JP2009171328A - Optical transmission system and control method thereof - Google Patents

Optical transmission system and control method thereof Download PDF

Info

Publication number
JP2009171328A
JP2009171328A JP2008008262A JP2008008262A JP2009171328A JP 2009171328 A JP2009171328 A JP 2009171328A JP 2008008262 A JP2008008262 A JP 2008008262A JP 2008008262 A JP2008008262 A JP 2008008262A JP 2009171328 A JP2009171328 A JP 2009171328A
Authority
JP
Japan
Prior art keywords
signal
optical
equalizer
transmission system
side transceiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008008262A
Other languages
Japanese (ja)
Other versions
JP5018499B2 (en
Inventor
Hideaki Kamisugi
秀昭 神杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008008262A priority Critical patent/JP5018499B2/en
Publication of JP2009171328A publication Critical patent/JP2009171328A/en
Application granted granted Critical
Publication of JP5018499B2 publication Critical patent/JP5018499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower house-side power consumption and also to reduce costs while preventing an optical waveform from deteriorating. <P>SOLUTION: An optical transmission system 1 is an optical transmission system that transmits a down optical signal, sent from an office-side transceiver 2 to a house-side transceiver 3, and an up optical signal, sent from the house-side transceiver 3 to the station-side transceiver 2 and having a different wavelength from the down optical signal, using a multimode optical fiber 4. The station-side tranceiver 2 includes an equalizer 20 wherein a tap coefficient for correcting the signal waveform of the up signal from the house-side tranceiver 3 is set and an equalizer 16 wherein a tap coefficient for correcting the down signal is set, the tap coefficient of the equalizer 16 being set corresponding to the tap coefficient of the equalizer 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ファイバを介して異なる波長帯の光信号を送受信する光伝送システムに関するものである。   The present invention relates to an optical transmission system that transmits and receives optical signals in different wavelength bands via an optical fiber.

安価なイニシャルコストでFDDI(Fiber-Distributed Data Interface)用途等の低速光通信用に敷設されたマルチモードファイバを10Gbpsの高速光通信用にアップグレードすることが検討されている。ところが、マルチモードファイバでは、コア内を多くのモードの光信号が通過するために、モード間の伝播遅延時間が異なり、伝送後の光波形が劣化しやすい。そこで、光ファイバの受信端において光から電気信号に変換した後、デジタルフィルタの一種である電子式分散補償回路(以下、イコライザという)を用いる方式が検討されている(例えば、下記非特許文献1及び非特許文献2参照)。また、シングルモードファイバにおいても、伝送によって生じる波長分散、偏波分散を補償するために、イコライザを利用する方式が検討されている。
Jack H. Winters,Richard D. Gitlin, “Electrical Signal Processing Techniques inLong-HaulFiber-Optic System”, Transactions On Communications, 1990, vol. 38, No.9, p.1439-1453 P. Pepeljugoski, J. Schaub, J. Tierno, J. Kash, S. Gowda, B. Wilson,H. Wu, A. hajimiri, “Improved Performance of 10 Gb/s Multimode Fiber Optic Links UsingEqualization”,Technical Digest of Optical Fiber Conference, 2003, ThG4
It has been studied to upgrade a multimode fiber laid for low-speed optical communication such as FDDI (Fiber-Distributed Data Interface) application at a low initial cost for high-speed optical communication of 10 Gbps. However, in a multimode fiber, optical signals of many modes pass through the core, so that propagation delay times between modes are different, and the optical waveform after transmission is likely to deteriorate. Therefore, a method of using an electronic dispersion compensation circuit (hereinafter referred to as an equalizer), which is a kind of digital filter, after conversion from light to an electrical signal at the receiving end of the optical fiber has been studied (for example, Non-Patent Document 1 below). And Non-Patent Document 2). In addition, in single mode fiber, a method using an equalizer is being studied in order to compensate for chromatic dispersion and polarization dispersion caused by transmission.
Jack H. Winters, Richard D. Gitlin, “Electrical Signal Processing Techniques in Long-HaulFiber-Optic System”, Transactions On Communications, 1990, vol. 38, No. 9, p.1439-1453 P. Pepeljugoski, J. Schaub, J. Tierno, J. Kash, S. Gowda, B. Wilson, H. Wu, A. hajimiri, “Improved Performance of 10 Gb / s Multimode Fiber Optic Links Using Equalization”, Technical Digest of Optical Fiber Conference, 2003, ThG4

最近では、光ファイバ数の削減のために、一芯の光ファイバを用いて双方向通信を行う光伝送システムが1Gbpsの伝送速度を中心に実用化され、現在より高速な信号伝送への適用が検討されている。このような一芯双方向光伝送システムにおいては、一芯の光ファイバの両端にレーザダイオード(以下、LDという)の発光波長のみが異なる同一の送受信機(トランシーバ)が接続される。例えば、発光波長が1490nmのLDから発生した光信号が光ファイバの一端から送信され、その光信号は、光ファイバの他端に接続されたトランシーバ内のイコライザにおいて波形整形され、さらにクロック再生回路(Clock Data Recovery)によってデータに復元されて上位レイヤへ転送される。また、発光波長が1310nmのLDから発生した光信号が、光ファイバの一端において同様に処理されて上位レイヤへ転送される。   Recently, in order to reduce the number of optical fibers, an optical transmission system that performs two-way communication using a single-core optical fiber has been put into practical use centering on a transmission speed of 1 Gbps, and is applied to signal transmission at a higher speed than at present. It is being considered. In such a single-core bidirectional optical transmission system, the same transceiver (transceiver) that is different only in the emission wavelength of a laser diode (hereinafter referred to as LD) is connected to both ends of a single-core optical fiber. For example, an optical signal generated from an LD having an emission wavelength of 1490 nm is transmitted from one end of an optical fiber, the optical signal is waveform-shaped in an equalizer in a transceiver connected to the other end of the optical fiber, and further a clock recovery circuit ( Clock data recovery) restores the data and transfers it to the upper layer. In addition, an optical signal generated from an LD having an emission wavelength of 1310 nm is similarly processed at one end of the optical fiber and transferred to an upper layer.

上記一芯双方向光伝送システムの応用例としては、例えば、FTTH(Fiber To The Home)のように局側と宅側とを接続することが挙げられる。また、LAN環境での応用例も考えられ、この場合には大規模光スイッチと個々のコンピュータとの間のように規模が異なる装置間を接続するために用いられることが多い(以下、「局」という場合には、広義には光スイッチのように装置規模が相対的に大きな受信端を含み、「宅」という場合には、コンピュータのように装置規模が相対的に小さな受信端のことを含む。)。大容量電源が備えられており、環境温度調整も行われていることが多い局側に比較して、宅側では利用可能な電源容量は限られており、宅側に配置される設備は極力省電力化される必要がある。さらに、宅側装置はコストの点においても局側に比べて低く抑えられる必要がある。しかしながら、上記一芯双方向光伝送システムにおいては、局側及び宅側ともに同一構成を有しているので、消費電力及びコストが必然的に同等になってしまう傾向にあった。   As an application example of the single-core bidirectional optical transmission system, for example, the station side and the home side are connected like FTTH (Fiber To The Home). An application example in a LAN environment is also conceivable. In this case, it is often used to connect devices of different scales such as a large-scale optical switch and individual computers (hereinafter referred to as “station”). ”In the broad sense includes a receiving end with a relatively large device scale such as an optical switch, and“ home ”refers to a receiving end with a relatively small device scale such as a computer. Including). Compared to the station side, which is equipped with a large-capacity power supply and often adjusts the environmental temperature, the available power capacity is limited on the home side, and the equipment installed on the home side is as much as possible. It is necessary to save power. Further, the home side device needs to be kept lower in cost than the station side. However, in the single fiber bidirectional optical transmission system, since the station side and the home side have the same configuration, power consumption and cost tend to be inevitably equal.

そこで、本発明は、かかる課題に鑑みて為されたものであり、光波形の劣化を防止しつつ、宅側の消費電力の低減及び低コスト化を実現することが可能な光伝送システム及びその制御方法を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and an optical transmission system capable of realizing reduction in power consumption and cost reduction on the home side while preventing deterioration of an optical waveform, and its An object is to provide a control method.

上記課題を解決するため、本発明の光伝送システムは、局側トランシーバから宅側トランシーバに向かう下り光信号と、宅側トランシーバから局側トランシーバに向かう下り光信号とは異なる波長を有する上り光信号を、一の光ファイバを用いて送受する光伝送システムであって、局側トランシーバが、宅側トランシーバからの上り信号の信号波形を補正するためのタップ係数が設定される第1のデジタルフィルタと、下り信号を補正するタップ係数が設定される第2のデジタルフィルタとを備え、第2のデジタルフィルタのタップ係数が、第1のデジタルフィルタのタップ係数に対応して設定されている、ことを特徴とする。   In order to solve the above-described problems, an optical transmission system according to the present invention includes an upstream optical signal having a wavelength different from a downstream optical signal from a station-side transceiver to a home-side transceiver and a downstream optical signal from the home-side transceiver to the station-side transceiver. A first digital filter in which a tap coefficient for correcting a signal waveform of an upstream signal from the home-side transceiver is set by the station-side transceiver; A second digital filter in which a tap coefficient for correcting a downstream signal is set, and the tap coefficient of the second digital filter is set corresponding to the tap coefficient of the first digital filter. Features.

或いは、本発明の光伝送システムの制御方法は、局側トランシーバから宅側トランシーバに向かう下り光信号と、宅側トランシーバから局側トランシーバに向かう下り光信号とは異なる波長を有する上り光信号を、一の光ファイバを用いて送受する光伝送システムの制御方法であって、局側トランシーバにおいて、上り信号に対して第1のデジタルフィルタのタップ係数を設定して上り信号の波形を補正し、さらに、第1のデジタルフィルタのタップ係数に基づくタップ係数が設定された第2のデジタルフィルタを用いて補正された下り信号を、宅側トランシーバに向けて送信することを特徴とする。   Alternatively, the control method of the optical transmission system of the present invention, the downstream optical signal from the station side transceiver to the home side transceiver, and the upstream optical signal having a wavelength different from the downstream optical signal from the home side transceiver to the station side transceiver, A control method for an optical transmission system that transmits and receives using one optical fiber, wherein the station transceiver corrects the waveform of the upstream signal by setting the tap coefficient of the first digital filter for the upstream signal, The downlink signal corrected using the second digital filter in which the tap coefficient based on the tap coefficient of the first digital filter is set is transmitted to the home-side transceiver.

このような光伝送システム及びその制御方法によれば、局側トランシーバの上り信号の受信特性に基づいて第1のデジタルフィルタのタップ係数が設定されることにより、上り信号の受信特性の歪みが補正されるとともに、その第1のデジタルフィルタのタップ係数に対応したタップ係数が第2のデジタルフィルタに設定されて、この第2のデジタルフィルタによって局側トランシーバの下り信号の送信特性が予め調整される。これにより、局側の受信特性で得たタップ係数を、同一の光ファイバを利用した局側の送信系に対応して設定することにより、宅側トランシーバの機能の一部を局側トランシーバに移して宅側の消費電力の低減及び低コスト化を図りながら、送受信系における光波形の劣化を防止することができる。   According to such an optical transmission system and its control method, the distortion of the reception characteristic of the upstream signal is corrected by setting the tap coefficient of the first digital filter based on the reception characteristic of the upstream signal of the station side transceiver. At the same time, the tap coefficient corresponding to the tap coefficient of the first digital filter is set in the second digital filter, and the transmission characteristic of the downlink signal of the station side transceiver is adjusted in advance by the second digital filter. . As a result, part of the functions of the home-side transceiver is transferred to the station-side transceiver by setting the tap coefficient obtained from the reception characteristics on the station-side to correspond to the station-side transmission system using the same optical fiber. Thus, it is possible to prevent deterioration of the optical waveform in the transmission / reception system while reducing power consumption and cost reduction on the home side.

本発明の光伝送システムによれば、光波形の劣化を防止しつつ、宅側の消費電力の低減及び低コスト化を実現することができる。   According to the optical transmission system of the present invention, it is possible to realize reduction of power consumption and cost reduction on the home side while preventing deterioration of the optical waveform.

以下、図面を参照しつつ本発明に係る光伝送システムの好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an optical transmission system according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の好適な一実施形態にかかる光伝送システム1の概略構成図である。光伝送システム1は、局側トランシーバ2と宅側トランシーバ3とが1本の光ファイバ4の両端に接続された構成を有している。この光ファイバ4は、いわゆる一芯のマルチモードファイバ(MMF: Multi-Mode Fiber)であり、局側トランシーバ2の送信器5aから出射された波長1490nmの下り光信号が、この光ファイバ4を介して宅側トランシーバ3に向けて伝送され、宅側トランシーバ3から出射された波長1310nmの上り光信号が、光ファイバ4を介して局側トランシーバ2の受信器5bに向けて伝送される。すなわち、光伝送システム1では、上り方向と下り方向とで異なる波長帯を有する光信号が一芯の光ファイバを用いて波長多重方式で送受信される。   FIG. 1 is a schematic configuration diagram of an optical transmission system 1 according to a preferred embodiment of the present invention. The optical transmission system 1 has a configuration in which a station-side transceiver 2 and a home-side transceiver 3 are connected to both ends of one optical fiber 4. This optical fiber 4 is a so-called single-core multi-mode fiber (MMF), and a downstream optical signal having a wavelength of 1490 nm emitted from the transmitter 5 a of the station-side transceiver 2 is transmitted through the optical fiber 4. The upstream optical signal having a wavelength of 1310 nm that is transmitted toward the home-side transceiver 3 and emitted from the home-side transceiver 3 is transmitted toward the receiver 5b of the station-side transceiver 2 through the optical fiber 4. That is, in the optical transmission system 1, optical signals having different wavelength bands in the upstream direction and the downstream direction are transmitted / received by a wavelength division multiplexing method using a single optical fiber.

宅側トランシーバ3は、局側トランシーバ2からの下り光信号を受光してその光信号を電気信号に変換するフォトダイオード(以下、PDという)6と、PD6からの電気信号に基づいてデータを復元するクロック再生回路(Clock Data Recovery)7とを有する受信器8bと、外部の上位レイヤから伝送信号を受信するクロック再生回路9と、その伝送信号に応じた駆動電流を生成するLD駆動回路(Laser Diode Driver)10と、その駆動電流に応じて上り光信号を生成して光ファイバ4に出射するLD11とを有する送信器8aとを備えている。   The home-side transceiver 3 receives a downstream optical signal from the station-side transceiver 2 and converts the optical signal into an electrical signal, and restores the data based on the electrical signal from the PD 6. A receiver 8b having a clock recovery circuit (Clock Data Recovery) 7 that performs a clock recovery circuit 9 that receives a transmission signal from an external upper layer, and an LD drive circuit (Laser) that generates a drive current according to the transmission signal Diode Driver) 10 and a transmitter 8 a having an LD 11 that generates an upstream optical signal according to the driving current and emits the upstream optical signal to the optical fiber 4.

局側トランシーバ2は、送信器5aと、受信器5bと、送信器5a及び受信器5bの動作を制御するコントローラ(制御回路)12とを備えている。この送信器5aは、クロック再生回路13、LD駆動回路14、及び下り光信号を生成するLD15のほか、LD15に供給する駆動信号を補正するイコライザ(第2のデジタルフィルタ)16、及びコントローラ12による制御によりLD15の発光を強制的に停止する送信停止回路17をさらに有している。また、受信器5bは、上り光信号を受光するPD18、及びクロック再生回路19のほか、PD18からの電気信号(受信信号)を補正するイコライザ(第1のデジタルフィルタ)20及びPD18に入射する上り光信号を検知する光検知回路21をさらに有している。   The station-side transceiver 2 includes a transmitter 5a, a receiver 5b, and a controller (control circuit) 12 that controls operations of the transmitter 5a and the receiver 5b. The transmitter 5a includes a clock recovery circuit 13, an LD drive circuit 14, and an LD 15 that generates a downstream optical signal, an equalizer (second digital filter) 16 that corrects a drive signal supplied to the LD 15, and a controller 12. It further has a transmission stop circuit 17 for forcibly stopping the light emission of the LD 15 by the control. In addition to the PD 18 that receives the upstream optical signal and the clock recovery circuit 19, the receiver 5 b receives the equalizer (first digital filter) 20 that corrects the electrical signal (received signal) from the PD 18 and the upstream of the PD 18. It further has a light detection circuit 21 for detecting a light signal.

以下、図2を参照して、イコライザ16,20の構成について詳細に説明する。   Hereinafter, the configuration of the equalizers 16 and 20 will be described in detail with reference to FIG.

同図に示すイコライザ20は、波長1310nmの上り光信号に含まれる分散を電気的に補償する役割を有するトランスバーサルフィルタであり、PD18からの電気信号の波形整形を行う。イコライザ20には、PD18から電気信号が入力され、波長1310nmの上り光信号の分散が電気的に補償される。具体的には、イコライザ20は、遅延回路T及び乗算器C〜Cにより複数のタップが構成された前方等価(Feed Forward Equalizer)部31と、遅延回路T及び乗算器D〜Dにより複数のタップが構成された後方等価(Decision Feed-backEqualizer)部33とを備えている。前方等価部31では、遅延回路Tにより入力信号に対して1ビットずつ遅延した各信号に、各乗算器C〜Cにおいてc00〜cm0の各係数をかけ、加算器35に出力している。後方等価部33では、出力信号を比較器37で“1”、“0”判定し、遅延回路Tによりその判定後の信号(“1”もしくは“0”)に対して1ビット分ずつ遅延した信号に、各乗算器D〜Dにおいてd00〜dn0の各係数をかけ、加算器35に出力する。加算器35では、前方等価器31および後方等価器33からの各信号C〜C、D〜Dについてその総和を計算し、これを比較器37に出力する。そして、前方等価部31における上記タップ係数(補償係数)c00〜cm0、及び後方等価部33における上記各タップ係数(補償係数)d00〜dn0は、後述するコントローラ12から送信される設定信号iによって適切な値に設定される。例えば、コントローラ12は、比較器37の入力と出力との差を誤差信号として検知し、これが最小となる様に各タップ係数c00〜cm0、d00〜dn0を調整する。 An equalizer 20 shown in the figure is a transversal filter having a role of electrically compensating for dispersion included in an upstream optical signal having a wavelength of 1310 nm, and performs waveform shaping of an electric signal from the PD 18. The equalizer 20 receives an electrical signal from the PD 18 and electrically compensates for the dispersion of the upstream optical signal having a wavelength of 1310 nm. Specifically, the equalizer 20 includes a forward equivalent unit 31 in which a plurality of taps are configured by the delay circuit T and the multipliers C 0 to C m, and the delay circuit T and the multipliers D 0 to D n. And a backward equivalent (Decision Feed-back Equalizer) section 33 in which a plurality of taps are configured. The front equivalent unit 31 multiplies each signal delayed by one bit with respect to the input signal by the delay circuit T by each coefficient of c 00 to c m0 in each multiplier C 0 to C m and outputs the result to the adder 35. ing. In the backward equivalent unit 33, the output signal is determined to be “1” or “0” by the comparator 37, and delayed by one bit with respect to the signal (“1” or “0”) after the determination by the delay circuit T. The signal is multiplied by each coefficient of d 00 to dn 0 in each of the multipliers D 0 to D n and output to the adder 35. The adder 35 calculates the sum of the signals C 0 to C m and D 0 to D n from the front equalizer 31 and the rear equalizer 33 and outputs the sum to the comparator 37. The tap coefficients (compensation coefficients) c 00 to c m0 in the front equivalent unit 31 and the tap coefficients (compensation coefficients) d 00 to d n0 in the rear equivalent unit 33 are transmitted from the controller 12 described later. An appropriate value is set by the signal i. For example, the controller 12 detects the difference between the input and output of the comparator 37 as an error signal, and adjusts the tap coefficients c 00 to c m0 and d 00 to d n0 so that the difference is minimized.

また、イコライザ16は、イコライザ20と全く同一の構成を有し、LD駆動回路14から入力されたLD15の駆動信号の波形整形を行う。イコライザ16の前方等価部31及び後方等価部33におけるタップ係数(補償係数)c01〜cm1,d01〜dn1は、コントローラ12から送信される設定信号iによって適切な値に設定される。 The equalizer 16 has the same configuration as the equalizer 20 and performs waveform shaping of the drive signal of the LD 15 input from the LD drive circuit 14. The tap coefficients (compensation coefficients) c 01 to c m1 and d 01 to dn 1 in the front equivalent unit 31 and the rear equivalent unit 33 of the equalizer 16 are set to appropriate values by the setting signal i transmitted from the controller 12.

イコライザ20における比較器37への入力信号と出力信号(“1”もしくは“0”)との誤差信号は、コントローラ12に送信され、コントローラ12では、この誤差信号に基いて入力信号と出力信号との誤差が最小となるように各タップ係数c00〜cm0,d00〜dn0が決定される。そして、コントローラ12から送信される設定信号iにより、イコライザ20の前方等価部31のタップ係数c00〜cm0、及び後方等価部33のタップ係数d00〜dn0が更新される。このようにタップ係数c00〜cm0,d00〜dn0が最適化され設定されることで、光ファイバ4の帯域不足による上り光信号の歪みに対して、PD18からの電気信号を対象にして最適の波形整形を行うことができる。例えば、MMFである光ファイバ4の伝送特性は、高域が劣化するような特性を有するのが一般的である。そこで、イコライザ20により電気信号の高域を持ち上げることで結果的に平坦に近い受信特性を得ることができる。 An error signal between the input signal to the comparator 37 and the output signal (“1” or “0”) in the equalizer 20 is transmitted to the controller 12, and the controller 12 determines the input signal and the output signal based on the error signal. The tap coefficients c 00 to c m0 and d 00 to d n0 are determined so that the error of is minimized. Then, the tap coefficients c 00 to c m0 of the front equivalent unit 31 of the equalizer 20 and the tap coefficients d 00 to d n0 of the rear equivalent unit 33 are updated by the setting signal i transmitted from the controller 12. In this way, the tap coefficients c 00 to c m0 and d 00 to dn 0 are optimized and set, so that the electrical signal from the PD 18 is targeted with respect to the distortion of the upstream optical signal due to the insufficient bandwidth of the optical fiber 4. Optimal waveform shaping. For example, the transmission characteristic of the optical fiber 4 that is an MMF generally has such a characteristic that a high frequency is deteriorated. Therefore, the reception characteristic close to flat can be obtained as a result by raising the high frequency range of the electric signal by the equalizer 20.

一方で、従来の光伝送システムでは下り光信号の歪みの補償は、宅側の受信器によって行われるのが一般的である。これに対して、本実施形態の光伝送システム1では、コントローラ12が局側受信器に備えるイコライザ20のタップ係数を局側送信器に備えるイコライザ16に反映するように制御している。すなわち、コントローラ12では、イコライザ20のタップ係数c00〜cm0,d00〜dn0を決定した際に、イコライザ16のタップ係数c01〜cm1,d01〜dn1を、タップ係数c00〜cm0,d00〜dn0と同一値に決定し、設定信号iによりイコライザ16の前方等価部31のタップ係数c01〜cm1、及び後方等価部33のタップ係数d01〜dn1を更新する。このようにタップ係数c01〜cm1,d01〜dn1が最適化され設定されることで、光ファイバ4の帯域不足による下り光信号の歪みに対して、予め歪みを持ってLD15が駆動されるので、受信側ではイコライザを用いることなく光信号が受信可能となる。より詳細には、イコライザ20のタップ係数は、歪んだ受信特性の高域を持ち上げて平坦化するように設定されているので、このタップ係数を送信側に設定することは局側送信端において予め高域側を持ち上げて送信することを意味する。結果として、MMFを介して伝送される際に高域側が劣化する受信特性が相殺されることになり、受信側で平坦な受信特性を得ることができる。なお、上り光信号と下り光信号とで伝送波長が異なることにより伝送による劣化の度合いも異なるため、その度合いに応じてイコライザ20のタップ係数からイコライザ16のタップ係数を演算して求めてもよい。 On the other hand, in the conventional optical transmission system, compensation for distortion of the downstream optical signal is generally performed by a receiver on the home side. On the other hand, in the optical transmission system 1 of the present embodiment, the controller 12 performs control so that the tap coefficient of the equalizer 20 provided in the station-side receiver is reflected in the equalizer 16 provided in the station-side transmitter. That is, when the controller 12 determines the tap coefficients c 00 to c m0 and d 00 to dn 0 of the equalizer 20, the tap coefficients c 01 to c m1 and d 01 to dn 1 of the equalizer 16 are changed to the tap coefficients c 00. determine the ~c m0, d 00 ~d n0 same value, the tap coefficients c 01 to c m1 of the front equivalent portion 31 of the equalizer 16 by the setting signal i, and a tap coefficient d 01 to d n1 of the rear equivalence 33 Update. In this way, the tap coefficients c 01 to c m1 and d 01 to dn 1 are optimized and set, so that the LD 15 is driven with distortion in advance with respect to the distortion of the downstream optical signal due to insufficient bandwidth of the optical fiber 4. Therefore, the reception side can receive an optical signal without using an equalizer. More specifically, since the tap coefficient of the equalizer 20 is set so as to flatten the high frequency band of the distorted reception characteristic, setting the tap coefficient on the transmission side in advance at the transmitting end on the station side. It means that the high frequency side is lifted and transmitted. As a result, reception characteristics that deteriorate on the high frequency side when transmitted via the MMF are canceled out, and flat reception characteristics can be obtained on the reception side. Since the upstream optical signal and the downstream optical signal have different transmission wavelengths, the degree of deterioration due to transmission also differs. Therefore, the tap coefficient of the equalizer 16 may be calculated from the tap coefficient of the equalizer 20 according to the degree. .

また、光伝送システム1では起動時にイコライザ16が光ファイバ4の帯域特性を補償するようには設定されておらず、そのため宅側トランシーバ3では下り光信号を正常に受信することができない。このことを回避するために、起動時には局側トランシーバ2の送信停止回路17がLD15の発光を停止するように設定されており、コントローラ12は、起動後に光ファイバ4が接続されてイコライザ20の設定が完了した後に、LD15が下り光信号を送信するように制御する。具体的には、コントローラ12は、光検知回路21がPD18における上り光信号の受信を検知した後、イコライザ20のタップ係数が収束したか否かを判定する。このタップ係数の収束は、イコライザ20から出力される誤差信号が所定の範囲内に収まったか否かにより判定される。そして、コントローラ12は、タップ係数が収束した後に、送信停止回路17による発光停止を解除してLD15の発光を開始するように制御する。   Further, in the optical transmission system 1, the equalizer 16 is not set to compensate for the band characteristics of the optical fiber 4 at the start-up, and therefore the home-side transceiver 3 cannot normally receive the downstream optical signal. In order to avoid this, the transmission stop circuit 17 of the station-side transceiver 2 is set to stop the light emission of the LD 15 at the time of startup, and the controller 12 sets the equalizer 20 by connecting the optical fiber 4 after startup. After completing the above, the LD 15 controls to transmit a downstream optical signal. Specifically, the controller 12 determines whether the tap coefficient of the equalizer 20 has converged after the light detection circuit 21 detects reception of the upstream optical signal in the PD 18. The convergence of this tap coefficient is determined by whether or not the error signal output from the equalizer 20 falls within a predetermined range. Then, after the tap coefficient has converged, the controller 12 controls to cancel the light emission stop by the transmission stop circuit 17 and start the light emission of the LD 15.

以上説明した光伝送システム1及びその制御方法によれば、局側トランシーバ2の上り信号の受信特性に基づいてイコライザ20のタップ係数c00〜cm0,d00〜dn0が設定されることにより、上り信号の受信特性の歪みが補正されるとともに、そのイコライザ20のタップ係数c00〜cm0,d00〜dn0と同一値のタップ係数c01〜cm1,d01〜dn1がイコライザ16に設定されて、このイコライザ16によって局側トランシーバ2の下り信号の送信特性が予め調整される。具体的には、イコライザ20のタップ係数c00〜cm0,d00〜dn0は、一芯光ファイバ4の1310nmの帯域特性を反映しており、このタップ係数c00〜cm0,d00〜dn0をコントローラ12を介して送信系のイコライザ16に設定することにより、光ファイバの帯域不足が補償された光信号を生成することが可能となり、イコライザを有しない宅側受信器によっても受信可能となる。これにより、宅側トランシーバ3の機能の一部を局側トランシーバ2に移して宅側の消費電力の低減及び低コスト化を図りながら、送受信系における光波形の劣化を防止することができる。一芯双方向のトランシーバ(送信系、受信系、及び制御の基本部分のみ)の消費電力は、通常最大で約1W程度であるのに対して、イコライザ(前方等価部8段、後方等価部4段)の消費電力は1.5W程度であるので、宅側のトランシーバからイコライザを削減できることの効果は相当なものとなる。 According to the optical transmission system 1 and its control method described above, the tap coefficients c 00 to c m0 and d 00 to d n0 of the equalizer 20 are set based on the reception characteristics of the upstream signal of the station-side transceiver 2. , together with the distortion of the reception characteristics of the uplink signal is corrected, the tap coefficients c 00 ~c m0, d 00 ~d tap coefficients n0 same value c 01 ~c m1, d 01 ~d n1 of the equalizer 20 is an equalizer 16, the equalizer 16 adjusts in advance the transmission characteristics of the downstream signal of the station-side transceiver 2. Specifically, the tap coefficients c 00 ~c m0, d 00 ~d n0 of the equalizer 20 reflects the band characteristics of 1310nm of the one-core optical fiber 4, the tap coefficients c 00 ~c m0, d 00 ˜d n0 is set in the equalizer 16 of the transmission system via the controller 12, so that it is possible to generate an optical signal in which the shortage of the optical fiber band is compensated, and reception is also possible by a home-side receiver that does not have an equalizer. It becomes possible. Thereby, part of the functions of the home-side transceiver 3 can be transferred to the station-side transceiver 2 to reduce the power consumption and cost of the home-side, and to prevent optical waveform deterioration in the transmission / reception system. The power consumption of a single-core bidirectional transceiver (transmitting system, receiving system, and basic control unit only) is normally about 1 W at maximum, whereas an equalizer (front equivalent unit 8 stages, rear equivalent unit 4) The power consumption of the stage) is about 1.5 W, so that the effect of reducing the equalizer from the home-side transceiver is considerable.

次に、図3〜6には、光伝送システム1において光ファイバ4を伝送した後の光信号のアイパターンを示す。   Next, FIGS. 3 to 6 show eye patterns of optical signals after being transmitted through the optical fiber 4 in the optical transmission system 1.

図3は、波長1310nmの上り光信号が220mの光ファイバ4を伝送した後のイコライザ20による補償前のアイパターンであり、図4は、同一の上り光信号のイコライザ20による補償後のアイパターンである。このときに最適化されたイコライザ20のタップ係数は、c00=0.169,c10=−0.635,c20=1.972,c30=0.237,c40=−0.076,d00=−0.461,d10=0.001,d20=0.013となっている。補償前のEOP(Eye Opening Penalty)が6.26dBであるのに対して、タップ係数を最適化したイコライザ通過後のEOPは、0.17dBとなっており、信号光の受信特性がかなり改善されていることがわかる。なお、EOPは、xを伝送劣化後のアイダイアグラムの開口部の強度幅、yを伝送劣化前のアイダイアグラムの開口部の強度幅とした場合に、x/yで定義される。 FIG. 3 is an eye pattern before compensation by the equalizer 20 after the upstream optical signal having a wavelength of 1310 nm is transmitted through the optical fiber 4 of 220 m. FIG. 4 is an eye pattern after compensation by the equalizer 20 of the same upstream optical signal. It is. Tap coefficients optimized equalizer 20 in this case, c 00 = 0.169, c 10 = -0.635, c 20 = 1.972, c 30 = 0.237, c 40 = -0.076 , D 00 = −0.461, d 10 = 0.001, d 20 = 0.013. The EOP (Eye Opening Penalty) before compensation is 6.26 dB, while the EOP after passing through the equalizer with the tap coefficient optimized is 0.17 dB, which significantly improves the signal light reception characteristics. You can see that EOP is defined as x / y, where x is the intensity width of the opening of the eye diagram after transmission deterioration and y is the intensity width of the opening of the eye diagram before transmission deterioration.

一方、図5は、イコライザ16によって変調が加えられていない波長1490nmの下り光信号が220mの光ファイバ4を伝送した後のアイパターンであり、図6は、イコライザ16によって変調が加えられた下り光信号の光ファイバ4の伝送後のアイパターンである。図6のEOPは0.83dBであり、図5のEOP=4.21dBに比較してアイ開口部を十分に大きくすることができている。このように、波長1310nmに最適化されたタップ係数を波長1490nmに適用した場合にも十分なアイ開口部の確保が可能である。   On the other hand, FIG. 5 shows an eye pattern after a downstream optical signal having a wavelength of 1490 nm that has not been modulated by the equalizer 16 is transmitted through the optical fiber 4 of 220 m, and FIG. 6 shows a downstream pattern that has been modulated by the equalizer 16. It is the eye pattern after transmission of the optical fiber 4 of the optical signal. The EOP in FIG. 6 is 0.83 dB, and the eye opening can be made sufficiently large compared to EOP = 4.21 dB in FIG. Thus, even when the tap coefficient optimized for the wavelength of 1310 nm is applied to the wavelength of 1490 nm, a sufficient eye opening can be ensured.

本発明の好適な一実施形態にかかる光伝送システムの概略構成図である。1 is a schematic configuration diagram of an optical transmission system according to a preferred embodiment of the present invention. 図1のイコライザの詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the equalizer of FIG. 図1の光伝送システムにおいて補償前の上り光信号のアイパターンを示す図である。FIG. 2 is a diagram showing an eye pattern of an upstream optical signal before compensation in the optical transmission system of FIG. 1. 図1の光伝送システムにおいて補償後の上り光信号のアイパターンを示す図である。FIG. 2 is a diagram showing an eye pattern of an upstream optical signal after compensation in the optical transmission system of FIG. 1. 図1の光伝送システムにおいて変調されていない下り光信号のアイパターンを示す図である。It is a figure which shows the eye pattern of the downstream optical signal which is not modulated in the optical transmission system of FIG. 図1の光伝送システムにおいて変調された下り光信号のアイパターンを示す図である。It is a figure which shows the eye pattern of the downstream optical signal modulated in the optical transmission system of FIG.

符号の説明Explanation of symbols

1…光伝送システム、2…局側トランシーバ、3…宅側トランシーバ、4…光ファイバ、12…コントローラ(制御部)、16…イコライザ(第2のデジタルフィルタ)、20…イコライザ(第1のデジタルフィルタ)、c00〜cm0,d00〜dn0,c01〜cm1,d01〜dn1…タップ係数。 DESCRIPTION OF SYMBOLS 1 ... Optical transmission system, 2 ... Station side transceiver, 3 ... Home side transceiver, 4 ... Optical fiber, 12 ... Controller (control part), 16 ... Equalizer (2nd digital filter), 20 ... Equalizer (1st digital) filter), c 00 ~c m0, d 00 ~d n0, c 01 ~c m1, d 01 ~d n1 ... tap coefficient.

Claims (4)

局側トランシーバから宅側トランシーバに向かう下り光信号と、前記宅側トランシーバから前記局側トランシーバに向かう前記下り光信号とは異なる波長を有する上り光信号を、一の光ファイバを用いて送受する光伝送システムであって、
前記局側トランシーバが、
前記宅側トランシーバからの前記上り信号の信号波形を補正するためのタップ係数が設定される第1のデジタルフィルタと、
前記下り信号を補正するタップ係数が設定される第2のデジタルフィルタとを備え、
前記第2のデジタルフィルタのタップ係数が、前記第1のデジタルフィルタのタップ係数に対応して設定されている、
ことを特徴とする光伝送システム。
Light that transmits and receives, using a single optical fiber, an optical signal having a wavelength different from that of the downstream optical signal from the station-side transceiver to the home-side transceiver and the downstream optical signal from the home-side transceiver to the station-side transceiver. A transmission system,
The station-side transceiver is
A first digital filter in which a tap coefficient for correcting the signal waveform of the upstream signal from the home-side transceiver is set;
A second digital filter in which a tap coefficient for correcting the downlink signal is set,
The tap coefficient of the second digital filter is set corresponding to the tap coefficient of the first digital filter;
An optical transmission system characterized by that.
前記一の光ファイバはマルチモードファイバである、
ことを特徴とする請求項1記載の光伝送システム。
The one optical fiber is a multimode fiber.
The optical transmission system according to claim 1.
局側トランシーバから宅側トランシーバに向かう下り光信号と、前記宅側トランシーバから前記局側トランシーバに向かう前記下り光信号とは異なる波長を有する上り光信号を、一の光ファイバを用いて送受する光伝送システムの制御方法であって、
前記局側トランシーバにおいて、前記上り信号に対して第1のデジタルフィルタのタップ係数を設定して前記上り信号の波形を補正し、
さらに、前記第1のデジタルフィルタのタップ係数に基づくタップ係数が設定された第2のデジタルフィルタを用いて補正された前記下り信号を、前記宅側トランシーバに向けて送信する、
ことを特徴とする光伝送システムの制御方法。
Light that transmits and receives, using a single optical fiber, an optical signal having a wavelength different from that of the downstream optical signal from the station-side transceiver to the home-side transceiver and the downstream optical signal from the home-side transceiver to the station-side transceiver. A control method for a transmission system,
In the transceiver on the station side, the tap coefficient of the first digital filter is set for the upstream signal to correct the waveform of the upstream signal,
Further, the downlink signal corrected using the second digital filter in which the tap coefficient based on the tap coefficient of the first digital filter is set is transmitted to the home-side transceiver.
An optical transmission system control method.
前記一の光ファイバはマルチモードファイバである、
ことを特徴とする請求項3記載の光伝送システムの制御方法。
The one optical fiber is a multimode fiber.
The method of controlling an optical transmission system according to claim 3.
JP2008008262A 2008-01-17 2008-01-17 Optical transmission system and control method thereof Active JP5018499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008262A JP5018499B2 (en) 2008-01-17 2008-01-17 Optical transmission system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008262A JP5018499B2 (en) 2008-01-17 2008-01-17 Optical transmission system and control method thereof

Publications (2)

Publication Number Publication Date
JP2009171328A true JP2009171328A (en) 2009-07-30
JP5018499B2 JP5018499B2 (en) 2012-09-05

Family

ID=40971996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008262A Active JP5018499B2 (en) 2008-01-17 2008-01-17 Optical transmission system and control method thereof

Country Status (1)

Country Link
JP (1) JP5018499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052879A1 (en) * 2013-10-09 2015-04-16 株式会社デンソー Distortion compensation system and communication apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165241A (en) * 1992-11-16 1994-06-10 N T T Idou Tsuushinmou Kk Base station equipment for time division multiplexed radio communication
JPH0795655A (en) * 1993-09-20 1995-04-07 Toshiba Corp Mobile communication system
JP2000151516A (en) * 1998-11-05 2000-05-30 Toshiba Corp Optical transmission system, optical transmitter and optical receiver
JP2008312071A (en) * 2007-06-16 2008-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical communication device and optical communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165241A (en) * 1992-11-16 1994-06-10 N T T Idou Tsuushinmou Kk Base station equipment for time division multiplexed radio communication
JPH0795655A (en) * 1993-09-20 1995-04-07 Toshiba Corp Mobile communication system
JP2000151516A (en) * 1998-11-05 2000-05-30 Toshiba Corp Optical transmission system, optical transmitter and optical receiver
JP2008312071A (en) * 2007-06-16 2008-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical communication device and optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052879A1 (en) * 2013-10-09 2015-04-16 株式会社デンソー Distortion compensation system and communication apparatus

Also Published As

Publication number Publication date
JP5018499B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
US9048954B2 (en) Optical interconnect using optical transmitter pre-distortion
US7715669B2 (en) Fiber optic link, a transceiver for use in the link, and methods for designing and constructing fiber optic links and transceivers
US20110299858A1 (en) Host device with multipurpose optics drive capabilities
US8041226B2 (en) Optical transceiver with equalizing function and a method to setup the optical transceiver
TWI808257B (en) Apparatus and method for analog electronic fiber dispersion and bandwidth pre-compensation (edpc) for use in 50 gbps and greater pamn optical transceivers
US8229302B2 (en) Method and arrangement for polarization mode dispersion mitigation
CN1753335A (en) Equalizer having tunable optical and electronic dispersion compensation
JP2000031900A (en) Method for optical fiber communication and terminal station device and system used for execution of the method
JP2010034830A (en) Pre-equalized optical fiber communication system
JP4669103B2 (en) Polarization dispersion compensating apparatus and method in optical transmission system
JP2008054219A (en) Optical transceiver
US9160456B2 (en) Dispersion management for inhomogeneous fiber-optic links
JP2000031904A (en) Compensation of optical dispersion
JP5018499B2 (en) Optical transmission system and control method thereof
KR20160050687A (en) Apparatus and Method for Optical Receiving based on Multi-Mode Fiber
US20070237526A1 (en) System and method for automatic tuning of chromatic dispersion compensation for a wdm transmission system using raman distributed co-pumping
JP5338593B2 (en) Distributed equalization circuit and optical transceiver
JP2007329862A (en) Optical communication system
JP2010278528A (en) Electric dispersion compensation circuit control method and optical receiver
JP2010050641A (en) Optical receiver, optical transceiver, and method for optical reception
CN108322260A (en) The suppressing method and system of relative phase noise in coherent optical-fiber Raman amplification system
WO2022269725A1 (en) Optical transmitter/receiver and control device for optical transmitter/receiver
Kirkpatrick et al. 10 Gb/s Optical Transceivers: Fundamentals and Emerging Technologies.
Chang et al. Reach extension and performance enhancement of 10Gb/s optic systems with electronic optimization techniques in advanced fiber optic ICs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250