JP2009168165A - Valve device for high-pressure tank and fuel cell system - Google Patents

Valve device for high-pressure tank and fuel cell system Download PDF

Info

Publication number
JP2009168165A
JP2009168165A JP2008007335A JP2008007335A JP2009168165A JP 2009168165 A JP2009168165 A JP 2009168165A JP 2008007335 A JP2008007335 A JP 2008007335A JP 2008007335 A JP2008007335 A JP 2008007335A JP 2009168165 A JP2009168165 A JP 2009168165A
Authority
JP
Japan
Prior art keywords
gas
pressure
hydrogen
pressure tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007335A
Other languages
Japanese (ja)
Other versions
JP4984329B2 (en
Inventor
Akira Yamashita
顕 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008007335A priority Critical patent/JP4984329B2/en
Publication of JP2009168165A publication Critical patent/JP2009168165A/en
Application granted granted Critical
Publication of JP4984329B2 publication Critical patent/JP4984329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of high pressure pipes connected to a high pressure valve as much as possible. <P>SOLUTION: A high pressure valve 51 which is mounted in a hydrogen tank 50 for storing high-pressure hydrogen gas, comprises a hydrogen gas outflow path 511 for forcing hydrogen gas stored in the hydrogen tank 50 to be supplied to the outside of the hydrogen tank 50 and a hydrogen gas to be stored in the hydrogen tank 50 to flow thereinto from the outside of the hydrogen tank 50, a hydrogen gas inflow path 513 branched toward the inside of the hydrogen tank 50 from the hydrogen gas outflow path 511, a solenoid valve 512 provided to the hydrogen gas outflow path 511 to cut off or allow the supply of hydrogen gas to the outside of the hydrogen tank 50 from the inside of the hydrogen tank 50 and a check valve 514 provided to the hydrogen gas inflow path 513 to prevent a backflow of hydrogen gas from the inside of the hydrogen tank 50 to the outside of the hydrogen tank 50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高圧タンク用のバルブ装置およびこれを備える燃料電池システムに関する。   The present invention relates to a valve device for a high-pressure tank and a fuel cell system including the same.

燃料電池システムは、反応ガスである燃料ガスと酸化ガスの供給を受け、この反応ガスの電気化学反応によって発電する燃料電池をエネルギ源として用いている。この燃料電池に供給される燃料ガスは、高圧に圧縮されたうえで高圧タンク内に貯留される。この高圧タンクには、高圧タンク用バルブが設けられており、この高圧タンク用バルブには、高圧タンクに燃料ガスを流入させるための流入流路およびこの流入流路に設けられた逆止弁等を含むガス流入機構と、高圧タンクに貯留された燃料ガスを燃料電池に供給させるための供給流路およびこの供給流路に設けられた電磁弁等を含むガス供給機構とが設けられている(下記特許文献1および2参照)。
特開2005−180496号公報 特開2002−206696号公報
The fuel cell system uses, as an energy source, a fuel cell that receives supply of a reaction gas, a fuel gas and an oxidizing gas, and generates electric power by an electrochemical reaction of the reaction gas. The fuel gas supplied to the fuel cell is compressed in a high pressure and then stored in a high pressure tank. The high-pressure tank is provided with a high-pressure tank valve. The high-pressure tank valve includes an inflow passage for allowing fuel gas to flow into the high-pressure tank, a check valve provided in the inflow passage, and the like. And a gas supply mechanism including a supply channel for supplying the fuel gas stored in the high-pressure tank to the fuel cell, and an electromagnetic valve or the like provided in the supply channel ( See Patent Documents 1 and 2 below).
JP 2005-180496 A JP 2002-206696 A

ところで、上述した従来の高圧タンク用バルブには、ガス流入機構とガス供給機構とが独立して設けられている。したがって、例えば、高圧タンクを複数搭載する燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)では、燃料ガスの充填口から各高圧タンク用バルブのガス流入機構までを接続する高圧配管と、各高圧タンク用バルブのガス供給機構から燃料ガスを燃料電池に供給するための燃料ガス供給流路までを接続する高圧配管とが、それぞれ高圧タンクの本数分設けられる。そして、高圧タンク用バルブに接続される高圧配管の本数が多いほど、コスト高、重量増、組み付け性悪化という各種の問題が深刻化する。   Incidentally, the conventional high-pressure tank valve described above is provided with a gas inflow mechanism and a gas supply mechanism independently. Therefore, for example, in a fuel cell vehicle (FCHV) equipped with a plurality of high-pressure tanks, high-pressure piping connecting the fuel gas filling port to the gas inflow mechanism of each high-pressure tank valve, and each high-pressure tank There are provided as many high-pressure tanks as the number of high-pressure tanks connecting the gas supply mechanism of the valve to the fuel gas supply passage for supplying fuel gas to the fuel cell. As the number of high-pressure pipes connected to the high-pressure tank valve increases, various problems such as high cost, increased weight, and deteriorated assembling property become more serious.

本発明は、上述した従来技術による問題点を解消するためになされたものであり、高圧タンク用のバルブ装置に接続される高圧配管の本数を極力減少させることができる高圧タンク用のバルブ装置およびこれを備える燃料電池システムを提供することを目的とする。   The present invention has been made to solve the above-described problems caused by the prior art, and a valve device for a high-pressure tank capable of reducing the number of high-pressure pipes connected to the valve device for the high-pressure tank as much as possible. An object is to provide a fuel cell system including the same.

上述した課題を解決するため、本発明に係る高圧タンク用のバルブ装置は、高圧ガスを貯留する高圧タンクに装着される高圧タンク用のバルブ装置であって、高圧タンク内に貯留された高圧ガスを高圧タンク外に供給させ、高圧タンク内に貯留する高圧ガスを高圧タンク外から流入させるためのガス流路と、ガス流路から高圧タンク内側に向けて分岐するガス供給流路およびガス流入流路と、ガス供給流路に設けられ、高圧タンク内から高圧タンク外への高圧ガスの供給を遮断または許容する遮断弁と、ガス流入流路に設けられ、高圧タンク内から高圧タンク外への高圧ガスの逆流を阻止する逆止弁と、を備え、上記ガス供給流路は、高圧タンク内から高圧タンク外側に向けて高圧ガスを供給させるための流路であり、上記ガス流入流路は、高圧タンク外側から高圧タンク内に向けて高圧ガスを流入させるための流路であることを特徴とする。   In order to solve the above-described problems, a valve device for a high-pressure tank according to the present invention is a valve device for a high-pressure tank that is attached to a high-pressure tank that stores high-pressure gas, and the high-pressure gas stored in the high-pressure tank. Is supplied to the outside of the high-pressure tank, and the high-pressure gas stored in the high-pressure tank flows in from the outside of the high-pressure tank, and the gas supply passage and the gas inflow flow branch from the gas passage toward the inside of the high-pressure tank. And a shutoff valve that is provided in the gas supply passage and shuts off or allows the supply of high pressure gas from the inside of the high pressure tank to the outside of the high pressure tank. A check valve for preventing a back flow of the high pressure gas, and the gas supply passage is a passage for supplying the high pressure gas from the high pressure tank to the outside of the high pressure tank, and the gas inflow passage is , Characterized in that it is a channel for flowing the high pressure gas toward the pressure tank outside the high-pressure tank.

この発明によれば、高圧ガスの供給や流入を行う際に、高圧タンク用のバルブ装置に設けられた一のガス流路を介して高圧ガスの供給や流入を行うことができるため、高圧タンク用バルブ装置のガス流路に接続させる高圧配管を、高圧ガスの供給機能と流入機能とを兼ね備えた一本の高圧配管にすることができる。これにより、高圧タンク用バルブ装置に接続される高圧配管の本数を高圧タンクの本数と同数に抑えることができる。   According to the present invention, when the high pressure gas is supplied or inflow, the high pressure gas can be supplied or inflow through the one gas flow path provided in the valve device for the high pressure tank. The high-pressure pipe connected to the gas flow path of the valve device for the engine can be a single high-pressure pipe having both a high-pressure gas supply function and an inflow function. As a result, the number of high-pressure pipes connected to the high-pressure tank valve device can be reduced to the same number as the number of high-pressure tanks.

上記高圧タンク用のバルブ装置において、上記遮断弁における流路面積を上記逆止弁における流路面積よりも大きくすることができる。   In the valve device for the high-pressure tank, the flow passage area in the shutoff valve can be made larger than the flow passage area in the check valve.

これにより、高圧ガスを充填しているときに、遮断弁が高圧ガスから受ける圧力を軽減させることができるため、遮断弁の耐久性を向上させることができる。   Thereby, when the high pressure gas is filled, the pressure received by the shutoff valve from the high pressure gas can be reduced, so that the durability of the shutoff valve can be improved.

本発明に係る燃料電池システムは、高圧ガスを貯留する一または複数の高圧タンクと、上述した高圧タンク用のバルブ装置と、高圧ガスを高圧タンクに充填する際の充填口と、高圧タンクから高圧ガスの供給を受ける燃料電池と、充填口から流入された高圧ガスを高圧タンク側に流入するための第一の高圧ガス流路と、高圧タンク側から燃料電池に高圧ガスを供給するための第二の高圧ガス流路と、第一の高圧ガス流路および第二の高圧ガス流路とバルブ装置のガス流路との間を接続するための第三の高圧ガス流路と、を備えることを特徴とする。   A fuel cell system according to the present invention includes one or a plurality of high-pressure tanks for storing high-pressure gas, the above-described valve device for the high-pressure tank, a filling port for filling the high-pressure gas into the high-pressure tank, and a high pressure from the high-pressure tank. A fuel cell that receives the supply of gas, a first high-pressure gas passage for flowing the high-pressure gas flowing in from the filling port to the high-pressure tank side, and a first high-pressure gas for supplying the high-pressure gas to the fuel cell from the high-pressure tank side A second high pressure gas flow path, a first high pressure gas flow path, a second high pressure gas flow path, and a third high pressure gas flow path for connecting the gas flow path of the valve device. It is characterized by.

この発明によれば、高圧タンクから燃料電池に対して行われる高圧ガスの供給、および充填口から高圧タンクに対して行われる高圧ガスの流入を、高圧タンク用のバルブ装置に設けられた一のガス流路を介して行うことができるため、高圧ガスの供給機能と流入機能とを兼ね備えた第三の高圧ガス流路のみを高圧タンク用バルブ装置に接続させることができる。したがって、高圧タンク用バルブ装置に接続される第三の高圧ガス流路の本数を高圧タンクの本数と同数に抑えることができる。   According to the present invention, the high pressure gas supplied from the high pressure tank to the fuel cell and the inflow of the high pressure gas from the filling port to the high pressure tank are provided in the valve device for the high pressure tank. Since it can be performed via the gas flow path, only the third high pressure gas flow path having both the high pressure gas supply function and the inflow function can be connected to the high pressure tank valve device. Therefore, the number of third high-pressure gas flow paths connected to the high-pressure tank valve device can be suppressed to the same number as the number of high-pressure tanks.

本発明によれば、高圧タンク用バルブ装置に接続される高圧配管の本数を極力減少させることができる。   According to the present invention, the number of high-pressure pipes connected to the high-pressure tank valve device can be reduced as much as possible.

以下、添付図面を参照して、本発明に係る高圧タンク用のバルブ装置およびこれを備える燃料電池システムの好適な実施形態について説明する。本実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a valve device for a high-pressure tank and a fuel cell system including the same will be described with reference to the accompanying drawings. This embodiment demonstrates the case where the fuel cell system which concerns on this invention is used as a vehicle-mounted power generation system of a fuel cell vehicle (FCHV; Fuel Cell Hybrid Vehicle).

本発明に係る高圧タンク用のバルブ装置およびこれを備える燃料電池システムは、高圧タンク用バルブ装置の燃料電池側および充填口側における燃料ガスの出入り口を一個所に集中させることで、燃料電池側の配管および充填口側の配管と高圧タンク用バルブ装置の上記出入り口とを接続するための高圧配管の本数を、高圧タンクの本数と同数に抑えるものである。以下に、このような特徴を有する高圧タンク用のバルブ装置およびそれを備える燃料電池システムの構成について詳細に説明する。   A valve device for a high-pressure tank and a fuel cell system including the same according to the present invention are provided on the fuel cell side by concentrating the fuel gas inlet / outlet ports on the fuel cell side and the filling port side of the high-pressure tank valve device. The number of high-pressure pipes for connecting the pipes and the piping on the filling port side to the above-mentioned entrance / exit of the valve device for the high-pressure tank is suppressed to the same number as the number of high-pressure tanks. Hereinafter, the configuration of a valve device for a high-pressure tank having such characteristics and a fuel cell system including the same will be described in detail.

まず、図1を参照して、本実施形態における燃料電池システムの構成について説明する。図1は、本実施形態における燃料電池システムを模式的に示した構成図である。   First, the configuration of the fuel cell system in the present embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram schematically showing a fuel cell system in the present embodiment.

同図に示すように、燃料電池システム1は、反応ガスである酸化ガスおよび燃料ガス(高圧ガス)の供給を受けて電気化学反応により電力を発生する燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素を燃料電池2に供給する水素ガス配管系4と、システム全体を統括制御する制御部6とを有する。   As shown in the figure, the fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction upon receiving supply of an oxidizing gas and a fuel gas (high pressure gas) as reaction gases, and air as an oxidizing gas. It has an oxidizing gas piping system 3 that supplies fuel cell 2, a hydrogen gas piping system 4 that supplies hydrogen as fuel gas to fuel cell 2, and a control unit 6 that controls the entire system.

燃料電池2は、例えば、高分子電解質型の燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面にカソード極(空気極)を有し、他方の面にアノード極(燃料極)を有し、さらにカソード極およびアノード極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの水素ガス流路に水素ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、これらの反応ガスが化学反応することで電力が発生する。   The fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked. The single cell has a cathode electrode (air electrode) on one surface of an electrolyte made of an ion exchange membrane, an anode electrode (fuel electrode) on the other surface, and further sandwiches the cathode electrode and anode electrode from both sides. It has the structure which has a pair of separator. In this case, hydrogen gas is supplied to the hydrogen gas flow path of one separator, oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and electric power is generated by the chemical reaction of these reaction gases.

酸化ガス配管系3は、大気中の酸化ガスを取り込んで圧縮してから送出するコンプレッサ31と、酸化ガスを燃料電池2に供給するための空気供給流路32と、燃料電池2から排出された酸化オフガスを排出するための空気排出流路33とを有する。空気供給流路32および空気排出流路33には、コンプレッサ31から圧送された酸化ガスを燃料電池2から排出された酸化オフガスを用いて加湿する加湿器34が設けられている。この加湿器34で水分交換等された酸化オフガスは、最終的に排ガスとしてシステム外の大気中に排気される。   The oxidizing gas piping system 3 is discharged from the fuel cell 2, a compressor 31 that takes in and compresses the oxidizing gas in the atmosphere, sends it, an air supply channel 32 for supplying the oxidizing gas to the fuel cell 2, and And an air discharge passage 33 for discharging the oxidizing off gas. The air supply flow path 32 and the air discharge flow path 33 are provided with a humidifier 34 that humidifies the oxidizing gas pumped from the compressor 31 using the oxidizing off gas discharged from the fuel cell 2. The oxidizing off gas that has undergone moisture exchange or the like in the humidifier 34 is finally exhausted into the atmosphere outside the system as exhaust gas.

水素ガス配管系4は、燃料供給源としての水素タンク50(高圧タンク)を有する燃料供給源系5と、水素タンク50に貯留された高圧の水素ガス(高圧ガス)を燃料電池2に供給するための水素供給流路41と、燃料電池2から排出された水素オフガスを水素供給流路41に戻すための水素循環流路42とを有する。   The hydrogen gas piping system 4 supplies a fuel supply source system 5 having a hydrogen tank 50 (high pressure tank) as a fuel supply source and high pressure hydrogen gas (high pressure gas) stored in the hydrogen tank 50 to the fuel cell 2. And a hydrogen circulation passage 42 for returning the hydrogen off-gas discharged from the fuel cell 2 to the hydrogen supply passage 41.

水素供給流路41には、水素ガスの圧力を予め設定した二次圧に調圧するレギュレータ43が設けられている。これにより、水素供給流路41のうちのレギュレータ43の上流側にあたる流路(第二の高圧ガス流路)には、高圧の水素ガスが流れ、水素供給流路41のうちのレギュレータ43の下流側にあたる流路には、二次圧に調圧(降圧)された後の水素ガスが流れることになる。   The hydrogen supply channel 41 is provided with a regulator 43 that adjusts the pressure of the hydrogen gas to a preset secondary pressure. As a result, high-pressure hydrogen gas flows through the flow path (second high-pressure gas flow path) on the upstream side of the regulator 43 in the hydrogen supply flow path 41, and downstream of the regulator 43 in the hydrogen supply flow path 41. The hydrogen gas after being regulated (decreased) to the secondary pressure flows through the flow path on the side.

燃料供給源系5は、水素供給流路41の上流側に並列に配置された水素タンク50と、水素タンク50の水素供給流路41側に設けられる高圧バルブ51(高圧タンク用のバルブ装置)と、水素ガスを水素タンク50に充填する際の充填口53と、充填口53から流入された水素ガスを水素タンク50側に流入させるための充填用流路54(第一の高圧ガス流路)と、水素供給流路41および充填用流路54を連結する連結部55と、連結部55と高圧バルブ51との間を接続するための高圧配管52(第三の高圧ガス流路)と、を有する。   The fuel supply source system 5 includes a hydrogen tank 50 arranged in parallel on the upstream side of the hydrogen supply passage 41 and a high-pressure valve 51 (valve device for the high-pressure tank) provided on the hydrogen supply passage 41 side of the hydrogen tank 50. A filling port 53 for filling the hydrogen tank 50 with hydrogen gas, and a filling channel 54 (first high-pressure gas channel for allowing the hydrogen gas flowing from the filling port 53 to flow into the hydrogen tank 50 side. ), A connecting portion 55 that connects the hydrogen supply passage 41 and the filling passage 54, and a high-pressure pipe 52 (third high-pressure gas passage) for connecting the connecting portion 55 and the high-pressure valve 51. Have.

水素供給流路41、充填用流路54および高圧配管52は、連結部55を介して互いに接続される。   The hydrogen supply channel 41, the filling channel 54, and the high-pressure pipe 52 are connected to each other via a connecting portion 55.

なお、水素タンク50は二本であることには限定されない。例えば、一の水素タンクのみを水素供給流路41の上流側に配置してもよいし、三本以上の複数の水素タンクを水素供給流路41の上流側に並列に配置することとしてもよい。   The number of hydrogen tanks 50 is not limited to two. For example, only one hydrogen tank may be arranged on the upstream side of the hydrogen supply channel 41, or a plurality of three or more hydrogen tanks may be arranged in parallel on the upstream side of the hydrogen supply channel 41. .

ここで、図2を参照して、本実施形態における高圧タンク用のバルブ装置である高圧バルブ51の構成について説明する。図2は、高圧バルブ51を含む燃料供給源系5を模式的に示した構成図である。   Here, with reference to FIG. 2, the structure of the high pressure valve 51 which is the valve apparatus for high pressure tanks in this embodiment is demonstrated. FIG. 2 is a configuration diagram schematically showing the fuel supply source system 5 including the high-pressure valve 51.

同図に示すように、燃料供給源系5は、水素タンク50と、高圧バルブ51と、高圧配管52と、充填口53と、充填用流路54を有する。高圧バルブ51は、水素ガス流出流路511(ガス供給流路)と、電磁弁512(遮断弁)と、水素ガス流入流路513(ガス流入流路)と、逆止弁514と、マニュアル弁515と、安全弁516とを有する。   As shown in the figure, the fuel supply source system 5 includes a hydrogen tank 50, a high-pressure valve 51, a high-pressure pipe 52, a filling port 53, and a filling channel 54. The high pressure valve 51 includes a hydrogen gas outlet channel 511 (gas supply channel), an electromagnetic valve 512 (shutoff valve), a hydrogen gas inlet channel 513 (gas inlet channel), a check valve 514, and a manual valve. 515 and a safety valve 516.

水素ガス流出流路511は、水素タンク50に貯留された水素ガスを水素タンク50外にある燃料電池2に向けて供給させるための流路である。水素ガス流出流路511の一端は、継部517を介して高圧配管52と接続されている。   The hydrogen gas outflow channel 511 is a channel for supplying the hydrogen gas stored in the hydrogen tank 50 toward the fuel cell 2 outside the hydrogen tank 50. One end of the hydrogen gas outflow channel 511 is connected to the high-pressure pipe 52 via a joint 517.

電磁弁512は、水素ガス流出流路511に設けられ、水素タンク50内から水素タンク50外への水素ガスの供給を遮断または許容する弁である。電磁弁512は、パイロット型、直動型、マグナリフト型のいずれの電磁弁であってもよい。   The solenoid valve 512 is a valve that is provided in the hydrogen gas outflow passage 511 and blocks or allows the supply of hydrogen gas from the hydrogen tank 50 to the outside of the hydrogen tank 50. The solenoid valve 512 may be any one of a pilot type, a direct acting type, and a magna lift type.

水素ガス流入流路513は、水素タンク50外の充填口53から水素タンク50内に向けて水素ガスを流入させるための流路である。水素ガス流入流路513は、水素ガス流出流路511のうち、マニュアル弁515と電磁弁512との間にある水素ガス流出流路511から水素タンク50内に向けて分岐している。言い換えると、水素ガス流出流路511は、マニュアル弁515と電磁弁512との間を起点にし、水素タンク50内に向けて水素ガス流出流路511と水素ガス流入流路513とに分岐する。   The hydrogen gas inflow channel 513 is a channel for allowing hydrogen gas to flow into the hydrogen tank 50 from the filling port 53 outside the hydrogen tank 50. The hydrogen gas inflow channel 513 branches from the hydrogen gas outflow channel 511 between the manual valve 515 and the electromagnetic valve 512 into the hydrogen tank 50. In other words, the hydrogen gas outflow channel 511 starts from between the manual valve 515 and the electromagnetic valve 512 and branches into the hydrogen gas outflow channel 511 and the hydrogen gas inflow channel 513 toward the inside of the hydrogen tank 50.

したがって、水素ガス流出流路511のうち、水素ガス流出流路511と水素ガス流入流路513とが合流している部分(ガス流路)は、水素タンク50内に貯留された水素ガスを水素タンク50外に供給させ、水素タンク50内に貯留する水素ガスを水素タンク50外から流入させるための流路となる。   Therefore, the portion (gas flow path) where the hydrogen gas outflow path 511 and the hydrogen gas inflow path 513 merge in the hydrogen gas outflow path 511 is used to store the hydrogen gas stored in the hydrogen tank 50 as hydrogen. This is a flow path for supplying the hydrogen gas stored outside the tank 50 from the outside of the tank 50 and flowing from the outside of the hydrogen tank 50.

逆止弁514は、水素ガス流入流路513に設けられ、水素タンク50内から水素タンク50外に向けて水素ガスが逆流することを阻止するための弁である。   The check valve 514 is provided in the hydrogen gas inflow passage 513 and is a valve for preventing the hydrogen gas from flowing backward from the inside of the hydrogen tank 50 toward the outside of the hydrogen tank 50.

ここで、一般に、電磁弁は、閉弁状態であるときには、ばねの力で弁体を閉弁状態に維持させるものが多い。したがって、閉弁状態である電磁弁に対して、電磁弁の二次側(下流側)から大きな圧力が加えられると、ばねの力では閉弁状態を維持することができなくなり、燃料ガスが流出してしまうことがある。このような現象が繰り返し行われると、電磁弁の寿命が短くなる等の不具合が生ずるおそれがある。したがって、本実施形態における高圧バルブ51では、逆止弁514における流路面積を、電磁弁512における流路面積よりも大きくしている。   Here, in general, when a solenoid valve is in a closed state, many solenoid valves maintain the valve body in a closed state by the force of a spring. Therefore, if a large pressure is applied to the solenoid valve that is in the closed state from the secondary side (downstream side) of the solenoid valve, the closed state cannot be maintained by the spring force, and the fuel gas flows out. May end up. If such a phenomenon is repeated, there is a risk that problems such as shortening the life of the solenoid valve may occur. Therefore, in the high pressure valve 51 in the present embodiment, the flow passage area in the check valve 514 is made larger than the flow passage area in the electromagnetic valve 512.

これにより、水素ガスを充填しているときに、電磁弁512側に流入する水素ガスの量を、逆止弁514側に流入する水素ガスの量よりも少なくすることができる。つまり、電磁弁512の弁体に加わる圧力を小さくすることができるため、電磁弁の耐久性を向上させることができる。   Thereby, when hydrogen gas is filled, the amount of hydrogen gas flowing into the solenoid valve 512 side can be made smaller than the amount of hydrogen gas flowing into the check valve 514 side. That is, since the pressure applied to the valve body of the electromagnetic valve 512 can be reduced, the durability of the electromagnetic valve can be improved.

なお、電磁弁の耐久性を向上させるためには、逆止弁514における流路面積を電磁弁512における流路面積よりも極力大きくすることが望ましい。ただし、この場合に、電磁弁512における流路面積は、燃料電池2に対して燃料ガスを十分に供給することができる面積を確保させる必要がある。   In order to improve the durability of the electromagnetic valve, it is desirable to make the flow passage area of the check valve 514 as large as possible than the flow passage area of the electromagnetic valve 512. However, in this case, the flow path area in the electromagnetic valve 512 needs to ensure an area where fuel gas can be sufficiently supplied to the fuel cell 2.

マニュアル弁515は、燃料電池システム1の点検時等に水素ガスの流出を遮断させるための手動式の弁である。安全弁516は、水素タンク50内の温度が所定温度以上に上昇した場合に開弁させる弁である。フィルタF1〜F3は、水素ガスに含まれるゴミ等を取り除くことで水素ガスを濾過する装置である。   The manual valve 515 is a manual valve for blocking outflow of hydrogen gas when the fuel cell system 1 is inspected. The safety valve 516 is a valve that is opened when the temperature in the hydrogen tank 50 rises above a predetermined temperature. The filters F1 to F3 are devices that filter hydrogen gas by removing dust and the like contained in the hydrogen gas.

図1に示す水素循環流路42には、水素循環流路42内の水素オフガスを加圧して水素供給流路41側へ送り出す水素ポンプ44が設けられている。また、水素循環流路42には、気液分離器45および排気排水弁46を介して排出流路47が接続されている。気液分離器45は、水素オフガスから水分を回収する。排気排水弁46は、制御部6からの指令に従って、気液分離器45で回収された水分と水素循環流路42内の不純物を含む水素オフガスとを排出(パージ)する。排気排水弁46から排出された水素オフガスは、希釈器48によって希釈されて空気排出流路33内の酸化オフガスと合流する。   The hydrogen circulation channel 42 shown in FIG. 1 is provided with a hydrogen pump 44 that pressurizes the hydrogen off gas in the hydrogen circulation channel 42 and sends it to the hydrogen supply channel 41 side. In addition, a discharge flow path 47 is connected to the hydrogen circulation flow path 42 via a gas-liquid separator 45 and an exhaust drain valve 46. The gas-liquid separator 45 recovers moisture from the hydrogen off gas. The exhaust / drain valve 46 discharges (purges) the moisture recovered by the gas-liquid separator 45 and the hydrogen off-gas containing impurities in the hydrogen circulation passage 42 in accordance with a command from the control unit 6. The hydrogen off-gas discharged from the exhaust / drain valve 46 is diluted by the diluter 48 and merges with the oxidizing off-gas in the air discharge passage 33.

制御部6は、燃料電池車両に設けられた加速操作部材(アクセル等)の操作量を検出し、加速要求値(例えば、トラクションモータ等の電力消費装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、電力消費装置には、トラクションモータの他に、例えば、燃料電池2を作動させるために必要な補機装置(例えばコンプレッサ31や水素ポンプ44モータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等が含まれる。   The control unit 6 detects an operation amount of an acceleration operation member (accelerator or the like) provided in the fuel cell vehicle, and provides control information such as an acceleration request value (for example, a required power generation amount from a power consumption device such as a traction motor). In response, the operation of various devices in the system is controlled. In addition to the traction motor, the power consuming device includes, for example, an auxiliary device (for example, a compressor 31 and a hydrogen pump 44 motor) necessary for operating the fuel cell 2 and various devices ( Actuators used in transmissions, wheel control devices, steering devices, suspension devices, etc.), passenger space air conditioners (air conditioners), lighting, audio, and the like.

ここで、制御部6は、物理的には、例えば、CPUと、CPUで処理される制御プログラムや制御データを記憶するROMと、主として制御処理のための各種作業領域として使用されるRAMと、入出力インターフェースとを有する。これらの要素は、互いにバスを介して接続されている。入出力インターフェースには、圧力センサPや温度センサT等の各種センサが接続されているとともに、コンプレッサ31、水素ポンプ44、排気排水弁46および高圧バルブ51等を駆動させるための各種ドライバが接続されている。   Here, the control unit 6 physically includes, for example, a CPU, a ROM that stores a control program and control data processed by the CPU, a RAM that is mainly used as various work areas for control processing, And an input / output interface. These elements are connected to each other via a bus. Various sensors such as a pressure sensor P and a temperature sensor T are connected to the input / output interface, and various drivers for driving the compressor 31, the hydrogen pump 44, the exhaust drain valve 46, the high pressure valve 51, and the like are connected. ing.

CPUは、ROMに記憶された制御プログラムに従って、入出力インターフェースを介して各種センサでの検出結果を受信し、RAM内の各種データ等を用いて処理することで、燃料電池システムにおける燃料ガス供給処理等の各種処理を制御する。また、CPUは、入出力インターフェースを介して各種ドライバに制御信号を出力することにより、燃料電池システム1全体を制御する。   The CPU receives the detection results of the various sensors via the input / output interface according to the control program stored in the ROM, and processes the data using various data in the RAM, thereby processing the fuel gas supply in the fuel cell system. Control various processes. Further, the CPU controls the entire fuel cell system 1 by outputting control signals to various drivers via the input / output interface.

上述してきたように、実施形態における燃料電池システム1によれば、水素タンク50から燃料電池2への水素ガスの供給、および充填口53から水素タンク50への水素ガスの流入を、高圧バルブ51に設けられた水素ガス流出流路511を介して行うことができるため、水素ガスの供給機能と流入機能とを兼ね備えた高圧配管52のみを、高圧バルブ51の水素ガス流出流路511の一端に接続させることができる。したがって、高圧バルブ51に接続する高圧配管52の本数を水素タンク50の本数と同数に抑えることができる。   As described above, according to the fuel cell system 1 in the embodiment, the supply of hydrogen gas from the hydrogen tank 50 to the fuel cell 2 and the inflow of hydrogen gas from the filling port 53 to the hydrogen tank 50 are performed using the high-pressure valve 51. Therefore, only the high-pressure pipe 52 having both the hydrogen gas supply function and the inflow function is provided at one end of the hydrogen gas outflow path 511 of the high-pressure valve 51. Can be connected. Therefore, the number of high-pressure pipes 52 connected to the high-pressure valve 51 can be suppressed to the same number as the number of hydrogen tanks 50.

また、高圧バルブ51に接続する高圧配管52の本数を抑えることで、コストの低下、軽量化の促進、組み付け性の向上という各種の効果を奏することができる。   Further, by suppressing the number of the high-pressure pipes 52 connected to the high-pressure valve 51, various effects such as cost reduction, promotion of weight reduction, and improvement of assembling performance can be achieved.

なお、上述した実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した場合について説明しているが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも本発明に係る燃料電池システムを適用することができる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用することもできる。   In the above-described embodiment, the case where the fuel cell system according to the present invention is mounted on a fuel cell vehicle is described. However, the present invention is also applied to various mobile bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle. The fuel cell system according to the invention can be applied. Moreover, the fuel cell system according to the present invention can also be applied to a stationary power generation system used as a power generation facility for buildings (houses, buildings, etc.).

実施形態における燃料電池システムを模式的に示す構成図である。It is a lineblock diagram showing typically the fuel cell system in an embodiment. 実施形態における高圧バルブを含む燃料供給源系を模式的に示す構成図である。It is a block diagram which shows typically the fuel supply source system containing the high pressure valve in embodiment.

符号の説明Explanation of symbols

1…燃料電池システム、2…燃料電池、3…酸化ガス配管系、4…水素ガス配管系、5…燃料供給源系、6…制御部、41…水素供給流路、43…レギュレータ、50…水素タンク、51…高圧バルブ、52…高圧配管、53…充填口、54…充填用流路、511…水素ガス流出流路、512…電磁弁、513…水素ガス流入流路、514…逆止弁。   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel cell, 3 ... Oxidation gas piping system, 4 ... Hydrogen gas piping system, 5 ... Fuel supply system, 6 ... Control part, 41 ... Hydrogen supply flow path, 43 ... Regulator, 50 ... Hydrogen tank, 51 ... high pressure valve, 52 ... high pressure piping, 53 ... filling port, 54 ... filling channel, 511 ... hydrogen gas outflow channel, 512 ... electromagnetic valve, 513 ... hydrogen gas inflow channel, 514 ... check valve.

Claims (3)

高圧ガスを貯留する高圧タンクに装着される高圧タンク用のバルブ装置であって、
前記高圧タンク内に貯留された高圧ガスを前記高圧タンク外に供給させ、前記高圧タンク内に貯留する高圧ガスを前記高圧タンク外から流入させるためのガス流路と、
前記ガス流路から前記高圧タンク内側に向けて分岐するガス供給流路およびガス流入流路と、
前記ガス供給流路に設けられ、前記高圧タンク内から前記高圧タンク外への高圧ガスの供給を遮断または許容する遮断弁と、
前記ガス流入流路に設けられ、前記高圧タンク内から前記高圧タンク外への高圧ガスの逆流を阻止する逆止弁と、を備え、
前記ガス供給流路は、前記高圧タンク内から前記高圧タンク外側に向けて高圧ガスを供給させるための流路であり、前記ガス流入流路は、前記高圧タンク外側から前記高圧タンク内に向けて高圧ガスを流入させるための流路であることを特徴とする高圧タンク用のバルブ装置。
A valve device for a high-pressure tank mounted on a high-pressure tank that stores high-pressure gas,
A gas flow path for supplying the high-pressure gas stored in the high-pressure tank to the outside of the high-pressure tank and allowing the high-pressure gas stored in the high-pressure tank to flow from outside the high-pressure tank;
A gas supply channel and a gas inflow channel that branch from the gas channel toward the inside of the high-pressure tank;
A shut-off valve that is provided in the gas supply flow path and shuts off or allows the supply of high-pressure gas from inside the high-pressure tank to the outside of the high-pressure tank;
A check valve that is provided in the gas inflow passage and prevents a backflow of the high-pressure gas from the inside of the high-pressure tank to the outside of the high-pressure tank,
The gas supply channel is a channel for supplying high-pressure gas from the high-pressure tank toward the outside of the high-pressure tank, and the gas inflow channel is directed from the outside of the high-pressure tank toward the inside of the high-pressure tank. A valve device for a high-pressure tank, wherein the valve device is a flow path for allowing high-pressure gas to flow in.
前記遮断弁における流路面積が、前記逆止弁における流路面積よりも大きいことを特徴とする請求項1記載の高圧タンク用のバルブ装置。   The valve device for a high-pressure tank according to claim 1, wherein a flow passage area in the shut-off valve is larger than a flow passage area in the check valve. 高圧ガスを貯留する一または複数の高圧タンクと、
請求項1または2記載の高圧タンク用のバルブ装置と、
高圧ガスを前記高圧タンクに充填する際の充填口と、
前記高圧タンクから高圧ガスの供給を受ける燃料電池と、
前記充填口から流入された高圧ガスを前記高圧タンク側に流入するための第一の高圧ガス流路と、
前記高圧タンク側から前記燃料電池に高圧ガスを供給するための第二の高圧ガス流路と、
前記第一の高圧ガス流路および前記第二の高圧ガス流路と前記バルブ装置の前記ガス流路との間を接続するための第三の高圧ガス流路と、
を備えることを特徴とする燃料電池システム。
One or more high-pressure tanks for storing high-pressure gas;
A valve device for a high-pressure tank according to claim 1 or 2,
A filling port for filling the high-pressure gas into the high-pressure tank;
A fuel cell that receives supply of high-pressure gas from the high-pressure tank;
A first high-pressure gas flow path for flowing the high-pressure gas introduced from the filling port into the high-pressure tank side;
A second high-pressure gas passage for supplying high-pressure gas from the high-pressure tank side to the fuel cell;
A third high pressure gas flow path for connecting between the first high pressure gas flow path and the second high pressure gas flow path and the gas flow path of the valve device;
A fuel cell system comprising:
JP2008007335A 2008-01-16 2008-01-16 Valve device and fuel cell system for high pressure tank Active JP4984329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007335A JP4984329B2 (en) 2008-01-16 2008-01-16 Valve device and fuel cell system for high pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007335A JP4984329B2 (en) 2008-01-16 2008-01-16 Valve device and fuel cell system for high pressure tank

Publications (2)

Publication Number Publication Date
JP2009168165A true JP2009168165A (en) 2009-07-30
JP4984329B2 JP4984329B2 (en) 2012-07-25

Family

ID=40969567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007335A Active JP4984329B2 (en) 2008-01-16 2008-01-16 Valve device and fuel cell system for high pressure tank

Country Status (1)

Country Link
JP (1) JP4984329B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031191A1 (en) * 2011-09-02 2013-03-07 川崎重工業株式会社 Bidirectional normally-closed gas-valve device and high-pressure gas filling/output system provided therewith
WO2013031190A1 (en) * 2011-09-02 2013-03-07 川崎重工業株式会社 High-pressure gas filling/output system
JP2017059306A (en) * 2015-09-14 2017-03-23 ブラザー工業株式会社 Fuel battery system
DE102016008059A1 (en) 2015-11-24 2017-05-24 Daimler Ag tank valve
DE102016008079A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
DE102016008058A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
WO2018001561A1 (en) 2016-07-01 2018-01-04 Daimler Ag Tank valve
WO2018001560A1 (en) 2016-07-01 2018-01-04 Daimler Ag Tank valve
DE102016008106A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
DE102016008035A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
DE102018000756A1 (en) 2018-01-31 2019-01-24 Daimler Ag Compressed gas tank and compressed gas storage
DE102017221849A1 (en) * 2017-12-04 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Hydrogen discharge system for a motor vehicle
CN114754284A (en) * 2021-01-08 2022-07-15 丰田自动车株式会社 Hydrogen filling system
DE102022211707A1 (en) 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Valve assembly for a fuel gas tank, fuel gas tank with valve assembly
DE102022211712A1 (en) 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Valve assembly for a fuel gas tank, fuel gas tank with valve assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390448U (en) * 1989-12-28 1991-09-13
JP2002206696A (en) * 2001-01-09 2002-07-26 Honda Motor Co Ltd High pressure gas supply system
JP2004124742A (en) * 2002-09-30 2004-04-22 Nissan Diesel Motor Co Ltd Fuel system for automobile
JP2005180496A (en) * 2003-12-17 2005-07-07 Toyota Motor Corp Valve device for high-pressure tank and fuel cell system having it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390448U (en) * 1989-12-28 1991-09-13
JP2002206696A (en) * 2001-01-09 2002-07-26 Honda Motor Co Ltd High pressure gas supply system
JP2004124742A (en) * 2002-09-30 2004-04-22 Nissan Diesel Motor Co Ltd Fuel system for automobile
JP2005180496A (en) * 2003-12-17 2005-07-07 Toyota Motor Corp Valve device for high-pressure tank and fuel cell system having it

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031191A1 (en) * 2011-09-02 2013-03-07 川崎重工業株式会社 Bidirectional normally-closed gas-valve device and high-pressure gas filling/output system provided therewith
WO2013031190A1 (en) * 2011-09-02 2013-03-07 川崎重工業株式会社 High-pressure gas filling/output system
JP2013053659A (en) * 2011-09-02 2013-03-21 Kawasaki Heavy Ind Ltd High-pressure gas filling/output system
JP2017059306A (en) * 2015-09-14 2017-03-23 ブラザー工業株式会社 Fuel battery system
WO2017047251A1 (en) * 2015-09-14 2017-03-23 ブラザー工業株式会社 Fuel cell system
DE102016008059A1 (en) 2015-11-24 2017-05-24 Daimler Ag tank valve
WO2017088944A1 (en) 2015-11-24 2017-06-01 Daimler Ag Tank valve
DE102016008106A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
JP2019521296A (en) * 2016-07-01 2019-07-25 ダイムラー・アクチェンゲゼルシャフトDaimler AG Tank valve
WO2018001561A1 (en) 2016-07-01 2018-01-04 Daimler Ag Tank valve
DE102016008442A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
WO2018001560A1 (en) 2016-07-01 2018-01-04 Daimler Ag Tank valve
DE102016008079A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
WO2018001542A1 (en) 2016-07-01 2018-01-04 Daimler Ag Tank valve
DE102016008035A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
DE102016008107A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
US10955091B2 (en) 2016-07-01 2021-03-23 Daimler Ag Tank valve
CN109416128A (en) * 2016-07-01 2019-03-01 戴姆勒股份公司 Tank valves
US10948087B2 (en) 2016-07-01 2021-03-16 Daimler Ag Tank valve
JP2019521297A (en) * 2016-07-01 2019-07-25 ダイムラー・アクチェンゲゼルシャフトDaimler AG Tank valve
DE102016008058A1 (en) 2016-07-01 2018-01-04 Daimler Ag tank valve
DE102017221849A1 (en) * 2017-12-04 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Hydrogen discharge system for a motor vehicle
DE102018000756A1 (en) 2018-01-31 2019-01-24 Daimler Ag Compressed gas tank and compressed gas storage
CN114754284A (en) * 2021-01-08 2022-07-15 丰田自动车株式会社 Hydrogen filling system
DE102022211707A1 (en) 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Valve assembly for a fuel gas tank, fuel gas tank with valve assembly
DE102022211712A1 (en) 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Valve assembly for a fuel gas tank, fuel gas tank with valve assembly

Also Published As

Publication number Publication date
JP4984329B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4984329B2 (en) Valve device and fuel cell system for high pressure tank
JP5273433B2 (en) Fuel cell system and injector operating method
JP4379749B2 (en) Fuel cell system
JP4849332B2 (en) Fuel supply device
JP4353296B2 (en) FUEL CELL SYSTEM AND FUEL CELL START-UP METHOD
JP2009076264A (en) Fuel cell system and control method of supply volume of reaction gas
JP5098191B2 (en) Fuel cell system
JP2009168166A (en) Valve device for high-pressure tank and fuel cell system
JP5082790B2 (en) Fuel cell system
WO2010070881A1 (en) Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated
JP2008181768A (en) Fuel cell system
JPWO2006064946A1 (en) Fuel cell system
JP2009093840A (en) Fuel cell system
JP2009146651A (en) Fuel cell system and method of determining fuel gas leakage
JP5141893B2 (en) Fuel cell system
JP5273436B2 (en) Fuel cell system
JP5110347B2 (en) Fuel cell system and its stop processing method
JP5045041B2 (en) Fuel cell system
JP5120773B2 (en) Fuel cell system
JP2017155806A (en) Tank system
US20220352532A1 (en) Fuel cell system and flying object including the fuel cell system
JP2009117225A (en) Fuel cell system
JP5282863B2 (en) Fuel cell system
JP5164020B2 (en) Fuel cell system and starting method thereof
JP5446025B2 (en) FUEL CELL SYSTEM AND FUEL CELL OUTPUT CONTROL METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120415

R151 Written notification of patent or utility model registration

Ref document number: 4984329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3