JP2009168194A - Method of manufacturing for telescopic shaft, and telescopic shaft manufactured thereby - Google Patents

Method of manufacturing for telescopic shaft, and telescopic shaft manufactured thereby Download PDF

Info

Publication number
JP2009168194A
JP2009168194A JP2008008608A JP2008008608A JP2009168194A JP 2009168194 A JP2009168194 A JP 2009168194A JP 2008008608 A JP2008008608 A JP 2008008608A JP 2008008608 A JP2008008608 A JP 2008008608A JP 2009168194 A JP2009168194 A JP 2009168194A
Authority
JP
Japan
Prior art keywords
shaft
manufacturing
covering portion
male
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008008608A
Other languages
Japanese (ja)
Other versions
JP5104332B2 (en
Inventor
Yoshifumi Kurokawa
祥史 黒川
Kenji Kinjo
健司 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008008608A priority Critical patent/JP5104332B2/en
Publication of JP2009168194A publication Critical patent/JP2009168194A/en
Application granted granted Critical
Publication of JP5104332B2 publication Critical patent/JP5104332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing for a telescopic shaft having a covering portion reducing the slide resistance and making slide resistance easily fall within a predetermined narrow allowable range, and to provide a telescopic shaft manufactured by the method of manufacturing for the telescopic shaft. <P>SOLUTION: The groove 41 of a female shaft 16B is fitted around the teeth 51 of a male shaft 16A after the tooth 51 of the male shaft 16A is formed with the coating portion 61. Under this condition, the male shaft 16A is relatively axially slid with respect to the female shaft 16B, and the slide resistance before running is measured. Next, when alternating current is led to flow into a heating apparatus 71, the female shaft 16B is heated by electromagnetic induction, and the covering portion 61 is heated to a predetermined temperature according to the slide resistance before running. When the covering portion 61 is heated, the covering portion 61 expands over the whole axial length of the teeth 51 of the male shaft 16A. Therefore, the covering portion 61 evenly causes plastic deformation and creep deformation over the whole axial length of the teeth 51 to cause compressive strain. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は伸縮軸、特に、回転トルクを伝達可能で軸方向に相対摺動可能な伸縮軸、例えば、中間シャフトやステアリングシャフト等の伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸に関する。   The present invention relates to a telescopic shaft, particularly a telescopic shaft capable of transmitting rotational torque and capable of sliding relative to the axial direction, for example, a telescopic shaft such as an intermediate shaft or a steering shaft, and a telescopic shaft manufactured by the manufacturing method. About.

ステアリング装置には、回転トルクを伝達可能に、かつ、軸方向に相対摺動可能に連結されたスプライン軸等の伸縮軸が、中間シャフトやステアリングシャフト等に組み込まれている。すなわち、中間シャフトは、ステアリングギヤのラック軸に噛合うピニオンシャフトに、自在継手を締結する際に、一旦縮めてからピニオンシャフトに嵌合させて締結するためや、車体フレームとの間の相対変位を吸収するために、伸縮機能が必要である。   In the steering device, a telescopic shaft such as a spline shaft that is connected so as to be capable of transmitting rotational torque and is relatively slidable in the axial direction is incorporated in an intermediate shaft, a steering shaft, or the like. In other words, when the universal joint is fastened to the pinion shaft that meshes with the rack shaft of the steering gear, the intermediate shaft is temporarily contracted and then fitted to the pinion shaft and fastened. In order to absorb water, an expansion / contraction function is required.

また、ステアリングシャフトは、ステアリングホイールの操舵力を車輪に伝達すると共に、運転者の体格や運転姿勢に応じて、ステアリングホイールの位置を軸方向に調整する必要があるため、伸縮機能が要求される。   In addition, the steering shaft transmits the steering force of the steering wheel to the wheel, and the position of the steering wheel needs to be adjusted in the axial direction according to the physique and driving posture of the driver. .

近年、車体全体の剛性と走行安定性が向上したために、ステアリングホイールを操作した時に、伸縮軸の回転方向のガタツキを運転者が感じやすくなった。そこで、回転方向のガタツキと摺動抵抗が小さく、潤滑性と耐久性に優れた伸縮軸が望まれている。   In recent years, the rigidity and running stability of the entire vehicle body have been improved, so that when the steering wheel is operated, it becomes easier for the driver to feel rattling in the rotational direction of the telescopic shaft. Therefore, there is a demand for a telescopic shaft that has low backlash and sliding resistance in the rotational direction and is excellent in lubricity and durability.

そのために、雄シャフトの歯面外周に摺動抵抗の小さな樹脂等を被覆し、潤滑用の潤滑剤を塗布した後に雌シャフトに嵌合した伸縮軸がある。このような伸縮軸では、摺動抵抗の許容範囲が狭いと、雄シャフト、雌シャフト及び樹脂被覆部の加工精度によって、摺動抵抗を許容範囲内に製造することが困難であった。   For this purpose, there is a telescopic shaft that is fitted to the female shaft after coating a resin having a small sliding resistance on the outer periphery of the tooth surface of the male shaft and applying a lubricant for lubrication. With such a telescopic shaft, if the allowable range of sliding resistance is narrow, it is difficult to manufacture the sliding resistance within the allowable range due to the processing accuracy of the male shaft, the female shaft, and the resin coating portion.

特許文献1の伸縮軸は、樹脂を被覆した雄シャフトに雌シャフトを嵌合させた状態で、回転トルクを付与して、雌シャフトの内歯を雄シャフトの外歯の樹脂被覆部に押し付けて硬化し、樹脂被覆部に押圧凹み面を形成している。これによって、摺動隙間を長期にわたって一定に維持し、押圧凹み面に潤滑剤を溜めることで、潤滑剤の供給を良好にしている。しかし、特許文献1の伸縮軸は、押圧凹み面があるため、雌シャフトの内歯と雄シャフトの外歯との間に隙間ができて、回転方向のガタツキが発生する不具合がある。   The telescopic shaft of Patent Document 1 applies rotational torque in a state where the female shaft is fitted to the male shaft coated with resin, and presses the inner teeth of the female shaft against the resin-coated portion of the outer teeth of the male shaft. It hardens | cures and forms the press dent surface in the resin coating part. Accordingly, the sliding gap is kept constant over a long period of time, and the lubricant is stored in the pressing recess surface, so that the supply of the lubricant is improved. However, since the telescopic shaft of Patent Document 1 has a pressing depression surface, there is a problem in that a gap is formed between the inner teeth of the female shaft and the outer teeth of the male shaft, causing backlash in the rotational direction.

特許文献2の伸縮軸は、樹脂を被覆した雄シャフトに雌シャフトを嵌合させた状態で、外部から樹脂を加熱して軟化し、雌シャフトの内歯と雄シャフトの外歯の隙間形状に樹脂被覆部を成形している。これによって、内歯と外歯の噛み合い隙間を均一にして、回転方向のガタを小さくし、軸方向の摺動抵抗を良好にしている。しかし、特許文献2の伸縮軸は、雌シャフトの内歯と雄シャフトの外歯との間に噛み合い隙間があるため、回転方向のガタツキが発生する不具合がある。   In the state where the female shaft is fitted to the male shaft coated with the resin, the telescopic shaft of Patent Document 2 is softened by heating the resin from the outside to form a gap between the internal teeth of the female shaft and the external teeth of the male shaft. The resin coating is molded. As a result, the meshing gap between the inner teeth and the outer teeth is made uniform, the play in the rotational direction is reduced, and the sliding resistance in the axial direction is improved. However, the telescopic shaft disclosed in Patent Document 2 has a problem in that rattling occurs in the rotational direction because there is a meshing gap between the inner teeth of the female shaft and the outer teeth of the male shaft.

また、上記特許文献1及び特許文献2の伸縮軸は、雄シャフトの被覆部の軸方向の両端部がエッジになるため、雄シャフトと雌シャフトの歯面の接触部に塗布された潤滑剤が、被覆部のエッジによって接触部の外に掃き出されてしまい、潤滑剤の供給が不足して、摺動抵抗が増大し、伸縮軸の寿命が低下してしまうことがある。   Moreover, since the both ends of the axial direction of the coating | coated part of a male shaft become an edge in the expansion-contraction shaft of the said patent document 1 and the patent document 2, the lubricant apply | coated to the contact part of the tooth surface of a male shaft and a female shaft is carried out. The edge of the covering part is swept out of the contact part, the supply of the lubricant is insufficient, the sliding resistance increases, and the life of the telescopic shaft may decrease.

特開2004−66970号公報JP 2004-66970 A 特開2002−321627号公報JP 2002-321627 A

本発明は、摺動抵抗を減少させる被覆部を有する伸縮軸であって、摺動抵抗を所定の狭い許容範囲内に収めるのが容易な伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸を提供することを課題とする。   The present invention relates to a telescopic shaft having a covering portion for reducing sliding resistance, and a method for manufacturing the telescopic shaft that can easily fit the sliding resistance within a predetermined narrow tolerance, and the manufacturing method. It is an object to provide a telescopic shaft.

上記課題は以下の手段によって解決される。すなわち、第1番目の発明は、非円形の外周形状を有する雄シャフト、上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、上記雄シャフトの非円形の外周に形成され、上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を有する伸縮軸の製造方法であって、上記雄シャフトの非円形の外周に上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程、上記被覆部を形成した雄シャフトの非円形の外周に上記雌シャフトの非円形の内周を外嵌する工程、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させて慣らし前の摺動抵抗を測定する工程、予め試験したデータから、上記慣らし前の摺動抵抗を所定の摺動抵抗にするための加熱条件と摺動条件を求める工程、上記加熱条件で上記被覆部を加熱する工程を備えたことを特徴とする伸縮軸の製造方法である。   The above problem is solved by the following means. That is, the first invention is a male shaft having a non-circular outer peripheral shape, and a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be capable of relative sliding in the axial direction and to transmit rotational torque. A method of manufacturing a telescopic shaft formed on a non-circular outer periphery of the male shaft and having a covering portion that reduces a sliding resistance between the female shaft and the inner periphery of the female shaft. Forming a covering portion for reducing sliding resistance between the inner periphery of the female shaft on a circular outer periphery, and a non-circular inner periphery of the female shaft on a non-circular outer periphery of the male shaft on which the covering portion is formed. The step of measuring the sliding resistance before acclimation by sliding the male shaft relative to the female shaft in the axial direction, the pre-acclimation sliding resistance from the pre-tested data. Addition to achieve predetermined sliding resistance Obtaining a condition and sliding conditions, a method of manufacturing a telescopic shaft, characterized in that it comprises the step of heating the coated portion in the heating condition.

第2番目の発明は、第1番目の発明の伸縮軸の製造方法は、上記摺動条件で上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる工程をさらに備えたことを特徴とする伸縮軸の製造方法である。   According to a second aspect of the present invention, the method for manufacturing the telescopic shaft of the first aspect further includes a step of sliding the male shaft relative to the female shaft in the axial direction under the sliding condition. It is the manufacturing method of the characteristic telescopic shaft.

第3番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記被覆部の冷却はチラー冷却を利用することを特徴とする伸縮軸の製造方法である。   A third aspect of the invention is a method for manufacturing an extendable shaft according to any one of the first and second aspects of the invention, wherein the covering portion is cooled using chiller cooling. .

第4番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記慣らし前の摺動抵抗がある範囲の一群毎に加熱条件と摺動条件を求めることを特徴とする伸縮軸の製造方法である。   According to a fourth aspect of the present invention, in the method of manufacturing the telescopic shaft according to the first or second aspect, the heating condition and the sliding condition are determined for each group having a range of sliding resistance before the break-in. This is a method for manufacturing the telescopic shaft.

第5番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記被覆部の冷却は、加熱された被覆部よりも低い温度の金型を上記雌シャフトまたは雄シャフトに接触させ、熱伝導により行うことを特徴とする伸縮軸の製造方法である。   According to a fifth aspect of the present invention, in the method of manufacturing the telescopic shaft of the first or second aspect of the invention, the cooling of the covering portion is performed by replacing the female shaft with a mold having a temperature lower than that of the heated covering portion. Or it is a manufacturing method of the expansion-contraction axis | shaft characterized by making it contact with a male shaft and carrying out by heat conduction.

第6番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記加熱条件を、上記被覆部を所定の温度に加熱する前に測定した被覆部近傍の温度に応じて変更することを特徴とする伸縮軸の製造方法である。   According to a sixth aspect of the present invention, in the method for manufacturing the telescopic shaft according to the first or second aspect, the heating condition is measured in the vicinity of the covering portion measured before the covering portion is heated to a predetermined temperature. It is a manufacturing method of a telescopic shaft characterized by changing according to temperature.

第7番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記被覆部の冷却は、加熱された被覆部よりも低い温度の気体を上記雌シャフトまたは雄シャフトに送風することを特徴とする伸縮軸の製造方法である。   According to a seventh aspect of the invention, in the method of manufacturing the telescopic shaft according to the first or second aspect of the invention, the cooling of the covering portion is performed by supplying a gas having a temperature lower than that of the heated covering portion to the female shaft or It is a manufacturing method of an expansion-contraction shaft characterized by ventilating a male shaft.

第8番目の発明は、第1番目または第2番目のいずれかの発明の伸縮軸の製造方法において、上記加熱条件は、上記被覆部を所定の温度に加熱するための加熱時間であることを特徴とする伸縮軸の製造方法である。   According to an eighth aspect of the present invention, in the method for manufacturing the telescopic shaft of the first or second aspect, the heating condition is a heating time for heating the covering portion to a predetermined temperature. It is the manufacturing method of the characteristic telescopic shaft.

第9番目の発明は、第1番目から第8番目までのいずれかの発明の伸縮軸の製造方法において、上記被覆部の加熱は電磁誘導を利用することを特徴とする伸縮軸の製造方法である。   A ninth aspect of the invention is a method for manufacturing an extendable shaft according to any one of the first to eighth aspects of the invention, wherein the covering portion is heated using electromagnetic induction. is there.

第10番目の発明は、第1番目から第8番目までのいずれかの発明の伸縮軸の製造方法において、上記被覆部の加熱は、被覆部よりも高い温度の物体を上記雌シャフトまたは雄シャフトに接触させ、熱伝導により行うことを特徴とする伸縮軸の製造方法である。   According to a tenth aspect of the present invention, in the method for manufacturing the telescopic shaft according to any one of the first to eighth aspects of the invention, the heating of the covering portion is performed by replacing the object having a higher temperature than the covering portion with the female shaft or the male shaft. This is a method for producing a telescopic shaft, which is performed by heat conduction.

第11番目の発明は、第1番目から第8番目までのいずれかの発明の伸縮軸の製造方法において、上記摺動条件は、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる摺動回数であることを特徴とする伸縮軸の製造方法である。   An eleventh aspect of the invention is the method for manufacturing an extendable shaft according to any one of the first to eighth aspects of the invention, wherein the sliding condition is that the male shaft is slid relative to the female shaft in the axial direction. It is the manufacturing method of the expansion-contraction shaft characterized by being the frequency | count of sliding to be moved.

第12番目の発明は、第1番目から第8番目までのいずれかの発明の伸縮軸の製造方法において、予め試験したデータから、上記慣らし前の摺動抵抗を所定の摺動抵抗にするための冷却条件を求める工程、上記軸方向に摺動させる工程が終了した被覆部を上記冷却条件で冷却する工程をさらに備えたことを特徴とする伸縮軸の製造方法である。   According to a twelfth aspect of the invention, in the method for manufacturing the telescopic shaft according to any one of the first to eighth aspects, the pre-breaking sliding resistance is set to a predetermined sliding resistance based on previously tested data. The method for manufacturing the telescopic shaft is further characterized by further comprising the step of cooling the covered portion after the step of obtaining the cooling condition and the step of sliding in the axial direction under the cooling condition.

第13番目の発明は、第1番目から第12番目までのいずれかの発明の伸縮軸の製造方法において、上記被覆部は、ゴム、高分子材料、固体潤滑剤のうちの少なくともいずれか一つの材質で形成されていることを特徴とする伸縮軸の製造方法である。   In a thirteenth aspect of the invention, in the method for manufacturing a telescopic shaft according to any one of the first to twelfth aspects, the covering portion is at least one of rubber, a polymer material, and a solid lubricant. It is a manufacturing method of the expansion-contraction shaft characterized by being formed with the material.

第14番目の発明は、第1番目から第13番目までのいずれかの発明の伸縮軸の製造方法によって製造した伸縮軸である。   A fourteenth aspect of the invention is a telescopic shaft manufactured by the manufacturing method of the telescopic shaft of any one of the first to thirteenth aspects of the invention.

本発明の伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸では、雄シャフトの非円形の外周に雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程と、被覆部を形成した雄シャフトの非円形の外周に雌シャフトの非円形の内周を外嵌する工程と、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させて慣らし前の摺動抵抗を測定する工程と、予め試験したデータから、上記慣らし前の摺動抵抗を所定の摺動抵抗にするための加熱条件と摺動条件を求める工程と、上記加熱条件で上記被覆部を加熱する工程を備えている。   In the telescopic shaft manufacturing method of the present invention and the telescopic shaft manufactured by this manufacturing method, a step of forming a covering portion on the noncircular outer periphery of the male shaft to reduce the sliding resistance between the inner periphery of the female shaft And a step of fitting the non-circular inner periphery of the female shaft to the non-circular outer periphery of the male shaft having the covering portion formed thereon, and sliding the male shaft relative to the female shaft in the axial direction. The step of measuring the previous sliding resistance, the step of obtaining the heating condition and the sliding condition for making the sliding resistance before the break-in the predetermined sliding resistance from the previously tested data, and the above heating condition A step of heating the covering portion;

従って、被覆部は、雄シャフトの非円形の外周と雌シャフトの内周との間に強く圧縮されて所定の圧縮歪を起こし、慣らし後の摺動抵抗を所定の許容範囲に確実に収めることが可能となる。   Therefore, the covering portion is strongly compressed between the non-circular outer periphery of the male shaft and the inner periphery of the female shaft to cause a predetermined compressive strain, and to ensure that the sliding resistance after the break-in is within a predetermined allowable range. Is possible.

以下、図面に基づいて本発明の実施例1から実施例2を説明する。   Hereinafter, Example 1 to Example 2 of the present invention will be described with reference to the drawings.

図1は本発明の伸縮軸を有するステアリング装置の全体を示し、一部を切断した側面図であって、操舵補助部を有する電動パワーステアリング装置に適用した実施例を示す。図2は本発明の実施例1の伸縮軸の製造工程を示す縦断面図である。図3は図2のA−A拡大断面図を示し、(1)はスリーブを被覆した伸縮軸を示す拡大断面図、(2)は被覆部をコーティングした伸縮軸を示す拡大断面図である。   FIG. 1 is a side view of the steering device having the telescopic shaft according to the present invention, partially cut away, showing an embodiment applied to an electric power steering device having a steering assisting portion. FIG. 2 is a longitudinal sectional view showing a process for manufacturing the telescopic shaft according to the first embodiment of the present invention. 3 is an AA enlarged cross-sectional view of FIG. 2, wherein (1) is an enlarged cross-sectional view showing a telescopic shaft coated with a sleeve, and (2) is an enlarged cross-sectional view showing a telescopic shaft coated with a covering portion.

図4は本発明の実施例1の伸縮軸の雄シャフトを示す斜視図である。図5は本発明の実施例1の伸縮軸の製造工程を示し、図3(2)のP部拡大断面図である。図6は図5の後工程を示す図3(2)のP部拡大断面図である。図7は本発明の実施例1の製造工程を示す被覆部の加熱・冷却曲線である。   FIG. 4 is a perspective view showing the male shaft of the telescopic shaft according to the first embodiment of the present invention. FIG. 5 shows a manufacturing process of the telescopic shaft according to the first embodiment of the present invention, and is an enlarged cross-sectional view of a portion P in FIG. FIG. 6 is an enlarged cross-sectional view of a portion P in FIG. FIG. 7 is a heating / cooling curve of the coated portion showing the manufacturing process of Example 1 of the present invention.

図8は被覆部を加熱した時の温度と摺動抵抗の低下量を示すグラフである。図9は伸縮軸を摺動させた時の摺動回数と摺動抵抗の低下量を示すグラフである。図10は被覆部を加熱した時の加熱時間と被覆部の温度を示すグラフである。図11は伸縮軸の慣らし前と慣らし後の摺動抵抗の変化を示すグラフである。図12は伸縮軸の慣らし前と慣らし後の摺動抵抗の変化を示す他の例のグラフである。   FIG. 8 is a graph showing the temperature and sliding resistance drop when the coating is heated. FIG. 9 is a graph showing the number of sliding operations and the amount of decrease in sliding resistance when the telescopic shaft is slid. FIG. 10 is a graph showing the heating time and the temperature of the covering portion when the covering portion is heated. FIG. 11 is a graph showing changes in sliding resistance before and after the break-in of the telescopic shaft. FIG. 12 is a graph of another example showing the change in sliding resistance before and after the break-in of the telescopic shaft.

図1に示すように、本発明の実施例の伸縮軸を有するステアリング装置は、車体後方側(図1の右側)にステアリングホイール11を装着可能なステアリングシャフト12と、このステアリングシャフト12を挿通したステアリングコラム13と、ステアリングシャフト12に補助トルクを付与する為のアシスト装置(操舵補助部)20と、ステアリングシャフト12の車体前方側(図1の左側)に、図示しないラック/ピニオン機構を介して連結されたステアリングギヤ30とを備える。   As shown in FIG. 1, the steering device having the telescopic shaft of the embodiment of the present invention has a steering shaft 12 on which a steering wheel 11 can be mounted on the rear side of the vehicle body (right side in FIG. 1), and this steering shaft 12 is inserted. A steering column 13, an assist device (steering assisting portion) 20 for applying auxiliary torque to the steering shaft 12, and a vehicle front side (left side in FIG. 1) of the steering shaft 12 via a rack / pinion mechanism (not shown). And a connected steering gear 30.

ステアリングシャフト12は、アウターシャフト12Aとインナーシャフト12Bとを、回転トルクを伝達自在に、かつ軸方向に関して相対変位可能に組み合わせて成る。   The steering shaft 12 is formed by combining an outer shaft 12A and an inner shaft 12B so that rotational torque can be transmitted and relative displacement can be performed in the axial direction.

すなわち、雄シャフト12Bの車体後方側外周には、複数の雄スプラインが形成され、雌シャフト12Aの車体前方側内周には、複数の雌スプラインが、雄スプラインと同一位相位置に形成されて、雄シャフト12Bの雄スプラインと所定の隙間を有して外嵌し、回転トルクを伝達自在に、かつ軸方向に関して相対変位可能に係合している。従って、上記雌シャフト12Aと雄シャフト12Bとは、衝突時に、この係合部が相対摺動して、全長を縮めることができる。   That is, a plurality of male splines are formed on the outer periphery on the vehicle body rear side of the male shaft 12B, and a plurality of female splines are formed on the inner periphery on the vehicle body front side of the female shaft 12A at the same phase position as the male spline. The male spline of the male shaft 12B is externally fitted with a predetermined gap, and is engaged so as to be able to transmit rotational torque and be relatively displaceable in the axial direction. Therefore, the engaging portion of the female shaft 12A and the male shaft 12B can slide relative to each other at the time of collision, so that the overall length can be shortened.

また、上記ステアリングシャフト12を挿通した筒状のステアリングコラム13は、アウターコラム13Aとインナーコラム13Bとをテレスコピック移動可能に組み合わせており、衝突時に軸方向の衝撃が加わった場合に、この衝撃によるエネルギを吸収しつつ全長が縮まる、所謂コラプシブル構造としている。   Further, the cylindrical steering column 13 inserted through the steering shaft 12 combines the outer column 13A and the inner column 13B so that they can be telescopically moved. It has a so-called collapsible structure in which the entire length is shortened while absorbing water.

そして、上記インナーコラム13Bの車体前方側端部を、ギヤハウジング21の車体後方側端部に圧入嵌合して固定している。また、上記雄シャフト12Bの車体前方側端部を、このギヤハウジング21の内側に通し、アシスト装置20の図示しない入力軸の車体後方側端部に結合している。   The vehicle body front side end portion of the inner column 13B is press-fitted and fixed to the vehicle body rear side end portion of the gear housing 21. Further, the vehicle body front side end portion of the male shaft 12B is passed through the inside of the gear housing 21 and is coupled to the vehicle body rear side end portion of the input shaft (not shown) of the assist device 20.

ステアリングコラム13は、その中間部を支持ブラケット14により、ダッシュボードの下面等、車体18の一部に支承している。また、この支持ブラケット14と車体18との間に、図示しない係止部を設けて、この支持ブラケット14に車体前方側に向かう方向の衝撃が加わった場合に、この支持ブラケット14が上記係止部から外れ、車体前方側に移動するようにしている。   The steering column 13 is supported by a support bracket 14 at a middle portion thereof on a part of the vehicle body 18 such as a lower surface of the dashboard. Further, a locking portion (not shown) is provided between the support bracket 14 and the vehicle body 18, and when an impact in a direction toward the front side of the vehicle body is applied to the support bracket 14, the support bracket 14 is locked to the locking bracket 14. It moves away from the vehicle and moves to the front side of the vehicle.

また、上記ギヤハウジング21の上端部も、上記車体18の一部に支承している。また、本実施例の場合には、チルト機構及びテレスコピック機構を設けることにより、上記ステアリングホイール11の車体前後方向位置、及び、高さ位置の調節を自在としている。このようなチルト機構及びテレスコピック機構は、従来から周知であり、本発明の特徴部分でもない為、詳しい説明は省略する。   The upper end portion of the gear housing 21 is also supported on a part of the vehicle body 18. In the case of this embodiment, by providing a tilt mechanism and a telescopic mechanism, the position of the steering wheel 11 in the longitudinal direction of the vehicle body and the height position can be freely adjusted. Such a tilt mechanism and a telescopic mechanism are well known in the art and are not characteristic features of the present invention, and thus detailed description thereof is omitted.

上記ギヤハウジング21の車体前方側端面から突出した出力軸23は、自在継手15を介して、中間シャフト16の雄中間シャフト(以下雄シャフトと呼ぶ)16Aの後端部に連結している。また、この中間シャフト16の雌中間シャフト(以下雌シャフトと呼ぶ)16Bの前端部に、別の自在継手17を介して、ステアリングギヤ30の入力軸31を連結している。   The output shaft 23 protruding from the end face on the vehicle body front side of the gear housing 21 is connected to a rear end portion of a male intermediate shaft (hereinafter referred to as a male shaft) 16A of the intermediate shaft 16 through a universal joint 15. Further, an input shaft 31 of the steering gear 30 is connected to a front end portion of a female intermediate shaft (hereinafter referred to as a female shaft) 16B of the intermediate shaft 16 via another universal joint 17.

雄中間シャフト16Aは、雌中間シャフト16Bに対して、軸方向に相対摺動可能に、かつ、回転トルクを伝達可能に結合している。図示しないピニオンが、この入力軸31の前端部に形成されている。また、図示しないラックが、このピニオンに噛み合っており、ステアリングホイール11の回転が、タイロッド32を移動させて、図示しない車輪を操舵する。   The male intermediate shaft 16A is coupled to the female intermediate shaft 16B so as to be capable of relative sliding in the axial direction and to transmit rotational torque. A pinion (not shown) is formed at the front end of the input shaft 31. A rack (not shown) meshes with the pinion, and the rotation of the steering wheel 11 moves the tie rod 32 to steer a wheel (not shown).

アシスト装置20のギヤハウジング21には、電動モータ26のケース261が固定されている。ステアリングホイール11からステアリングシャフト12に加えられるトルクの方向と大きさを、トルクセンサで検出する。この検出信号に応じて、電動モータ26を駆動し、図示しない減速機構を介して、出力軸23に、所定の方向に所定の大きさで補助トルクを発生させる。   A case 261 of an electric motor 26 is fixed to the gear housing 21 of the assist device 20. The direction and magnitude of torque applied from the steering wheel 11 to the steering shaft 12 is detected by a torque sensor. In response to this detection signal, the electric motor 26 is driven to cause the output shaft 23 to generate auxiliary torque with a predetermined magnitude in a predetermined direction via a speed reduction mechanism (not shown).

図2に示すように、本発明の実施例1の伸縮軸は、中間シャフト16の雄シャフト16Aと雌シャフト16Bに適用した例を示す。雄シャフト16Aの車体前方側(図2の左端)が、雌シャフト16Bの車体後方側(図2の右端)に内嵌して連結されている。   As shown in FIG. 2, the telescopic shaft according to the first embodiment of the present invention is applied to the male shaft 16 </ b> A and the female shaft 16 </ b> B of the intermediate shaft 16. The vehicle body front side (left end in FIG. 2) of the male shaft 16A is fitted and connected to the vehicle body rear side (right end in FIG. 2) of the female shaft 16B.

図2、図3(1)、(2)に示すように、炭素鋼またはアルミニウム合金で成形された雌シャフト16Bは中空筒状に形成されており、その内周には、雌シャフト16Bの軸心から放射状に、複数の軸方向の溝41が、伸縮ストロークの全長にわたって、等間隔に形成されている。   As shown in FIG. 2, FIG. 3 (1), (2), the female shaft 16B formed of carbon steel or aluminum alloy is formed in a hollow cylindrical shape, and the inner periphery of the female shaft 16B is an axis of the female shaft 16B. A plurality of axial grooves 41 are formed at equal intervals over the entire length of the expansion / contraction stroke, radially from the center.

図3(1)の例は、炭素鋼またはアルミニウム合金で成形された雄シャフト(雄スプライン軸)16Aの歯51に、雌シャフト(雌スプライン筒)16Bの溝41との間の摺動抵抗を減少させる被覆部61として、スリーブを被覆した伸縮軸の例を示す。   In the example of FIG. 3A, the sliding resistance between the teeth 51 of the male shaft (male spline shaft) 16A formed of carbon steel or aluminum alloy and the groove 41 of the female shaft (female spline cylinder) 16B is shown. An example of a telescopic shaft covered with a sleeve is shown as the covering portion 61 to be reduced.

すなわち、回転トルクを伝達するための非円形の外周形状として、4個の軸方向の歯51を有する雄シャフト16Aには、歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61として、スリーブが被覆されている。   That is, the male shaft 16A having four axial teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque has a total length in the axial direction of the teeth 51 between the groove 41 of the female shaft 16B. A sleeve is covered as a covering portion 61 that reduces the sliding resistance of the sleeve.

また、図3(2)の例は、雄シャフト(雄スプライン軸)16Aの歯51に、雌シャフト(雌スプライン筒)16Bの溝41との間の摺動抵抗を減少させる被覆部61をコーティングした伸縮軸の例を示す。すなわち、回転トルクを伝達するための非円形の外周形状として、18個の軸方向の歯51を有する雄シャフト16Aには、歯51の軸方向の全長に、雌シャフト16Bの軸方向の溝41との間の摺動抵抗を減少させる被覆部61がコーティングされている。   In the example of FIG. 3 (2), the covering portion 61 for reducing the sliding resistance between the teeth 51 of the male shaft (male spline shaft) 16A and the groove 41 of the female shaft (female spline cylinder) 16B is coated. An example of the extended telescopic axis is shown. That is, the male shaft 16A having 18 axial teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque has an axial groove 41 in the axial direction of the female shaft 16B on the entire axial length of the teeth 51. A covering portion 61 that reduces the sliding resistance between them is coated.

図3(1)、(2)の被覆部61の材質は、ゴム、例えば、天然ゴム、合成ゴム、または、天然ゴムと合成ゴムの混合物のうちの少なくともいずれか一つで構成することが好ましい。また、被覆部61の材質は、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤で構成してもよい。   3 (1) and 3 (2) is preferably made of at least one of rubber, for example, natural rubber, synthetic rubber, or a mixture of natural rubber and synthetic rubber. . Further, the material of the covering portion 61 may be composed of at least one solid lubricant selected from molybdenum disulfide, graphite, and fluorine compounds.

さらに、被覆部61の材質は、天然ゴム、合成ゴム、または、天然ゴムと合成ゴムの混合物のうちの少なくともいずれか一つに、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤を含有させた材質で構成してもよい。   Furthermore, the material of the covering portion 61 is at least one of natural rubber, synthetic rubber, or a mixture of natural rubber and synthetic rubber, and at least one of molybdenum disulfide, graphite, and fluorine compounds. You may comprise with the material which contained the solid lubricant.

また、上記被覆部61の材質は、ポリテトラフルオロエチレン、フェノール樹脂、アセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテル・エーテルケトン樹脂、ポリアミド樹脂、ポリアセタール(POM)樹脂のうちの少なくともいずれか一つの高分子材料で構成することが好ましい。   The covering portion 61 is made of polytetrafluoroethylene, phenol resin, acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, polyamide resin, polyacetal (POM). ) It is preferably composed of at least one polymer material of resins.

さらに、上記被覆部61の材質は、ポリテトラフルオロエチレン、フェノール樹脂、アセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂のうちの少なくともいずれか一つの高分子材料に、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤を含有させた材質で構成してもよい。   Furthermore, the material of the covering portion 61 is made of at least one polymer material selected from polytetrafluoroethylene, phenol resin, acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polyphenylene sulfide resin. You may comprise with the material which contained the solid lubricant at least any one of molybdenum sulfide, a graphite, and a fluorine compound.

図5(1)に示すように、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成した後、図2に示すように、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。被覆部61の厚さは、中間シャフト16の慣らし前の摺動抵抗が、所定の許容範囲の下限値よりも大き目になるように、厚く形成しておく。この状態で、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に摺動させて、慣らし前の摺動抵抗を測定する。   As shown in FIG. 5 (1), after forming a covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A, FIG. As shown, the groove 41 of the female shaft 16B is fitted over the entire axial length of the teeth 51 of the male shaft 16A. The covering portion 61 is formed thick so that the sliding resistance before running-in of the intermediate shaft 16 is larger than the lower limit value of the predetermined allowable range. In this state, the male shaft 16A is slid relative to the female shaft 16B in the axial direction, and the sliding resistance before break-in is measured.

次ぎに、雌シャフト16Bを図示しない加工治具等で固定し、図2に示すように、雌シャフト16Bの外周に高周波コイル等の加熱装置71を外嵌する。加熱装置71に交流電流を流すと、電磁誘導によって雌シャフト16Bが加熱され、その熱が被覆部61に伝達されて、慣らし前の摺動抵抗に応じて、被覆部61が所定の温度に加熱される。他の例として、雄シャフト16A側から被覆部61を加熱してもよい。   Next, the female shaft 16B is fixed with a processing jig or the like (not shown), and a heating device 71 such as a high-frequency coil is fitted around the outer periphery of the female shaft 16B as shown in FIG. When an alternating current is passed through the heating device 71, the female shaft 16B is heated by electromagnetic induction, and the heat is transmitted to the covering portion 61. The covering portion 61 is heated to a predetermined temperature according to the sliding resistance before the break-in. Is done. As another example, the covering portion 61 may be heated from the male shaft 16A side.

被覆部61を加熱すると、図5(2)の二点鎖線に示すように、被覆部61が雄シャフト16Aの歯51の軸方向の全長にわたって膨張する。そのため、図4の一点鎖線の楕円T1、T2、及び、図6(1)に示すように、歯51の軸方向の全長にわたって、被覆部61は、溝41の側面411と歯51の側面511、511との間の締め代が大きくなり、塑性変形して圧縮歪を起こす。   When the covering portion 61 is heated, the covering portion 61 expands over the entire length in the axial direction of the teeth 51 of the male shaft 16A, as shown by a two-dot chain line in FIG. Therefore, as shown in the alternate long and short dashed ellipses T1 and T2 in FIG. 4 and FIG. 6A, the covering portion 61 has a side surface 411 of the groove 41 and a side surface 511 of the tooth 51 over the entire length in the axial direction of the tooth 51. The tightening margin between 511 and 511 becomes large, causing plastic deformation and compressive strain.

次ぎに、図2の矢印Rに示すように、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に所定回数だけ往復摺動させると、被覆部61は、歯51の側面511、511側が強く圧縮され、歯51の軸方向の全長にわたって均等に塑性変形とクリープ変形を起こして圧縮歪を起こす。   Next, as shown by an arrow R in FIG. 2, when the male shaft 16 </ b> A is reciprocally slid relative to the female shaft 16 </ b> B a predetermined number of times in the axial direction, the covering portion 61 is moved to the side surfaces 511, 511 of the teeth 51. The side is strongly compressed, and plastic deformation and creep deformation are caused uniformly over the entire axial length of the tooth 51 to cause compressive strain.

雌シャフト16Bに対して雄シャフト16Aを往復摺動させることで、雌シャフト16Bの溝41と雄シャフト16Aの歯51が軸方向の全長にわたって均等に当たり、摺動抵抗が摺動ストロークの全長にわたって一定になる。また、被覆部61の温度が高い状態で被覆部61が大きな圧縮応力を受けるため、時間の経過に伴って、クリープ現象によって被覆部61の圧縮歪が増大する。   By reciprocatingly sliding the male shaft 16A with respect to the female shaft 16B, the groove 41 of the female shaft 16B and the teeth 51 of the male shaft 16A hit the entire length in the axial direction, and the sliding resistance is constant over the entire length of the sliding stroke. become. Moreover, since the covering part 61 receives a large compressive stress in a state where the temperature of the covering part 61 is high, the compressive strain of the covering part 61 increases due to a creep phenomenon with the passage of time.

被覆部61が常温に戻ると、図6(2)に示すように、被覆部61は収縮する。その結果、被覆部61は、溝41の側面411と歯51の側面511、511との間の締め代が小さくなり、慣らし後の中間シャフト16の摺動抵抗が所定の大きさになる。   When the covering portion 61 returns to normal temperature, the covering portion 61 contracts as shown in FIG. As a result, the covering portion 61 has a small tightening margin between the side surface 411 of the groove 41 and the side surfaces 511 and 511 of the teeth 51, and the sliding resistance of the intermediate shaft 16 after acclimation becomes a predetermined magnitude.

図7の被覆部61の加熱・冷却曲線に示すように、所定の時間A1だけ被覆部61を加熱し、常温W1から所定の温度W2まで被覆部61を加熱する。次ぎに、所定の時間A2だけ、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に所定回数だけ往復摺動させる。   As shown in the heating / cooling curve of the covering portion 61 in FIG. 7, the covering portion 61 is heated for a predetermined time A1, and the covering portion 61 is heated from room temperature W1 to a predetermined temperature W2. Next, the male shaft 16A is reciprocally slid relative to the female shaft 16B by a predetermined number of times in the axial direction for a predetermined time A2.

次ぎに、被覆部61を強制的に冷却し、所定の時間A3で、被覆部61を所定の温度W2から常温W1に戻す。クリープ現象による圧縮歪の量を所定の大きさに制御するために、被覆部61を強制的に冷却し、被覆部61の温度を所定の温度W2から常温W1に戻す時間を、正確に制御することが必要となる。   Next, the covering portion 61 is forcibly cooled, and the covering portion 61 is returned from the predetermined temperature W2 to the normal temperature W1 at a predetermined time A3. In order to control the amount of compressive strain due to the creep phenomenon to a predetermined magnitude, the covering portion 61 is forcibly cooled and the time for returning the temperature of the covering portion 61 from the predetermined temperature W2 to the normal temperature W1 is accurately controlled. It will be necessary.

この強制冷却は、チラー冷却によって雰囲気温度よりも低温に冷却された図示しない金型を、雌シャフト16Aまたは雄シャフト16Bに接触させ、熱伝導により行う。また、この強制冷却は、雰囲気温度よりも低い温度の風を、雌シャフト16Aまたは雄シャフト16Bに送風して行うこともできる。   This forced cooling is performed by heat conduction by bringing a mold (not shown) cooled to a temperature lower than the ambient temperature by chiller cooling into contact with the female shaft 16A or the male shaft 16B. The forced cooling can also be performed by blowing wind at a temperature lower than the ambient temperature to the female shaft 16A or the male shaft 16B.

図8に示すように、中間シャフト16の慣らし後の摺動抵抗を所定の大きさにするために、被覆部61の温度と摺動抵抗の低下量との関係を予め試験して、データを得る。また、図9に示すように、中間シャフト16の慣らし後の摺動抵抗を所定の大きさにするために、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に往復摺動した時の、摺動回数と摺動抵抗の低下量との関係を予め試験して、データを得る。往復摺動する時の摺動速度を変えて試験し、適切な摺動速度のデータを得ることが望ましい。   As shown in FIG. 8, in order to make the sliding resistance after the acclimation of the intermediate shaft 16 a predetermined magnitude, the relationship between the temperature of the covering portion 61 and the amount of decrease in the sliding resistance is tested in advance, and data is obtained. obtain. As shown in FIG. 9, when the male shaft 16A is reciprocally slid relative to the female shaft 16B in the axial direction in order to make the sliding resistance after the acclimation of the intermediate shaft 16 a predetermined value. The relationship between the number of sliding times and the amount of decrease in sliding resistance is tested in advance to obtain data. It is desirable to test by changing the sliding speed at the time of reciprocating sliding to obtain data of appropriate sliding speed.

図9のデータは、被覆部61を複数の温度に加熱し、各温度毎にデータを得る。図9に示すように、摺動回数を増やしても、摺動抵抗の低下量の増加は小さいので、慣らし時の摺動回数は一定にしても良い。   The data in FIG. 9 is obtained for each temperature by heating the covering 61 to a plurality of temperatures. As shown in FIG. 9, even if the number of sliding operations is increased, the increase in the amount of decrease in sliding resistance is small, so the number of sliding operations during break-in may be constant.

また、図10に示すように、被覆部61の温度を所定の温度に加熱するために、被覆部61を加熱する時間と被覆部の温度との関係を予め試験して、データを得る。この試験は、被覆部61を所定の温度に加熱する前に測定した被覆部61近傍の温度に応じて、予め試験して、データを得る。   Further, as shown in FIG. 10, in order to heat the temperature of the covering portion 61 to a predetermined temperature, the relationship between the time for heating the covering portion 61 and the temperature of the covering portion is tested in advance to obtain data. In this test, data is obtained by testing in advance according to the temperature in the vicinity of the covering portion 61 measured before heating the covering portion 61 to a predetermined temperature.

上記した図8から図10の試験データから、図11に示すように、慣らし前の摺動抵抗、慣らし前の被覆部61の温度に応じて、慣らし後の摺動抵抗が許容範囲Sに入るように、被覆部61の加熱温度、加熱時間、中間シャフト16の摺動回数、被覆部61の冷却時間を変えて慣らしを行う。慣らし後に摺動抵抗を測定し、慣らし後の摺動抵抗が許容範囲Sに入ることを確認して、慣らし条件C1〜C8を確定する。   From the test data of FIGS. 8 to 10 described above, the sliding resistance after running-in falls within the allowable range S according to the sliding resistance before running-in and the temperature of the covering portion 61 before running-in as shown in FIG. In this manner, the break-in is performed by changing the heating temperature of the covering portion 61, the heating time, the number of sliding of the intermediate shaft 16, and the cooling time of the covering portion 61. The sliding resistance is measured after the break-in, and it is confirmed that the slide resistance after the break-in is within the allowable range S, and the break-in conditions C1 to C8 are determined.

他の例として、図12に示すように、慣らし前の摺動抵抗がある範囲(V1〜V3)に入る一群の中間シャフト16について、慣らし後の摺動抵抗が許容範囲Sに入るように、被覆部61の加熱温度、加熱時間、中間シャフト16の摺動回数、被覆部61の冷却時間を一定にして慣らしを行う。慣らし後に摺動抵抗を測定し、慣らし後の摺動抵抗が許容範囲Sに入ることを確認して、慣らし前の摺動抵抗の範囲V1〜V3の各一群毎に、慣らし条件C1〜C3を確定してもよい。   As another example, as shown in FIG. 12, with respect to a group of intermediate shafts 16 that fall within a range (V1 to V3) where the sliding resistance before running-in exists, the sliding resistance after running-in falls within an allowable range S. Conditioning is performed with the heating temperature and heating time of the covering portion 61, the number of sliding times of the intermediate shaft 16 and the cooling time of the covering portion 61 being constant. Measure the sliding resistance after running-in, confirm that the sliding resistance after running-in falls within the allowable range S, and set the running-in conditions C1-C3 for each group of the sliding resistance ranges V1-V3 before running-in. It may be confirmed.

従って、慣らし前の摺動抵抗の測定値に応じて、上記した図11または図12で確定した慣らし条件C1〜C8、または、慣らし条件C1〜C3で、被覆部61の加熱、雌シャフト16Bに対する雄シャフト16Aの往復摺動、被覆部61の冷却を行えば、慣らし後の摺動抵抗を所定の許容範囲Sに確実に収めることが可能となる。   Therefore, according to the measured value of the sliding resistance before the break-in, the heating of the covering portion 61 and the female shaft 16B with the break-in conditions C1 to C8 or the break-in conditions C1 to C3 determined in FIG. If the reciprocating sliding of the male shaft 16A and the cooling of the covering portion 61 are performed, the sliding resistance after the break-in can be surely kept within a predetermined allowable range S.

次に本発明の実施例2について説明する。図13は本発明の実施例2の伸縮軸の製造工程を示す縦断面図である。図14は本発明の実施例2の雄シャフトを示す斜視図である。図15(1)は本発明の実施例2の雄シャフトを示す縦断面図であり、図15(2)は図15(1)のQ部拡大断面図である。以下の説明では、上記実施例と異なる構造部分と作用についてのみ説明し、重複する説明は省略する。また、上記実施例と同一部品には同一番号を付して説明する。   Next, a second embodiment of the present invention will be described. FIG. 13: is a longitudinal cross-sectional view which shows the manufacturing process of the expansion-contraction shaft of Example 2 of this invention. FIG. 14 is a perspective view showing a male shaft according to Embodiment 2 of the present invention. FIG. 15 (1) is a longitudinal sectional view showing a male shaft according to the second embodiment of the present invention, and FIG. 15 (2) is an enlarged sectional view of a portion Q in FIG. 15 (1). In the following description, only structural portions and operations different from the above embodiment will be described, and redundant description will be omitted. Further, the same parts as those in the above embodiment will be described with the same numbers.

実施例2は、実施例1の変形例であり、雄シャフト16Aの被覆部61を形成した歯51の軸方向の全長L1よりも、加熱装置71の軸方向の長さL2を長く形成して、被覆部61よりも長い範囲を加熱するようにした例である。   The second embodiment is a modification of the first embodiment, in which the axial length L2 of the heating device 71 is formed longer than the total axial length L1 of the teeth 51 forming the covering portion 61 of the male shaft 16A. In this example, a range longer than the covering portion 61 is heated.

すなわち、実施例1と同様に、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成した後、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   That is, similarly to the first embodiment, after forming the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A, The groove 41 of the female shaft 16B is fitted over the entire length of the teeth 51 in the axial direction.

次ぎに、雌シャフト16Bを図示しない加工治具等で固定し、雌シャフト16Bの外周に高周波コイル等の加熱装置71を外嵌する。加熱装置71に交流電流を流すと、電磁誘導によって雌シャフト16Bが加熱され、その熱が被覆部61に伝達されて、慣らし前の摺動抵抗に応じて、被覆部61が所定の温度に加熱される。   Next, the female shaft 16B is fixed with a processing jig or the like (not shown), and a heating device 71 such as a high-frequency coil is fitted on the outer periphery of the female shaft 16B. When an alternating current is passed through the heating device 71, the female shaft 16B is heated by electromagnetic induction, and the heat is transmitted to the covering portion 61. The covering portion 61 is heated to a predetermined temperature according to the sliding resistance before the break-in. Is done.

被覆部61を加熱すると、実施例1と同様に、被覆部61が雄シャフト16Aの歯51の軸方向の全長にわたって膨張する。そのため、実施例1と同様に、歯51の軸方向の全長にわたって、被覆部61は、溝41の側面411と歯51の側面511、511との間の締め代が大きくなる。   When the covering portion 61 is heated, the covering portion 61 expands over the entire length of the teeth 51 of the male shaft 16A in the same manner as in the first embodiment. Therefore, as in the first embodiment, the covering portion 61 has a large fastening margin between the side surface 411 of the groove 41 and the side surfaces 511 and 511 of the tooth 51 over the entire axial length of the tooth 51.

被覆部61の加熱を停止すると、雌シャフト16Bが被覆部61と接触している部分よりも、図13の一点鎖線の円U1からU4の部分(雌シャフト16Bが被覆部61と接触していない部分)の温度が高くなっている。そのため、図13の矢印Rに示すように、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に所定回数だけ往復摺動させると、図14の一点鎖線の楕円T3からT6に示すように、歯51の軸方向の両端近傍の被覆部61が強く加熱され、歯51の軸方向の両端近傍の被覆部61の膨張量が大きくなる。   When the heating of the covering portion 61 is stopped, the portion of the circles U1 to U4 in FIG. 13 (the female shaft 16B is not in contact with the covering portion 61) rather than the portion where the female shaft 16B is in contact with the covering portion 61. The temperature of (part) is high. Therefore, as shown by the arrow R in FIG. 13, when the male shaft 16A is reciprocally slid relative to the female shaft 16B by a predetermined number of times in the axial direction, as indicated by the dashed line ellipses T3 to T6 in FIG. Further, the covering portion 61 in the vicinity of both ends in the axial direction of the tooth 51 is strongly heated, and the amount of expansion of the covering portion 61 in the vicinity of both ends in the axial direction of the tooth 51 increases.

その結果、歯51の軸方向の両端近傍の被覆部61の締め代が大きくなるため、被覆部61の軸方向の両端近傍の圧縮歪が中央部分よりも大きくなり、被覆部61の軸方向の両端近傍の肉厚が中央部分よりも薄くなる。   As a result, the tightening margin of the covering portion 61 in the vicinity of both ends in the axial direction of the tooth 51 is increased, so that the compressive strain in the vicinity of both ends in the axial direction of the covering portion 61 is larger than that in the central portion. The thickness in the vicinity of both ends is thinner than the central portion.

その結果、図15(1)、(2)に示すように、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、図15(2)に示すように、雌シャフト16Bの溝41と被覆部61との間の隙間δが、被覆部61の軸方向の端部に向かって大きくなるように形成される。   As a result, as shown in FIGS. 15A and 15B, chamfered portions 62 and 62 are formed in the vicinity of both ends in the axial direction of the covering portion 61 of the male shaft 16A. As shown in FIG. 15 (2), the chamfered portions 62, 62 are such that the gap δ between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the axial end of the covering portion 61. Formed.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布されたグリース等の潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Therefore, since there are no edges at both axial ends of the covering portion 61 of the male shaft 16A, a lubricant such as grease applied to the sliding surface between the groove 41 of the female shaft 16B and the covering portion 61 is The both ends of the covering portion 61 in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

上記実施例では、雄シャフト16Aの歯51側に摺動抵抗を減少させる被覆部61を形成しているが、雌シャフト16Bの溝41側に摺動抵抗を減少させる被覆部61を形成してもよい。また、雄シャフト16Aの歯51と雌シャフト16Bの溝41の両方に、摺動抵抗を減少させる被覆部61を形成してもよい。さらに、雄シャフト16Aまたは雌シャフト16B全体を、摺動抵抗を減少させる被覆部61と同一の材質で成形してもよい。   In the above embodiment, the covering portion 61 for reducing the sliding resistance is formed on the tooth 51 side of the male shaft 16A, but the covering portion 61 for reducing the sliding resistance is formed on the groove 41 side of the female shaft 16B. Also good. Moreover, you may form the coating | coated part 61 which reduces sliding resistance in both the tooth | gear 51 of the male shaft 16A, and the groove | channel 41 of the female shaft 16B. Furthermore, you may shape | mold the male shaft 16A or the whole female shaft 16B with the same material as the coating | coated part 61 which reduces sliding resistance.

また、上記実施例では、中間シャフト16に本発明を適用した例について説明したが、ステアリングシャフト12等、ステアリング装置を構成する任意の伸縮軸に適用することができる。   Moreover, although the said Example demonstrated the example which applied this invention to the intermediate shaft 16, it can apply to the arbitrary expansion-contraction shafts which comprise a steering apparatus, such as the steering shaft 12. FIG.

本発明の伸縮軸を有するステアリング装置の全体を示し、一部を切断した側面図であって、操舵補助部を有する電動パワーステアリング装置に適用した実施例を示す。BRIEF DESCRIPTION OF THE DRAWINGS The steering apparatus which has the expansion-contraction shaft of this invention is shown whole, it is the side view which cut | disconnected one part, Comprising: The Example applied to the electric power steering apparatus which has a steering assistance part is shown. 本発明の実施例1の伸縮軸の製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing process of the expansion-contraction shaft of Example 1 of this invention. 図2のA−A拡大断面図を示し、(1)はスリーブを被覆した伸縮軸を示す拡大断面図、(2)は被覆部をコーティングした伸縮軸を示す拡大断面図である。2 is an enlarged cross-sectional view taken along the line AA of FIG. 2, (1) is an enlarged cross-sectional view showing a telescopic shaft covering a sleeve, and (2) is an enlarged cross-sectional view showing a telescopic shaft coated with a covering portion. 本発明の実施例1の伸縮軸の雄シャフトを示す斜視図である。It is a perspective view which shows the male shaft of the expansion-contraction shaft of Example 1 of this invention. 本発明の実施例1の伸縮軸の製造工程を示し、図3(2)のP部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a P part in FIG. 3B, showing a manufacturing process of the telescopic shaft of Example 1 of the present invention. 図5の後工程を示す図3(2)のP部拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a P part in FIG. 本発明の実施例1の製造工程を示す被覆部の加熱・冷却曲線である。It is a heating-cooling curve of the coating | coated part which shows the manufacturing process of Example 1 of this invention. 被覆部を加熱した時の温度と摺動抵抗の低下量を示すグラフである。It is a graph which shows the fall amount of temperature and sliding resistance when a coating | coated part is heated. 伸縮軸を摺動させた時の摺動回数と摺動抵抗の低下量を示すグラフである。It is a graph which shows the frequency | count of sliding and the fall amount of sliding resistance when sliding an expansion-contraction shaft. 被覆部を加熱した時の加熱時間と被覆部の温度を示すグラフである。It is a graph which shows the heating time when a coating part is heated, and the temperature of a coating part. 伸縮軸の慣らし前と慣らし後の摺動抵抗の変化を示すグラフである。It is a graph which shows the change of the sliding resistance before and after acclimatization of an expansion-contraction axis. 伸縮軸の慣らし前と慣らし後の摺動抵抗の変化を示す他の例のグラフである。It is a graph of the other example which shows the change of the sliding resistance before and after acclimatization of an expansion-contraction axis. 本発明の実施例2の伸縮軸の製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing process of the expansion-contraction shaft of Example 2 of this invention. 本発明の実施例2の雄シャフトを示す斜視図である。It is a perspective view which shows the male shaft of Example 2 of this invention. (1)は本発明の実施例2の雄シャフトを示す縦断面図であり、(2)は(1)のQ部拡大断面図である。(1) is a longitudinal sectional view showing a male shaft of Example 2 of the present invention, and (2) is an enlarged sectional view of a Q part of (1).

符号の説明Explanation of symbols

11 ステアリングホイール
12 ステアリングシャフト
12A アウターシャフト
12B インナーシャフト
13 ステアリングコラム
13A アウターコラム
13B インナーコラム
14 支持ブラケット
15 自在継手
16 中間シャフト
16A 雄中間シャフト(雄シャフト)
16B 雌中間シャフト(雌シャフト)
17 自在継手
18 車体
20 アシスト装置
21 ギヤハウジング
23 出力軸
26 電動モータ
261 ケース
30 ステアリングギヤ
31 入力軸
32 タイロッド
41 溝
411 側面
51 歯
511 側面
61 被覆部
62 面取り部
71 加熱装置
DESCRIPTION OF SYMBOLS 11 Steering wheel 12 Steering shaft 12A Outer shaft 12B Inner shaft 13 Steering column 13A Outer column 13B Inner column 14 Support bracket 15 Universal joint 16 Intermediate shaft 16A Male intermediate shaft (male shaft)
16B Female intermediate shaft (Female shaft)
DESCRIPTION OF SYMBOLS 17 Universal joint 18 Car body 20 Assist device 21 Gear housing 23 Output shaft 26 Electric motor 261 Case 30 Steering gear 31 Input shaft 32 Tie rod 41 Groove 411 Side surface 51 Teeth 511 Side surface 61 Covering portion 62 Chamfered portion 71 Heating device

Claims (14)

非円形の外周形状を有する雄シャフト、
上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、
上記雄シャフトの非円形の外周に形成され、上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を有する伸縮軸の製造方法であって、
上記雄シャフトの非円形の外周に上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程、
上記被覆部を形成した雄シャフトの非円形の外周に上記雌シャフトの非円形の内周を外嵌する工程、
上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させて慣らし前の摺動抵抗を測定する工程、
予め試験したデータから、上記慣らし前の摺動抵抗を所定の摺動抵抗にするための加熱条件と摺動条件を求める工程、
上記加熱条件で上記被覆部を加熱する工程を備えたこと
を特徴とする伸縮軸の製造方法。
A male shaft having a non-circular outer peripheral shape,
A female shaft having a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be slidable in the axial direction and capable of transmitting rotational torque;
A method for producing a telescopic shaft, which is formed on a non-circular outer periphery of the male shaft and has a covering portion that reduces sliding resistance between the inner periphery of the female shaft,
Forming a covering portion on the non-circular outer periphery of the male shaft to reduce the sliding resistance between the inner periphery of the female shaft;
A step of externally fitting the non-circular inner periphery of the female shaft to the non-circular outer periphery of the male shaft formed with the covering portion;
Measuring the sliding resistance before acclimation by sliding the male shaft relative to the female shaft in the axial direction;
From the data tested in advance, a process for obtaining heating conditions and sliding conditions for making the sliding resistance before break-in the predetermined sliding resistance,
The manufacturing method of the expansion-contraction shaft characterized by including the process of heating the said coating | coated part on the said heating conditions.
請求項1に記載された伸縮軸の製造方法は、
上記摺動条件で上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる工程をさらに備えたこと
を特徴とする伸縮軸の製造方法。
The manufacturing method of the telescopic shaft described in claim 1 is:
A method for producing an extendable shaft, further comprising a step of sliding the male shaft relative to the female shaft in the axial direction under the sliding condition.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記被覆部の冷却はチラー冷却を利用すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
The method for manufacturing an extendable shaft is characterized in that chiller cooling is used for cooling the covering portion.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記慣らし前の摺動抵抗がある範囲の一群毎に加熱条件と摺動条件を求めること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
A method for producing a telescopic shaft, characterized in that a heating condition and a sliding condition are obtained for each group of a range having a sliding resistance before the break-in.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記被覆部の冷却は、加熱された被覆部よりも低い温度の金型を上記雌シャフトまたは雄シャフトに接触させ、熱伝導により行うこと
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
The method of manufacturing a telescopic shaft, wherein the covering portion is cooled by bringing a die having a temperature lower than that of the heated covering portion into contact with the female shaft or the male shaft and conducting heat.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記加熱条件を、上記被覆部を所定の温度に加熱する前に測定した被覆部近傍の温度に応じて変更すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
A method for manufacturing an extendable shaft, wherein the heating condition is changed according to a temperature in the vicinity of the covering portion measured before heating the covering portion to a predetermined temperature.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記被覆部の冷却は、加熱された被覆部よりも低い温度の気体を上記雌シャフトまたは雄シャフトに送風すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
The method of manufacturing the telescopic shaft is characterized in that the cooling of the covering section blows a gas having a temperature lower than that of the heated covering section to the female shaft or the male shaft.
請求項1または請求項2のいずれかに記載された伸縮軸の製造方法において、
上記加熱条件は、上記被覆部を所定の温度に加熱するための加熱時間であること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1 or Claim 2,
The heating condition is a heating time for heating the covering portion to a predetermined temperature.
請求項1から請求項8までのいずれかに記載された伸縮軸の製造方法において、
上記被覆部の加熱は電磁誘導を利用すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1- Claim 8,
The method for manufacturing an extendable shaft, wherein the covering portion is heated using electromagnetic induction.
請求項1から請求項8までのいずれかに記載された伸縮軸の製造方法において、
上記被覆部の加熱は、被覆部よりも高い温度の物体を上記雌シャフトまたは雄シャフトに接触させ、熱伝導により行うこと
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1- Claim 8,
The method of manufacturing a telescopic shaft, wherein the heating of the covering part is performed by contacting an object having a temperature higher than that of the covering part with the female shaft or the male shaft and conducting heat.
請求項1から請求項8までのいずれかに記載された伸縮軸の製造方法において、
上記摺動条件は、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる摺動回数であること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1- Claim 8,
The sliding condition is the number of times of sliding the male shaft relative to the female shaft in the axial direction.
請求項1から請求項8までのいずれかに記載された伸縮軸の製造方法は、
予め試験したデータから、上記慣らし前の摺動抵抗を所定の摺動抵抗にするための冷却条件を求める工程、
上記軸方向に摺動させる工程が終了した被覆部を上記冷却条件で冷却する工程をさらに備えたこと
を特徴とする伸縮軸の製造方法。
The method for manufacturing the telescopic shaft according to any one of claims 1 to 8,
A step of obtaining a cooling condition for making the sliding resistance before break-in a predetermined sliding resistance from data tested in advance;
The manufacturing method of the expansion-contraction shaft characterized by further providing the process which cools the coating | coated part which the process made to slide in the said axial direction completed on the said cooling conditions.
請求項1から請求項12までのいずれかに記載された伸縮軸の製造方法において、
上記被覆部は、ゴム、高分子材料、固体潤滑剤のうちの少なくともいずれか一つの材質で形成されていること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1- Claim 12,
The method for manufacturing a telescopic shaft, wherein the covering portion is made of at least one of rubber, polymer material, and solid lubricant.
請求項1から請求項13までのいずれかに記載された伸縮軸の製造方法によって製造した伸縮軸。   A telescopic shaft manufactured by the method for manufacturing the telescopic shaft according to any one of claims 1 to 13.
JP2008008608A 2008-01-18 2008-01-18 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method Active JP5104332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008608A JP5104332B2 (en) 2008-01-18 2008-01-18 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008608A JP5104332B2 (en) 2008-01-18 2008-01-18 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Publications (2)

Publication Number Publication Date
JP2009168194A true JP2009168194A (en) 2009-07-30
JP5104332B2 JP5104332B2 (en) 2012-12-19

Family

ID=40969592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008608A Active JP5104332B2 (en) 2008-01-18 2008-01-18 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Country Status (1)

Country Link
JP (1) JP5104332B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038560A (en) * 2009-08-07 2011-02-24 Jtekt Corp Spline telescopic shaft, method of manufacturing the same, and vehicle steering apparatus
EP2281731A3 (en) * 2009-08-07 2012-01-04 Jtekt Corporation Spline telescopic shaft, method for manufacturing spline telescopic shaft, and vehicle steering apparatus
WO2012066904A1 (en) * 2010-11-18 2012-05-24 日本精工株式会社 Method for manufacturing telescopic shaft and telescopic shaft manufactured by same
JP2012102868A (en) * 2010-10-11 2012-05-31 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
WO2012128213A1 (en) 2011-03-18 2012-09-27 株式会社ジェイテクト Manufacturing method for drive shaft and vehicle steering device
WO2013080714A1 (en) * 2011-12-01 2013-06-06 日本精工株式会社 Telescopic shaft
WO2013137399A1 (en) * 2012-03-14 2013-09-19 株式会社ジェイテクト Sliding member
JP2013213589A (en) * 2010-10-11 2013-10-17 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
JP2014238173A (en) * 2014-07-31 2014-12-18 株式会社ジェイテクト Spline telescopic shaft and its manufacturing method
JP2015137679A (en) * 2014-01-21 2015-07-30 株式会社ジェイテクト Process of manufacturing telescopic shaft
JP2016014480A (en) * 2015-08-31 2016-01-28 株式会社ジェイテクト Power transmission shaft manufacturing method
JP2020143766A (en) * 2019-03-08 2020-09-10 株式会社ジェイテクト Manufacturing method of spline telescopic shaft and spline telescopic shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123484A (en) * 1985-11-22 1987-06-04 Mita Ind Co Ltd Fixing device in copying machine
JPH0245049A (en) * 1988-08-04 1990-02-15 Masayoshi Yagisawa Method for obtaining seal and seal material
JPH05212810A (en) * 1991-04-08 1993-08-24 Asahi Chem Ind Co Ltd Die heat insulation structure of intra-die foam molding machine
JP2002321627A (en) * 2001-04-25 2002-11-05 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2003278738A (en) * 2002-03-26 2003-10-02 Koyo Mach Ind Co Ltd Expansion shaft and method for forming coating layer thereof
JP2005066598A (en) * 1999-09-13 2005-03-17 Koyo Seiko Co Ltd Production method for coated artice and coated artice

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123484A (en) * 1985-11-22 1987-06-04 Mita Ind Co Ltd Fixing device in copying machine
JPH0245049A (en) * 1988-08-04 1990-02-15 Masayoshi Yagisawa Method for obtaining seal and seal material
JPH05212810A (en) * 1991-04-08 1993-08-24 Asahi Chem Ind Co Ltd Die heat insulation structure of intra-die foam molding machine
JP2005066598A (en) * 1999-09-13 2005-03-17 Koyo Seiko Co Ltd Production method for coated artice and coated artice
JP2002321627A (en) * 2001-04-25 2002-11-05 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2003278738A (en) * 2002-03-26 2003-10-02 Koyo Mach Ind Co Ltd Expansion shaft and method for forming coating layer thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419555B2 (en) 2009-08-07 2013-04-16 Jtekt Corporation Spline telescopic shaft, method for manufacturing spline telescopic shaft, and vehicle steering apparatus
EP2281731A3 (en) * 2009-08-07 2012-01-04 Jtekt Corporation Spline telescopic shaft, method for manufacturing spline telescopic shaft, and vehicle steering apparatus
EP2282071A3 (en) * 2009-08-07 2012-01-11 Jtekt Corporation Spline telescopic shaft and method of manufacturing
JP2011038560A (en) * 2009-08-07 2011-02-24 Jtekt Corp Spline telescopic shaft, method of manufacturing the same, and vehicle steering apparatus
US8753215B2 (en) 2009-08-07 2014-06-17 Jtekt Corporation Spline telescopic shaft and method for manufacturing the same and vehicle steering apparatus
JP2012102868A (en) * 2010-10-11 2012-05-31 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
JP2013249960A (en) * 2010-10-11 2013-12-12 Nsk Ltd Method for manufacturing telescopic shaft and telescopic shaft manufactured by the same
JP2013213589A (en) * 2010-10-11 2013-10-17 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
CN102666251B (en) * 2010-11-18 2015-01-21 日本精工株式会社 Telescopic shaft
WO2012066904A1 (en) * 2010-11-18 2012-05-24 日本精工株式会社 Method for manufacturing telescopic shaft and telescopic shaft manufactured by same
JP2012122610A (en) * 2010-11-18 2012-06-28 Nsk Ltd Method of manufacturing telescopic shaft, and telescopic shaft manufactured by the method
CN102666251A (en) * 2010-11-18 2012-09-12 日本精工株式会社 Method for manufacturing telescopic shaft and telescopic shaft manufactured by same
WO2012128213A1 (en) 2011-03-18 2012-09-27 株式会社ジェイテクト Manufacturing method for drive shaft and vehicle steering device
US9771969B2 (en) 2011-03-18 2017-09-26 Jtekt Corporation Method of manufacturing torque transmission shaft and vehicle steering apparatus
EP3020993A2 (en) 2011-03-18 2016-05-18 Jtekt Corporation Method of manufacturing torque transmission shaft
EP3020992A2 (en) 2011-03-18 2016-05-18 Jtekt Corporation Method of manufacturing torque transmission shaft and vehicle steering apparatus
CN102959260A (en) * 2011-06-29 2013-03-06 日本精工株式会社 Telescoping shaft and production method therefor
WO2013002169A1 (en) 2011-06-29 2013-01-03 日本精工株式会社 Telescoping shaft and production method therefor
US9446782B2 (en) 2011-06-29 2016-09-20 Nsk Ltd. Telescopic shaft and manufacturing method thereof
CN103314230A (en) * 2011-12-01 2013-09-18 日本精工株式会社 Telescopic shaft
WO2013080714A1 (en) * 2011-12-01 2013-06-06 日本精工株式会社 Telescopic shaft
US9422986B2 (en) 2011-12-01 2016-08-23 Nsk Ltd. Telescopic shaft
WO2013137399A1 (en) * 2012-03-14 2013-09-19 株式会社ジェイテクト Sliding member
JP2015137679A (en) * 2014-01-21 2015-07-30 株式会社ジェイテクト Process of manufacturing telescopic shaft
JP2014238173A (en) * 2014-07-31 2014-12-18 株式会社ジェイテクト Spline telescopic shaft and its manufacturing method
JP2016014480A (en) * 2015-08-31 2016-01-28 株式会社ジェイテクト Power transmission shaft manufacturing method
JP2020143766A (en) * 2019-03-08 2020-09-10 株式会社ジェイテクト Manufacturing method of spline telescopic shaft and spline telescopic shaft

Also Published As

Publication number Publication date
JP5104332B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5104332B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5408194B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
US9771969B2 (en) Method of manufacturing torque transmission shaft and vehicle steering apparatus
JP5549658B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5447694B2 (en) Telescopic shaft for steering device
US9701334B2 (en) Vehicle steering device
JP2014077537A (en) Rotation transmission device, vehicular steering device, and intermediate shaft
US20140200086A1 (en) Telescopic shaft
JP5240288B2 (en) Spline processing method
US10793180B2 (en) Method for producing a length-adjustable steering shaft, and length-adjustable steering shaft
CN111183017A (en) Method for producing a unit with an axially displaceable part
JP2008155778A (en) Transmission shaft for steering device and its assembling method
JP2009121529A (en) Method for production of expandable shaft, and expandable shaft produced by the method
JP2011173463A (en) Method for manufacturing spline telescopic shaft
JP5637270B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
EP3070357B1 (en) Method for manufacturing telescopic shaft
JP2010127295A (en) Manufacturing method for telescopic shaft, and telescopic shaft manufactured by this manufacturing method
JP6057139B2 (en) Manufacturing method of power transmission shaft
JP5157410B2 (en) Steering device with telescopic shaft and telescopic shaft
JP2013142437A (en) Telescopic shaft
CN104791389A (en) Method for manufacturing telescopic shaft
JP2019084859A (en) Steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3