JP2009174066A - Spinneret for electrospinning device - Google Patents
Spinneret for electrospinning device Download PDFInfo
- Publication number
- JP2009174066A JP2009174066A JP2008010877A JP2008010877A JP2009174066A JP 2009174066 A JP2009174066 A JP 2009174066A JP 2008010877 A JP2008010877 A JP 2008010877A JP 2008010877 A JP2008010877 A JP 2008010877A JP 2009174066 A JP2009174066 A JP 2009174066A
- Authority
- JP
- Japan
- Prior art keywords
- core
- sheath
- side nozzle
- nozzle
- spinneret
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は、エレクトロスピニング装置を用いて、芯鞘構造あるいは中空構造のナノ・ファイバを紡糸するためのスピナレット(紡糸口金)に関する。 The present invention relates to a spinneret (spinneret) for spinning nanofibers having a core-sheath structure or a hollow structure using an electrospinning apparatus.
再生医療工学、創傷材料、ドラッグデリバリ等のヘルスケアの分野、生体分子の精製や汚染水質の浄化を目的としたアフィニティ膜、センサ等のバイオテクノロジー・環境工学の分野、ポリマーバッテリ、色素増感太陽電池、高分子膜燃料電池等のエネルギ分野、あるいは、複合材料の強化材、対バイオテロ攻撃、ガス攻撃を想定した防護服等の防護・セキュリティの分野等の広い分野において、ミクロン(μm)未満のナノオーダの径(例えば数nm〜数百nm)を有する繊維(ナノ・ファイバ)が注目されている。 Healthcare fields such as regenerative medicine engineering, wound materials, drug delivery, biomolecules and environmental engineering fields such as affinity membranes and sensors for purification of biomolecules and contaminated water, polymer batteries, dye-sensitized sun Less than micron (μm) in energy fields such as batteries, polymer membrane fuel cells, etc., or in a wide range of fields such as composite material reinforcement, protection against bioterrorism, and protection / security such as protective clothing assuming gas attacks A fiber (nanofiber) having a nano-order diameter (for example, several nm to several hundred nm) has attracted attention.
このようなナノ・ファイバを製造する技術の一つに、エレクトロスピニング法がある。このエレクトロスピニング法は、例えば特許文献1に開示されているように、繊維の素材となるポリマーと揮発性の溶媒との溶液を噴射するノズルと、平板状のコレクタと、ノズルとコレクタとの間に高電圧を印加する高圧電源とを備えたものである。
One technique for producing such nanofibers is the electrospinning method. For example, as disclosed in
この装置において、ノズルとコレクタとの間に高電圧を印加した状態でノズル先端の紡糸口から溶液を押し出すと、紡糸口先端のポリマー溶液の液滴は+(または−)に帯電し、異極に帯電(アース)しているコレクタに向かう電気力線に沿って作用する静電力(クーロン力)により吸引される。静電力が表面張力を越えると、ポリマー溶液の紡糸ジェットがコレクタに向かって連続的に噴射される。このとき、ポリマー溶液中の溶媒は揮発し、コレクタに到達する際には、ポリマーの繊維のみとなり、ナノレベルの細さのナノ・ファイバとなる。なお、ナノ・ファイバの原料としては、有機物のポリマーのみならず、金属酸化物、セラミック等の無機物をゾルーゲル法によって、ナノ・ファイバ形状に紡糸することも可能である。 In this apparatus, when a solution is pushed out from the spinning nozzle at the tip of the nozzle while a high voltage is applied between the nozzle and the collector, the droplet of the polymer solution at the tip of the spinning nozzle is charged to + (or-), and the different polarity It is attracted by the electrostatic force (Coulomb force) acting along the electric force line toward the collector that is charged (grounded). When the electrostatic force exceeds the surface tension, a spinning jet of polymer solution is continuously jetted toward the collector. At this time, the solvent in the polymer solution is volatilized, and when it reaches the collector, only the polymer fiber is formed, and the nano-fiber is of a nano level. In addition, as a raw material of the nanofiber, not only an organic polymer but also an inorganic material such as a metal oxide or ceramic can be spun into a nanofiber shape by a sol-gel method.
紡糸口から噴射される紡糸ジェットは、紡糸口からコレクタに到達する間に、紡糸口とコレクタとの間の電気力線の分布の影響により、螺旋軌道を描くことが知られている(例えば、非特許文献1,2参照)。その結果、コレクタ上に集積されたナノ・ファイバはランダムに配向し、これがコレクタ上で集積されると不織布状となる。
It is known that a spinning jet ejected from a spinner draws a spiral trajectory due to the influence of the distribution of electric lines of force between the spinneret and the collector while reaching the collector from the spinneret (for example, Non-patent
この配向を制御するため、円筒状の回転体コレクタが使用されている(例えば、特許文献2参照)。この回転体コレクタを用い、紡糸ジェットの移動速度よりも速い回転速度で紡糸ジェットを巻き取ることで、配向性ファイバサンプルの作製が可能となる。 In order to control this orientation, a cylindrical rotating body collector is used (for example, see Patent Document 2). By using this rotating body collector and winding the spinning jet at a rotational speed faster than the moving speed of the spinning jet, it becomes possible to produce an oriented fiber sample.
ところで、ナノ・ファイバの構造としては、全体が同一材質である単繊維が想定されているが、一方、内部の芯とそれを囲む鞘からなる二重構造(芯鞘構造)ないし、芯が空洞の中空構造をもつ機能性ナノ・ファイバの製造技術も研究されてきている。この芯鞘構造のナノ・ファイバは、例えば再生医療用や体内への薬剤の供給(ドラッグデリバリ)の用途が考えられているが、今後、いろいろな用途に用いられ得ると思われる。 By the way, the nanofiber structure is assumed to be a single fiber, which is the same material as a whole, but on the other hand, a double structure (core-sheath structure) consisting of an inner core and a sheath surrounding it, or the core is hollow The production technology of functional nanofibers having a hollow structure has been studied. The nano-fibers having the core-sheath structure are considered to be used for, for example, regenerative medicine and supply of drugs to the body (drug delivery), but are expected to be used for various purposes in the future.
芯鞘構造の繊維を製造する場合、紡糸口金(スピナレット)は、特許文献3〜5に記載されているように、芯部を吐出するための中心の案内孔とその外周の案内孔から、2種類の材料を吐出する構造を採っている。
When producing a fiber having a core-sheath structure, the spinneret (spinneret) is formed from a central guide hole for discharging the core part and a guide hole on the outer periphery thereof, as described in
前掲の特許文献3〜5に記載されたスピナレット構造は、いずれも芯や鞘の材料を溶剤に溶かした溶液を高速で吐出することにより溶剤を蒸発させ極細繊維を得るフラッシュ紡糸法方式に用いるためのものであり、エレクトロスピニング法に適用するには、いろいろな課題がある。
The spinneret structures described in the above-mentioned
その一つは、スピナレット近傍の導電部とコレクタとの間に形成される電界分布と電気力線の向きの問題である。例えば、前掲の特許文献4に記載されたような、紡糸孔が形成された下口金板の紡糸孔近辺が平面であると、図5に示すように下口金板20とナノ・ファイバが集積されるコレクタ21との間に印加される電圧によって生じる電界分布は、等電圧線がコレクタ21に平行になり、電気力線の向きは等電圧線に垂直な向きとなる。そうすると、下口金板20の紡糸口から放射されてコレクタ21に吸引される紡糸ジェットが螺旋軌道にはなりにくく、径の細い繊維を引き出すことが難しくなる。紡糸ジェットは螺旋軌道を描く間に延伸されることが報告されている。つまり、ナノスケールの直径の繊維を紡糸するためには、この螺旋軌道を描くことが重要な要素の1つとなる。
One of them is the problem of the electric field distribution and the direction of the electric lines of force formed between the conductive part near the spinneret and the collector. For example, if the vicinity of the spinning hole of the lower base plate in which the spinning hole is formed as described in
また、紡糸口近辺の電気力線が一点に集中しないため、下口金板20とコレクタ21間に印加する電圧も相当高くしなければならない。さらに、従来のスピナレットでは、芯側紡糸口と鞘側紡糸口の径や位置関係が固定されているので、微細繊維の材料や線径が異なるたびにスピナレット全体を製作する必要があり、また線径や繊維形態(モルフォロジー)の制御もできないという問題がある。
In addition, since the lines of electric force in the vicinity of the spinneret are not concentrated at one point, the voltage applied between the lower
そこで本発明は、エレクトロスピニング方式を適用してナノ・ファイバの製造を行う場合に、印加する電圧を高くする必要が無く、さらに、芯側ノズルと鞘側ノズルを交換するだけで、モルフォロジーの異なるナノ・ファイバの製造に対応することのできるエレクトロスピニング装置用スピナレットを提供することを目的とする。 Therefore, the present invention eliminates the need to increase the voltage to be applied when producing nanofibers by applying the electrospinning method. Furthermore, the morphology is different only by exchanging the core side nozzle and the sheath side nozzle. An object of the present invention is to provide a spinneret for an electrospinning apparatus that can be used for the production of nanofibers.
前記課題を解決するため、本発明は、芯鞘の繊維構造体を製造するエレクトロスピニング装置用スピナレットであって、前記芯鞘の繊維構造体の芯部となる第1溶液を吐出する芯側ノズルと、前記芯側ノズルの外周に設けられた鞘側ノズルと、前記鞘側ノズルに第2溶液を供給する第2溶液供給路を形成した鞘側ケーシングとを備え、前記鞘側ケーシングを前記芯側ノズルの外周に取り付けたときに、前記鞘側ノズルの内側に前記芯側ノズルが挿通されると共に、前記鞘側ノズルの先端から前記芯側ノズルが所定長さ突出していることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a spinneret for an electrospinning apparatus for producing a core-sheath fiber structure, and a core-side nozzle that discharges a first solution serving as a core part of the core-sheath fiber structure. And a sheath side nozzle provided on the outer periphery of the core side nozzle, and a sheath side casing forming a second solution supply path for supplying a second solution to the sheath side nozzle, the sheath side casing being the core When attached to the outer periphery of the side nozzle, the core side nozzle is inserted inside the sheath side nozzle, and the core side nozzle protrudes a predetermined length from the tip of the sheath side nozzle. .
本発明においては、第2溶液を吐出する鞘側ノズルの内部に、第1溶液を吐出する芯側ノズルを挿通し、鞘側ノズルの先端から芯側ノズルの先端を突出させた構成としたので、スピナレットとコレクタとの間に電圧を印加すると、コレクタに向かう電気力線が鞘側ノズル、芯側ノズルの部分で一点に集中するため、螺旋軌道を描く紡糸ジェットが得られ、線径が細い繊維が得られる。また、印加する電圧も1重構造の単一のノズル使用時と同等に抑えることができる。 In the present invention, the core side nozzle that discharges the first solution is inserted inside the sheath side nozzle that discharges the second solution, and the tip of the core side nozzle protrudes from the tip of the sheath side nozzle. When a voltage is applied between the spinneret and the collector, the electric force lines toward the collector are concentrated at one point at the sheath side nozzle and the core side nozzle, so that a spinning jet that draws a spiral trajectory is obtained and the wire diameter is thin. Fiber is obtained. Further, the applied voltage can be suppressed to the same level as when a single nozzle having a single structure is used.
本発明において、芯側ノズルや鞘側ノズルの径を変えたり、鞘側ノズルの先端からの芯側ノズルの突出量を、鞘側ケーシングの取付位置を調節することにより変化できる構造とすることで、ナノ・ファイバのモルフォロジーを制御することができる。 In the present invention, by changing the diameter of the core side nozzle and the sheath side nozzle, or by changing the amount of protrusion of the core side nozzle from the tip of the sheath side nozzle by adjusting the mounting position of the sheath side casing, The morphology of nanofibers can be controlled.
また、本発明において、前記芯側ノズルのボス部を着脱可能に装着して第1溶液を前記芯側ノズルに供給する芯側ノズル装着筒を備えた芯側ケーシングと、前記芯側ノズルの外周を前記芯側ケーシングに固定するノズルホルダとを備えることにより、芯側ノズルの交換、固定が容易になる。 Further, in the present invention, a core-side casing provided with a core-side nozzle mounting cylinder that detachably mounts the boss portion of the core-side nozzle and supplies the first solution to the core-side nozzle, and an outer periphery of the core-side nozzle By providing a nozzle holder that fixes the core side casing to the core side casing, it becomes easy to replace and fix the core side nozzle.
本発明によれば、芯鞘の繊維構造体を製造するエレクトロスピニング装置用スピナレットであって、芯鞘の繊維構造体の芯部となる第1溶液を吐出する芯側ノズルと、芯側ノズルの外周に設けられた鞘側ノズルと、鞘側ノズルに第2溶液を供給する第2溶液供給路を形成した鞘側ケーシングとを備え、鞘側ケーシングを芯側ノズルの外周に取り付けたときに、鞘側ノズルの内側に芯側ノズルが挿通されると共に、鞘側ノズルの先端から芯側ノズルが所定長さ突出している構成としたことにより、印加する電圧を高くする必要が無く、さらに、芯側ノズルと鞘側ノズルを交換するだけで、モルフォロジーの異なるナノ・ファイバの製造に対応することができる。 According to the present invention, a spinneret for an electrospinning device for producing a core-sheath fiber structure, a core-side nozzle that discharges a first solution serving as a core part of the core-sheath fiber structure, and a core-side nozzle, When the sheath side nozzle provided on the outer periphery and the sheath side casing that forms the second solution supply path for supplying the second solution to the sheath side nozzle are provided, and the sheath side casing is attached to the outer periphery of the core side nozzle, Since the core side nozzle is inserted inside the sheath side nozzle and the core side nozzle protrudes from the tip of the sheath side nozzle by a predetermined length, there is no need to increase the applied voltage. By simply exchanging the side nozzle and the sheath side nozzle, it is possible to cope with the production of nanofibers having different morphologies.
以下、本発明の実施の形態を、図1〜図4を用いて説明する。
図1は本発明の実施の形態に係るエレクトロスピニング装置用スピナレット(以下、単に「スピナレット」という。)の構成を示す一部切欠正面図、図2は芯側ノズルの拡大図、図3は全体システム構成図、図4は本実施の形態のスピナレットを用いた場合の電界強度と電気力線を示す説明図である。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a partially cutaway front view showing a configuration of a spinneret for an electrospinning apparatus according to an embodiment of the present invention (hereinafter simply referred to as “spinneret”), FIG. 2 is an enlarged view of a core side nozzle, and FIG. FIG. 4 is a system configuration diagram, and FIG. 4 is an explanatory diagram showing electric field strength and electric lines of force when the spinneret of the present embodiment is used.
図1において、1はスピナレットを装置に固定するための基台であり、基台1の下面には芯側ケーシング2が固定されている。基台1と芯側ケーシング2には、第1溶液が供給される通路1aと通路2aがそれぞれ設けられており、両通路1aと2aは連通するようになっている。芯側ケーシング2の先端の芯側ノズル装着筒2bには、ニードル部3aとボス部3bとからなる芯側ノズル3のボス部3b(図2参照)を装着することにより芯側ノズル3が取り付けられており、ボス部3bのフランジ部3cを押さえるように、ノズルホルダ4が芯側ケーシング2にねじ込まれている。これにより、芯側ノズル3は芯側ケーシング2から抜けないように固定される。ノズルホルダ4の外側には、先端に鞘側ノズル5aが突出するように形成された鞘側ケーシング5が、ネジ6により位置調整可能に取り付けられている。鞘側ケーシング5には、第2溶液がニードル部3aの外側と鞘側ノズル5aの内側の隙間を通して排出されるように供給される第2溶液通路5bが形成されている。また、第1溶液を供給するための第1送液チューブ7と第2溶液を供給するための第2送液チューブ8が、それぞれ通路1aと第2溶液通路5bにチューブコネクタ12を介して接続されている。基台1には、高電圧電源の一方の電圧端子からのケーブルを接続するためのコネクタ9が設けられている。
In FIG. 1,
以上の構成のスピナレットは、図3に示すようにエレクトロスピニング装置の筐体(図示せず)の上方に取り付けられ、下方に設置されるコレクタ10とコネクタ9との間に、高電圧電源11で発生する高電圧(数十kV)が印加される。
As shown in FIG. 3, the spinneret having the above configuration is attached to the upper part of a housing (not shown) of the electrospinning apparatus, and is connected between the
このときの印加された高電圧による電界分布(等電位線)と電気力線を図4に示す。本実施の形態では、鞘側ケーシング5よりも鞘側ノズル5aが突出しており、また芯側ノズル3のニードル部3aも突出しているので、上部の電気力線は1点から生じ、下方のコレクタ10に向かうようになる。この図4の電界分布と電気力線の向きは、図5の従来のスピナレットのそれらとは異なることになる。この電界分布と電気力線の向きにより、芯鞘構造の紡糸ジェットは螺旋軌道を描いてコレクタ10に吸引され、細い径の繊維、すなわちナノ・ファイバが得られる。また、電気力線の密度が芯側ノズル3のニードル部3aと鞘側ノズル5aにおいて集中するので、印加する電圧もむやみに高電圧にする必要もない。
FIG. 4 shows an electric field distribution (equipotential lines) and electric lines of force due to the applied high voltage at this time. In the present embodiment, since the
なお、鞘側ノズル5aの先端からの芯側ノズル3のニードル部3a先端の突出量を変えて、芯鞘構造のナノ・ファイバのモルフォロジーを調べたところ、次のような傾向が見られた。
In addition, when the protrusion amount of the
突出量1mm:ノズル先端にテイラーコーンが確認できた。その結果比較的均一な直径のファイバーが確認された。
突出量3mm:ノズル先端のテイラーコーンが安定せず、その結果直径にばらつきのあるファイバーが確認された。
突出量6mm:3mmの結果と同様にノズル先端のテイラーコーンが安定せず、直径のばらつきが大きいファイバーが確認された。また、ビーズ形状も確認された。
Similar to the result of the protrusion amount of 6 mm: 3 mm, the Taylor cone at the tip of the nozzle was not stable, and a fiber with large variation in diameter was confirmed. The bead shape was also confirmed.
なお、第1溶液、第2溶液を適宜選ぶことにより、芯鞘構造のほか、中空構造のナノ・ファイバを製造できる。また、第1溶液、第2溶液は、芯鞘構造の微細繊維の芯部となる第1材料、鞘部となる第2材料を溶媒に溶解させた溶液のほか、これらの材料を溶融した液体を用いることができる。 In addition to the core-sheath structure, a hollow structure nano-fiber can be manufactured by appropriately selecting the first solution and the second solution. In addition, the first solution and the second solution include a solution obtained by dissolving a first material serving as a core of a fine fiber having a core-sheath structure and a second material serving as a sheath in a solvent, and a liquid obtained by melting these materials. Can be used.
また、鞘側ノズル5aの先端からの芯側ノズル3のニードル部3a先端の突出量を変えた例を示したが、実施の形態のスピナレットでは、芯側ノズル3先端を基準位置として、鞘側ノズル5aの先端の位置をプラス方向(鞘側ノズル突出)、マイナス方向(芯側ノズル突出)に調整することができるように構成されているので、調整の幅を大きく採ることができる。
Moreover, although the example which changed the protrusion amount of the
さらに、本実施の形態では、芯部が単数で、芯部と鞘部が同軸に配置される例を示したが、芯部が複数で、鞘部の内部に配置される構造のナノ・ファイバの製造に際しては、芯側ノズルを複数備えたものを用いることで同様に適用することができる。 Furthermore, in the present embodiment, an example in which the core part is singular and the core part and the sheath part are arranged coaxially has been shown. However, a nano-fiber having a structure in which there are a plurality of core parts and is arranged inside the sheath part. In manufacturing, the same can be applied by using one having a plurality of core side nozzles.
本発明においては、既に単繊維のエレクトロスピニング装置としてシステム化された装置に、本発明のスピナレットを組み込むことができることから、ユーザーにとって中空、または芯鞘構造ナノ・ファイバの紡糸が容易になる。また、中空、または芯鞘構造ナノ・ファイバの再現性を高めることができる。さらに、鞘側ノズルの突出量を調節することにより、これまでのスピナレットでは不可能であったナノ・ファイバのモルフォロジー制御の可能性がさらに広がる。 In the present invention, since the spinneret of the present invention can be incorporated into an apparatus that has already been systemized as a single-fiber electrospinning apparatus, spinning of hollow or core-sheath nanofibers is facilitated for the user. Moreover, the reproducibility of the hollow or core-sheath nanofiber can be improved. Furthermore, by adjusting the protrusion amount of the sheath side nozzle, the possibility of controlling the morphology of the nanofiber, which has been impossible with conventional spinnerets, is further expanded.
本発明は、印加する電圧を高くする必要が無く、芯側ノズルと鞘側ノズルの位置関係を調整でき、さらに、芯側ノズルと鞘側ノズルを交換するだけで、モルフォロジーの異なるナノ・ファイバの製造に対応することのできるエレクトロスピニング装置用スピナレットとして、再生医療工学、創傷材料、ドラッグデリバリ等のヘルスケアの分野、生体分子の精製や汚染水質の浄化を目的としたアフィニティ膜、センサ等のバイオテクノロジー・環境工学の分野、ポリマーバッテリ、色素増感太陽電池、高分子膜燃料電池等のエネルギ分野、あるいは、複合材料の強化材、対バイオテロ攻撃、ガス攻撃を想定した防護服等の防護・セキュリティの分野等の広い分野において利用することができる。 In the present invention, it is not necessary to increase the voltage to be applied, the positional relationship between the core-side nozzle and the sheath-side nozzle can be adjusted, and the nanofibers having different morphologies can be obtained by simply replacing the core-side nozzle and the sheath-side nozzle. As spinnerets for electrospinning devices that can be manufactured, biomedical fields such as regenerative medicine engineering, wound materials, drug delivery, etc., biomolecules such as affinity membranes and sensors for purifying biomolecules and purifying contaminated water Technology / environmental engineering field, polymer battery, dye-sensitized solar cell, energy field such as polymer membrane fuel cell, etc., or protective / security such as composite material reinforcement, anti-terrorism attack against bioterrorism, gas attack Can be used in a wide range of fields.
1 基台
1a 通路
2 芯側ケーシング
2a 通路
2b 芯側ノズル装着筒
3 芯側ノズル
3a ニードル部
3b ボス部
3c フランジ部
4 ノズルホルダ
5 鞘側ケーシング
5a 鞘側ノズル
6 ネジ
7 第1送液チューブ
8 第2送液チューブ
9 コネクタ
10 コレクタ
11 高電圧電源
12 チューブコネクタ
DESCRIPTION OF
Claims (3)
前記芯鞘の繊維構造体の芯部となる第1溶液を吐出する芯側ノズルと、
前記芯側ノズルの外周に設けられた鞘側ノズルと、
前記鞘側ノズルに第2溶液を供給する第2溶液供給路を形成した鞘側ケーシングとを備え、
前記鞘側ケーシングを前記芯側ノズルの外周に取り付けたときに、前記鞘側ノズルの内側に前記芯側ノズルが挿通されると共に、前記鞘側ノズルの先端から前記芯側ノズルが所定長さ突出していること
を特徴とするエレクトロスピニング装置用スピナレット。 A spinneret for an electrospinning device for producing a core-sheath fiber structure,
A core-side nozzle that discharges the first solution that becomes the core of the fiber structure of the core sheath;
A sheath side nozzle provided on the outer periphery of the core side nozzle;
A sheath side casing formed with a second solution supply path for supplying the second solution to the sheath side nozzle;
When the sheath-side casing is attached to the outer periphery of the core-side nozzle, the core-side nozzle is inserted inside the sheath-side nozzle, and the core-side nozzle protrudes a predetermined length from the tip of the sheath-side nozzle. A spinneret for an electrospinning device.
前記芯側ノズルの外周を前記芯側ケーシングに固定するノズルホルダと
を備えたことを特徴とする請求項1または2に記載のエレクトロスピニング装置用スピナレット。 A core-side casing including a core-side nozzle mounting cylinder that detachably mounts the boss of the core-side nozzle and supplies the first solution to the core-side nozzle;
The spinneret for an electrospinning device according to claim 1, further comprising a nozzle holder that fixes an outer periphery of the core side nozzle to the core side casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008010877A JP5382637B2 (en) | 2008-01-21 | 2008-01-21 | Spinneret for electrospinning equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008010877A JP5382637B2 (en) | 2008-01-21 | 2008-01-21 | Spinneret for electrospinning equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009174066A true JP2009174066A (en) | 2009-08-06 |
JP5382637B2 JP5382637B2 (en) | 2014-01-08 |
Family
ID=41029444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008010877A Active JP5382637B2 (en) | 2008-01-21 | 2008-01-21 | Spinneret for electrospinning equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5382637B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229560A (en) * | 2009-03-25 | 2010-10-14 | Teijin Ltd | Inorganic nanoparticle-matrix material fibrous composite and method for producing the same |
CN101979726A (en) * | 2010-11-08 | 2011-02-23 | 东华大学 | Solvent circulation electrostatic spinning device |
JP2011102455A (en) * | 2009-10-15 | 2011-05-26 | Tokyo Institute Of Technology | Electrospinning method and electrospinning apparatus |
CN102191570A (en) * | 2011-03-11 | 2011-09-21 | 长春理工大学 | Method for preparing NiO@SiO2@TiO2 coaxial three-layer nano cable |
CN102191572A (en) * | 2011-03-11 | 2011-09-21 | 长春理工大学 | Method for preparing NiO@ZnTiO3@TiO2 coaxial three-layer nanocable |
CN103700797A (en) * | 2012-09-27 | 2014-04-02 | 比亚迪股份有限公司 | Polymer electrolyte, its preparation method and battery comprising the same |
KR101506513B1 (en) | 2013-02-20 | 2015-03-27 | 서울대학교산학협력단 | Core-cut nozzle for co-axial electrospinning and electrospinning apparatus including the same |
CN107475783A (en) * | 2017-10-17 | 2017-12-15 | 天津瑞创微纳科技有限公司 | A kind of coaxial electrostatic spinning shower nozzle |
JP2018154936A (en) * | 2017-03-17 | 2018-10-04 | パナソニックIpマネジメント株式会社 | Nozzle for electrospinning, device for electrospinning and electrospinning method |
CN114008253A (en) * | 2019-05-08 | 2022-02-01 | 维沃塔公司 | Focused electric charge electrospinning spinneret |
CN115491774A (en) * | 2022-09-28 | 2022-12-20 | 河南农业大学 | Electrostatic spinning nozzle device capable of spraying micro-patterns |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110205820B (en) * | 2019-04-30 | 2020-06-12 | 东华大学 | Functional fiber and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162007A (en) * | 1986-01-09 | 1987-07-17 | Asahi Chem Ind Co Ltd | Production of electric field-applied hollow fiber |
US20060213829A1 (en) * | 2005-03-25 | 2006-09-28 | Rutledge Gregory C | Production of submicron diameter fibers by two-fluid electrospinning process |
JP2007197859A (en) * | 2006-01-25 | 2007-08-09 | Espinex:Kk | Nanofiber |
JP2007197860A (en) * | 2006-01-25 | 2007-08-09 | Espinex:Kk | Spinneret, method for producing nanofiber using the same and nanofiber |
WO2008013713A2 (en) * | 2006-07-24 | 2008-01-31 | Duke University | Coaxial electrospun fibers and structures and methods of forming same |
-
2008
- 2008-01-21 JP JP2008010877A patent/JP5382637B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162007A (en) * | 1986-01-09 | 1987-07-17 | Asahi Chem Ind Co Ltd | Production of electric field-applied hollow fiber |
US20060213829A1 (en) * | 2005-03-25 | 2006-09-28 | Rutledge Gregory C | Production of submicron diameter fibers by two-fluid electrospinning process |
JP2007197859A (en) * | 2006-01-25 | 2007-08-09 | Espinex:Kk | Nanofiber |
JP2007197860A (en) * | 2006-01-25 | 2007-08-09 | Espinex:Kk | Spinneret, method for producing nanofiber using the same and nanofiber |
WO2008013713A2 (en) * | 2006-07-24 | 2008-01-31 | Duke University | Coaxial electrospun fibers and structures and methods of forming same |
Non-Patent Citations (1)
Title |
---|
JPN6012027476; REZNIK S. N., et al.: 'Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electri' Physics of Fluids Vol.18, No.6, 200606, p.062101-1〜062101-13 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229560A (en) * | 2009-03-25 | 2010-10-14 | Teijin Ltd | Inorganic nanoparticle-matrix material fibrous composite and method for producing the same |
JP2011102455A (en) * | 2009-10-15 | 2011-05-26 | Tokyo Institute Of Technology | Electrospinning method and electrospinning apparatus |
CN101979726A (en) * | 2010-11-08 | 2011-02-23 | 东华大学 | Solvent circulation electrostatic spinning device |
CN102191570A (en) * | 2011-03-11 | 2011-09-21 | 长春理工大学 | Method for preparing NiO@SiO2@TiO2 coaxial three-layer nano cable |
CN102191572A (en) * | 2011-03-11 | 2011-09-21 | 长春理工大学 | Method for preparing NiO@ZnTiO3@TiO2 coaxial three-layer nanocable |
CN103700797A (en) * | 2012-09-27 | 2014-04-02 | 比亚迪股份有限公司 | Polymer electrolyte, its preparation method and battery comprising the same |
KR101506513B1 (en) | 2013-02-20 | 2015-03-27 | 서울대학교산학협력단 | Core-cut nozzle for co-axial electrospinning and electrospinning apparatus including the same |
JP2018154936A (en) * | 2017-03-17 | 2018-10-04 | パナソニックIpマネジメント株式会社 | Nozzle for electrospinning, device for electrospinning and electrospinning method |
CN107475783A (en) * | 2017-10-17 | 2017-12-15 | 天津瑞创微纳科技有限公司 | A kind of coaxial electrostatic spinning shower nozzle |
CN114008253A (en) * | 2019-05-08 | 2022-02-01 | 维沃塔公司 | Focused electric charge electrospinning spinneret |
CN115491774A (en) * | 2022-09-28 | 2022-12-20 | 河南农业大学 | Electrostatic spinning nozzle device capable of spraying micro-patterns |
CN115491774B (en) * | 2022-09-28 | 2023-07-11 | 河南农业大学 | Electrostatic spinning nozzle device capable of spraying micropattern |
Also Published As
Publication number | Publication date |
---|---|
JP5382637B2 (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382637B2 (en) | Spinneret for electrospinning equipment | |
Li et al. | Developments of advanced electrospinning techniques: A critical review | |
Ding et al. | Electrospinning: nanofabrication and applications | |
CN103147138B (en) | A kind of electrospinning direct-writing jet printing appts strengthening focusing function by double-deck gas | |
JP2008223186A (en) | Method for producing nanofibers and apparatus therefor | |
KR101434092B1 (en) | Apparatus for forming patterns | |
KR101354509B1 (en) | Method of manufacturing nanofiber filament | |
KR101816733B1 (en) | Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby | |
BR112016002711B1 (en) | Apparatus and method for producing a nanofiber | |
JP5829553B2 (en) | Method for producing nanofiber laminate of polymer material | |
JP6112873B2 (en) | Composite spinning nozzle for producing nanofiber materials and microfiber materials | |
JP2010007202A (en) | Apparatus for producing nanofiber and method for producing nanofiber using the same | |
KR100687786B1 (en) | The electrospinning apparatus for producing twisted nanofiber and method thereof | |
KR20170051557A (en) | Spinning tube for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby | |
US20210207291A1 (en) | Apparatus and process for uniform deposition of polymeric nanofibers on substrate | |
JP4639324B2 (en) | Nano-fiber manufacturing apparatus and nano-fiber manufacturing method using the same | |
JP2013124426A (en) | Spinneret for producing nanofiber | |
US9931777B2 (en) | Simple device for economically producing electrospun fibers at moderate rates | |
KR101806316B1 (en) | Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby | |
KR101056255B1 (en) | Electrospinning insulated nozzle pack and electrospinning apparatus comprising the same | |
JP2014177728A (en) | Nanofiber production apparatus | |
Ding et al. | Theories and principles behind electrospinning | |
JP6129900B2 (en) | Spinneret for producing nanofiber and electrospinning apparatus having the same | |
Huang et al. | Needleless electrospinning of multiple nanofibers | |
KR20140124562A (en) | Apparatus for manufacturing of nano fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110118 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5382637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |