted in the direction of the axis; and A pair of bearings that can rotatably support the drive gear shaft and are arranged at a predetermined interval in the direction of the axis of the drive gear shaft, the drive gear shaft and the rotor shaft, The rotor shaft is positioned between the pair of bearings that support the drive gear shaft in a state where a low-rigidity coupling means that can reduce an impact load transmitted between the drive gear shaft and the rotor shaft is interposed. Coaxial and one By being rotatably combined to solve the problems mentioned above (claim 1).

この駆動装置によれば、駆動ギア軸を支持する一対の軸受間にロータ軸が位置し、ロータ軸と駆動ギア軸とが同軸かつ一体回転可能に組み合わされる。そのため、ロータ軸と駆動ギア軸との両者を一対の軸受で支持できる。一対の軸受でロータ軸と駆動ギア軸との組み合わせを支持できるため軸受数を最少限に抑えることができる。更に、一対の軸受間にロータ軸が配置されるので、軸線方向の寸法増大を最小限に抑えることができる。ロータ軸と駆動ギア軸とはこれらの軸間を伝達する衝撃荷重を緩和できる低剛性結合手段を介在させた状態で組み合わされるので、何らかの原因で駆動ギアに衝撃荷重が入力された場合でもその結合手段の働きにより、物体の剛性を考慮した慣性が低減するため衝撃荷重が緩和される。また、ロータ軸と駆動ギア軸とは別体であるので、これらの軸が一体の場合に比べてロータ軸の制約を受けずに駆動ギアを容易に加工できる。そのため、例えば駆動ギアの歯面を回転砥石を備えた研削装置にて研磨する際にロータ軸と砥石との干渉を考慮する必要がなく、研削装置を用いて駆動ギア15の歯面を研磨することに支障がない。従って、工数の増大を招かずに駆動ギアの加工精度を容易に高めることができる。更に、これらの軸が一体であるとロータの外径が最も大きくなるので一対の軸受を互いに反対方向から組み付けることになるが、これらの軸が別体であることにより、駆動ギア軸、ロータ軸及び軸受の組付けの方向を一方向に統一することが容易になるので組み付け手順を簡素化できる。   According to this drive device, the rotor shaft is positioned between a pair of bearings that support the drive gear shaft, and the rotor shaft and the drive gear shaft are combined coaxially and integrally rotatable. Therefore, both the rotor shaft and the drive gear shaft can be supported by a pair of bearings. Since the combination of the rotor shaft and the drive gear shaft can be supported by the pair of bearings, the number of bearings can be minimized. Furthermore, since the rotor shaft is disposed between the pair of bearings, an increase in dimension in the axial direction can be minimized. Since the rotor shaft and drive gear shaft are combined with a low-rigidity coupling means that can relieve the impact load transmitted between these shafts, even if the impact load is input to the drive gear for any reason, the coupling Due to the action of the means, the inertia considering the rigidity of the object is reduced, so the impact load is reduced. Further, since the rotor shaft and the drive gear shaft are separate, the drive gear can be easily machined without being restricted by the rotor shaft as compared with the case where these shafts are integrated. Therefore, for example, when the tooth surface of the drive gear is polished by a grinding device equipped with a rotating grindstone, it is not necessary to consider the interference between the rotor shaft and the grindstone, and the tooth surface of the drive gear 15 is polished using the grinding device. There is no problem. Therefore, the processing accuracy of the drive gear can be easily increased without increasing the number of steps. Furthermore, if these shafts are integrated, the outer diameter of the rotor is the largest, so a pair of bearings are assembled from opposite directions. However, these shafts are separate, so that the drive gear shaft, the rotor shaft And since it becomes easy to unify the direction of assembly of the bearings in one direction, the assembly procedure can be simplified.

低剛性結合手段は種々の態様でよいが、例えば、前記低剛性結合手段として、前記駆動ギア軸の外周に形成されて前記軸線の方向に歯すじが延びる外歯が前記駆動ギア軸の周方向に並ぶ外歯列と、前記ロータ軸の内周に形成されて前記軸線の方向に歯すじが延びる内歯が前記ロータ軸の周方向に並び、かつ前記外歯列と噛み合うことができる内歯列とを有し、前記外歯列と前記内歯列とを相互に噛み合わせることにより前記駆動ギア軸と前記ロータ軸とを同軸かつ一体回転可能に組み合わせることができるスプライン結合部が設けられていてもよい(請求項2)。この態様によれば、駆動ギア軸に衝撃荷重が入力されると相互に噛み合う外歯及び内歯の弾性変形が起こるので衝撃荷重が緩和される。   The low-rigidity coupling means may take various forms. For example, as the low-rigidity coupling means, external teeth that are formed on the outer periphery of the drive gear shaft and extend in the direction of the axis line are circumferential directions of the drive gear shaft. And internal teeth that are formed on the inner periphery of the rotor shaft and extend in the direction of the axis are aligned in the circumferential direction of the rotor shaft and can mesh with the outer tooth row There is provided a spline coupling portion that is capable of coaxially and integrally rotating the drive gear shaft and the rotor shaft by meshing the outer tooth row and the inner tooth row with each other. (Claim 2). According to this aspect, when an impact load is input to the drive gear shaft, the external teeth and the internal teeth that mesh with each other undergo elastic deformation, so that the impact load is reduced.

また、前記低剛性結合手段として、前記駆動ギア軸の外周に形成されて前記軸線の方向に延びる外溝と、前記ロータ軸の内周に形成されて前記軸線の方向に延びる内溝と、互いに対向した状態の前記外溝及び前記内溝のそれぞれに嵌り、かつ前記駆動ギア軸の構成材料よりも剛性の低い低剛性材料にて構成された介在部材とを有し、前記介在部材を前記外溝及び前記内溝のそれぞれに嵌るようにして前記前記駆動ギア軸と前記ロータ軸との間に介在させることにより前記駆動ギア軸と前記ロータ軸とを同軸かつ一体回転可能に組み合わせることができる低剛性結合部が設けられていてもよい(請求項3)。この態様によれば、駆動ギア軸に衝撃荷重が入力されると介在部材の弾性変形が起こるので衝撃荷重が緩和される。   Further, as the low-rigidity coupling means, an outer groove formed on the outer periphery of the drive gear shaft and extending in the direction of the axis, an inner groove formed on the inner periphery of the rotor shaft and extending in the direction of the axis, and An interposition member that is fitted in each of the outer groove and the inner groove facing each other and is made of a low-rigidity material that is lower in rigidity than the constituent material of the drive gear shaft. By interposing between the drive gear shaft and the rotor shaft so as to fit in each of the groove and the inner groove, the drive gear shaft and the rotor shaft can be combined coaxially and integrally rotatable. A rigid coupling portion may be provided (claim 3). According to this aspect, when an impact load is input to the drive gear shaft, the interposed member is elastically deformed, so that the impact load is reduced.

低剛性結合部は、前記外溝が前記駆動ギア軸の周方向に並ぶ外溝列と、前記内溝が前記ロータ軸の周方向に並ぶ内溝列とを更に有し、前記介在部材は、互いに対向した状態の前記外溝列の各外溝と前記内溝列の各内溝とに嵌る複数の嵌合部を備えてもよい(請求項4)。この場合、複数の嵌合部により介在部材に入力される負荷が一点に集中せずに周方向に分散されるため、効果的に衝撃荷重を緩和できる。複数の嵌合部はそれぞれ別体でもよいが、介在部材は前記複数の嵌合部を互いに接続する接続部を更に備えてもよい(請求項5)。この場合には、複数の嵌合部が接続部を介して相互に接続されるため、それぞれ独立した複数の嵌合部をひとつずつ互いに対向した状態の各外溝と各内溝とに嵌め込む場合と比べて組み付けが容易になる利点がある。   The low-rigidity coupling portion further includes an outer groove row in which the outer grooves are arranged in the circumferential direction of the drive gear shaft, and an inner groove row in which the inner grooves are arranged in the circumferential direction of the rotor shaft, You may provide the some fitting part fitted to each outer groove of the said outer groove row | line | column of the state which mutually opposed, and each inner groove of the said inner groove row | line | column (Claim 4). In this case, the load input to the interposition member by the plurality of fitting portions is dispersed in the circumferential direction without concentrating on one point, so that the impact load can be effectively reduced. The plurality of fitting portions may be separate from each other, but the interposition member may further include a connection portion that connects the plurality of fitting portions to each other (Claim 5). In this case, since the plurality of fitting portions are connected to each other via the connection portion, the plurality of independent fitting portions are fitted into the outer grooves and the inner grooves in a state of facing each other one by one. There is an advantage that assembly is easier than in the case.

本発明の一態様においては、前記駆動ギアから前記駆動輪までの間の前記動力伝達経路内に配置されたパーキングギアと、前記パーキングギアに噛み合って前記パーキングギアを回転不能に拘束する係合位置と前記パーキングギアから離れて前記パーキングギアの回転を開放する開放位置との間で移動できるパーキングポールとを有するパーキングロック機構を更に備えてもよい(請求項6)。車両が斜面に停車した状態で、パーキングギアにパーキングポールが噛み合う係合位置になると動力伝達経路内のギア等の回転要素がロックされるとともに、車両の重量により駆動輪側からトルクが入力されるためパーキングギアから駆動輪までの各要素が捻られる。この状態でパーキングポールがパーキングギアから離れる開放位置に移動してロックが解除されると、その捻りが開放されることにより動力伝達経路内で衝撃荷重が発生する。この態様によれば、そのような状況で発生した衝撃荷重をロータ軸及び駆動ギア軸間に介在する低剛性結合手段によって効果的に緩和することができる。   In one aspect of the present invention, a parking gear disposed in the power transmission path between the driving gear and the driving wheel, and an engagement position that meshes with the parking gear and restrains the parking gear so as not to rotate. And a parking lock mechanism which can move between the parking gear and an open position where the rotation of the parking gear is released (Claim 6). When the vehicle is stopped on the slope, when the parking gear is engaged with the parking pole, the rotating element such as the gear in the power transmission path is locked, and torque is input from the drive wheel side due to the weight of the vehicle. Therefore, each element from the parking gear to the drive wheel is twisted. In this state, when the parking pole is moved to the release position away from the parking gear and the lock is released, the twist is released, and an impact load is generated in the power transmission path. According to this aspect, the impact load generated in such a situation can be effectively reduced by the low-rigidity coupling means interposed between the rotor shaft and the drive gear shaft.

パーキングギアは動力伝達経路内のいずれの位置に設けられてもよいが、例えば、前記駆動ギアと噛み合うドリブンギアが一体回転可能に設けられたドリブンギア軸を更に備え、前記パーキングギアが前記ドリブンギア軸に一体回転可能に設けられてもよい(請求項7)。この場合には、上述したようにパーキングロックが解除されて捻りが開放されると、ドリブンギアが駆動ギアに衝突して衝撃荷重が発生する。一対の軸受に入力される負荷は駆動ギアに近い側の軸受と駆動ギアとの距離が離れるほど力の釣り合いの関係から大きくなる。上述したように本発明に係る駆動ギアはロータ軸と駆動ギア軸とが別体のためその加工に制約を受けないから、駆動ギアに近い側の軸受と駆動ギアとを限界まで接近させることができる。この態様によれば、ロータ軸と駆動ギア軸とが一体化されて駆動ギアの加工のために駆動ギアに近い側の軸受と駆動ギアとの距離を確保せざるを得ない態様に比べて、その軸受と駆動ギアとの距離を近づけることに制約がないので軸線の方向に関する寸法増大を抑えつつ一対の軸受に入力される負荷を容易に低減できる。   The parking gear may be provided at any position in the power transmission path. For example, the parking gear further includes a driven gear shaft that is rotatably provided with a driven gear that meshes with the drive gear, and the parking gear includes the driven gear. The shaft may be provided so as to be integrally rotatable (claim 7). In this case, as described above, when the parking lock is released and the twist is released, the driven gear collides with the drive gear and an impact load is generated. The load input to the pair of bearings increases from the balance of force as the distance between the bearing closer to the drive gear and the drive gear increases. As described above, since the drive gear according to the present invention is separated from the rotor shaft and the drive gear shaft, the machining thereof is not restricted, so that the bearing near the drive gear and the drive gear can be brought close to the limit. it can. According to this aspect, compared with the aspect in which the rotor shaft and the drive gear shaft are integrated to ensure the distance between the bearing and the drive gear on the side close to the drive gear for processing the drive gear, Since there is no restriction on reducing the distance between the bearing and the drive gear, the load input to the pair of bearings can be easily reduced while suppressing an increase in the dimension in the direction of the axis.

以上説明したように、本発明によれば、ロータ軸が駆動ギア軸を支持する一対の軸受間に位置し、ロータ軸と駆動ギア軸とが同軸かつ一体回転可能に組み合わされる。そのため、ロータ軸と駆動ギア軸との両者を一対の軸受で支持できる。一対の軸受でロータ軸と駆動ギア軸との組み合わせを支持できるため軸受数を最少限に抑えることができる。更に、一対の軸受間にロータ軸が配置されるので、軸線方向の寸法増大を最小限に抑えることができる。ロータ軸と駆動ギア軸とはこれらの軸間を伝達する衝撃荷重を緩和できる低剛性結合手段を介在させた状態で組み合わされるので、何らかの原因で駆動ギアに衝撃荷重が入力された場合でもその結合手段の働きで駆動ギア軸とロータ軸とのトータルの慣性力が低減するため衝撃荷重が緩和される。   As described above, according to the present invention, the rotor shaft is positioned between the pair of bearings that support the drive gear shaft, and the rotor shaft and the drive gear shaft are combined coaxially and integrally rotatable. Therefore, both the rotor shaft and the drive gear shaft can be supported by a pair of bearings. Since the combination of the rotor shaft and the drive gear shaft can be supported by the pair of bearings, the number of bearings can be minimized. Furthermore, since the rotor shaft is disposed between the pair of bearings, an increase in dimension in the axial direction can be minimized. Since the rotor shaft and drive gear shaft are combined with a low-rigidity coupling means that can relieve the impact load transmitted between these shafts, even if the impact load is input to the drive gear for any reason, the coupling Since the total inertia force of the drive gear shaft and the rotor shaft is reduced by the action of the means, the impact load is reduced.

(第1の形態)
図1は本発明の一形態に係る駆動装置が組み込まれた車両の全体構成を模式的に示している。車両1はいわゆるハイブリッド車両として構成されている。周知のようにハイブリッド車両は内燃機関を走行用の駆動源として備えるとともに、モータジェネレータ等の回転電機を他の走行用の駆動源として備えた車両であり、内燃機関をできるだけ効率の良い状態で運転する一方で、駆動力やエンジンブレーキ力の過不足を他の駆動源にて補い、かつ車両減速時等にエネルギの回生を行うことにより、内燃機関のエミッション悪化の防止と燃費性能の向上とを実現できるように構成されている。
(First form)
FIG. 1 schematically shows the overall configuration of a vehicle in which a drive device according to an embodiment of the present invention is incorporated. The vehicle 1 is configured as a so-called hybrid vehicle. As is well known, a hybrid vehicle is a vehicle having an internal combustion engine as a driving source for traveling and a rotating electrical machine such as a motor generator as another driving source for traveling, and driving the internal combustion engine as efficiently as possible. On the other hand, by compensating for excess or deficiency of the driving force and engine braking force with other driving sources and regenerating energy during vehicle deceleration, etc., it is possible to prevent deterioration of internal combustion engine emissions and improve fuel efficiency. It is configured to be realized.

車両1にはその走行のために駆動装置2が設けられている。駆動装置2は走行用の駆動源として内燃機関3と2つの(図では一つのみ図示した)モータジェネレータ4とを備えるとともに、内燃機関3及びモータジェネレータ4のそれぞれの動力(出力トルク)を合成してプロペラシャフト5に出力し、プロペラシャフト5のトルクを差動装置6を介して左右の駆動輪7に出力するように構成されている。内燃機関3及びモータジェネレータ4の各出力トルクの合成又は分離は遊星歯車機構で構成された周知の動力分配機構(不図示)にて行われる。なお、内燃機関3又はモータジェネレータ4から駆動輪7までの動力伝達経路には変速機構を構成するギア列やクラッチ等の種々の回転要素が設けられているが、図1では本発明の要旨と関連性が高い構成のみを図示し、図示が省略された構成に関わる動力伝達経路を破線で示した。   The vehicle 1 is provided with a driving device 2 for traveling. The drive device 2 includes an internal combustion engine 3 and two (only one shown in the figure) motor generator 4 as a driving source for traveling, and combines the power (output torque) of each of the internal combustion engine 3 and the motor generator 4. Then, it is configured to output to the propeller shaft 5, and to output the torque of the propeller shaft 5 to the left and right drive wheels 7 via the differential device 6. The synthesis or separation of the output torques of the internal combustion engine 3 and the motor generator 4 is performed by a known power distribution mechanism (not shown) constituted by a planetary gear mechanism. Note that various rotation elements such as a gear train and a clutch constituting a speed change mechanism are provided in the power transmission path from the internal combustion engine 3 or the motor generator 4 to the drive wheels 7, but FIG. Only the configuration with high relevance is shown, and the power transmission path related to the configuration not shown is indicated by a broken line.

モータジェネレータ4は電動機としての機能と発電機としての機能とを生じるように構成されている。モータジェネレータ4には不図示のインバータを介して不図示のバッテリが電気的に接続されていて、そのインバータを制御することによりモータジェネレータ4の出力トルク又は回生トルクが適宜設定される。モータジェネレータ4は車両1に取り付けられたケーシング10に回転不能に固定されたステータ11と、そのステータ11の内周側に同軸に配置されたロータ12とを有している。ロータ12はロータ軸13の外周に装着されていて、そのロータ軸13は駆動ギア軸14に同軸かつ一体回転可能に組み合わされている。駆動ギア軸14にはその端部に駆動ギア15が一体回転可能に設けられている。駆動ギア15ははす歯歯車として構成されていて、モータジェネレータ4から駆動輪7までの動力伝達経路内に配置される。駆動ギア15はドリブンギア16と噛み合っており、そのドリブンギア16は駆動ギア軸14に対して平行に延びているドリブンギア軸17に一体回転可能に設けられている。   The motor generator 4 is configured to generate a function as an electric motor and a function as a generator. A battery (not shown) is electrically connected to the motor generator 4 via an inverter (not shown), and the output torque or regenerative torque of the motor generator 4 is appropriately set by controlling the inverter. The motor generator 4 includes a stator 11 fixed to a casing 10 attached to the vehicle 1 so as not to rotate, and a rotor 12 disposed coaxially on the inner peripheral side of the stator 11. The rotor 12 is mounted on the outer periphery of the rotor shaft 13, and the rotor shaft 13 is combined with the drive gear shaft 14 so as to be coaxial and integrally rotatable. A drive gear 15 is provided at the end of the drive gear shaft 14 so as to be integrally rotatable. The drive gear 15 is configured as a helical gear and is disposed in a power transmission path from the motor generator 4 to the drive wheel 7. The drive gear 15 meshes with the driven gear 16, and the driven gear 16 is provided on a driven gear shaft 17 that extends parallel to the drive gear shaft 14 so as to be integrally rotatable.

図2はモータジェネレータ4の周辺に関連する駆動装置2の要部を示している。図示するように、駆動装置2は駆動ギア軸14を回転自在に支持でき、かつ駆動ギア軸14の軸線Axの方向に所定間隔を開けて配置された一対の軸受21、22を有している。各軸受21、22は内外輪間に鋼球が介在する玉軸受として構成されていて、外輪がケーシング10に、内輪が駆動ギア軸14の外周に形成されたジャーナル部14aにそれぞれ接している。一対の軸受21、22の間にはロータ軸13が配置されている。ロータ軸13には駆動ギア軸14が軸線Axの方向に挿入され得る貫通孔13aが形成されており、その貫通孔13aには駆動ギア軸14が挿入されている。ロータ軸13と駆動ギア軸14とはスプライン結合部25を介在させた状態で同軸かつ一体回転可能に組み合わされている。このように、一対の軸受21、22でロータ軸21と駆動ギア軸22との組み合わせを支持できるため軸受数を最少限に抑えることができる。しかも、一対の軸受21、22の間にロータ軸13が配置されるので、軸線Axの方向の寸法増大を最小限に抑えることができる。   FIG. 2 shows a main part of the driving device 2 related to the periphery of the motor generator 4. As shown in the figure, the drive device 2 has a pair of bearings 21 and 22 that can rotatably support the drive gear shaft 14 and are arranged at a predetermined interval in the direction of the axis Ax of the drive gear shaft 14. . Each of the bearings 21 and 22 is configured as a ball bearing in which a steel ball is interposed between the inner and outer rings. The outer ring is in contact with the casing 10 and the inner ring is in contact with a journal portion 14 a formed on the outer periphery of the drive gear shaft 14. A rotor shaft 13 is disposed between the pair of bearings 21 and 22. The rotor shaft 13 is formed with a through hole 13a into which the drive gear shaft 14 can be inserted in the direction of the axis Ax, and the drive gear shaft 14 is inserted into the through hole 13a. The rotor shaft 13 and the drive gear shaft 14 are combined so as to be coaxial and integrally rotatable with a spline coupling portion 25 interposed therebetween. Thus, since the combination of the rotor shaft 21 and the drive gear shaft 22 can be supported by the pair of bearings 21 and 22, the number of bearings can be minimized. In addition, since the rotor shaft 13 is disposed between the pair of bearings 21 and 22, an increase in dimension in the direction of the axis Ax can be minimized.

図3はスプライン結合部25の一部を軸線Axの方向から見た状態を拡大して示している。スプライン結合部25は、駆動ギア軸14の外周に形成された外歯26aが駆動ギア軸14の周方向に並ぶ外歯列26と、ロータ軸13の内周に形成され内歯27aがロータ軸13の周方向に並び、かつ外歯列26と噛み合うことができる内歯列27とを有している。外歯26a及び内歯27aのそれぞれの歯すじはロータ軸13の略全長に亘って軸線Axの方向に延びている。スプライン結合部25は外歯列26と内歯列27とを相互に噛み合わせることにより駆動ギア軸14とロータ軸13とを同軸かつ一体回転可能に組み合わせることができる。ロータ軸13と駆動ギア軸14とがスプライン結合部25を介して組み合わされているので、ロータ軸13及び駆動ギア軸14のいずれか一方に過剰なトルクが入力した場合にはスプライン結合部25の外歯列26及び内歯列27がそれぞれ弾性変形することにより、ロータ軸13及び駆動ギア軸14間を伝達する過剰なトルクを緩和できる。   FIG. 3 shows an enlarged view of a part of the spline coupling portion 25 as viewed from the direction of the axis Ax. The spline coupling portion 25 includes an external tooth row 26 in which outer teeth 26 a formed on the outer periphery of the drive gear shaft 14 are arranged in the circumferential direction of the drive gear shaft 14, and an inner tooth 27 a formed on the inner periphery of the rotor shaft 13. The inner tooth row 27 is arranged in the 13 circumferential directions and can mesh with the outer tooth row 26. The teeth of each of the outer teeth 26a and the inner teeth 27a extend in the direction of the axis Ax over substantially the entire length of the rotor shaft 13. The spline coupling portion 25 can combine the drive gear shaft 14 and the rotor shaft 13 so as to be coaxially and integrally rotatable by meshing the outer tooth row 26 and the inner tooth row 27 with each other. Since the rotor shaft 13 and the drive gear shaft 14 are combined via the spline coupling portion 25, if excessive torque is input to either the rotor shaft 13 or the drive gear shaft 14, the spline coupling portion 25 Excessive torque transmitted between the rotor shaft 13 and the drive gear shaft 14 can be reduced by elastically deforming the outer tooth row 26 and the inner tooth row 27, respectively.

図1に示すように、モータジェネレータ4から駆動輪7までの動力伝達経路には車両1の停車時に駆動装置2をロックするためのパーキングロック機構30が設けられている。パーキングロック機構30はドリブンギア軸17に一体回転可能に設けられたパーキングギア31と、パーキングギア31に噛み合ってパーキングギア31を拘束できるパーキングポール32とを備えている。図4はパーキングロック機構30をドリブンギア軸17の軸線方向から見た状態を示している。図示するように、パーキングギア31にはその周方向に等間隔で並ぶ複数の凹部31aが形成されている。パーキングポール32は支持軸32aによってケーシング10に対して回転可能に支持されている。パーキングポール32にはパーキングギア31の凹部31aに嵌る凸部32bが形成されている。パーキングポール32は実線で示す係合位置と想像線で示す開放位置との間で回転移動できる。パーキングポール32が係合位置に位置すると、凸部32bがパーキングギア31の凹部31aに嵌ることによりパーキングギア31に噛み合ってパーキングギア31を回転不能に拘束する。一方、パーキングポール32が開放位置に位置すると、凸部32bが凹部31aから抜けることによりパーキングギア31から離れてパーキングギア31の回転を開放する。なお、パーキングポール32の係合位置と開放位置との間の移動は不図示の駆動機構にて行われている。   As shown in FIG. 1, a parking lock mechanism 30 for locking the drive device 2 when the vehicle 1 stops is provided in the power transmission path from the motor generator 4 to the drive wheels 7. The parking lock mechanism 30 includes a parking gear 31 provided on the driven gear shaft 17 so as to be integrally rotatable, and a parking pole 32 that meshes with the parking gear 31 and can restrain the parking gear 31. FIG. 4 shows the parking lock mechanism 30 as viewed from the axial direction of the driven gear shaft 17. As shown in the figure, the parking gear 31 is formed with a plurality of recesses 31a arranged at equal intervals in the circumferential direction. The parking pole 32 is rotatably supported with respect to the casing 10 by a support shaft 32a. The parking pole 32 has a convex portion 32 b that fits into the concave portion 31 a of the parking gear 31. The parking pole 32 can rotate between an engagement position indicated by a solid line and an open position indicated by an imaginary line. When the parking pole 32 is located at the engaging position, the convex portion 32b is engaged with the concave portion 31a of the parking gear 31 and meshes with the parking gear 31, thereby restraining the parking gear 31 so that it cannot rotate. On the other hand, when the parking pole 32 is located at the open position, the convex portion 32b is detached from the concave portion 31a, thereby leaving the parking gear 31 and releasing the rotation of the parking gear 31. The movement of the parking pole 32 between the engagement position and the release position is performed by a drive mechanism (not shown).

図1から明らかなように、パーキングロック機構30にて駆動装置2がロックされた状態で車両1が坂路に停車しているときには、車両1の重量により駆動輪7側からトルクが入力されるためパーキングギア31から駆動輪7までの動力伝達経路内の各要素が捻られる。この状態でパーキングポール32がパーキングギア31から離れてロックが解除されると、その捻りが開放されることによりドリブンギア16が駆動ギア15に衝突して衝撃荷重が発生する。その衝撃荷重の回転成分はスプライン結合部25の働きによって緩和される。つまり、スプライン結合部25は本発明に係る低剛性結合手段として機能する。その他の成分は図5示すように駆動ギア軸14を支持する一対の軸受21、22が負担する。図5は衝撃荷重の作用を説明する説明図である。図示するように、駆動ギア15に作用する衝撃荷重Fは、駆動ギア15がはす歯歯車として構成されているので軸線Axの方向のスラスト成分Fsと半径方向のラジアル成分Frとに分けられる。そのため、各軸受21、22には軸線Axの方向のスラスト成分Fsが負荷されるとともに、軸線Axと交差する半径方向のラジアル成分Frの反力であるF1r及びF2rがそれぞれ負荷される。F1r及びF2rは、駆動ギア15とこれに近い側の軸受21との距離をL1、各軸受21、22の間隔をL2とした場合、力の釣り合いの関係から以下の式1、2でそれぞれ示される。   As is clear from FIG. 1, when the vehicle 1 is stopped on the slope with the drive device 2 locked by the parking lock mechanism 30, torque is input from the drive wheel 7 side due to the weight of the vehicle 1. Each element in the power transmission path from the parking gear 31 to the drive wheel 7 is twisted. In this state, when the parking pole 32 is separated from the parking gear 31 and is unlocked, the twist is released, and the driven gear 16 collides with the drive gear 15 to generate an impact load. The rotational component of the impact load is alleviated by the action of the spline coupling portion 25. That is, the spline coupling part 25 functions as a low-rigidity coupling means according to the present invention. The other components are borne by the pair of bearings 21 and 22 that support the drive gear shaft 14 as shown in FIG. FIG. 5 is an explanatory diagram for explaining the action of the impact load. As shown in the figure, the impact load F acting on the drive gear 15 is divided into a thrust component Fs in the direction of the axis Ax and a radial component Fr in the radial direction because the drive gear 15 is configured as a helical gear. For this reason, the bearings 21 and 22 are loaded with the thrust component Fs in the direction of the axis Ax and F1r and F2r, which are the reaction forces of the radial radial component Fr intersecting the axis Ax, respectively. F1r and F2r are respectively expressed by the following formulas 1 and 2 from the relationship of force balance, where L1 is the distance between the drive gear 15 and the bearing 21 on the side closer thereto, and L2 is the distance between the bearings 21 and 22. It is.

F1r=(L1+L2)/L2×Fr ………………1
F2r=L1/L2×Fr ………………2
F1r = (L1 + L2) / L2 × Fr ............ 1
F2r = L1 / L2 × Fr 2

これらの式から明らかなように、各軸受21、22の間隔L2を一定とした場合、駆動ギア15と軸受21との距離L1が離れるほど各軸受21、22の負荷が大きくなる。ところで、駆動ギア15はロータ軸13と駆動ギア軸14とが別体のためその加工に制約を受けないから、駆動ギア15に近い側の軸受21と駆動ギア15とを限界まで接近させることができる。つまり、ロータ軸13と駆動ギア軸14とが一体化された形態の場合には駆動ギア15の加工のために軸受21と駆動ギア15との距離L1をある程度確保せざるを得ないが、本形態の場合にはギア加工上の制約を受けずに距離L1を短くできる。従って、軸受21と駆動ギア15との距離L1を近づけることに制約がないので、軸線Axの方向に関する寸法増大を抑えつつ一対の軸受21、22に入力される負荷F1r、F2rを容易に低減できる。   As is clear from these equations, when the distance L2 between the bearings 21 and 22 is constant, the load on the bearings 21 and 22 increases as the distance L1 between the drive gear 15 and the bearing 21 increases. By the way, since the drive gear 15 is separated from the rotor shaft 13 and the drive gear shaft 14 and is not restricted by the machining, the bearing 21 and the drive gear 15 close to the drive gear 15 can be brought close to the limit. it can. That is, in the case where the rotor shaft 13 and the drive gear shaft 14 are integrated, the distance L1 between the bearing 21 and the drive gear 15 must be secured to some extent for machining the drive gear 15, but this In the case of the embodiment, the distance L1 can be shortened without being restricted by gear processing. Accordingly, since there is no restriction on reducing the distance L1 between the bearing 21 and the drive gear 15, the loads F1r and F2r input to the pair of bearings 21 and 22 can be easily reduced while suppressing an increase in the dimension in the direction of the axis Ax. .

また、ロータ軸13と駆動ギア軸14とが別体であることにより、これらを組み合わせる前であれば、ロータ軸13の制約を受けずに駆動ギア15を容易に加工できる。例えば駆動ギア15の歯面を回転砥石を備えた研削装置にて研磨する際にロータ軸13と砥石との干渉を考慮する必要がなく、研削装置を用いて駆動ギア15の歯面を研磨することに支障がない。従って、工数の増大を招かずに駆動ギア15の加工精度を容易に高めることができる。更に、これらの軸13、14が一体であるとロータ12の外径が最も大きくなるので一対の軸受21、22を互いに反対方向から組み付けることになる。しかし、図示の形態はこれらの軸13、14が別体であることにより、駆動ギア軸14、ロータ軸13、及び軸受21、22の組付けの方向を一方向(図2の右方向)に統一できるので組み付け手順を簡素化できる。   Further, since the rotor shaft 13 and the drive gear shaft 14 are separate, the drive gear 15 can be easily machined without being restricted by the rotor shaft 13 before they are combined. For example, when the tooth surface of the drive gear 15 is polished by a grinding device equipped with a rotating grindstone, it is not necessary to consider the interference between the rotor shaft 13 and the grindstone, and the tooth surface of the drive gear 15 is polished using the grinding device. There is no problem. Therefore, the processing accuracy of the drive gear 15 can be easily increased without increasing the number of steps. Further, when these shafts 13 and 14 are integrated, the outer diameter of the rotor 12 becomes the largest, so that the pair of bearings 21 and 22 are assembled from opposite directions. However, since the shafts 13 and 14 are separate from each other in the illustrated form, the assembly direction of the drive gear shaft 14, the rotor shaft 13, and the bearings 21 and 22 is set to one direction (right direction in FIG. 2). Since it can be unified, the assembly procedure can be simplified.

(第2の形態)
次に、本発明の第2の形態を説明する。第2の形態は上記第1の形態の変形例に相当しロータ軸と駆動ギア軸との結合形態を除いて第1の形態と共通する。従って、第1の形態と共通の構成に対しては図6及び図7に同一符号を付して説明を省略し、他の構成に関しては図1及び図4が適宜参照される。
(Second form)
Next, a second embodiment of the present invention will be described. The second form corresponds to a modification of the first form and is common to the first form except for the form of coupling of the rotor shaft and the drive gear shaft. Therefore, the same reference numerals are given to the configurations common to the first embodiment in FIGS. 6 and 7, and the description thereof is omitted, and FIGS. 1 and 4 are appropriately referred to for the other configurations.

図6は第2の形態に係る駆動装置2の要部を示している。この形態では、ロータ軸13と駆動ギア軸14とが低剛性結合部35を介在させた状態で同軸かつ一体回転可能に組み合わされている。図7は低剛性結合部35の一部を軸線Axの方向から見た状態を拡大して示している。低剛性結合部35は駆動ギア軸14の外周に形成された外溝36aが駆動ギア軸14の周方向に並ぶ外溝列36と、ロータ軸13の内周に形成された内溝37aがロータ軸13の周方向に並ぶ内溝列37と、これらの溝列36、37のそれぞれの溝36a、37aに嵌る介在部材38とを有している。外溝36a及び内溝37aのそれぞれはロータ軸13の略全長に亘って軸線Axの方向に延びている。   FIG. 6 shows a main part of the driving device 2 according to the second embodiment. In this embodiment, the rotor shaft 13 and the drive gear shaft 14 are combined so as to be coaxial and integrally rotatable with the low-rigidity coupling portion 35 interposed therebetween. FIG. 7 shows an enlarged view of a part of the low-rigidity coupling portion 35 as viewed from the direction of the axis Ax. The low-rigidity coupling portion 35 has an outer groove row 36a formed on the outer periphery of the drive gear shaft 14 in the circumferential direction of the drive gear shaft 14 and an inner groove 37a formed on the inner periphery of the rotor shaft 13 as a rotor. An inner groove row 37 arranged in the circumferential direction of the shaft 13 and an interposition member 38 that fits into the respective grooves 36a and 37a of these groove rows 36 and 37 are provided. Each of the outer groove 36 a and the inner groove 37 a extends in the direction of the axis Ax over substantially the entire length of the rotor shaft 13.

介在部材38は駆動ギア軸14の構成材料よりも剛性の低い低剛性材料にて構成されている。低剛性材料としては、例えば駆動ギア軸14を鉄又は鉄合金で構成した場合、これよりも剛性の低いマグネシウム、アルミニウム、それらの合金等の金属材料を選択できる。また、低剛性材料は必ずしも金属材料でなくてもよく、例えばゴム等の非金属材料を低剛性材料として選択することもできる。なお、駆動ギア軸14とロータ軸13とを異種材料で構成した場合には、ロータ軸13の構成材料の剛性と同一又は低い剛性を持つ材料を低剛性材料として選択してもよい。介在部材38は互いに対向した状態の外溝36a及び内溝37aのそれぞれに嵌る複数の嵌合部38aと、これら複数の嵌合部38aを互いに接続する接続部38bとを備えている。接続部38bは円筒状になっておりロータ軸13と駆動ギア軸14との間に挿入される。   The interposition member 38 is made of a low-rigidity material that is less rigid than the constituent material of the drive gear shaft 14. As the low-rigidity material, for example, when the drive gear shaft 14 is made of iron or an iron alloy, a metal material such as magnesium, aluminum, or an alloy thereof having lower rigidity can be selected. The low-rigidity material is not necessarily a metal material, and a non-metallic material such as rubber can be selected as the low-rigidity material. When the drive gear shaft 14 and the rotor shaft 13 are made of different materials, a material having the same or lower rigidity as the constituent material of the rotor shaft 13 may be selected as the low-rigidity material. The interposition member 38 includes a plurality of fitting portions 38a that fit into the outer groove 36a and the inner groove 37a facing each other, and a connection portion 38b that connects the plurality of fitting portions 38a to each other. The connecting portion 38 b is cylindrical and is inserted between the rotor shaft 13 and the drive gear shaft 14.

この形態によれば、駆動ギア軸14に衝撃荷重が入力されると介在部材38の弾性変形が起こるので衝撃荷重が緩和される。つまり、低剛性結合部35は本発明に係る低剛性結合手段として機能する。また、図示の形態は介在部材38が複数の嵌合部38aを備えているので、介在部材38に入力される負荷が一点に集中せずに周方向に分散される。このため、効果的に衝撃荷重を緩和できる。更に、複数の嵌合部38aは接続部38bにて相互に接続されるため、それぞれ独立した複数の嵌合部38aをひとつずつ互いに対向した状態の各外溝36aと各内溝37aとに嵌め込む場合と比べて組み付けが容易になる利点がある。   According to this embodiment, when an impact load is input to the drive gear shaft 14, the interposed member 38 is elastically deformed, so that the impact load is reduced. That is, the low-rigidity coupling part 35 functions as the low-rigidity coupling means according to the present invention. Further, in the illustrated form, the interposition member 38 includes a plurality of fitting portions 38a, so that the load input to the interposition member 38 is dispersed in the circumferential direction without concentrating on one point. For this reason, an impact load can be relieved effectively. Furthermore, since the plurality of fitting portions 38a are connected to each other at the connection portion 38b, the plurality of independent fitting portions 38a are fitted into the outer grooves 36a and the inner grooves 37a in a state of facing each other one by one. There is an advantage that the assembling is easy compared to the case of mounting.

本発明は上記各形態に限定されず本発明の要旨の範囲内で種々の形態にて実施できる。駆動装置に生じる衝撃荷重の発生原因は上述したようにパーキングロックの解除によるものに限定されない。例えば、車両1がギャップを超える際に一瞬路面から離れた駆動輪7が再度接地する場合や平地を走行中の車両1が急坂を登坂する走行に切り替わる場合にも衝撃荷重が発生し得る。本発明に係る駆動装置はこれらの原因で発生した衝撃荷重も緩和することができる。なお、パーキングロック機構の搭載箇所は、駆動ギア軸から駆動輪までの動力伝達経路内であればどこに設定されていても構わない。   The present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention. The cause of the impact load generated in the drive device is not limited to that due to the release of the parking lock as described above. For example, an impact load can also be generated when the drive wheel 7 that is away from the road surface for a moment when the vehicle 1 exceeds the gap, or when the vehicle 1 traveling on the flat ground is switched to traveling on a steep slope. The drive device according to the present invention can alleviate the impact load caused by these causes. Note that the parking lock mechanism mounting location may be set anywhere within the power transmission path from the drive gear shaft to the drive wheels.

駆動源として回転電機が搭載された車両であれば本発明を適用することができる。従って、上述したハイブリッド車両に限らず、内燃機関を走行用の駆動源として搭載せずに回転電機としての電動機を駆動源として搭載した電気自動車に本発明を適用することもできる。回転電機はモータジェネレータに限らず、電動機としてのみ機能するものであってもよい。   The present invention can be applied to any vehicle in which a rotating electrical machine is mounted as a drive source. Therefore, the present invention can be applied not only to the hybrid vehicle described above, but also to an electric vehicle in which an electric motor as a rotating electric machine is mounted as a driving source without mounting an internal combustion engine as a driving source for traveling. The rotating electrical machine is not limited to a motor generator, but may function only as an electric motor.

第1の形態のスプライン結合部25の形態は一例であって、歯列の形状等は適宜変更できる。例えば、図示のようないわゆる角スプラインの形状の他、インボリュートスプライン、セレーション等の形状の歯列を形成してもよい。   The form of the spline coupling portion 25 of the first form is an example, and the shape and the like of the dentition can be appropriately changed. For example, in addition to the shape of a so-called square spline as shown in the figure, a tooth row having a shape such as an involute spline or a serration may be formed.

第2の形態の低剛性結合部35の形態は一例にすぎない。例えば、駆動ギア軸に単一の外溝とロータ軸に単一の内溝をそれぞれ形成し、互いに対向した状態のそれらの溝に単一の介在部材を嵌め込む形態を排除するものではない。また、図示のように、複数の嵌合部を相互に接続することに制限されず、それぞれ独立した複数の嵌合部をひとつずつ互いに対向した状態の各外溝と各内溝とに嵌め込む形態で実施することも可能である。   The form of the low-rigidity coupling portion 35 of the second form is only an example. For example, it is not excluded that a single outer groove is formed on the drive gear shaft and a single inner groove is formed on the rotor shaft, and a single interposition member is fitted in these grooves facing each other. Further, as shown in the figure, the plurality of fitting portions are not limited to being connected to each other, and the plurality of independent fitting portions are fitted into the outer grooves and the inner grooves in a state of facing each other one by one. It is also possible to implement in the form.

本発明の一形態に係る駆動装置が組み込まれた車両の全体構成を模式的に示した図。The figure which showed typically the whole structure of the vehicle incorporating the drive device which concerns on one form of this invention. モータジェネレータの周辺に関連する駆動装置の要部を示した図。The figure which showed the principal part of the drive device relevant to the periphery of a motor generator. スプライン結合部の一部を軸線の方向から見た状態を拡大して示した図。The figure which expanded and showed the state which looked at a part of spline coupling | bond part from the direction of the axis line. パーキングロック機構30をドリブンギア軸17の軸線方向から見た状態を示した図。The figure which showed the state which looked at the parking lock mechanism 30 from the axial direction of the driven gear shaft 17. FIG. 衝撃荷重の作用を説明する説明図。Explanatory drawing explaining the effect | action of an impact load. 第2の形態に係る駆動装置の要部を示した図。The figure which showed the principal part of the drive device which concerns on a 2nd form. 低剛性結合部の一部を軸線の方向から見た状態を拡大して示した図。The figure which expanded and showed the state which looked at a part of low rigid coupling | bond part from the direction of the axis line.

符号の説明Explanation of symbols

1 車両
2 駆動装置
4 モータジェネレータ(回転電機)
7 駆動輪
12 ロータ
13 ロータ軸
13a 貫通孔
14 駆動ギア軸
15 駆動ギア
16 ドリブンギア
17 ドリブンギア軸
21、22 軸受
25 スプライン結合部(低剛性結合手段)
26 外歯列
26a 外歯
27 内歯列
27a 内歯
30 パーキングロック機構
31 パーキングギア
32 パーキングポール
35 低剛性結合部(低剛性結合手段)
36 外溝列
36a 外溝
37 内溝列
37a 内溝
38 介在部材
38a 嵌合部
38b 接続部
Ax 軸線
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Drive device 4 Motor generator (rotary electric machine)
7 Drive Wheel 12 Rotor 13 Rotor Shaft 13a Through Hole 14 Drive Gear Shaft 15 Drive Gear 16 Driven Gear 17 Driven Gear Shafts 21 and 22 Bearing 25 Spline Joint (Low-Rigid Coupling Means)
26 External tooth row 26a External tooth 27 Internal tooth row 27a Internal tooth 30 Parking lock mechanism 31 Parking gear 32 Parking pole 35 Low-rigidity coupling portion (low-rigidity coupling means)
36 outer groove row 36a outer groove 37 inner groove row 37a inner groove 38 interposition member 38a fitting portion 38b connecting portion Ax axis

Claims (7)

駆動源として設けられた回転電機の動力を車両の駆動輪に出力できる車両の駆動装置であって、
前記回転電機から前記駆動輪までの動力伝達経路内に配置された駆動ギアが一体回転可能に設けられた駆動ギア軸と、前記回転電機のロータが外周に装着され、かつ前記駆動ギア軸が軸線の方向に挿入され得る貫通孔が形成されたロータ軸と、前記駆動ギア軸を回転自在に支持することができ、かつ前記駆動ギア軸の軸線の方向に所定間隔を開けて配置された一対の軸受と、を備え、
前記駆動ギア軸と前記ロータ軸とは、前記駆動ギア軸と前記ロータ軸との間を伝達する衝撃荷重を緩和できる低剛性結合手段を介在させた状態で、前記駆動ギア軸を支持する前記一対の軸受間に前記ロータ軸が位置するようにして同軸かつ一体回転可能に組み合わされていることを特徴とする車両の駆動装置。
A vehicle drive device capable of outputting the power of a rotating electrical machine provided as a drive source to a drive wheel of a vehicle,
A drive gear shaft provided in a power transmission path from the rotating electrical machine to the drive wheel so as to be integrally rotatable, a rotor of the rotating electrical machine is mounted on the outer periphery, and the drive gear shaft is an axis line A pair of rotor shafts formed with through-holes that can be inserted in the direction of the shaft and a pair of shafts that can rotatably support the drive gear shaft and that are arranged at predetermined intervals in the direction of the axis of the drive gear shaft A bearing,
The pair of drive gear shafts and the rotor shafts support the drive gear shafts with low-rigidity coupling means that can relieve an impact load transmitted between the drive gear shafts and the rotor shafts. A vehicle drive apparatus, wherein the rotor shaft is coaxially and integrally rotated so that the rotor shaft is positioned between the bearings.
前記低剛性結合手段として、前記駆動ギア軸の外周に形成されて前記軸線の方向に歯すじが延びる外歯が前記駆動ギア軸の周方向に並ぶ外歯列と、前記ロータ軸の内周に形成されて前記軸線の方向に歯すじが延びる内歯が前記ロータ軸の周方向に並び、かつ前記外歯列と噛み合うことができる内歯列とを有し、前記外歯列と前記内歯列とを相互に噛み合わせることにより前記駆動ギア軸と前記ロータ軸とを同軸かつ一体回転可能に組み合わせることができるスプライン結合部が設けられている請求項1に記載の駆動装置。   As the low-rigidity coupling means, external teeth formed on the outer periphery of the drive gear shaft and extending in the direction of the axis line external teeth arranged in the circumferential direction of the drive gear shaft, and the inner periphery of the rotor shaft An inner tooth row that is formed and has teeth that extend in the direction of the axis line in the circumferential direction of the rotor shaft and can mesh with the outer tooth row, and the outer tooth row and the inner tooth 2. The drive device according to claim 1, wherein a spline coupling portion capable of combining the drive gear shaft and the rotor shaft so as to be coaxially and integrally rotatable by meshing the rows with each other is provided. 前記低剛性結合手段として、前記駆動ギア軸の外周に形成されて前記軸線の方向に延びる外溝と、前記ロータ軸の内周に形成されて前記軸線の方向に延びる内溝と、互いに対向した状態の前記外溝及び前記内溝のそれぞれに嵌り、かつ前記駆動ギア軸の構成材料よりも剛性の低い低剛性材料にて構成された介在部材とを有し、前記介在部材を前記外溝及び前記内溝のそれぞれに嵌るようにして前記前記駆動ギア軸と前記ロータ軸との間に介在させることにより前記駆動ギア軸と前記ロータ軸とを同軸かつ一体回転可能に組み合わせることができる低剛性結合部が設けられている請求項1に記載の駆動装置。   As the low-rigidity coupling means, an outer groove formed on the outer periphery of the drive gear shaft and extending in the direction of the axis, and an inner groove formed on the inner periphery of the rotor shaft and extending in the direction of the axis are opposed to each other. An intermediate member that is fitted in each of the outer groove and the inner groove in a state and is made of a low-rigidity material that is lower in rigidity than the constituent material of the drive gear shaft, the intermediate member being the outer groove and A low-rigidity coupling in which the drive gear shaft and the rotor shaft can be combined coaxially and integrally rotated by being interposed between the drive gear shaft and the rotor shaft so as to fit in each of the inner grooves. The drive device according to claim 1, wherein a portion is provided. 前記低剛性結合部は、前記外溝が前記駆動ギア軸の周方向に並ぶ外溝列と、前記内溝が前記ロータ軸の周方向に並ぶ内溝列とを更に有し、
前記介在部材は、互いに対向した状態の前記外溝列の各外溝と前記内溝列の各内溝とに嵌る複数の嵌合部を備える請求項3に記載の駆動装置。
The low-rigidity coupling portion further includes an outer groove row in which the outer grooves are arranged in the circumferential direction of the drive gear shaft, and an inner groove row in which the inner grooves are arranged in the circumferential direction of the rotor shaft,
4. The drive device according to claim 3, wherein the interposition member includes a plurality of fitting portions that are fitted into the outer grooves of the outer groove row and the inner grooves of the inner groove row that face each other.
前記介在部材は、前記複数の嵌合部を互いに接続する接続部を更に備える請求項4に記載の駆動装置。   The drive device according to claim 4, wherein the interposition member further includes a connection portion that connects the plurality of fitting portions to each other. 前記駆動ギアから前記駆動輪までの間の前記動力伝達経路内に配置されたパーキングギアと、前記パーキングギアに噛み合って前記パーキングギアを回転不能に拘束する係合位置と前記パーキングギアから離れて前記パーキングギアの回転を開放する開放位置との間で移動できるパーキングポールとを有するパーキングロック機構を更に備える請求項1〜5のいずれか一項に記載の駆動装置。   A parking gear disposed in the power transmission path from the drive gear to the drive wheel, an engagement position that meshes with the parking gear and restrains the parking gear so as to be non-rotatable, and away from the parking gear. The drive device according to any one of claims 1 to 5, further comprising a parking lock mechanism having a parking pawl that can move between an open position that releases rotation of the parking gear. 前記駆動ギアと噛み合うドリブンギアが一体回転可能に設けられたドリブンギア軸を更に備え、前記パーキングギアが前記ドリブンギア軸に一体回転可能に設けられている請求項6に記載の駆動装置。   The drive device according to claim 6, further comprising a driven gear shaft in which a driven gear that meshes with the drive gear is provided so as to be integrally rotatable, and the parking gear is provided so as to be integrally rotatable on the driven gear shaft.
JP2008013608A 2008-01-24 2008-01-24 Vehicle driving device Pending JP2009174629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013608A JP2009174629A (en) 2008-01-24 2008-01-24 Vehicle driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013608A JP2009174629A (en) 2008-01-24 2008-01-24 Vehicle driving device

Publications (1)

Publication Number Publication Date
JP2009174629A true JP2009174629A (en) 2009-08-06

Family

ID=41029925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013608A Pending JP2009174629A (en) 2008-01-24 2008-01-24 Vehicle driving device

Country Status (1)

Country Link
JP (1) JP2009174629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050217A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Rotary electric machine
CN106716849A (en) * 2015-02-24 2017-05-24 华为技术有限公司 Mixer and method for generating an output signal from an input signal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050217A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Rotary electric machine
CN106716849A (en) * 2015-02-24 2017-05-24 华为技术有限公司 Mixer and method for generating an output signal from an input signal
CN106716849B (en) * 2015-02-24 2020-03-10 华为技术有限公司 Mixer and method for generating an output signal from an input signal
US11799425B2 (en) 2015-02-24 2023-10-24 Huawei Technologies Co., Ltd. Mixer and method for generating an output signal from an input signal

Similar Documents

Publication Publication Date Title
JP4900225B2 (en) Hybrid vehicle drive system
JP3553436B2 (en) Electric torque converter
JP4337800B2 (en) Power transmission device for hybrid vehicle
JP4985741B2 (en) Power transmission device for vehicle
WO2013051158A1 (en) Drive device for hybrid vehicle
WO2013140527A1 (en) Transmission for vehicle
WO2014148410A1 (en) Drive device for electric vehicle
JP2005231564A (en) Electric wheel driving device
JP2007161164A (en) Power transmission device for hybrid vehicle
WO2000032433A1 (en) Drive device and vehicle
JP6083475B2 (en) Vehicle drive device
US20130061703A1 (en) Helical gear and power transmission apparatus
US20140243145A1 (en) Planetary gear device for vehicle power transmission device
US9533561B2 (en) Power transmission device
JP2011011706A (en) Drive unit for hybrid vehicle
JP6380361B2 (en) Vehicle power transmission device
WO2015163183A1 (en) Vehicle drive device
WO2019074119A1 (en) Drive device for vehicle
JP6209127B2 (en) Motor structure
JP6786354B2 (en) In-wheel motor drive
JP6127016B2 (en) Motor structure
WO2018083808A1 (en) In-wheel motor drive device
JP2009174629A (en) Vehicle driving device
JP2007230341A (en) Vehicular driving device
KR101197005B1 (en) Device for driving in-wheel motor for electric vehicle