JP2009121529A - Method for production of expandable shaft, and expandable shaft produced by the method - Google Patents

Method for production of expandable shaft, and expandable shaft produced by the method Download PDF

Info

Publication number
JP2009121529A
JP2009121529A JP2007293843A JP2007293843A JP2009121529A JP 2009121529 A JP2009121529 A JP 2009121529A JP 2007293843 A JP2007293843 A JP 2007293843A JP 2007293843 A JP2007293843 A JP 2007293843A JP 2009121529 A JP2009121529 A JP 2009121529A
Authority
JP
Japan
Prior art keywords
shaft
male
female
manufacturing
covering portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293843A
Other languages
Japanese (ja)
Other versions
JP5034881B2 (en
Inventor
Yoshifumi Kurokawa
祥史 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007293843A priority Critical patent/JP5034881B2/en
Publication of JP2009121529A publication Critical patent/JP2009121529A/en
Application granted granted Critical
Publication of JP5034881B2 publication Critical patent/JP5034881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Controls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production of an expandable shaft in which lubricant is smoothly fed to a sliding surface, the sliding resistance is maintained small for a long time, and the lifetime of the expandable shaft is enhanced, and to provide the expandable shaft produced by the method. <P>SOLUTION: A covered part 61 is formed over the entire length in the axial direction of a tooth of a male shaft 16A, and a groove of a female shaft 16B is housed over the entire length in the axial direction of a tooth 1 of the male shaft 16A. Next, the load P in the direction orthogonal to the axis of the female shaft 16B is applied to an upper end of the male shaft 16A. As a result, the male shaft 16A is relatively folded with respect to the female shaft 16B. Thus, a part Q and a part R in a vicinity of both ends in the axial direction of the covered part 61 are strongly compressed, and chamfered portions 62, 62 are formed in a vicinity of both ends in the axial direction of the covered part 61. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は伸縮軸、特に、回転トルクを伝達可能で軸方向に相対摺動可能な伸縮軸、例えば、中間シャフトやステアリングシャフト等の伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸に関する。   The present invention relates to a telescopic shaft, particularly a telescopic shaft capable of transmitting rotational torque and capable of sliding relative to the axial direction, for example, a telescopic shaft such as an intermediate shaft or a steering shaft, and a telescopic shaft manufactured by the manufacturing method. About.

ステアリング装置には、回転トルクを伝達可能に、かつ、軸方向に相対摺動可能に連結されたスプライン軸等の伸縮軸が、中間シャフトやステアリングシャフト等に組み込まれている。すなわち、中間シャフトは、ステアリングギヤのラック軸に噛合うピニオンシャフトに、自在継手を締結する際に、一旦縮めてからピニオンシャフトに嵌合させて締結するためや、車体フレームとの間の相対変位を吸収するために、伸縮機能が必要である。   In the steering device, a telescopic shaft such as a spline shaft that is connected so as to be capable of transmitting rotational torque and is relatively slidable in the axial direction is incorporated in an intermediate shaft, a steering shaft, or the like. In other words, when the universal joint is fastened to the pinion shaft that meshes with the rack shaft of the steering gear, the intermediate shaft is temporarily contracted and then fitted to the pinion shaft and fastened. In order to absorb water, an expansion / contraction function is required.

また、ステアリングシャフトは、ステアリングホイールの操舵力を車輪に伝達すると共に、運転者の体格や運転姿勢に応じて、ステアリングホイールの位置を軸方向に調整する必要があるため、伸縮機能が要求される。   In addition, the steering shaft transmits the steering force of the steering wheel to the wheel, and the position of the steering wheel needs to be adjusted in the axial direction according to the physique and driving posture of the driver. .

近年、車体全体の剛性と走行安定性が向上したために、ステアリングホイールを操作した時に、伸縮軸の回転方向のガタツキを運転者が感じやすくなった。そこで、回転方向のガタツキが小さく、潤滑性と耐久性に優れた伸縮軸が望まれている。   In recent years, the rigidity and running stability of the entire vehicle body have been improved, so that when the steering wheel is operated, it becomes easier for the driver to feel rattling in the rotational direction of the telescopic shaft. Therefore, there is a demand for an expansion / contraction shaft that has small backlash in the rotational direction and is excellent in lubricity and durability.

そのために、雄シャフトの歯面外周に摺動抵抗の小さな樹脂等を被覆し、潤滑用の潤滑剤を塗布した後に雌シャフトに嵌合した伸縮軸がある。このような伸縮軸は、車両運転中にトルクが加わりながら繰り返し伸縮するため、雄シャフトと雌シャフトの歯面の接触部に潤滑剤(油)を絶えず供給する必要がある。   For this purpose, there is a telescopic shaft that is fitted to the female shaft after coating a resin having a small sliding resistance on the outer periphery of the tooth surface of the male shaft and applying a lubricant for lubrication. Since such a telescopic shaft repeatedly expands and contracts while a torque is applied during vehicle operation, it is necessary to constantly supply a lubricant (oil) to the contact portion between the tooth surfaces of the male shaft and the female shaft.

特許文献1の伸縮軸は、樹脂を被覆した雄シャフトに雌シャフトを嵌合させた状態で、回転トルクを付与して、雌シャフトの内歯を雄シャフトの外歯の樹脂被覆部に押し付けて硬化し、樹脂被覆部に押圧凹み面を形成している。これによって、摺動隙間を長期にわたって一定に維持し、押圧凹み面に潤滑剤を溜めることで、潤滑剤の供給を良好にしている。しかし、特許文献1の伸縮軸は、押圧凹み面があるため、雌シャフトの内歯と雄シャフトの外歯との間に隙間ができて、回転方向のガタツキが発生する不具合がある。   The telescopic shaft of Patent Document 1 applies rotational torque in a state where the female shaft is fitted to the male shaft coated with resin, and presses the inner teeth of the female shaft against the resin-coated portion of the outer teeth of the male shaft. It hardens | cures and forms the press dent surface in the resin coating part. Accordingly, the sliding gap is kept constant over a long period of time, and the lubricant is stored in the pressing recess surface, so that the supply of the lubricant is improved. However, since the telescopic shaft of Patent Document 1 has a pressing depression surface, there is a problem in that a gap is formed between the inner teeth of the female shaft and the outer teeth of the male shaft, causing backlash in the rotational direction.

特許文献2の伸縮軸は、樹脂を被覆した雄シャフトに雌シャフトを嵌合させた状態で、外部から樹脂を加熱して軟化し、雌シャフトの内歯と雄シャフトの外歯の隙間形状に樹脂被覆部を成形している。これによって、内歯と外歯の噛み合い隙間を均一にして、回転方向のガタを小さくし、軸方向の摺動抵抗を良好にしている。しかし、特許文献2の伸縮軸は、雌シャフトの内歯と雄シャフトの外歯との間に噛み合い隙間があるため、回転方向のガタツキが発生する不具合がある。   In the state where the female shaft is fitted to the male shaft coated with the resin, the telescopic shaft of Patent Document 2 is softened by heating the resin from the outside to form a gap between the internal teeth of the female shaft and the external teeth of the male shaft. The resin coating is molded. As a result, the meshing gap between the inner teeth and the outer teeth is made uniform, the play in the rotational direction is reduced, and the sliding resistance in the axial direction is improved. However, the telescopic shaft disclosed in Patent Document 2 has a problem in that rattling occurs in the rotational direction because there is a meshing gap between the inner teeth of the female shaft and the outer teeth of the male shaft.

また、上記特許文献1及び特許文献2の伸縮軸は、雄シャフトの被覆部の軸方向の両端部がエッジになるため、雄シャフトと雌シャフトの歯面の接触部に塗布された潤滑剤が、被覆部のエッジによって接触部の外に掃き出されてしまい、潤滑剤の供給が不足して、摺動抵抗が増大し、伸縮軸の寿命が低下してしまうことがある。   Moreover, since the both ends of the axial direction of the coating | coated part of a male shaft become an edge in the expansion-contraction shaft of the said patent document 1 and the patent document 2, the lubricant apply | coated to the contact part of the tooth surface of a male shaft and a female shaft is carried out. The edge of the covering part is swept out of the contact part, the supply of the lubricant is insufficient, the sliding resistance increases, and the life of the telescopic shaft may decrease.

特開2004−66970号公報JP 2004-66970 A 特開2002−321627号公報JP 2002-321627 A

本発明は、摺動抵抗を減少させる被覆部を有する伸縮軸であって、摺動面に潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持されて、伸縮軸の寿命が向上する伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸を提供することを課題とする。   The present invention relates to a telescopic shaft having a covering portion that reduces sliding resistance, wherein the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small over a long period of time, and the life of the telescopic shaft is improved. It is an object of the present invention to provide a method for manufacturing a telescopic shaft and a telescopic shaft manufactured by the manufacturing method.

上記課題は以下の手段によって解決される。すなわち、第1番目の発明は、非円形の外周形状を有する雄シャフト、上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、上記雄シャフトの非円形の外周の軸方向の全長にわたって形成され、上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を有する伸縮軸の製造方法であって、上記雄シャフトの非円形の外周の軸方向の全長に上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程、上記被覆部を形成した雄シャフトの非円形の外周の軸方向の全長に上記雌シャフトの非円形の内周を外嵌する工程、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与し、上記雄シャフトの非円形の外周の軸方向の両端近傍の被覆部を圧縮して面取り部を形成する工程を備えたことを特徴とする伸縮軸の製造方法である。   The above problem is solved by the following means. That is, the first invention is a male shaft having a non-circular outer peripheral shape, and a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be capable of relative sliding in the axial direction and to transmit rotational torque. A method of manufacturing a telescopic shaft having a covering portion that is formed over the entire axial length of a non-circular outer periphery of the male shaft, and that reduces a sliding resistance between the inner periphery of the female shaft, A step of forming a covering portion for reducing sliding resistance between the inner periphery of the female shaft and the non-circular outer periphery of the male shaft on which the covering portion is formed; A step of fitting the non-circular inner periphery of the female shaft to the entire length in the axial direction, applying a load in a direction of bending the male shaft relative to the female shaft, Near both axial ends The covering portion by compressing a method for manufacturing a telescopic shaft, characterized in that it comprises a step of forming a chamfered portion.

第2番目の発明は、第1番目の発明の伸縮軸の製造方法において、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記被覆部を加熱することを特徴とする伸縮軸の製造方法である。   According to a second aspect of the present invention, in the method for manufacturing the telescopic shaft of the first aspect, the covering portion is heated while applying a load in a direction in which the male shaft is bent relative to the female shaft. It is a manufacturing method of the telescopic shaft.

第3番目の発明は、第2番目の発明の伸縮軸の製造方法において、上記被覆部を30度以上に加熱することを特徴とする伸縮軸の製造方法である。   A third aspect of the invention is a method for manufacturing an extendable shaft according to the second aspect of the invention, wherein the covering portion is heated to 30 degrees or more.

第4番目の発明は、第1番目の発明の伸縮軸の製造方法において、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させることを特徴とする伸縮軸の製造方法である。   According to a fourth aspect of the present invention, in the method for manufacturing the telescopic shaft of the first aspect, the male shaft is attached to the female shaft while applying a load in a direction of bending the male shaft relative to the female shaft. It is a manufacturing method of an expansion-contraction shaft characterized by making it slide relatively in an axial direction.

第5番目の発明は、第1番目の発明の伸縮軸の製造方法において、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記雌シャフトに対して雄シャフトを相対的にみそすり運動させることを特徴とする伸縮軸の製造方法である。   According to a fifth aspect of the present invention, in the method for manufacturing the telescopic shaft of the first aspect, the male shaft is attached to the female shaft while applying a load in a direction in which the male shaft is bent relative to the female shaft. It is a manufacturing method of an expansion-contraction shaft characterized by carrying out a razor movement relatively.

第6番目の発明は、第1番目の発明の伸縮軸の製造方法において、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を、上記雄シャフトの円周方向の複数の角度位置から付与することを特徴とする伸縮軸の製造方法である。   According to a sixth aspect of the present invention, in the method of manufacturing the telescopic shaft according to the first aspect, the load in the direction of bending the male shaft relative to the female shaft is a plurality of angular positions in the circumferential direction of the male shaft. It is the manufacturing method of the expansion-contraction shaft characterized by the above-mentioned.

第7番目の発明は、第1番目の発明の伸縮軸の製造方法において、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与する工程と、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる工程を順次行うことを特徴とする伸縮軸の製造方法である。   According to a seventh aspect of the present invention, in the method for manufacturing the telescopic shaft of the first aspect, a step of applying a load in a direction of bending the male shaft relative to the female shaft, and a male shaft relative to the female shaft The method of manufacturing the telescopic shaft is characterized in that the steps of sliding the shaft in the axial direction are sequentially performed.

第8番目の発明は、第1番目から第7番目までのいずれかの発明の伸縮軸の製造方法において、上記被覆部は、ゴム、高分子材料、固体潤滑剤のうちの少なくともいずれか一つの材質で形成されていることを特徴とする伸縮軸の製造方法である。   According to an eighth aspect of the present invention, in the method for producing a telescopic shaft according to any one of the first to seventh aspects, the covering portion is at least one of rubber, a polymer material, and a solid lubricant. It is a manufacturing method of the expansion-contraction shaft characterized by being formed with the material.

第9番目の発明は、第1番目から第8番目までのいずれかの発明の伸縮軸の製造方法によって製造した伸縮軸である。   A ninth aspect of the invention is a telescopic shaft manufactured by the manufacturing method of the telescopic shaft according to any one of the first to eighth aspects of the invention.

第10番目の発明は、非円形の外周形状を有する雄シャフト、上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、上記雌シャフトの非円形の内周の軸方向の全長にわたって形成され、上記雄シャフトの外周との間の摺動抵抗を減少させる被覆部を有する伸縮軸であって、上記雌シャフトの非円形の内周の軸方向の全長に上記雄シャフトの外周との間の摺動抵抗を減少させる被覆部を形成する工程、上記雄シャフトの非円形の外周に上記被覆部を形成した雌シャフトの非円形の内周の軸方向の全長を外嵌する工程、上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与し、上記雌シャフトの非円形の内周の軸方向の両端近傍の被覆部を圧縮して面取り部を形成する工程によって製造した伸縮軸である。   A tenth aspect of the invention is a male shaft having a non-circular outer peripheral shape, and a female having a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be capable of relative sliding in the axial direction and to transmit rotational torque. A telescopic shaft formed over the entire axial length of a non-circular inner periphery of the female shaft, and having a covering portion for reducing sliding resistance with the outer periphery of the male shaft, A step of forming a covering portion for reducing sliding resistance between the outer circumference of the male shaft on the entire axial length of the circular inner circumference, and a female shaft having the covering portion formed on the non-circular outer circumference of the male shaft. A step of externally fitting the entire axial length of the noncircular inner circumference, applying a load in a direction of bending the male shaft relative to the female shaft, and both axial ends of the noncircular inner circumference of the female shaft Compress the surface of the nearby coating Ri unit is a telescopic shaft produced by forming a.

本発明の伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸では、雄シャフトの非円形の外周の軸方向の全長に雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程と、被覆部を形成した雄シャフトの非円形の外周の軸方向の全長に雌シャフトの非円形の内周を外嵌する工程と、雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与し、雄シャフトの非円形の外周の軸方向の両端近傍の被覆部を圧縮して面取り部を形成する工程を備えている。   In the manufacturing method of the telescopic shaft of the present invention and the telescopic shaft manufactured by this manufacturing method, the coating that reduces the sliding resistance between the inner periphery of the female shaft to the entire axial length of the non-circular outer periphery of the male shaft The step of forming a portion, the step of fitting the non-circular inner periphery of the female shaft to the entire axial length of the non-circular outer periphery of the male shaft on which the covering portion is formed, and the male shaft relative to the female shaft A step of forming a chamfered portion by applying a load in a bending direction and compressing the covering portion in the vicinity of both axial ends of the non-circular outer periphery of the male shaft.

従って、被覆部の軸方向の両端部に面取り部が形成されるため、摺動面に塗布された潤滑油が、摺動面の外に掃き出されることがない。そのため、摺動面に潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持されて、伸縮軸の寿命が向上する。   Therefore, since the chamfered portions are formed at both end portions in the axial direction of the covering portion, the lubricating oil applied to the sliding surface is not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

以下、図面に基づいて本発明の実施例1から実施例5を説明する。   Embodiments 1 to 5 of the present invention will be described below with reference to the drawings.

図1は本発明の伸縮軸を有するステアリング装置の全体を示し、一部を切断した側面図であって、操舵補助部を有する電動パワーステアリング装置に適用した実施例を示す。図2は本発明の実施例1の伸縮軸の要部を示す縦断面図である。図3は図2のA−A拡大断面図を示し、(1)はスリーブを被覆した伸縮軸を示す拡大断面図、(2)は被覆部をコーティングした伸縮軸を示す拡大断面図である。   FIG. 1 is a side view of the steering device having the telescopic shaft according to the present invention, partially cut away, showing an embodiment applied to an electric power steering device having a steering assisting portion. FIG. 2 is a longitudinal sectional view showing the main part of the telescopic shaft of the first embodiment of the present invention. 3 is an AA enlarged cross-sectional view of FIG. 2, wherein (1) is an enlarged cross-sectional view showing a telescopic shaft coated with a sleeve, and (2) is an enlarged cross-sectional view showing a telescopic shaft coated with a covering portion.

図4は本発明の実施例1の伸縮軸の製造工程を示す説明図であって、(1)は伸縮軸の要部の縦断面図、(2)は(1)の上面図である。図5は本発明の実施例1の伸縮軸の雄シャフトを示す斜視図である。図6は本発明の実施例1の製造方法によって製造した伸縮軸の雄シャフトを示し、(1)は雄シャフト単体の縦断面図、(2)は(1)のS部拡大断面図である。   FIGS. 4A and 4B are explanatory views showing the production process of the telescopic shaft according to the first embodiment of the present invention. FIG. 4A is a longitudinal sectional view of the main part of the telescopic shaft, and FIG. 4B is a top view of FIG. FIG. 5 is a perspective view showing the male shaft of the telescopic shaft according to the first embodiment of the present invention. 6 shows a telescopic shaft male shaft manufactured by the manufacturing method of Embodiment 1 of the present invention, (1) is a vertical sectional view of the male shaft alone, and (2) is an enlarged sectional view of S part of (1). .

図1に示すように、本発明の実施例の伸縮軸を有するステアリング装置は、車体後方側(図1の右側)にステアリングホイール11を装着可能なステアリングシャフト12と、このステアリングシャフト12を挿通したステアリングコラム13と、ステアリングシャフト12に補助トルクを付与する為のアシスト装置(操舵補助部)20と、ステアリングシャフト12の車体前方側(図1の左側)に、図示しないラック/ピニオン機構を介して連結されたステアリングギヤ30とを備える。   As shown in FIG. 1, the steering device having the telescopic shaft of the embodiment of the present invention has a steering shaft 12 on which a steering wheel 11 can be mounted on the rear side of the vehicle body (right side in FIG. 1), and this steering shaft 12 is inserted. A steering column 13, an assist device (steering assisting portion) 20 for applying auxiliary torque to the steering shaft 12, and a vehicle front side (left side in FIG. 1) of the steering shaft 12 via a rack / pinion mechanism (not shown). And a connected steering gear 30.

ステアリングシャフト12は、雌シャフト12Aと雄シャフト12Bとを、回転トルクを伝達自在に、かつ軸方向に関して相対変位可能に組み合わせて成る。   The steering shaft 12 is formed by combining a female shaft 12A and a male shaft 12B so that rotational torque can be transmitted and relative displacement can be performed in the axial direction.

すなわち、雄シャフト12Bの車体後方側外周には、複数の雄スプラインが形成され、雌シャフト12Aの車体前方側内周には、複数の雌スプラインが、雄スプラインと同一位相位置に形成されて、雄シャフト12Bの雄スプラインと所定の隙間を有して外嵌し、回転トルクを伝達自在に、かつ軸方向に関して相対変位可能に係合している。従って、上記雌シャフト12Aと雄シャフト12Bとは、衝突時に、この係合部が相対摺動して、全長を縮めることができる。   That is, a plurality of male splines are formed on the outer periphery on the vehicle body rear side of the male shaft 12B, and a plurality of female splines are formed on the inner periphery on the vehicle body front side of the female shaft 12A at the same phase position as the male spline. The male spline of the male shaft 12B is externally fitted with a predetermined gap, and is engaged so as to be able to transmit rotational torque and be relatively displaceable in the axial direction. Therefore, the engaging portion of the female shaft 12A and the male shaft 12B can slide relative to each other at the time of collision, so that the overall length can be shortened.

また、上記ステアリングシャフト12を挿通した筒状のステアリングコラム13は、アウターコラム13Aとインナーコラム13Bとをテレスコピック移動可能に組み合わせており、衝突時に軸方向の衝撃が加わった場合に、この衝撃によるエネルギを吸収しつつ全長が縮まる、所謂コラプシブル構造としている。   Further, the cylindrical steering column 13 inserted through the steering shaft 12 combines the outer column 13A and the inner column 13B so that they can be telescopically moved. It has a so-called collapsible structure in which the entire length is shortened while absorbing water.

そして、上記インナーコラム13Bの車体前方側端部を、ギヤハウジング21の車体後方側端部に圧入嵌合して固定している。また、上記雄シャフト12Bの車体前方側端部を、このギヤハウジング21の内側に通し、アシスト装置20の図示しない入力軸の車体後方側端部に結合している。   The vehicle body front side end portion of the inner column 13B is press-fitted and fixed to the vehicle body rear side end portion of the gear housing 21. Further, the vehicle body front side end portion of the male shaft 12B is passed through the inside of the gear housing 21 and is coupled to the vehicle body rear side end portion of the input shaft (not shown) of the assist device 20.

ステアリングコラム13は、その中間部を支持ブラケット14により、ダッシュボードの下面等、車体18の一部に支承している。また、この支持ブラケット14と車体18との間に、図示しない係止部を設けて、この支持ブラケット14に車体前方側に向かう方向の衝撃が加わった場合に、この支持ブラケット14が上記係止部から外れ、車体前方側に移動するようにしている。   The steering column 13 is supported by a support bracket 14 at a middle portion thereof on a part of the vehicle body 18 such as a lower surface of the dashboard. Further, a locking portion (not shown) is provided between the support bracket 14 and the vehicle body 18, and when an impact in a direction toward the front side of the vehicle body is applied to the support bracket 14, the support bracket 14 is locked to the locking bracket 14. It moves away from the vehicle and moves to the front side of the vehicle.

また、上記ギヤハウジング21の上端部も、上記車体18の一部に支承している。また、本実施例の場合には、チルト機構及びテレスコピック機構を設けることにより、上記ステアリングホイール11の車体前後方向位置、及び、高さ位置の調節を自在としている。このようなチルト機構及びテレスコピック機構は、従来から周知であり、本発明の特徴部分でもない為、詳しい説明は省略する。   The upper end portion of the gear housing 21 is also supported on a part of the vehicle body 18. In the case of this embodiment, by providing a tilt mechanism and a telescopic mechanism, the position of the steering wheel 11 in the longitudinal direction of the vehicle body and the height position can be freely adjusted. Such a tilt mechanism and a telescopic mechanism are well known in the art and are not characteristic features of the present invention, and thus detailed description thereof is omitted.

上記ギヤハウジング21の車体前方側端面から突出した出力軸23は、自在継手15を介して、中間シャフト16の雄中間シャフト(以下雄シャフトと呼ぶ)16Aの後端部に連結している。また、この中間シャフト16の雌中間シャフト(以下雌シャフトと呼ぶ)16Bの前端部に、別の自在継手17を介して、ステアリングギヤ30の入力軸31を連結している。   The output shaft 23 protruding from the end face on the vehicle body front side of the gear housing 21 is connected to a rear end portion of a male intermediate shaft (hereinafter referred to as a male shaft) 16A of the intermediate shaft 16 through a universal joint 15. Further, an input shaft 31 of the steering gear 30 is connected to a front end portion of a female intermediate shaft (hereinafter referred to as a female shaft) 16B of the intermediate shaft 16 via another universal joint 17.

雄中間シャフト16Aは、雌中間シャフト16Bに対して、軸方向に相対摺動可能に、かつ、回転トルクを伝達可能に結合している。図示しないピニオンが、この入力軸31の前端部に形成されている。また、図示しないラックが、このピニオンに噛み合っており、ステアリングホイール11の回転が、タイロッド32を移動させて、図示しない車輪を操舵する。   The male intermediate shaft 16A is coupled to the female intermediate shaft 16B so as to be capable of relative sliding in the axial direction and to transmit rotational torque. A pinion (not shown) is formed at the front end of the input shaft 31. A rack (not shown) meshes with the pinion, and the rotation of the steering wheel 11 moves the tie rod 32 to steer a wheel (not shown).

アシスト装置20のギヤハウジング21には、電動モータ26のケース261が固定されている。ステアリングホイール11からステアリングシャフト12に加えられるトルクの方向と大きさを、トルクセンサで検出する。この検出信号に応じて、電動モータ26を駆動し、図示しない減速機構を介して、出力軸23に、所定の方向に所定の大きさで補助トルクを発生させる。   A case 261 of an electric motor 26 is fixed to the gear housing 21 of the assist device 20. The direction and magnitude of torque applied from the steering wheel 11 to the steering shaft 12 is detected by a torque sensor. In response to this detection signal, the electric motor 26 is driven to cause the output shaft 23 to generate auxiliary torque with a predetermined magnitude in a predetermined direction via a speed reduction mechanism (not shown).

図2に示すように、本発明の実施例1の伸縮軸は、中間シャフト16の雄シャフト16Aと雌シャフト16Bに適用した例を示す。雄シャフト16Aの車体前方側(図2の下端)が、雌シャフト16Bの車体後方側(図2の上端)に内嵌して連結されている。   As shown in FIG. 2, the telescopic shaft according to the first embodiment of the present invention is applied to the male shaft 16 </ b> A and the female shaft 16 </ b> B of the intermediate shaft 16. The vehicle body front side (lower end in FIG. 2) of the male shaft 16A is fitted and connected to the vehicle body rear side (upper end in FIG. 2) of the female shaft 16B.

図2、図3(1)、(2)に示すように、炭素鋼またはアルミニウム合金で成形された雌シャフト16Bは中空筒状に形成されており、その内周には、雌シャフト16Bの軸心から放射状に、複数の軸方向の溝41が、伸縮ストロークの全長にわたって、等間隔に形成されている。   As shown in FIG. 2, FIG. 3 (1), (2), the female shaft 16B formed of carbon steel or aluminum alloy is formed in a hollow cylindrical shape, and the inner periphery of the female shaft 16B is an axis of the female shaft 16B. A plurality of axial grooves 41 are formed at equal intervals over the entire length of the expansion / contraction stroke, radially from the center.

図3(1)の例は、炭素鋼またはアルミニウム合金で成形された雄シャフト(雄スプライン軸)16Aの歯51に、雌シャフト(雌スプライン筒)16Bの溝41との間の摺動抵抗を減少させる被覆部61として、スリーブを被覆した伸縮軸の例を示す。すなわち、回転トルクを伝達するための非円形の外周形状として、4個の軸方向の歯51を有する雄シャフト16Aには、歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61として、スリーブが被覆されている。   In the example of FIG. 3A, the sliding resistance between the teeth 51 of the male shaft (male spline shaft) 16A formed of carbon steel or aluminum alloy and the groove 41 of the female shaft (female spline cylinder) 16B is shown. An example of a telescopic shaft covered with a sleeve is shown as the covering portion 61 to be reduced. That is, the male shaft 16A having four axial teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque has a total length in the axial direction of the teeth 51 between the groove 41 of the female shaft 16B. A sleeve is covered as a covering portion 61 that reduces the sliding resistance of the sleeve.

また、図3(2)の例は、雄シャフト(雄スプライン軸)16Aの歯51に、雌シャフト(雌スプライン筒)16Bの溝41との間の摺動抵抗を減少させる被覆部61をコーティングした伸縮軸の例を示す。すなわち、回転トルクを伝達するための非円形の外周形状として、18個の軸方向の歯51を有する雄シャフト16Aには、歯51の軸方向の全長に、雌シャフト16Bの軸方向の溝41との間の摺動抵抗を減少させる被覆部61がコーティングされている。   In the example of FIG. 3 (2), the covering portion 61 for reducing the sliding resistance between the teeth 51 of the male shaft (male spline shaft) 16A and the groove 41 of the female shaft (female spline cylinder) 16B is coated. An example of the extended telescopic axis is shown. That is, the male shaft 16A having 18 axial teeth 51 as a non-circular outer peripheral shape for transmitting rotational torque has an axial groove 41 in the axial direction of the female shaft 16B on the entire axial length of the teeth 51. A covering portion 61 that reduces the sliding resistance between them is coated.

図3(1)、(2)の被覆部61の材質は、ゴム、例えば、天然ゴム、合成ゴム、または、天然ゴムと合成ゴムの混合物のうちの少なくともいずれか一つで構成することが好ましい。また、被覆部61の材質は、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤で構成してもよい。   3 (1) and 3 (2) is preferably made of at least one of rubber, for example, natural rubber, synthetic rubber, or a mixture of natural rubber and synthetic rubber. . Further, the material of the covering portion 61 may be composed of at least one solid lubricant selected from molybdenum disulfide, graphite, and fluorine compounds.

さらに、被覆部61の材質は、天然ゴム、合成ゴム、または、天然ゴムと合成ゴムの混合物のうちの少なくともいずれか一つに、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤を含有させた材質で構成してもよい。   Furthermore, the material of the covering portion 61 is at least one of natural rubber, synthetic rubber, or a mixture of natural rubber and synthetic rubber, and at least one of molybdenum disulfide, graphite, and fluorine compounds. You may comprise with the material which contained the solid lubricant.

また、上記被覆部61の材質は、ポリテトラフルオロエチレン、フェノール樹脂、アセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂のうちの少なくともいずれか一つの高分子材料で構成することが好ましい。   The covering 61 is made of at least one polymer material selected from polytetrafluoroethylene, phenol resin, acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polyphenylene sulfide resin. It is preferable.

さらに、上記被覆部61の材質は、ポリテトラフルオロエチレン、フェノール樹脂、アセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂のうちの少なくともいずれか一つの高分子材料に、二硫化モリブデン、グラファイト、フッ素化合物のうちの少なくともいずれか一つの固体潤滑剤を含有させた材質で構成してもよい。   Furthermore, the material of the covering portion 61 is made of at least one polymer material selected from polytetrafluoroethylene, phenol resin, acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polyphenylene sulfide resin. You may comprise with the material which contained the solid lubricant at least any one of molybdenum sulfide, a graphite, and a fluorine compound.

雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成した後、図2に示すように、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   After the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B is formed on the entire axial length of the teeth 51 of the male shaft 16A, the teeth 51 of the male shaft 16A are formed as shown in FIG. The groove 41 of the female shaft 16B is fitted over the entire length in the axial direction.

次に、図4(1)に示すように、雌シャフト16Bを図示しない加工治具等で固定した状態で、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与する。その結果、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げることになる。雄シャフト16Aを加工治具等で固定し、雌シャフト16Bの下端に、雌シャフト16Bの軸線に直交する方向の荷重を付与してもよい。   Next, as shown in FIG. 4A, with the female shaft 16B fixed by a processing jig (not shown) or the like, a load (white arrow) in the direction perpendicular to the axis of the female shaft 16B is applied to the upper end of the male shaft 16A. (Lateral load) P shown in FIG. As a result, the male shaft 16A is bent relative to the female shaft 16B. The male shaft 16A may be fixed with a processing jig or the like, and a load in a direction perpendicular to the axis of the female shaft 16B may be applied to the lower end of the female shaft 16B.

そのため、雄シャフト16Aの歯51の軸方向の両端近傍のQ部とR部に、反力(黒矢印)R1、R2が作用し、被覆部61の軸方向の両端近傍のQ部とR部が強く圧縮される。荷重Pは、図5の一点鎖線の楕円T1、T2、T3、T4に示すように、回転トルクを伝達する雄シャフト16Aの歯51の側面511、511を強く圧縮する方向に付与することが好ましい。   Therefore, reaction forces (black arrows) R1 and R2 act on the Q portion and R portion in the vicinity of both ends of the teeth 51 of the male shaft 16A, and the Q portion and R portion in the vicinity of both ends of the covering portion 61 in the axial direction. Is strongly compressed. The load P is preferably applied in a direction in which the side surfaces 511 and 511 of the teeth 51 of the male shaft 16A that transmits the rotational torque are strongly compressed, as indicated by the dashed-dotted ellipses T1, T2, T3, and T4 in FIG. .

雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重は、雄シャフト16Aの円周方向の一つの角度位置から付与する例に限定されるものではない。すなわち、図4(2)に示すように、雄シャフト16Aの円周方向の複数の角度位置から荷重P1、P2、P3、P4を付与することが好ましい。また、荷重を付与する回数は、一回に限定されるものではなく、一つの角度位置について複数回荷重を付与してもよい。   The load in the direction of bending the male shaft 16A relative to the female shaft 16B is not limited to an example in which the load is applied from one angular position in the circumferential direction of the male shaft 16A. That is, as shown in FIG. 4 (2), it is preferable to apply loads P1, P2, P3, and P4 from a plurality of angular positions in the circumferential direction of the male shaft 16A. Further, the number of times of applying the load is not limited to one time, and the load may be applied a plurality of times for one angular position.

図6に本発明の実施例1の製造方法によって製造した伸縮軸の雄シャフト16Aを示す。図6(1)に示すように、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、図6(2)に示すように、雌シャフト16Bの溝41と被覆部61との間の隙間δが、被覆部61の軸方向の端部に向かって大きくなるように形成される。   FIG. 6 shows a male shaft 16A having a telescopic shaft manufactured by the manufacturing method according to the first embodiment of the present invention. As shown in FIG. 6 (1), chamfered portions 62, 62 are formed in the vicinity of both axial ends of the covering portion 61 of the male shaft 16A. As shown in FIG. 6B, the chamfered portions 62, 62 are such that the gap δ between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the end of the covering portion 61 in the axial direction. Formed.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布されたグリース等の潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Therefore, since there are no edges at both axial ends of the covering portion 61 of the male shaft 16A, a lubricant such as grease applied to the sliding surface between the groove 41 of the female shaft 16B and the covering portion 61 is The both ends of the covering portion 61 in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

次に本発明の実施例2について説明する。図7は本発明の実施例2の伸縮軸の製造工程を示す説明図である。以下の説明では、上記実施例と異なる構造部分と作用についてのみ説明し、重複する説明は省略する。また、上記実施例と同一部品には同一番号を付して説明する。   Next, a second embodiment of the present invention will be described. FIG. 7 is an explanatory view showing a manufacturing process of the telescopic shaft according to the second embodiment of the present invention. In the following description, only structural portions and operations different from the above embodiment will be described, and redundant description will be omitted. Further, the same parts as those in the above embodiment will be described with the same numbers.

実施例2は、実施例1の変形例であり、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重を付与しながら、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に摺動させるようにした例である。   The second embodiment is a modification of the first embodiment, and applies a load in a direction in which the male shaft 16A is bent relatively to the female shaft 16B, while the male shaft 16A is relatively axially aligned with the female shaft 16B. This is an example of sliding in the direction.

すなわち、実施例1と同様に、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成(図3参照)した後、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   That is, after forming the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A as in the first embodiment (see FIG. 3). The groove 41 of the female shaft 16B is fitted over the entire length of the teeth 51 of the male shaft 16A in the axial direction.

次に、図7に示すように、雌シャフト16Bを図示しない加工治具等で固定した状態で、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与しながら、雌シャフト16Bに対して雄シャフト16Aを、軸方向(白矢印U方向)に摺動させる。その結果、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に摺動させながら、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げることになる。   Next, as shown in FIG. 7, with the female shaft 16B fixed by a processing jig or the like (not shown), a load in the direction perpendicular to the axis of the female shaft 16B (horizontal indicated by a white arrow) is applied to the upper end of the male shaft 16A. While applying the load (P), the male shaft 16A is slid in the axial direction (white arrow U direction) with respect to the female shaft 16B. As a result, the male shaft 16A is bent relative to the female shaft 16B while the male shaft 16A is slid relative to the female shaft 16B in the axial direction.

雄シャフト16Aを加工治具等で固定し、雌シャフト16Bの下端に、雌シャフト16Bの軸線に直交する方向の荷重を付与しながら、雄シャフト16Aに対して雌シャフト16Bを軸方向に摺動させてもよい。   The male shaft 16A is fixed with a processing jig or the like, and the female shaft 16B is slid in the axial direction with respect to the male shaft 16A while applying a load in a direction perpendicular to the axis of the female shaft 16B to the lower end of the female shaft 16B. You may let them.

その結果、雄シャフト16Aの歯51の軸方向の両端近傍のQ部とR部に、反力(黒矢印)R1、R2が作用し、被覆部61の軸方向の両端近傍のQ部とR部が強く圧縮される。   As a result, reaction forces (black arrows) R1 and R2 act on the Q portion and R portion in the vicinity of both ends of the teeth 51 of the male shaft 16A, and the Q portion and R in the vicinity of both ends of the covering portion 61 in the axial direction. The part is strongly compressed.

雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重は、雄シャフト16Aの円周方向の一つの角度位置から付与する例に限定されるものではなく、雄シャフト16Aの円周方向の複数の角度位置から荷重を付与してもよい。また、荷重を付与する回数は一回に限定されるものではなく、一つの角度位置について複数回荷重を付与してもよい。   The load in the direction of bending the male shaft 16A relative to the female shaft 16B is not limited to an example in which the load is applied from one angular position in the circumferential direction of the male shaft 16A, but the circumferential direction of the male shaft 16A. A load may be applied from a plurality of angular positions. Further, the number of times the load is applied is not limited to one time, and the load may be applied a plurality of times for one angular position.

本発明の実施例2の製造方法によって製造した伸縮軸の雄シャフト16Aにおいても、実施例1と同様に、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、雌シャフト16Bの溝41と被覆部61との間の隙間が、被覆部61の軸方向の端部に向かって大きくなるように形成される。   Also in the male shaft 16A of the telescopic shaft manufactured by the manufacturing method of the second embodiment of the present invention, the chamfered portions 62, 62 are provided in the vicinity of both ends in the axial direction of the covering portion 61 of the male shaft 16A, as in the first embodiment. It is formed. The chamfered portions 62 and 62 are formed such that a gap between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the end portion of the covering portion 61 in the axial direction.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布された潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Accordingly, since both ends in the axial direction of the covering portion 61 of the male shaft 16A have no edge, the lubricant applied to the sliding surface between the groove 41 and the covering portion 61 of the female shaft 16B is not covered by the covering portion 61. The two end portions in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

次に本発明の実施例3について説明する。図8は本発明の実施例3の伸縮軸の製造工程を示す説明図である。以下の説明では、上記実施例と異なる構造部分と作用についてのみ説明し、重複する説明は省略する。また、上記実施例と同一部品には同一番号を付して説明する。   Next, a third embodiment of the present invention will be described. FIG. 8 is an explanatory view showing a manufacturing process of the telescopic shaft according to the third embodiment of the present invention. In the following description, only structural portions and operations different from the above embodiment will be described, and redundant description will be omitted. Further, the same parts as those in the above embodiment will be described with the same numbers.

実施例3は、実施例1の変形例であり、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重を付与しながら、被覆部61を加熱するようにした例である。   The third embodiment is a modification of the first embodiment and is an example in which the covering portion 61 is heated while applying a load in a direction in which the male shaft 16A is relatively bent with respect to the female shaft 16B.

すなわち、実施例1と同様に、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成(図3参照)した後、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   That is, after forming the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A as in the first embodiment (see FIG. 3). The groove 41 of the female shaft 16B is fitted over the entire length of the teeth 51 of the male shaft 16A in the axial direction.

次に、図8に示すように、雌シャフト16Bを図示しない加工治具等で固定し、雌シャフト16Bの外周に高周波コイル等の加熱装置71を外嵌する。続いて、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与しながら、加熱装置71で雌シャフト16Bの外周側から被覆部61を加熱する。その結果、被覆部61を加熱しながら、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げることになる。   Next, as shown in FIG. 8, the female shaft 16B is fixed with a processing jig or the like (not shown), and a heating device 71 such as a high-frequency coil is externally fitted to the outer periphery of the female shaft 16B. Subsequently, while applying a load P (lateral load indicated by a white arrow) P in a direction perpendicular to the axis of the female shaft 16B to the upper end of the male shaft 16A, the covering unit 61 is applied from the outer peripheral side of the female shaft 16B by the heating device 71. Heat. As a result, the male shaft 16A is bent relative to the female shaft 16B while heating the covering portion 61.

雄シャフト16Aを加工治具等で固定し、雌シャフト16Bの下端に、雌シャフト16Bの軸線に直交する方向の荷重を付与しながら、加熱装置71で雌シャフト16Bの外周側から被覆部61を加熱してもよい。被覆部61の加熱温度は、30度以上が好ましい。
他の例として、雄シャフト16A側から被覆部61を加熱してもよい。
The male shaft 16A is fixed with a processing jig or the like, and the covering unit 61 is applied from the outer peripheral side of the female shaft 16B by the heating device 71 while applying a load in a direction perpendicular to the axis of the female shaft 16B to the lower end of the female shaft 16B. You may heat. The heating temperature of the covering portion 61 is preferably 30 degrees or more.
As another example, the covering portion 61 may be heated from the male shaft 16A side.

その結果、雄シャフト16Aの歯51の軸方向の両端近傍のQ部とR部に、反力(黒矢印)R1、R2が作用し、被覆部61の軸方向の両端近傍のQ部とR部が強く圧縮される。   As a result, reaction forces (black arrows) R1 and R2 act on the Q portion and R portion in the vicinity of both ends of the teeth 51 of the male shaft 16A, and the Q portion and R in the vicinity of both ends of the covering portion 61 in the axial direction. The part is strongly compressed.

雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重は、雄シャフト16Aの円周方向の一つの角度位置から付与する例に限定されるものではなく、雄シャフト16Aの円周方向の複数の角度位置から荷重を付与してもよい。また、荷重を付与する回数は一回に限定されるものではなく、一つの角度位置について複数回荷重を付与してもよい。   The load in the direction of bending the male shaft 16A relative to the female shaft 16B is not limited to an example in which the load is applied from one angular position in the circumferential direction of the male shaft 16A, but the circumferential direction of the male shaft 16A. A load may be applied from a plurality of angular positions. Further, the number of times the load is applied is not limited to one time, and the load may be applied a plurality of times for one angular position.

本発明の実施例3の製造方法によって製造した伸縮軸の雄シャフト16Aにおいても、実施例1と同様に、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、雌シャフト16Bの溝41と被覆部61との間の隙間が、被覆部61の軸方向の端部に向かって大きくなるように形成される。被覆部61を加熱することで、被覆部61が塑性変形する圧縮荷重が小さくなるため、小さな荷重Pで面取り部62、62を形成することが可能となる。   Also in the male shaft 16A of the telescopic shaft manufactured by the manufacturing method of Example 3 of the present invention, as in Example 1, chamfered parts 62, 62 are provided in the vicinity of both ends in the axial direction of the covering part 61 of the male shaft 16A. It is formed. The chamfered portions 62 and 62 are formed such that a gap between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the end portion of the covering portion 61 in the axial direction. By heating the covering portion 61, the compressive load at which the covering portion 61 is plastically deformed is reduced, so that the chamfered portions 62 and 62 can be formed with a small load P.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布された潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Accordingly, since both ends in the axial direction of the covering portion 61 of the male shaft 16A have no edge, the lubricant applied to the sliding surface between the groove 41 and the covering portion 61 of the female shaft 16B is not covered by the covering portion 61. The two end portions in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

次に本発明の実施例4について説明する。図9は本発明の実施例4の伸縮軸の製造工程を示す説明図である。以下の説明では、上記実施例と異なる構造部分と作用についてのみ説明し、重複する説明は省略する。また、上記実施例と同一部品には同一番号を付して説明する。   Next, a fourth embodiment of the present invention will be described. FIG. 9 is an explanatory view showing the manufacturing process of the telescopic shaft according to the fourth embodiment of the present invention. In the following description, only structural portions and operations different from the above embodiment will be described, and redundant description will be omitted. Further, the same parts as those in the above embodiment will be described with the same numbers.

実施例4は、実施例1の変形例であり、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重を付与しながら、雌シャフト16Bに対して雄シャフト16Aを相対的にみそすり運動させるようにした例である。   The fourth embodiment is a modification of the first embodiment, and applies a load in a direction in which the male shaft 16A is relatively bent with respect to the female shaft 16B, while the male shaft 16A is relatively misaligned with respect to the female shaft 16B. This is an example of scrubbing exercise.

すなわち、実施例1と同様に、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成(図3参照)した後、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   That is, after forming the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A as in the first embodiment (see FIG. 3). The groove 41 of the female shaft 16B is fitted over the entire length of the teeth 51 of the male shaft 16A in the axial direction.

次に、図9に示すように、雌シャフト16Bを図示しない加工治具等で固定した状態で、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与しながら、雄シャフト16Aを回転させる。その結果、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げながら、雌シャフト16Bに対して雄シャフト16Aを相対的にみそすり運動(実線矢印V)させることになる。   Next, as shown in FIG. 9, with the female shaft 16B fixed by a processing jig or the like (not shown), a load in the direction perpendicular to the axis of the female shaft 16B (horizontal indicated by a white arrow) is applied to the upper end of the male shaft 16A. The male shaft 16A is rotated while applying the load (P). As a result, while the male shaft 16A is bent relative to the female shaft 16B, the male shaft 16A is caused to shave relative to the female shaft 16B (solid arrow V).

雄シャフト16Aを加工治具等で固定し、雌シャフト16Bの下端に、雌シャフト16Bの軸線に直交する方向の荷重を付与しながら雌シャフト16Bを回転させ、雄シャフト16Aに対して雌シャフト16Bを相対的にみそすり運動させてもよい。   The male shaft 16A is fixed by a processing jig or the like, and the female shaft 16B is rotated with respect to the male shaft 16A by rotating the female shaft 16B while applying a load in a direction perpendicular to the axis of the female shaft 16B to the lower end of the female shaft 16B. May be relatively slashed.

その結果、雄シャフト16Aの歯51の軸方向の両端近傍のQ部とR部に、反力(黒矢印)R1、R2が作用し、被覆部61の軸方向の両端近傍のQ部とR部が強く圧縮される。   As a result, reaction forces (black arrows) R1 and R2 act on the Q portion and R portion in the vicinity of both ends of the teeth 51 of the male shaft 16A, and the Q portion and R in the vicinity of both ends of the covering portion 61 in the axial direction. The part is strongly compressed.

雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重は、雄シャフト16Aの円周方向の一つの角度位置から付与する例に限定されるものではなく、雄シャフト16Aの円周方向の複数の角度位置から荷重を付与してもよい。また、荷重を付与する回数は一回に限定されるものではなく、一つの角度位置について複数回荷重を付与してもよい。   The load in the direction of bending the male shaft 16A relative to the female shaft 16B is not limited to an example in which the load is applied from one angular position in the circumferential direction of the male shaft 16A, but the circumferential direction of the male shaft 16A. A load may be applied from a plurality of angular positions. Further, the number of times the load is applied is not limited to one time, and the load may be applied a plurality of times for one angular position.

本発明の実施例4の製造方法によって製造した伸縮軸の雄シャフト16Aにおいても、実施例1と同様に、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、雌シャフト16Bの溝41と被覆部61との間の隙間が、被覆部61の軸方向の端部に向かって大きくなるように形成される。   Also in the male shaft 16A of the telescopic shaft manufactured by the manufacturing method of Example 4 of the present invention, as in Example 1, chamfered portions 62, 62 are provided in the vicinity of both ends in the axial direction of the covering portion 61 of the male shaft 16A. It is formed. The chamfered portions 62 and 62 are formed such that a gap between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the end portion of the covering portion 61 in the axial direction.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布された潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Accordingly, since both ends in the axial direction of the covering portion 61 of the male shaft 16A have no edge, the lubricant applied to the sliding surface between the groove 41 and the covering portion 61 of the female shaft 16B is not covered by the covering portion 61. The two end portions in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

次に本発明の実施例5について説明する。図10は本発明の実施例5の伸縮軸の製造工程を示す説明図である。以下の説明では、上記実施例と異なる構造部分と作用についてのみ説明し、重複する説明は省略する。また、上記実施例と同一部品には同一番号を付して説明する。   Next, a fifth embodiment of the present invention will be described. FIG. 10 is an explanatory view showing the manufacturing process of the telescopic shaft according to the fifth embodiment of the present invention. In the following description, only structural portions and operations different from the above embodiment will be described, and redundant description will be omitted. Further, the same parts as those in the above embodiment will be described with the same numbers.

実施例5は、実施例1の変形例であり、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重を付与する工程と、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向に摺動させる工程を順次行うようにした例である。   The fifth embodiment is a modification of the first embodiment. The step of applying a load in the direction of bending the male shaft 16A relative to the female shaft 16B, and the male shaft 16A relatively to the female shaft 16B are provided. This is an example in which the step of sliding in the axial direction is sequentially performed.

すなわち、実施例1と同様に、雄シャフト16Aの歯51の軸方向の全長に、雌シャフト16Bの溝41との間の摺動抵抗を減少させる被覆部61を形成(図3参照)した後、雄シャフト16Aの歯51の軸方向の全長に雌シャフト16Bの溝41を外嵌する。   That is, after forming the covering portion 61 that reduces the sliding resistance with the groove 41 of the female shaft 16B on the entire axial length of the teeth 51 of the male shaft 16A as in the first embodiment (see FIG. 3). The groove 41 of the female shaft 16B is fitted over the entire length of the teeth 51 of the male shaft 16A in the axial direction.

次に、図10(1)に示すように、雌シャフト16Bを図示しない加工治具等で固定した状態で、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与する。その結果、雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げることになる。   Next, as shown in FIG. 10A, with the female shaft 16B fixed by a processing jig (not shown) or the like, a load (white arrow) in the direction perpendicular to the axis of the female shaft 16B is applied to the upper end of the male shaft 16A. (Lateral load) P shown in FIG. As a result, the male shaft 16A is bent relative to the female shaft 16B.

雄シャフト16Aを加工治具等で固定し、雌シャフト16Bの下端に、雌シャフト16Bの軸線に直交する方向の荷重を付与してもよい。その結果、雄シャフト16Aの歯51の軸方向の両端近傍のQ部とR部に、反力(黒矢印)R1、R2が作用し、被覆部61の軸方向の両端近傍のQ部とR部が強く圧縮される。   The male shaft 16A may be fixed with a processing jig or the like, and a load in a direction perpendicular to the axis of the female shaft 16B may be applied to the lower end of the female shaft 16B. As a result, reaction forces (black arrows) R1 and R2 act on the Q portion and R portion in the vicinity of both ends of the teeth 51 of the male shaft 16A, and the Q portion and R in the vicinity of both ends of the covering portion 61 in the axial direction. The part is strongly compressed.

雌シャフト16Bに対して雄シャフト16Aを相対的に折り曲げる方向の荷重は、雄シャフト16Aの円周方向の一つの角度位置から付与する例に限定されるものではなく、雄シャフト16Aの円周方向の複数の角度位置から荷重を付与してもよい。また、荷重を付与する回数は一回に限定されるものではなく、一つの角度位置について複数回荷重を付与してもよい。   The load in the direction of bending the male shaft 16A relative to the female shaft 16B is not limited to an example in which the load is applied from one angular position in the circumferential direction of the male shaft 16A, but the circumferential direction of the male shaft 16A. A load may be applied from a plurality of angular positions. Further, the number of times the load is applied is not limited to one time, and the load may be applied a plurality of times for one angular position.

次に、図10(2)に示すように、雌シャフト16Bに対して雄シャフト16Aを相対的に軸方向(白矢印W方向)に摺動させる。その後、図10(3)に示すように、再び、雄シャフト16Aの上端に、雌シャフト16Bの軸線に直交する方向の荷重(白矢印で示す横荷重)Pを付与する。その結果、雌シャフト16Bに対して雄シャフト16Aを、再び、相対的に折り曲げることになる。この、折り曲げ、相対的な軸方向の摺動、折り曲げを、複数回繰り返してもよい。   Next, as shown in FIG. 10B, the male shaft 16A is slid relative to the female shaft 16B in the axial direction (in the direction of the white arrow W). Thereafter, as shown in FIG. 10 (3), a load (lateral load indicated by a white arrow) P in the direction orthogonal to the axis of the female shaft 16B is again applied to the upper end of the male shaft 16A. As a result, the male shaft 16A is again bent relative to the female shaft 16B. This bending, relative axial sliding, and bending may be repeated a plurality of times.

本発明の実施例5の製造方法によって製造した伸縮軸の雄シャフト16Aにおいても、実施例1と同様に、雄シャフト16Aの被覆部61の軸方向の両端近傍には、面取り部62、62が形成される。面取り部62、62は、雌シャフト16Bの溝41と被覆部61との間の隙間が、被覆部61の軸方向の端部に向かって大きくなるように形成される。   In the telescopic male shaft 16A manufactured by the manufacturing method according to the fifth embodiment of the present invention, as in the first embodiment, chamfered portions 62 and 62 are provided in the vicinity of both ends in the axial direction of the covering portion 61 of the male shaft 16A. It is formed. The chamfered portions 62 and 62 are formed such that a gap between the groove 41 of the female shaft 16 </ b> B and the covering portion 61 increases toward the end portion of the covering portion 61 in the axial direction.

従って、雄シャフト16Aの被覆部61の軸方向の両端部にはエッジがないため、雌シャフト16Bの溝41と被覆部61との間の摺動面に塗布された潤滑剤は、被覆部61の軸方向の両端部によって、摺動面の外に掃き出されることがない。そのため、摺動面には潤滑剤が円滑に供給され、長期にわたって摺動抵抗が小さく維持され、伸縮軸の寿命が向上する。   Accordingly, since both ends in the axial direction of the covering portion 61 of the male shaft 16A have no edge, the lubricant applied to the sliding surface between the groove 41 and the covering portion 61 of the female shaft 16B is not covered by the covering portion 61. The two end portions in the axial direction are not swept out of the sliding surface. Therefore, the lubricant is smoothly supplied to the sliding surface, the sliding resistance is kept small for a long time, and the life of the telescopic shaft is improved.

上記実施例では、雄シャフト16Aの歯51側に摺動抵抗を減少させる被覆部61を形成しているが、雌シャフト16Bの溝41側に摺動抵抗を減少させる被覆部61を形成してもよい。また、雄シャフト16Aの歯51と雌シャフト16Bの溝41の両方に、摺動抵抗を減少させる被覆部61を形成してもよい。さらに、雄シャフト16Aまたは雌シャフト16B全体を、摺動抵抗を減少させる被覆部61と同一の材質で成形してもよい。   In the above embodiment, the covering portion 61 for reducing the sliding resistance is formed on the tooth 51 side of the male shaft 16A, but the covering portion 61 for reducing the sliding resistance is formed on the groove 41 side of the female shaft 16B. Also good. Moreover, you may form the coating | coated part 61 which reduces sliding resistance in both the tooth | gear 51 of the male shaft 16A, and the groove | channel 41 of the female shaft 16B. Furthermore, you may shape | mold the male shaft 16A or the whole female shaft 16B with the same material as the coating | coated part 61 which reduces sliding resistance.

また、上記実施例では、中間シャフト16に本発明を適用した例について説明したが、ステアリングシャフト12等、ステアリング装置を構成する任意の伸縮軸に適用することができる。   Moreover, although the said Example demonstrated the example which applied this invention to the intermediate shaft 16, it can apply to the arbitrary expansion-contraction shafts which comprise a steering apparatus, such as the steering shaft 12. FIG.

本発明の伸縮軸を有するステアリング装置の全体を示し、一部を切断した側面図であって、操舵補助部を有する電動パワーステアリング装置に適用した実施例を示す。BRIEF DESCRIPTION OF THE DRAWINGS The steering apparatus which has the expansion-contraction shaft of this invention is shown whole, it is the side view which cut | disconnected one part, Comprising: The Example applied to the electric power steering apparatus which has a steering assistance part is shown. 本発明の実施例1の伸縮軸の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the expansion-contraction shaft of Example 1 of this invention. 図2のA−A拡大断面図を示し、(1)はスリーブを被覆した伸縮軸を示す拡大断面図、(2)は被覆部をコーティングした伸縮軸を示す拡大断面図である。2 is an enlarged cross-sectional view taken along the line AA of FIG. 2, (1) is an enlarged cross-sectional view showing a telescopic shaft covering a sleeve, and (2) is an enlarged cross-sectional view showing a telescopic shaft coated with a covering portion. 本発明の実施例1の伸縮軸の製造工程を示す説明図であって、(1)は伸縮軸の要部の縦断面図、(2)は(1)の上面図である。It is explanatory drawing which shows the manufacturing process of the expansion-contraction shaft of Example 1 of this invention, Comprising: (1) is a longitudinal cross-sectional view of the principal part of an expansion-contraction shaft, (2) is a top view of (1). 本発明の実施例1の伸縮軸の雄シャフトを示す斜視図である。It is a perspective view which shows the male shaft of the expansion-contraction shaft of Example 1 of this invention. 本発明の実施例1の製造方法によって製造した伸縮軸の雄シャフトを示し、(1)は雄シャフト単体の縦断面図、(2)は(1)のS部拡大断面図である。The male shaft of the expansion-contraction shaft manufactured with the manufacturing method of Example 1 of this invention is shown, (1) is a longitudinal cross-sectional view of a male shaft single-piece | unit, (2) is the S section expanded sectional view of (1). 本発明の実施例2の伸縮軸の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the expansion-contraction shaft of Example 2 of this invention. 本発明の実施例3の伸縮軸の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the expansion-contraction shaft of Example 3 of this invention. 本発明の実施例4の伸縮軸の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the expansion-contraction shaft of Example 4 of this invention. 本発明の実施例5の伸縮軸の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the expansion-contraction shaft of Example 5 of this invention.

符号の説明Explanation of symbols

11 ステアリングホイール
12 ステアリングシャフト
12A 雌シャフト
12B 雄シャフト
13 ステアリングコラム
13A アウターコラム
13B インナーコラム
14 支持ブラケット
15 自在継手
16 中間シャフト
16A 雄中間シャフト(雄シャフト)
16B 雌中間シャフト(雌シャフト)
17 自在継手
18 車体
20 アシスト装置
21 ギヤハウジング
23 出力軸
26 電動モータ
261 ケース
30 ステアリングギヤ
31 入力軸
32 タイロッド
41 溝
51 歯
511 側面
61 被覆部
62 面取り部
71 加熱装置
DESCRIPTION OF SYMBOLS 11 Steering wheel 12 Steering shaft 12A Female shaft 12B Male shaft 13 Steering column 13A Outer column 13B Inner column 14 Support bracket 15 Universal joint 16 Intermediate shaft 16A Male intermediate shaft (male shaft)
16B Female intermediate shaft (Female shaft)
DESCRIPTION OF SYMBOLS 17 Universal joint 18 Car body 20 Assist device 21 Gear housing 23 Output shaft 26 Electric motor 261 Case 30 Steering gear 31 Input shaft 32 Tie rod 41 Groove 51 Tooth 511 Side surface 61 Covering portion 62 Chamfered portion 71 Heating device

Claims (10)

非円形の外周形状を有する雄シャフト、
上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、
上記雄シャフトの非円形の外周の軸方向の全長にわたって形成され、上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を有する伸縮軸の製造方法であって、
上記雄シャフトの非円形の外周の軸方向の全長に上記雌シャフトの内周との間の摺動抵抗を減少させる被覆部を形成する工程、
上記被覆部を形成した雄シャフトの非円形の外周の軸方向の全長に上記雌シャフトの非円形の内周を外嵌する工程、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与し、上記雄シャフトの非円形の外周の軸方向の両端近傍の被覆部を圧縮して面取り部を形成する工程を備えたこと
を特徴とする伸縮軸の製造方法。
A male shaft having a non-circular outer peripheral shape,
A female shaft having a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be slidable in the axial direction and capable of transmitting rotational torque;
A method for producing a telescopic shaft, which is formed over the entire axial length of the non-circular outer periphery of the male shaft and has a covering portion that reduces sliding resistance between the inner periphery of the female shaft,
Forming a covering portion for reducing a sliding resistance between the inner circumference of the female shaft on the entire axial length of the non-circular outer circumference of the male shaft;
A step of fitting the non-circular inner periphery of the female shaft to the entire axial length of the non-circular outer periphery of the male shaft forming the covering portion;
A step of applying a load in a direction of bending the male shaft relative to the female shaft, and compressing the covering portions in the vicinity of both axial ends of the non-circular outer periphery of the male shaft to form a chamfered portion. A method for producing a telescopic shaft characterized by the above.
請求項1に記載された伸縮軸の製造方法において、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記被覆部を加熱すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 1,
A method for manufacturing a telescopic shaft, wherein the covering portion is heated while applying a load in a direction of bending the male shaft relative to the female shaft.
請求項2に記載された伸縮軸の製造方法において、
上記被覆部を30度以上に加熱すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 2,
A method for producing a telescopic shaft, wherein the covering portion is heated to 30 degrees or more.
請求項1に記載された伸縮軸の製造方法において、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 1,
A method for manufacturing an extendable shaft, wherein the male shaft is slid relative to the female shaft in the axial direction while applying a load in a direction of bending the male shaft relative to the female shaft.
請求項1に記載された伸縮軸の製造方法において、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与しながら、上記雌シャフトに対して雄シャフトを相対的にみそすり運動させること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 1,
A method for manufacturing a telescopic shaft, wherein the male shaft is relatively razor-moved relative to the female shaft while applying a load in a direction in which the male shaft is bent relative to the female shaft.
請求項1に記載された伸縮軸の製造方法において、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を、上記雄シャフトの円周方向の複数の角度位置から付与すること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 1,
A method for producing a telescopic shaft, wherein a load in a direction of bending the male shaft relative to the female shaft is applied from a plurality of angular positions in a circumferential direction of the male shaft.
請求項1に記載された伸縮軸の製造方法において、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与する工程と、上記雌シャフトに対して雄シャフトを相対的に軸方向に摺動させる工程を順次行うことを特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft described in Claim 1,
The expansion and contraction characterized by sequentially performing a step of applying a load in a direction of bending the male shaft relative to the female shaft and a step of sliding the male shaft relative to the female shaft in the axial direction. Shaft manufacturing method.
請求項1から請求項7までのいずれかに記載された伸縮軸の製造方法において、
上記被覆部は、ゴム、高分子材料、固体潤滑剤のうちの少なくともいずれか一つの材質で形成されていること
を特徴とする伸縮軸の製造方法。
In the manufacturing method of the expansion-contraction shaft as described in any one of Claim 1- Claim 7,
The method for manufacturing a telescopic shaft, wherein the covering portion is made of at least one of rubber, polymer material, and solid lubricant.
請求項1から請求項8までのいずれかに記載された伸縮軸の製造方法によって製造した伸縮軸。   A telescopic shaft manufactured by the method for manufacturing the telescopic shaft according to any one of claims 1 to 8. 非円形の外周形状を有する雄シャフト、
上記雄シャフトの外周に軸方向に相対摺動可能にかつ回転トルクを伝達可能に外嵌する非円形の内周形状を有する雌シャフト、
上記雌シャフトの非円形の内周の軸方向の全長にわたって形成され、上記雄シャフトの外周との間の摺動抵抗を減少させる被覆部を有する伸縮軸であって、
上記雌シャフトの非円形の内周の軸方向の全長に上記雄シャフトの外周との間の摺動抵抗を減少させる被覆部を形成する工程、
上記雄シャフトの非円形の外周に上記被覆部を形成した雌シャフトの非円形の内周の軸方向の全長を外嵌する工程、
上記雌シャフトに対して雄シャフトを相対的に折り曲げる方向の荷重を付与し、上記雌シャフトの非円形の内周の軸方向の両端近傍の被覆部を圧縮して面取り部を形成する工程によって製造した伸縮軸。
A male shaft having a non-circular outer peripheral shape,
A female shaft having a non-circular inner peripheral shape that is fitted on the outer periphery of the male shaft so as to be slidable in the axial direction and capable of transmitting rotational torque;
A telescopic shaft that is formed over the entire axial length of the noncircular inner periphery of the female shaft and has a covering portion that reduces sliding resistance with the outer periphery of the male shaft,
Forming a covering portion for reducing the sliding resistance between the outer circumference of the male shaft on the entire axial length of the noncircular inner circumference of the female shaft;
A step of externally fitting the entire axial length of the non-circular inner periphery of the female shaft in which the covering portion is formed on the non-circular outer periphery of the male shaft;
Manufactured by applying a load in the direction of bending the male shaft relative to the female shaft and compressing the covering portions in the vicinity of both axial ends of the noncircular inner periphery of the female shaft to form a chamfered portion Telescopic shaft.
JP2007293843A 2007-11-13 2007-11-13 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method Active JP5034881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293843A JP5034881B2 (en) 2007-11-13 2007-11-13 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293843A JP5034881B2 (en) 2007-11-13 2007-11-13 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Publications (2)

Publication Number Publication Date
JP2009121529A true JP2009121529A (en) 2009-06-04
JP5034881B2 JP5034881B2 (en) 2012-09-26

Family

ID=40813890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293843A Active JP5034881B2 (en) 2007-11-13 2007-11-13 Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method

Country Status (1)

Country Link
JP (1) JP5034881B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102868A (en) * 2010-10-11 2012-05-31 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
JP2013213589A (en) * 2010-10-11 2013-10-17 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
CN103429921A (en) * 2011-03-18 2013-12-04 株式会社捷太格特 Manufacturing method for drive shaft and vehicle steering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212020U (en) * 1985-07-08 1987-01-24
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2004066970A (en) * 2002-08-06 2004-03-04 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor
JP2006300260A (en) * 2005-04-22 2006-11-02 Nsk Ltd Telescopic shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212020U (en) * 1985-07-08 1987-01-24
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2004066970A (en) * 2002-08-06 2004-03-04 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor
JP2006300260A (en) * 2005-04-22 2006-11-02 Nsk Ltd Telescopic shaft

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213589A (en) * 2010-10-11 2013-10-17 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
JP2012102868A (en) * 2010-10-11 2012-05-31 Nsk Ltd Method for manufacturing telescopic shaft, and telescopic shaft manufactured by the same
JP2013249960A (en) * 2010-10-11 2013-12-12 Nsk Ltd Method for manufacturing telescopic shaft and telescopic shaft manufactured by the same
EP2687741A1 (en) * 2011-03-18 2014-01-22 JTEKT Corporation Manufacturing method for drive shaft and vehicle steering device
CN103429921A (en) * 2011-03-18 2013-12-04 株式会社捷太格特 Manufacturing method for drive shaft and vehicle steering device
EP2687741A4 (en) * 2011-03-18 2014-12-24 Jtekt Corp Manufacturing method for drive shaft and vehicle steering device
EP3020993A3 (en) * 2011-03-18 2016-07-20 Jtekt Corporation Method of manufacturing torque transmission shaft
EP3020992A3 (en) * 2011-03-18 2016-07-20 Jtekt Corporation Method of manufacturing torque transmission shaft and vehicle steering apparatus
US9771969B2 (en) 2011-03-18 2017-09-26 Jtekt Corporation Method of manufacturing torque transmission shaft and vehicle steering apparatus
CN102959260A (en) * 2011-06-29 2013-03-06 日本精工株式会社 Telescoping shaft and production method therefor
WO2013002169A1 (en) * 2011-06-29 2013-01-03 日本精工株式会社 Telescoping shaft and production method therefor
EP2728213A4 (en) * 2011-06-29 2016-05-04 Nsk Ltd Telescoping shaft and production method therefor
US9446782B2 (en) 2011-06-29 2016-09-20 Nsk Ltd. Telescopic shaft and manufacturing method thereof

Also Published As

Publication number Publication date
JP5034881B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5408194B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5104332B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5447694B2 (en) Telescopic shaft for steering device
US20090256341A1 (en) Fastener
JP5549658B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
US9951806B2 (en) Telescopic shaft
JP6354761B2 (en) Torque transmission shaft with universal joint yoke
WO2012128213A1 (en) Manufacturing method for drive shaft and vehicle steering device
JP2011174607A (en) Spline machining method and spline shaft
JP5034881B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5637270B2 (en) Telescopic shaft manufacturing method and telescopic shaft manufactured by this manufacturing method
JP5245534B2 (en) Steering device with telescopic shaft and telescopic shaft
JP5157410B2 (en) Steering device with telescopic shaft and telescopic shaft
JP2009180322A (en) Telescopic shaft and steering device with the same
JP2010127295A (en) Manufacturing method for telescopic shaft, and telescopic shaft manufactured by this manufacturing method
JP2013142437A (en) Telescopic shaft
JP2008039123A (en) Assembling method of cardan universal joint
JP2007239887A (en) Telescopic shaft
JP2009197825A (en) Telescopic shaft and steering device equipped with telescopic shaft
JP2009014060A (en) Manufacturing method for universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150