WO2010070881A1 - Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated - Google Patents

Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated Download PDF

Info

Publication number
WO2010070881A1
WO2010070881A1 PCT/JP2009/006883 JP2009006883W WO2010070881A1 WO 2010070881 A1 WO2010070881 A1 WO 2010070881A1 JP 2009006883 W JP2009006883 W JP 2009006883W WO 2010070881 A1 WO2010070881 A1 WO 2010070881A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
fuel cell
pressure
cell system
Prior art date
Application number
PCT/JP2009/006883
Other languages
French (fr)
Japanese (ja)
Inventor
末松啓吾
石川智隆
勝田洋行
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010070881A1 publication Critical patent/WO2010070881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a method for controlling a valve opening operation at the time of startup. More specifically, the present invention relates to an improvement in control of an oxidizing gas piping system in a fuel cell system.
  • an air shut-off valve is provided in a flow path (air supply flow path) for supplying air to the fuel cell, and the air bypass flow path connecting the air supply flow path and the exhaust flow path is the flow path.
  • a flow path air supply flow path
  • the air bypass flow path connecting the air supply flow path and the exhaust flow path is the flow path.
  • the air shut valve may become unstable and the startability of the fuel cell system may be deteriorated. Abnormal noise may occur.
  • the air shut valve and the air bypass valve are simply closed and pressurized at the time of startup, the air supply system may be over pressurized.
  • the present invention can prevent the opening of the shut valve from becoming unstable, resulting in poor startability and the occurrence of abnormal noise when the valve is opened, and the air supply system is excessively added. It is an object of the present invention to provide a fuel cell system that does not become a pressure, and a method for controlling a valve opening operation at the time of startup.
  • shut valve shutoff valve
  • pressurization is performed by an air compressor.
  • the valve is closed before and after the fuel cell stack to shut off the air at the end of the fuel cell operation.
  • the shut valve uses a highly airtight valve.
  • gas pressure driven valves are often used as shut valves. 3
  • opening the shut valve the pressure at the time of air introduction at the time of startup is used. In order to set the pressure to the target value, pressure control is performed using an air bypass valve.
  • the present invention is based on such knowledge, and in a fuel cell system including an air shut valve provided in an air supply flow path and an air compressor, the air compressor is driven when the fuel cell system is activated, and the air shut The air shut valve is opened when the pressure on the upstream side of the valve reaches a predetermined pressure or at a later time.
  • the valve opening operation control method according to the present invention includes a valve opening operation control method for starting a fuel cell system including an air shut valve and an air compressor provided in an air supply flow path. The air shut valve is actuated to open the air shut valve when the pressure on the upstream side of the air shut valve reaches a predetermined pressure or at a later time.
  • an air bypass valve is provided in the air bypass flow path connecting the air supply flow path and the exhaust flow path, and the pressure on the upstream side of the air bypass valve is controlled until the air shut valve opens. It is preferable. By doing so, the air shut valve is opened after being pressurized to a predetermined pressure without overpressurizing the air supply system, so that the openability of the air shut valve can be improved.
  • the air bypass valve is controlled until the air shut valve opens.
  • the air compressor is controlled until the air shut valve opens.
  • the pressure is pulsated until the air shut valve opens.
  • the present invention it is possible to suppress the opening of the shut valve from becoming unstable, resulting in poor startability, and the generation of abnormal noise when the valve is opened, and the air supply system is excessively added. There is no risk of pressure.
  • FIG. 2 It is a figure which shows the structural example of the fuel cell system in one Embodiment of this invention.
  • A It is a figure which shows the one part schematic structure of the air supply system (oxidation gas piping system) of a fuel cell system.
  • B It is an enlarged view of the broken-line part of FIG. 2 (A) which shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system.
  • A shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system.
  • A shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system.
  • A shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system.
  • A shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system.
  • A shows schematic structure
  • FIG. 1 shows a schematic configuration of the fuel cell system 1.
  • the fuel cell system 1 can be applied as an in-vehicle power generation system of, for example, a fuel cell vehicle (FCHV), but is not particularly limited to this, and various other mobile bodies (for example, ships and airplanes) ) And robots can be used as self-propelled power generation systems, as well as stationary power generation systems.
  • FCHV fuel cell vehicle
  • the fuel cell system 1 in the present embodiment includes a fuel cell 2 that generates electric power by an electrochemical reaction upon receiving supply of reaction gas (oxidation gas and fuel gas), and an oxidation that supplies air as the oxidation gas to the fuel cell 2.
  • a gas piping system 3 a fuel gas piping system 4 for supplying hydrogen gas as a fuel gas to the fuel cell 2, a refrigerant piping system 5 for supplying a refrigerant to the fuel cell 2 and cooling the fuel cell 2, and a system
  • An electric power system 6 that charges and discharges electric power and a control unit 7 that performs overall control of the entire system are provided.
  • the fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked.
  • the single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become.
  • the fuel gas is supplied to the fuel gas flow path of one separator, the oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and electric power is generated by the chemical reaction of these reaction gases.
  • the fuel cell 2 is provided with a current sensor 2a for detecting a current during power generation (see FIG. 1).
  • the oxidizing gas piping system 3 includes an air supply passage 11 through which oxidizing gas supplied to the fuel cell 2 flows, and an exhaust passage 12 through which oxidizing off-gas discharged from the fuel cell 2 flows.
  • the air supply channel 11 includes an air compressor 14 as an oxidizing gas supply device that takes in the oxidizing gas through the filter 13, a humidifier 15 that humidifies the oxidizing gas fed by the air compressor 14, and an air flow meter (AFM). ) 9 and an air pressure sensor 20 are provided.
  • the air compressor 14 takes in the oxidizing gas in the atmosphere by driving a motor (not shown). Further, the oxidizing off-gas flowing through the exhaust passage 12 passes through the air back pressure regulating valve 16 and is subjected to moisture exchange by the humidifier 15, and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the fuel gas piping system 4 includes a fuel tank 21 as a hydrogen supply source, a hydrogen supply passage 22 through which hydrogen gas supplied from the fuel tank 21 to the fuel cell 2 flows, and hydrogen off-gas (fuel) discharged from the fuel cell 2.
  • a hydrogen supply passage 22 through which hydrogen gas supplied from the fuel tank 21 to the fuel cell 2 flows, and hydrogen off-gas (fuel) discharged from the fuel cell 2.
  • Off-gas) to the junction A1 of the hydrogen supply flow path 22, a hydrogen pump 24 for pumping the hydrogen off-gas in the circulation flow path 23 to the hydrogen supply flow path 22, and a branch to the circulation flow path 23 And an exhaust drainage flow path 25 connected thereto.
  • the fuel tank 21 is composed of, for example, a high-pressure tank or a hydrogen storage alloy and is mounted on the fuel cell vehicle according to this embodiment, and is configured to be capable of storing, for example, 35 MPa hydrogen gas.
  • a shut-off valve (shut valve) 26 described later When a shut-off valve (shut valve) 26 described later is opened, hydrogen gas flows out from the fuel tank 21 to the hydrogen supply flow path 22. The hydrogen gas is finally depressurized to about 200 kPa, for example, by a regulator 27 and an injector 28 described later, and supplied to the fuel cell 2.
  • shutoff valve shut valve 26 that shuts off or allows the supply of hydrogen gas from the fuel tank 21, a regulator (modulable pressure valve) 27 that adjusts the pressure of the hydrogen gas, an injector 28, , Is provided.
  • a pressure sensor 29 that detects the pressure of the hydrogen gas in the hydrogen supply flow path 22 is provided on the downstream side of the injector 28 and upstream of the junction A1 between the hydrogen supply flow path 22 and the circulation flow path 23. It has been. Further, a pressure sensor and a temperature sensor (not shown) for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 22 are provided on the upstream side of the injector 28. Information regarding the gas state (pressure, temperature) of the hydrogen gas detected by the pressure sensor 29 or the like is used for feedback control and purge control of an injector 28 described later.
  • the regulator 27 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve that reduces the primary pressure is employed as the regulator 27.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure adjusting chamber are formed with a diaphragm therebetween, and the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the back pressure chamber.
  • a publicly known configuration for the secondary pressure can be employed.
  • the injector 28 is an electromagnetically driven on-off valve capable of adjusting the gas flow rate and the gas pressure by driving the valve body directly with a predetermined driving cycle with an electromagnetic driving force and separating it from the valve seat.
  • the injector 28 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas flow direction) with respect to the nozzle body. And a valve body that is movably accommodated and opens and closes the injection hole.
  • gaseous fuel such as hydrogen gas
  • a nozzle body for supplying and guiding the gaseous fuel to the injection hole
  • an axial direction gas flow direction
  • a valve body that is movably accommodated and opens and closes the injection hole.
  • such an injector 28 is arranged on the upstream side of the junction A1 between the hydrogen supply channel 22 and the circulation channel 23 (see FIG. 1).
  • a broken line in FIG. 1 when a plurality
  • An exhaust / drain passage 25 is connected to the circulation passage 23 via a gas / liquid separator 30 and an exhaust / drain valve 31.
  • the gas-liquid separator 30 collects moisture from the hydrogen off gas.
  • the exhaust / drain valve 31 operates in response to a command from the control unit 7, so that moisture collected by the gas-liquid separator 30 and hydrogen off-gas (fuel off-gas) containing impurities in the circulation channel 23 are externally provided. It is to be discharged (purged).
  • the concentration of impurities in the hydrogen off-gas in the circulation passage 23 decreases and the concentration of hydrogen in the hydrogen off-gas supplied in circulation increases.
  • An upstream pressure sensor 32 and a downstream pressure sensor 33 for detecting the pressure of the hydrogen off gas are provided at the upstream position (on the circulation flow path 23) and the downstream position (on the exhaust drain flow path 25) of the exhaust drain valve 31, respectively. It has been.
  • the exhaust / drain passage 25 communicates with the diluter 34 downstream thereof. Further, an exhaust passage (oxidation off gas discharge passage) 12 communicates with the diluter 34 downstream thereof, and is configured to exhaust the hydrogen off gas outside the system after being mixed and diluted with the oxidation off gas.
  • the refrigerant piping system 5 includes a refrigerant channel 41 communicating with the cooling channel in the fuel cell 2, a cooling pump 42 provided in the refrigerant channel 41, and a radiator 43 that cools the refrigerant discharged from the fuel cell 2. And a temperature sensor 44 for detecting the temperature of the refrigerant discharged from the fuel cell 2.
  • the cooling pump 42 circulates and supplies the refrigerant in the refrigerant passage 41 to the fuel cell 2 by driving a motor (not shown).
  • the power system 6 includes a high-voltage DC / DC converter 61, a battery 62, a traction inverter 63, a traction motor 64, various auxiliary inverters not shown, and the like.
  • the high-voltage DC / DC converter 61 is a direct-current voltage converter, which adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current input from the fuel cell 2 or the traction motor 64. And a function of adjusting the voltage and outputting it to the battery 62. With such a function of the high voltage DC / DC converter 61, charging / discharging of the battery 62 is realized. Further, the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 61.
  • the battery 62 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and surplus power can be charged or power can be supplementarily supplied under the control of a battery computer (not shown).
  • the traction inverter 63 converts a direct current into a three-phase alternating current and supplies it to the traction motor 64.
  • the traction motor 64 is, for example, a three-phase AC motor, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
  • the control unit (control device) 7 detects an operation amount of an acceleration operation member (accelerator or the like) provided in the vehicle, and requests an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 64). Receives control information and controls the operation of various devices in the system.
  • the load device includes auxiliary devices (for example, motors for the air compressor 14, the hydrogen pump 24, the cooling pump 42, etc.) necessary for operating the fuel cell 2, and traveling of the vehicle. Electric power consuming devices including actuators used in various devices involved (transmission, wheel control unit, steering device, suspension device, etc.), air conditioners (air conditioners) in the passenger space, lighting, audio, and the like can be included.
  • Such a control unit 7 is configured by a computer system (not shown).
  • a computer system is provided with a CPU, ROM, RAM, HDD, input / output interface, display, and the like.
  • the CPU reads various control programs recorded in the ROM and executes desired calculations to perform feedback control and purge. Various processes and controls such as control are performed.
  • the oxidant gas piping system 3 of the fuel cell system 1 is provided with an air bypass passage 8 connecting an air supply passage (oxidation gas supply passage) 11 and an exhaust passage (oxidation off-gas discharge passage) 12.
  • the air bypass channel 8 is provided with an air bypass valve 17 that opens and closes the air bypass channel 8 (see FIG. 1).
  • the air supply passage 11 is provided with an air inlet shut-off valve (oxidation gas supply passage cutoff valve) 18, and the exhaust passage 12 is provided with an air outlet shut-off valve (oxidation off-gas discharge passage cutoff valve) 19 (see FIG. 1).
  • the air inlet shut-off valve 18 is a shut-off valve that shuts off the air supply passage 11, and the air outlet shut-off valve 19 is a shut-off valve that shuts off the exhaust passage 12.
  • the air inlet shut valve 18 is a gas pressure driven valve that adjusts the opening of the poppet valve 18b in accordance with the magnitude of the fluid pressure applied to the diaphragm 18a.
  • the air inlet shut-off valve 18 the oxidizing gas pressurized by the air compressor 14 is sent to the pressure regulating chamber through the branch passage 11a, the diaphragm 18a is pushed up, and the poppet valve 18b is pushed up to open the valve (FIG. 2A). ), See FIG.
  • the air compressor 14 is driven while the air bypass valve 17 and the air inlet shut valve 18 are closed, and the pressure P on the upstream side of the air inlet shut valve 18 is a predetermined value. It is set to be open the air inlet shutoff valve 18 when it reaches the valve opening pressure of P 1.
  • the predetermined value P 1 means that the air supply system (oxidizing gas piping system 3) is overpressurized within a range in which the operation when the air inlet shut valve 18 is opened is not unstable and the startability is not inferior. It is a value that does not become.
  • the procedure is as follows. First, the air compressor 14 is driven and rotated at x [rpm] when the system is started. Then, detected by the air pressure sensor 20 this because the upstream pressure P of the air inlet shutoff valve 18 is gradually increased, will gradually opened air bypass valve 17 upon reaching a predetermined value P 1. At this time, in the present embodiment, the opening degree of the air bypass valve 17 is increased while adjusting the upstream pressure of the air shut valve 18 that has been gradually increased so as to become a predetermined pressure (see FIG. 3). Thereafter, the opening degree of the air bypass valve 17 reaches a predetermined value, and when the pressurization is completed, the air bypass valve 17 is closed, and at the same time, the air inlet shut valve 18 is opened. At this time, the value of the upstream pressure P of the air inlet shut valve 18 slightly decreases. In this embodiment, the air outlet shut valve 19 is operated in the same manner as the air inlet shut valve 18.
  • the air bypass valve 17 when opening the air inlet shut-off valve 18 at the time of starting the system, the air bypass valve 17 is first closed and pressurization is completed (in the case of this embodiment, the air bypass valve 17 is sufficient).
  • the pressure P of the upstream side of the air inlet shutoff valve 18 is also opened to is to open a predetermined value P to a state of reaching 1) later the air bypass valve 17.
  • a diagnosis signal is issued and the valve opening operation of the air inlet shut valve 18 is stopped.
  • the air inlet shut-off valve 18 does not open even if the pressure P is kept at a predetermined value for t seconds after completion of pressurization, the subsequent pressurization operation and valve opening operation are stopped.
  • a predetermined time for example, t seconds
  • the air inlet shut-off valve 18 is not opened, it is closed and stuck, that is, the poppet valve 18b remains closed for some reason. It is determined that it is in a state (failure state), and the pressurizing operation and the valve opening operation are stopped (see FIG. 4).
  • control is performed so that the rotation speed of the air compressor 14 does not exceed a predetermined value during the pressurizing operation and the valve closing operation.
  • the rotation speed of the air compressor 14 is made constant so that the upstream side pressure P of the air inlet shut valve 18 does not exceed a certain value.
  • the pressurizing operation is performed while controlling the rotation speed y (> x) [rpm] of the air compressor 14 so as not to be higher than the pressure threshold value or the pressure threshold value (see FIG. 5). At this time, the pressure P increases and the efficiency of the air compressor 14 decreases, and the pressure increase with respect to the rotational speed is uniquely determined.
  • pressure regulation control is performed by further controlling the rotation speed of the air compressor 14.
  • the fourth embodiment will be described with three specific examples.
  • ⁇ Fifth Embodiment> It is also preferable to pressurize by alternately supplying air to the upper and lower sides of the diaphragm 18a of the air inlet shut-off valve 18 during the pressurization control at the time of valve opening at the time of start-up described so far. After the pressure P on the upstream side of the air inlet shut valve 18 is increased until it reaches a predetermined value P 1 , an external force is applied to the diaphragm 18a in the vertical direction to open the air inlet shut valve 18 as quickly as possible. (See FIGS. 8A and 8B). Switching when supplying air up and down the diaphragm 18a can be performed using, for example, a three-way valve 11b provided in the branch path 11a (see FIGS. 8A and 8B).
  • the pressure of the air supply system (specifically, the pressure P on the upstream side of the air inlet shut valve 18) is sufficient (valve opening pressure). Since the control to open the air inlet shut-off valve 18 is performed after reaching the value, the opening of the air inlet shut-off valve 18 becomes unstable and the startability becomes worse, or abnormal noise is generated when the valve is opened. Can be suppressed. Moreover, in this case, by closing the air bypass valve 17 when the fuel cell system 1 is started, the pressurization time until the upstream side pressure P of the air inlet shut valve 18 reaches the valve opening pressure is shortened, and It is also possible to reduce power consumption.
  • the air inlet shut valve 18 and the air bypass valve 17 are not simply closed and pressurized, but the pressurizing operation and opening are not performed. Since the upstream pressure P is controlled so as not to exceed a certain value during the valve operation, there is no possibility that the air supply system (oxidizing gas piping system 3) is over-pressurized.
  • the air inlet shut valve 18 can be opened as quickly as possible by pulsing the pressure.
  • the pressure pulsation can be performed, for example, by pulsating the rotation speed of the air compressor 14 or by finely operating the valve of the air bypass valve 17.
  • the present invention is suitable for application to a fuel cell system including an air shut valve and an air compressor provided in an air supply channel.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system is prevented from being slowly activated due to the unstable opening of a shutoff valve.  The occurrence of abnormal noise when the shutoff valve is opened and the possibility that an excessive pressure is applied to an air supplying system are prevented.  When the fuel cell system is activated, an air compressor is driven to open an air shutoff valve when or after the pressure upstream of the air shutoff valve reaches a predetermined pressure (P1).  An air bypass valve is provided in an air bypass passage connecting an air supply passage and an exhaust passage, so that the pressure upstream of the air bypass valve can be preferably controlled until the air shutoff valve is opened.

Description

燃料電池システム、およびその起動時における開弁動作の制御方法Fuel cell system and method for controlling valve opening operation at startup
 本発明は、燃料電池システム、およびその起動時における開弁動作の制御方法に関する。さらに詳述すると、本発明は、燃料電池システムにおける酸化ガス配管系の制御の改良に関する。 The present invention relates to a fuel cell system and a method for controlling a valve opening operation at the time of startup. More specifically, the present invention relates to an improvement in control of an oxidizing gas piping system in a fuel cell system.
 燃料電池システムとして、燃料電池へエアを供給する流路(エア供給流路)にエアシャットバルブが設けられ、さらに、エア供給流路と排気流路とを結ぶエアバイパス流路には当該流路を開閉するエアバイパスバルブが設けられているものが知られている(例えば特許文献1参照)。このような燃料電池システムにおいては、当該システムの起動時、これらエアシャットバルブやエアバイパスバルブの開閉動作が制御されて燃料電池へエアが適宜供給されるようになっている。 As a fuel cell system, an air shut-off valve is provided in a flow path (air supply flow path) for supplying air to the fuel cell, and the air bypass flow path connecting the air supply flow path and the exhaust flow path is the flow path. There is known one provided with an air bypass valve that opens and closes (see, for example, Patent Document 1). In such a fuel cell system, when the system is activated, the opening and closing operations of the air shut valve and the air bypass valve are controlled so that air is appropriately supplied to the fuel cell.
特開2007-200602号公報JP 2007-200602 A
 しかしながら、エア供給系の圧力が低い状態でエアシャットバルブを開弁しようとした場合、当該エアシャットバルブの開弁が不安定になり、燃料電池システムの起動性が悪くなることや、開弁時に異音が発生してしまうことがある。また、単に、起動時にエアシャットバルブとエアバイパスバルブを閉弁して加圧しても、エア供給系が過加圧になるおそれがある。 However, if the air shut valve is opened while the pressure of the air supply system is low, the air shut valve may become unstable and the startability of the fuel cell system may be deteriorated. Abnormal noise may occur. In addition, even if the air shut valve and the air bypass valve are simply closed and pressurized at the time of startup, the air supply system may be over pressurized.
 そこで、本発明は、シャットバルブの開弁が不安定になって起動性が悪くなったり、開弁時に異音が発生したりすることを抑制することができ、尚かつエア供給系が過加圧になるおそれがない燃料電池システム、およびその起動時における開弁動作の制御方法を提供することを目的とする。 Therefore, the present invention can prevent the opening of the shut valve from becoming unstable, resulting in poor startability and the occurrence of abnormal noise when the valve is opened, and the air supply system is excessively added. It is an object of the present invention to provide a fuel cell system that does not become a pressure, and a method for controlling a valve opening operation at the time of startup.
 かかる課題を解決するべく本発明者は種々の検討を行った。燃料電池システムの起動時にシャットバルブ(遮断弁)を開ける際、エアコンプレッサによって加圧することが一般に多く行われているが、このような構成には以下のような特徴ないし問題がある。 (1)カソード触媒の放置中の異常電位を回避するために、燃料電池の運転終了時には燃料電池スタックの前後でバルブを閉じてエアを遮断しているが、その遮断の要求レベルが高いことから、シャットバルブには気密性の高いバルブが採用されている。 (2)このことを理由に、シャットバルブとしては、ガス圧駆動式のバルブが用いられることが多い。 (3)シャットバルブを開ける際、起動時のエア導入時の圧力が用いられるが、その圧力を狙い値にするため、エアバイパスバルブを用いて圧力制御を実施している。 (4)上記(3)によりエアバイパスバルブから漏れるエア分を補うため多くのエアを送り込む必要があり、加圧時間とそのための補機動力が必要である。 (5)上記(4)により、エアバイパスバルブを通過するエアの気流音が起動時のNV(騒音・振動)を悪化させる。 The present inventor has made various studies to solve such problems. When opening a shut valve (shutoff valve) at the time of starting a fuel cell system, in general, pressurization is performed by an air compressor. However, such a configuration has the following characteristics or problems. (1) In order to avoid abnormal potential while the cathode catalyst is left, the valve is closed before and after the fuel cell stack to shut off the air at the end of the fuel cell operation. The shut valve uses a highly airtight valve. (2) For this reason, gas pressure driven valves are often used as shut valves. 3 (3) When opening the shut valve, the pressure at the time of air introduction at the time of startup is used. In order to set the pressure to the target value, pressure control is performed using an air bypass valve. (4) In order to compensate for the amount of air leaking from the air bypass valve according to (3) above, it is necessary to send in a large amount of air, which requires pressurization time and auxiliary power for that purpose. (5) Due to the above (4), the airflow noise of the air passing through the air bypass valve worsens the NV (noise / vibration) at startup.
 このような状況下、これら特徴ないし問題について検討を重ねた本発明者は、上述した問題の理由や背景として、第一に、エアバイパスバルブ以外にバルブ上流圧を制御する機構がないこと、第二に、エアバイパスバルブによる調圧をしないと、バルブ上流の圧力が上昇しすぎ、配管が破裂するおそれがあること、が挙げられると考え、さらに検討を重ねることにより課題の解決に結び付く新たな知見を得るに至った。 Under such circumstances, the present inventor who has repeatedly studied these characteristics or problems, as the reason and background of the problems described above, firstly, there is no mechanism for controlling the valve upstream pressure other than the air bypass valve, Secondly, if the pressure is not adjusted by the air bypass valve, the pressure upstream of the valve will rise too much, and there is a possibility that the pipe may burst, and further investigation will lead to the solution of the problem. I came to know.
 本発明はかかる知見に基づくものであり、エア供給流路に設けられたエアシャットバルブとエアコンプレッサとを備えた燃料電池システムにおいて、当該燃料電池システムの起動時に、エアコンプレッサを駆動し、エアシャットバルブの上流側の圧力が所定圧力に達した時点またはその後の時点でエアシャットバルブを開弁する、というものである。また、本発明にかかる開弁動作の制御方法は、エア供給流路に設けられたエアシャットバルブとエアコンプレッサとを備えた燃料電池システムの起動時における開弁動作の制御方法において、エアコンプレッサを駆動し、エアシャットバルブの上流側の圧力が所定圧力に達した時点またはその後の時点でエアシャットバルブを開弁する、というものである。 The present invention is based on such knowledge, and in a fuel cell system including an air shut valve provided in an air supply flow path and an air compressor, the air compressor is driven when the fuel cell system is activated, and the air shut The air shut valve is opened when the pressure on the upstream side of the valve reaches a predetermined pressure or at a later time. Further, the valve opening operation control method according to the present invention includes a valve opening operation control method for starting a fuel cell system including an air shut valve and an air compressor provided in an air supply flow path. The air shut valve is actuated to open the air shut valve when the pressure on the upstream side of the air shut valve reaches a predetermined pressure or at a later time.
 また、本発明においては、エア供給流路と排気流路とを結ぶエアバイパス流路にエアバイパスバルブを備え、エアシャットバルブの開弁までの間、エアバイパスバルブの上流側の圧力を制御することが好ましい。こうすることにより、エア供給系を過加圧にすることなく、所定圧力まで加圧した後にエアシャットバルブを開弁することになるため、エアシャットバルブの開弁性を向上させることができる。 In the present invention, an air bypass valve is provided in the air bypass flow path connecting the air supply flow path and the exhaust flow path, and the pressure on the upstream side of the air bypass valve is controlled until the air shut valve opens. It is preferable. By doing so, the air shut valve is opened after being pressurized to a predetermined pressure without overpressurizing the air supply system, so that the openability of the air shut valve can be improved.
 また、本発明にかかる燃料電池システムでは、エアシャットバルブの開弁までの間、エアバイパスバルブを制御する。 In the fuel cell system according to the present invention, the air bypass valve is controlled until the air shut valve opens.
 さらに、本発明にかかる燃料電池システムでは、エアシャットバルブの開弁までの間、エアコンプレッサを制御する。 Furthermore, in the fuel cell system according to the present invention, the air compressor is controlled until the air shut valve opens.
 また、本発明では、エアシャットバルブの開弁までの間、圧力を脈動させる。 In the present invention, the pressure is pulsated until the air shut valve opens.
 また、エアシャットバルブの開弁までの間、エアシャットバルブのダイアフラムの上下に交互にエアを供給して加圧することが好ましい。 Also, it is preferable to pressurize by alternately supplying air up and down the diaphragm of the air shut valve until the air shut valve opens.
 さらには、エアシャットバルブの上流側の圧力が所定圧力に達した時点から所定時間経過しても該エアシャットバルブが動作しない場合に当該エアシャットバルブの故障を検出することも好ましい。 Furthermore, it is also preferable to detect a failure of the air shut valve when the air shut valve does not operate even after a predetermined time has elapsed from the time when the pressure on the upstream side of the air shut valve reaches the predetermined pressure.
 本発明によれば、シャットバルブの開弁が不安定になって起動性が悪くなったり、開弁時に異音が発生したりすることを抑制することができ、尚かつエア供給系が過加圧になるおそれがない。 According to the present invention, it is possible to suppress the opening of the shut valve from becoming unstable, resulting in poor startability, and the generation of abnormal noise when the valve is opened, and the air supply system is excessively added. There is no risk of pressure.
本発明の一実施形態における燃料電池システムの構成例を示す図である。It is a figure which shows the structural example of the fuel cell system in one Embodiment of this invention. (A)燃料電池システムのエア供給系(酸化ガス配管系)の一部の概略構成を示す図である。(B)燃料電池システムのエア供給系(酸化ガス配管系)のエア入口シャットバルブの概略構成を示す、図2(A)の破線部分の拡大図である。(A) It is a figure which shows the one part schematic structure of the air supply system (oxidation gas piping system) of a fuel cell system. (B) It is an enlarged view of the broken-line part of FIG. 2 (A) which shows schematic structure of the air inlet shut valve of the air supply system (oxidation gas piping system) of a fuel cell system. 本発明の第1の実施形態におけるシーケンス制御例を示す図である。It is a figure which shows the example of sequence control in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるシーケンス制御例を示す図である。It is a figure which shows the example of sequence control in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるシーケンス制御例を示す図である。It is a figure which shows the example of sequence control in the 3rd Embodiment of this invention. 本発明の第4の実施形態におけるシーケンス制御例を示す図である。It is a figure which shows the example of sequence control in the 4th Embodiment of this invention. 本発明の第4の実施形態におけるシーケンス制御の別の例を示す図である。It is a figure which shows another example of the sequence control in the 4th Embodiment of this invention. (A)本発明の第5の実施形態におけるエア供給系(酸化ガス配管系)の一部の概略構成例を示す図である。(B)本発明の第5の実施形態におけるエア供給系(酸化ガス配管系)のエア入口シャットバルブの概略構成例を示す、図8(A)の破線部分の拡大図である。(A) It is a figure which shows the one part schematic structural example of the air supply system (oxidation gas piping system) in the 5th Embodiment of this invention. (B) It is an enlarged view of a broken line part of Drawing 8 (A) showing an example of schematic composition of an air entrance shut valve of an air supply system (oxidation gas piping system) in a 5th embodiment of the present invention.
 以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。以下においてはまず燃料電池システム1の全体構成について説明し、その後、この燃料電池システム1の起動時における開弁時の加圧制御について説明することとする。 Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings. In the following, the overall configuration of the fuel cell system 1 will be described first, and then pressurization control at the time of opening the fuel cell system 1 will be described.
 図1に燃料電池システム1の概略構成を示す。この燃料電池システム1は例えば燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして適用可能なものであるが特にこれに限られることなく、この他、各種移動体(例えば船舶や飛行機など)やロボットなどといった自走可能なものに搭載される発電システム、さらには定置の発電システムとしても利用することが可能である。 FIG. 1 shows a schematic configuration of the fuel cell system 1. The fuel cell system 1 can be applied as an in-vehicle power generation system of, for example, a fuel cell vehicle (FCHV), but is not particularly limited to this, and various other mobile bodies (for example, ships and airplanes) ) And robots can be used as self-propelled power generation systems, as well as stationary power generation systems.
 本実施形態における燃料電池システム1は、反応ガス(酸化ガスおよび燃料ガス)の供給を受けて電気化学反応により電力を発生する燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4と、燃料電池2に冷媒を供給して当該燃料電池2を冷却する冷媒配管系5と、システムの電力を充放電する電力系6と、システム全体を統括制御する制御部7と、を備えている。 The fuel cell system 1 in the present embodiment includes a fuel cell 2 that generates electric power by an electrochemical reaction upon receiving supply of reaction gas (oxidation gas and fuel gas), and an oxidation that supplies air as the oxidation gas to the fuel cell 2. A gas piping system 3, a fuel gas piping system 4 for supplying hydrogen gas as a fuel gas to the fuel cell 2, a refrigerant piping system 5 for supplying a refrigerant to the fuel cell 2 and cooling the fuel cell 2, and a system An electric power system 6 that charges and discharges electric power and a control unit 7 that performs overall control of the entire system are provided.
 燃料電池2は例えば高分子電解質形燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、さらにこれら各反応ガスが化学反応を生じることによって電力が生じる。また、この燃料電池2には発電中の電流を検出する電流センサ2aが取り付けられている(図1参照)。 The fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked. The single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become. In this case, the fuel gas is supplied to the fuel gas flow path of one separator, the oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and electric power is generated by the chemical reaction of these reaction gases. The fuel cell 2 is provided with a current sensor 2a for detecting a current during power generation (see FIG. 1).
 酸化ガス配管系3は、燃料電池2に供給される酸化ガスが流れるエア供給流路11と、燃料電池2から排出された酸化オフガスが流れる排気流路12と、を有している。エア供給流路11には、フィルタ13を介して酸化ガスを取り込む酸化ガス供給装置としてのエアコンプレッサ14と、エアコンプレッサ14により圧送される酸化ガスを加湿する加湿器15と、エア流量計(AFM)9と、エア圧力センサ20とが設けられている。エアコンプレッサ14は、図示されていないモータの駆動により大気中の酸化ガスを取り込む。また、排気流路12を流れる酸化オフガスは、エア背圧調整弁16を通って加湿器15で水分交換に供された後、最終的に排ガスとしてシステム外の大気中に排気される。 The oxidizing gas piping system 3 includes an air supply passage 11 through which oxidizing gas supplied to the fuel cell 2 flows, and an exhaust passage 12 through which oxidizing off-gas discharged from the fuel cell 2 flows. The air supply channel 11 includes an air compressor 14 as an oxidizing gas supply device that takes in the oxidizing gas through the filter 13, a humidifier 15 that humidifies the oxidizing gas fed by the air compressor 14, and an air flow meter (AFM). ) 9 and an air pressure sensor 20 are provided. The air compressor 14 takes in the oxidizing gas in the atmosphere by driving a motor (not shown). Further, the oxidizing off-gas flowing through the exhaust passage 12 passes through the air back pressure regulating valve 16 and is subjected to moisture exchange by the humidifier 15, and is finally exhausted into the atmosphere outside the system as exhaust gas.
 燃料ガス配管系4は、水素供給源としての燃料タンク21と、燃料タンク21から燃料電池2に供給される水素ガスが流れる水素供給流路22と、燃料電池2から排出された水素オフガス(燃料オフガス)を水素供給流路22の合流点A1に戻すための循環流路23と、循環流路23内の水素オフガスを水素供給流路22に圧送する水素ポンプ24と、循環流路23に分岐接続された排気排水流路25と、を有している。 The fuel gas piping system 4 includes a fuel tank 21 as a hydrogen supply source, a hydrogen supply passage 22 through which hydrogen gas supplied from the fuel tank 21 to the fuel cell 2 flows, and hydrogen off-gas (fuel) discharged from the fuel cell 2. Off-gas) to the junction A1 of the hydrogen supply flow path 22, a hydrogen pump 24 for pumping the hydrogen off-gas in the circulation flow path 23 to the hydrogen supply flow path 22, and a branch to the circulation flow path 23 And an exhaust drainage flow path 25 connected thereto.
 燃料タンク21は例えば高圧タンクや水素吸蔵合金などで構成されて本実施形態における燃料電池車両に複数搭載されているものであり、例えば35MPaの水素ガスを貯留可能に構成されている。後述する遮断弁(シャットバルブ)26を開けると、燃料タンク21から水素供給流路22へと水素ガスが流出する。水素ガスは、後述するレギュレータ27やインジェクタ28により最終的に例えば200kPa程度まで減圧され、燃料電池2に供給される。 The fuel tank 21 is composed of, for example, a high-pressure tank or a hydrogen storage alloy and is mounted on the fuel cell vehicle according to this embodiment, and is configured to be capable of storing, for example, 35 MPa hydrogen gas. When a shut-off valve (shut valve) 26 described later is opened, hydrogen gas flows out from the fuel tank 21 to the hydrogen supply flow path 22. The hydrogen gas is finally depressurized to about 200 kPa, for example, by a regulator 27 and an injector 28 described later, and supplied to the fuel cell 2.
 水素供給流路22には、燃料タンク21からの水素ガスの供給を遮断または許容する遮断弁(シャットバルブ)26と、水素ガスの圧力を調整するレギュレータ(可変調圧弁)27と、インジェクタ28と、が設けられている。また、インジェクタ28の下流側であって水素供給流路22と循環流路23との合流部A1の上流側には、水素供給流路22内の水素ガスの圧力を検出する圧力センサ29が設けられている。さらに、インジェクタ28の上流側には、水素供給流路22内の水素ガスの圧力および温度を検出する圧力センサおよび温度センサ(図示省略)が設けられている。圧力センサ29等で検出された水素ガスのガス状態(圧力、温度)に関する情報は、後述するインジェクタ28のフィードバック制御やパージ制御に用いられる。 In the hydrogen supply flow path 22, a shutoff valve (shut valve) 26 that shuts off or allows the supply of hydrogen gas from the fuel tank 21, a regulator (modulable pressure valve) 27 that adjusts the pressure of the hydrogen gas, an injector 28, , Is provided. A pressure sensor 29 that detects the pressure of the hydrogen gas in the hydrogen supply flow path 22 is provided on the downstream side of the injector 28 and upstream of the junction A1 between the hydrogen supply flow path 22 and the circulation flow path 23. It has been. Further, a pressure sensor and a temperature sensor (not shown) for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 22 are provided on the upstream side of the injector 28. Information regarding the gas state (pressure, temperature) of the hydrogen gas detected by the pressure sensor 29 or the like is used for feedback control and purge control of an injector 28 described later.
 レギュレータ27は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置である。本実施形態においては、一次圧を減圧する機械式の減圧弁をレギュレータ27として採用している。機械式の減圧弁の構成としては、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする公知の構成を採用することができる。 The regulator 27 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure. In this embodiment, a mechanical pressure reducing valve that reduces the primary pressure is employed as the regulator 27. The mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure adjusting chamber are formed with a diaphragm therebetween, and the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the back pressure chamber. Thus, a publicly known configuration for the secondary pressure can be employed.
 インジェクタ28は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ28は、水素ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体と、を備えている。本実施形態においては、このようなインジェクタ28を、水素供給流路22と循環流路23との合流部A1より上流側に配置している(図1参照)。また、図1に破線で示すように、燃料供給源として複数の燃料タンク21が用いられている場合には、これら燃料タンク21から供給される水素ガスが合流する部分(水素ガス合流部A2)よりも下流側に当該インジェクタ28を配置するようにする。 The injector 28 is an electromagnetically driven on-off valve capable of adjusting the gas flow rate and the gas pressure by driving the valve body directly with a predetermined driving cycle with an electromagnetic driving force and separating it from the valve seat. The injector 28 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas flow direction) with respect to the nozzle body. And a valve body that is movably accommodated and opens and closes the injection hole. In the present embodiment, such an injector 28 is arranged on the upstream side of the junction A1 between the hydrogen supply channel 22 and the circulation channel 23 (see FIG. 1). In addition, as shown by a broken line in FIG. 1, when a plurality of fuel tanks 21 are used as a fuel supply source, a portion where hydrogen gas supplied from these fuel tanks 21 merges (hydrogen gas joining portion A2). The injector 28 is arranged on the downstream side.
 循環流路23には、気液分離器30および排気排水弁31を介して、排気排水流路25が接続されている。気液分離器30は、水素オフガスから水分を回収するものである。排気排水弁31は、制御部7の指令を受けて作動することにより、気液分離器30で回収した水分と、循環流路23内の不純物を含む水素オフガス(燃料オフガス)と、を外部に排出(パージ)するものである。この排気排水弁31を開放すると、循環流路23内の水素オフガス中の不純物の濃度が下がり、循環供給される水素オフガス中の水素濃度が上がる。排気排水弁31の上流位置(循環流路23上)および下流位置(排気排水流路25上)には、各々、水素オフガスの圧力を検出する上流側圧力センサ32および下流側圧力センサ33が設けられている。 An exhaust / drain passage 25 is connected to the circulation passage 23 via a gas / liquid separator 30 and an exhaust / drain valve 31. The gas-liquid separator 30 collects moisture from the hydrogen off gas. The exhaust / drain valve 31 operates in response to a command from the control unit 7, so that moisture collected by the gas-liquid separator 30 and hydrogen off-gas (fuel off-gas) containing impurities in the circulation channel 23 are externally provided. It is to be discharged (purged). When the exhaust / drain valve 31 is opened, the concentration of impurities in the hydrogen off-gas in the circulation passage 23 decreases and the concentration of hydrogen in the hydrogen off-gas supplied in circulation increases. An upstream pressure sensor 32 and a downstream pressure sensor 33 for detecting the pressure of the hydrogen off gas are provided at the upstream position (on the circulation flow path 23) and the downstream position (on the exhaust drain flow path 25) of the exhaust drain valve 31, respectively. It has been.
 排気排水流路25はその下流において希釈器34に連通している。さらにこの希釈器34には排気流路(酸化オフガス排出路)12がその下流において連通しており、水素オフガスを酸化オフガスによって混合希釈した後にシステム外に排気するように構成されている。 The exhaust / drain passage 25 communicates with the diluter 34 downstream thereof. Further, an exhaust passage (oxidation off gas discharge passage) 12 communicates with the diluter 34 downstream thereof, and is configured to exhaust the hydrogen off gas outside the system after being mixed and diluted with the oxidation off gas.
 冷媒配管系5は、燃料電池2内の冷却流路に連通する冷媒流路41と、冷媒流路41に設けられた冷却ポンプ42と、燃料電池2から排出される冷媒を冷却するラジエータ43と、燃料電池2から排出される冷媒の温度を検出する温度センサ44と、を有している。冷却ポンプ42は、モータ(図示省略)の駆動により、冷媒流路41内の冷媒を燃料電池2に循環供給する。温度センサ44で検出された冷媒の温度(=燃料電池2から排出される水素オフガスの温度)は、後述するパージ制御に用いられる。 The refrigerant piping system 5 includes a refrigerant channel 41 communicating with the cooling channel in the fuel cell 2, a cooling pump 42 provided in the refrigerant channel 41, and a radiator 43 that cools the refrigerant discharged from the fuel cell 2. And a temperature sensor 44 for detecting the temperature of the refrigerant discharged from the fuel cell 2. The cooling pump 42 circulates and supplies the refrigerant in the refrigerant passage 41 to the fuel cell 2 by driving a motor (not shown). The temperature of the refrigerant detected by the temperature sensor 44 (= temperature of hydrogen off-gas discharged from the fuel cell 2) is used for purge control described later.
 電力系6は、高圧DC/DCコンバータ61、バッテリ62、トラクションインバータ63、トラクションモータ64、図示されていない各種の補機インバータ等を備えている。高圧DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62から入力された直流電圧を調整してトラクションインバータ63側に出力する機能と、燃料電池2またはトラクションモータ64から入力された直流電圧を調整してバッテリ62に出力する機能と、を有する。このような高圧DC/DCコンバータ61の機能により、バッテリ62の充放電が実現される。また、高圧DC/DCコンバータ61により、燃料電池2の出力電圧が制御される。 The power system 6 includes a high-voltage DC / DC converter 61, a battery 62, a traction inverter 63, a traction motor 64, various auxiliary inverters not shown, and the like. The high-voltage DC / DC converter 61 is a direct-current voltage converter, which adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current input from the fuel cell 2 or the traction motor 64. And a function of adjusting the voltage and outputting it to the battery 62. With such a function of the high voltage DC / DC converter 61, charging / discharging of the battery 62 is realized. Further, the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 61.
 バッテリ62は、バッテリセルが積層されて一定の高電圧を端子電圧とし、図示しないバッテリコンピュータの制御によって余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば三相交流モータであり、燃料電池システム1が搭載される燃料電池車両の主動力源を構成する。 The battery 62 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and surplus power can be charged or power can be supplementarily supplied under the control of a battery computer (not shown). The traction inverter 63 converts a direct current into a three-phase alternating current and supplies it to the traction motor 64. The traction motor 64 is, for example, a three-phase AC motor, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
 制御部(制御装置)7は、車両に設けられた加速用の操作部材(アクセル等)の操作量を検出し、加速要求値(例えばトラクションモータ64等の負荷装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、負荷装置には、トラクションモータ64のほかに、燃料電池2を作動させるために必要な補機装置(例えばエアコンプレッサ14、水素ポンプ24、冷却ポンプ42の各モータ等)、車両の走行に関与する各種装置(変速機、車輪制御部、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等を含む電力消費装置が含まれうる。 The control unit (control device) 7 detects an operation amount of an acceleration operation member (accelerator or the like) provided in the vehicle, and requests an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 64). Receives control information and controls the operation of various devices in the system. In addition to the traction motor 64, the load device includes auxiliary devices (for example, motors for the air compressor 14, the hydrogen pump 24, the cooling pump 42, etc.) necessary for operating the fuel cell 2, and traveling of the vehicle. Electric power consuming devices including actuators used in various devices involved (transmission, wheel control unit, steering device, suspension device, etc.), air conditioners (air conditioners) in the passenger space, lighting, audio, and the like can be included.
 このような制御部7は、図示していないコンピュータシステムによって構成されている。かかるコンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェースおよびディスプレイ等を備えるものであり、ROMに記録された各種制御プログラムをCPUが読み込んで所望の演算を実行することによりフィードバック制御やパージ制御など種々の処理や制御を行う。 Such a control unit 7 is configured by a computer system (not shown). Such a computer system is provided with a CPU, ROM, RAM, HDD, input / output interface, display, and the like. The CPU reads various control programs recorded in the ROM and executes desired calculations to perform feedback control and purge. Various processes and controls such as control are performed.
 続いて、以上のような燃料電池システム1の酸化ガス配管系3の構成をより詳細に示す(図1、図2(A)、図2(B)参照)。 Subsequently, the configuration of the oxidizing gas piping system 3 of the fuel cell system 1 as described above is shown in more detail (see FIGS. 1, 2A, and 2B).
 燃料電池システム1の酸化ガス配管系3には、エア供給流路(酸化ガス供給路)11と排気流路(酸化オフガス排出路)12とを結ぶエアバイパス流路8が設けられている。また、エアバイパス流路8には、当該エアバイパス流路8を開閉するエアバイパスバルブ17が設けられている(図1参照)。 The oxidant gas piping system 3 of the fuel cell system 1 is provided with an air bypass passage 8 connecting an air supply passage (oxidation gas supply passage) 11 and an exhaust passage (oxidation off-gas discharge passage) 12. The air bypass channel 8 is provided with an air bypass valve 17 that opens and closes the air bypass channel 8 (see FIG. 1).
 また、エア供給流路11にはエア入口シャットバルブ(酸化ガス供給路遮断弁)18、排気流路12にはエア出口シャットバルブ(酸化オフガス排出路遮断弁)19がそれぞれ設けられている(図1参照)。エア入口シャットバルブ18はエア供給流路11を遮断する遮断弁であり、エア出口シャットバルブ19は排気流路12を遮断する遮断弁である。これら各種弁(エアバイパスバルブ17、エア入口シャットバルブ18、エア出口シャットバルブ19)の開度を調整することにより、エア供給流路11およびエアバイパス流路8を流れる酸化ガスの流量(流量比)を調整し、燃料電池2への酸化ガスの供給量を適宜変えることができる。 The air supply passage 11 is provided with an air inlet shut-off valve (oxidation gas supply passage cutoff valve) 18, and the exhaust passage 12 is provided with an air outlet shut-off valve (oxidation off-gas discharge passage cutoff valve) 19 (see FIG. 1). The air inlet shut-off valve 18 is a shut-off valve that shuts off the air supply passage 11, and the air outlet shut-off valve 19 is a shut-off valve that shuts off the exhaust passage 12. By adjusting the opening degree of these various valves (the air bypass valve 17, the air inlet shut valve 18, and the air outlet shut valve 19), the flow rate of the oxidizing gas (flow rate ratio) flowing through the air supply flow path 11 and the air bypass flow path 8 is adjusted. ) And the supply amount of the oxidizing gas to the fuel cell 2 can be appropriately changed.
 エア入口シャットバルブ18は、ダイアフラム18aに加わる流体圧力の大きさに応じてポペット弁18bの開度を調節するガス圧駆動式のバルブである。このエア入口シャットバルブ18では、エアコンプレッサ14によって加圧された酸化ガスを分岐路11aを介し調圧室に送り込んでダイアフラム18aを押し上げ、ポペット弁18bを押し上げることによってバルブを開ける(図2(A)、図2(B)参照)。 The air inlet shut valve 18 is a gas pressure driven valve that adjusts the opening of the poppet valve 18b in accordance with the magnitude of the fluid pressure applied to the diaphragm 18a. In the air inlet shut-off valve 18, the oxidizing gas pressurized by the air compressor 14 is sent to the pressure regulating chamber through the branch passage 11a, the diaphragm 18a is pushed up, and the poppet valve 18b is pushed up to open the valve (FIG. 2A). ), See FIG.
 続いて、以上のような燃料電池システム1の起動時における開弁時の加圧制御について説明する(図3等参照)。 Subsequently, the pressurization control at the time of opening of the fuel cell system 1 as described above will be described (see FIG. 3 and the like).
<第1の実施形態>
 本実施形態では、燃料電池システム1の起動時、エアバイパスバルブ17およびエア入口シャットバルブ18を閉じておいたままエアコンプレッサ14を駆動し、エア入口シャットバルブ18の上流側の圧力Pが所定値P1の開弁圧に達した時点で当該エア入口シャットバルブ18を開弁することとしている。所定値P1とは、エア入口シャットバルブ18の開弁時の動作が不安定にならず、尚かつ起動性に劣らない範囲内でエア供給系(酸化ガス配管系3)が過加圧になることがない程度の値である。
<First Embodiment>
In this embodiment, when the fuel cell system 1 is started, the air compressor 14 is driven while the air bypass valve 17 and the air inlet shut valve 18 are closed, and the pressure P on the upstream side of the air inlet shut valve 18 is a predetermined value. It is set to be open the air inlet shutoff valve 18 when it reaches the valve opening pressure of P 1. The predetermined value P 1 means that the air supply system (oxidizing gas piping system 3) is overpressurized within a range in which the operation when the air inlet shut valve 18 is opened is not unstable and the startability is not inferior. It is a value that does not become.
 手順を説明すると以下のとおりである。まず、システム起動時にエアコンプレッサ14を駆動してx[rpm]で回転させる。その後、エア入口シャットバルブ18の上流側圧力Pが徐々に上昇するのでこれをエア圧力センサ20で検出し、所定値P1となったところでエアバイパスバルブ17を徐々に開けていく。このとき、本実施形態では、それまで徐々に上昇していたエアシャットバルブ18の上流側圧力が所定圧となるように調整しながらエアバイパスバルブ17の開度を大きくする(図3参照)。この後、エアバイパスバルブ17の開度が所定値となり、加圧が完了したところで当該エアバイパスバルブ17を閉じ、これと同時にエア入口シャットバルブ18を開ける。このとき、エア入口シャットバルブ18の上流側圧力Pの値が少し低下する。なお、本実施形態では、エア出口シャットバルブ19をエア入口シャットバルブ18と同様に動作させている。 The procedure is as follows. First, the air compressor 14 is driven and rotated at x [rpm] when the system is started. Then, detected by the air pressure sensor 20 this because the upstream pressure P of the air inlet shutoff valve 18 is gradually increased, will gradually opened air bypass valve 17 upon reaching a predetermined value P 1. At this time, in the present embodiment, the opening degree of the air bypass valve 17 is increased while adjusting the upstream pressure of the air shut valve 18 that has been gradually increased so as to become a predetermined pressure (see FIG. 3). Thereafter, the opening degree of the air bypass valve 17 reaches a predetermined value, and when the pressurization is completed, the air bypass valve 17 is closed, and at the same time, the air inlet shut valve 18 is opened. At this time, the value of the upstream pressure P of the air inlet shut valve 18 slightly decreases. In this embodiment, the air outlet shut valve 19 is operated in the same manner as the air inlet shut valve 18.
 このように、本実施形態では、システム起動時にエア入口シャットバルブ18を開ける際、まずはエアバイパスバルブ17を閉じておき、加圧完了(本実施形態の場合であれば、エアバイパスバルブ17を十分に開けてもエア入口シャットバルブ18の上流側の圧力Pが所定値P1に達する状態となること)後にこのエアバイパスバルブ17を開けるようにしている。起動時にエアバイパスバルブ17を閉じておくことで、エア入口シャットバルブ18の上流側圧力Pが開弁圧に至るまでの加圧時間を短縮し、尚かつ消費電力を低減することが可能となる。また、エアバイパスバルブ17を通過する際の気流音をなくすことができるため、NV(騒音・振動)を改善できる。 As described above, in this embodiment, when opening the air inlet shut-off valve 18 at the time of starting the system, the air bypass valve 17 is first closed and pressurization is completed (in the case of this embodiment, the air bypass valve 17 is sufficient). the pressure P of the upstream side of the air inlet shutoff valve 18 is also opened to is to open a predetermined value P to a state of reaching 1) later the air bypass valve 17. By closing the air bypass valve 17 at the time of start-up, it is possible to shorten the pressurization time until the upstream pressure P of the air inlet shut valve 18 reaches the valve opening pressure, and to reduce power consumption. . Further, since airflow noise when passing through the air bypass valve 17 can be eliminated, NV (noise / vibration) can be improved.
<第2の実施形態>
 本実施形態では、上述した第1の実施形態において、加圧完了後からの経過時間がしきい値を超えたらダイアグノーシス信号を出し、エア入口シャットバルブ18の開弁動作を停止する。例示すれば、加圧完了からt秒の間圧力Pを所定値に保持してもエア入口シャットバルブ18が開かなければ以降の加圧動作、開弁動作を停止する。例えば本実施形態では、加圧完了から所定時間(例えばt秒)が経過してもエア入口シャットバルブ18が開かなければ閉固着状態、つまり何らかの原因によりポペット弁18bが閉じた状態のまま動かない状態(故障状態)にあると判断し、加圧動作、開弁動作を停止する(図4参照)。
<Second Embodiment>
In the present embodiment, in the first embodiment described above, when the elapsed time after the completion of pressurization exceeds the threshold value, a diagnosis signal is issued and the valve opening operation of the air inlet shut valve 18 is stopped. For example, if the air inlet shut-off valve 18 does not open even if the pressure P is kept at a predetermined value for t seconds after completion of pressurization, the subsequent pressurization operation and valve opening operation are stopped. For example, in this embodiment, even if a predetermined time (for example, t seconds) elapses from the completion of pressurization, if the air inlet shut-off valve 18 is not opened, it is closed and stuck, that is, the poppet valve 18b remains closed for some reason. It is determined that it is in a state (failure state), and the pressurizing operation and the valve opening operation are stopped (see FIG. 4).
<第3の実施形態>
 本実施形態では、加圧動作、閉弁動作中、エアコンプレッサ14の回転数が所定値を超えないように制御する。具体的には、加圧動作、開弁動作中においてエアコンプレッサ14の回転数を一定にし、エア入口シャットバルブ18の上流側圧力Pがある値を超えることがないよう、エアコンプレッサ14での流体の漏れを利用して調圧する。例えば本実施形態では、エアコンプレッサ14の回転数y(>x)[rpm]が、耐圧しきい値ないしは圧力しきい値よりも高くならないよう制御しながら加圧動作を行う(図5参照)。このとき、圧力Pが上昇するとともにエアコンプレッサ14の効率が低下し、回転数に対する圧力上昇は一意的に定まる。
<Third Embodiment>
In the present embodiment, control is performed so that the rotation speed of the air compressor 14 does not exceed a predetermined value during the pressurizing operation and the valve closing operation. Specifically, during the pressurization operation and the valve opening operation, the rotation speed of the air compressor 14 is made constant so that the upstream side pressure P of the air inlet shut valve 18 does not exceed a certain value. Adjust pressure using the leakage of For example, in this embodiment, the pressurizing operation is performed while controlling the rotation speed y (> x) [rpm] of the air compressor 14 so as not to be higher than the pressure threshold value or the pressure threshold value (see FIG. 5). At this time, the pressure P increases and the efficiency of the air compressor 14 decreases, and the pressure increase with respect to the rotational speed is uniquely determined.
<第4の実施形態>
 本実施形態では、エアコンプレッサ14の回転数をさらに制御することによって調圧制御を行う。以下では3つの具体例を挙げてこの第4の実施形態を説明する。
<Fourth Embodiment>
In the present embodiment, pressure regulation control is performed by further controlling the rotation speed of the air compressor 14. Hereinafter, the fourth embodiment will be described with three specific examples.
(1)上述した第3の実施形態において、エア入口シャットバルブ18の上流側の圧力Pが所定値P1に達した後、エアコンプレッサ14の回転数を一定割合で下げる(図6参照)。加圧後、エアコンプレッサ14の回転数を一定割合でゼロに向け下げることで、エアコンプレッサ14やその他の構成の個体差によらず圧力Pの上昇量を抑え、所定値P1に保持する際の精度をさらに向上させることが可能となる。この場合において、エアコンプレッサ14の回転数がゼロになっても、エア入口シャットバルブ18が開かない状態のまま所定時間が経過すれば、開弁動作を停止し、ダイアグノーシス信号を出して終了する。 (1) In the third embodiment described above, after the pressure P of the upstream side of the air inlet shut valve 18 has reached a predetermined value P 1, lowers the rotational speed of the air compressor 14 at a constant rate (see FIG. 6). After pressurization, when the rotational speed of the air compressor 14 is lowered to zero at a constant rate, the increase amount of the pressure P is suppressed regardless of individual differences in the air compressor 14 and other components, and is kept at a predetermined value P 1. It is possible to further improve the accuracy. In this case, even if the rotation speed of the air compressor 14 becomes zero, if a predetermined time elapses without the air inlet shut-off valve 18 being opened, the valve opening operation is stopped, and a diagnosis signal is output to end. .
(2)上記(1)において、エアコンプレッサ14の回転数を圧力Pの値で制御することも好ましい。この場合、エア圧力センサ20による圧力Pの検出結果に基づいてエアコンプレッサ14の回転数を制御し、圧力Pを所定値P1に保持する。エア圧力センサ20による検出結果をフィードバックすることにより、開弁時の圧力を所定値P1に保持する際の精度が向上する。 (2) In the above (1), it is also preferable to control the rotation speed of the air compressor 14 with the value of the pressure P. In this case, by controlling the rotational speed of the air compressor 14 based on the detection result of the pressure P by the air pressure sensor 20, to maintain the pressure P to a predetermined value P 1. By feeding back the detection result of the air pressure sensor 20, thereby improving the accuracy in maintaining the pressure at the valve opening to a predetermined value P 1.
(3)上記(1)において、エア入口シャットバルブ18の上流側の圧力Pが所定値P1に達した後、エア流量がゼロになるようにエアコンプレッサ14の回転数を低下させる(図7参照)。こうした場合にも、エアコンプレッサ14やその他の構成の個体差によらず圧力Pの上昇量を抑え、所定値P1に保持する際の精度をさらに向上させることが可能となる。 (3) In the above (1), after the pressure P of the upstream side of the air inlet shut valve 18 has reached a predetermined value P 1, reducing the rotational speed of the air compressor 14 as the air flow rate becomes zero (FIG. 7 reference). Even in such a case, it is possible to suppress the increase amount of the pressure P regardless of the individual differences of the air compressor 14 and other components and further improve the accuracy when the pressure P is maintained at the predetermined value P 1 .
<第5の実施形態>
 ここまで説明した起動時における開弁時の加圧制御中、エア入口シャットバルブ18のダイアフラム18aの上下に交互にエアを供給して加圧することも好ましい。エア入口シャットバルブ18の上流側の圧力Pを所定値P1に達するまで加圧した後、ダイアフラム18aに対し上下方向に外力を作用させることによって、エア入口シャットバルブ18をできるだけ速やかに開弁させることが可能となる(図8(A)、図8(B)参照)。ダイアフラム18aの上下へエア供給する際の切換えは、例えば分岐路11aに設けた三方弁11bを用いて行うことができる(図8(A)、図8(B)参照)。
<Fifth Embodiment>
It is also preferable to pressurize by alternately supplying air to the upper and lower sides of the diaphragm 18a of the air inlet shut-off valve 18 during the pressurization control at the time of valve opening at the time of start-up described so far. After the pressure P on the upstream side of the air inlet shut valve 18 is increased until it reaches a predetermined value P 1 , an external force is applied to the diaphragm 18a in the vertical direction to open the air inlet shut valve 18 as quickly as possible. (See FIGS. 8A and 8B). Switching when supplying air up and down the diaphragm 18a can be performed using, for example, a three-way valve 11b provided in the branch path 11a (see FIGS. 8A and 8B).
 以上説明したように、上述の各実施形態の燃料電池システム1においては、エア供給系の圧力(具体的にはエア入口シャットバルブ18の上流側の圧力P)が十分な圧力(開弁圧)に達してからエア入口シャットバルブ18を開弁する制御を行うことから、当該エア入口シャットバルブ18の開弁が不安定になって起動性が悪くなったり、開弁時に異音が発生したりすることを抑制することができる。しかも、この場合、燃料電池システム1の起動時にエアバイパスバルブ17を閉じておくことにより、エア入口シャットバルブ18の上流側圧力Pが開弁圧に至るまでの加圧時間を短縮し、尚かつ消費電力を低減することも可能である。 As described above, in the fuel cell system 1 of each of the above-described embodiments, the pressure of the air supply system (specifically, the pressure P on the upstream side of the air inlet shut valve 18) is sufficient (valve opening pressure). Since the control to open the air inlet shut-off valve 18 is performed after reaching the value, the opening of the air inlet shut-off valve 18 becomes unstable and the startability becomes worse, or abnormal noise is generated when the valve is opened. Can be suppressed. Moreover, in this case, by closing the air bypass valve 17 when the fuel cell system 1 is started, the pressurization time until the upstream side pressure P of the air inlet shut valve 18 reaches the valve opening pressure is shortened, and It is also possible to reduce power consumption.
 また、上述した各実施形態の燃料電池システム1においては、当該燃料電池システム1の起動時に単にエア入口シャットバルブ18およびエアバイパスバルブ17を閉弁して加圧するのではなく、加圧動作、開弁動作時に、上流側圧力Pがある値を超えないように制御するため、エア供給系(酸化ガス配管系3)が過加圧になるおそれがない。 Further, in the fuel cell system 1 of each of the above-described embodiments, when the fuel cell system 1 is started, the air inlet shut valve 18 and the air bypass valve 17 are not simply closed and pressurized, but the pressurizing operation and opening are not performed. Since the upstream pressure P is controlled so as not to exceed a certain value during the valve operation, there is no possibility that the air supply system (oxidizing gas piping system 3) is over-pressurized.
 なお、上述した実施形態は本発明の好適な実施例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態では、主としてエア入口シャットバルブ18を対象とした開弁動作についてのみ説明したが、エア出口シャットバルブ19についてはエア入口シャットバルブ18と同様の動作をさせることができる。 The above-described embodiment is a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in this embodiment, only the valve opening operation mainly for the air inlet shut valve 18 has been described, but the air outlet shut valve 19 can be operated in the same manner as the air inlet shut valve 18.
 また、ここまで説明した起動時における開弁時の加圧制御中、圧力を脈動させることも好ましい。エア入口シャットバルブ18の上流側の圧力Pを所定値P1に達するまで加圧した後、圧力を脈動させることによって、エア入口シャットバルブ18をできるだけ速やかに開弁させることが可能となる。圧力の脈動は、例えばエアコンプレッサ14の回転数を脈動させたり、エアバイパスバルブ17の弁を細かく動作させたりすることによって行うことができる。 In addition, it is also preferable to pulsate the pressure during the pressurization control at the time of opening the valve at the time of startup described so far. After the pressure P on the upstream side of the air inlet shut valve 18 is increased until it reaches a predetermined value P 1 , the air inlet shut valve 18 can be opened as quickly as possible by pulsing the pressure. The pressure pulsation can be performed, for example, by pulsating the rotation speed of the air compressor 14 or by finely operating the valve of the air bypass valve 17.
 本発明は、エア供給流路に設けられたエアシャットバルブとエアコンプレッサとを備えた燃料電池システムに適用して好適なものである。 The present invention is suitable for application to a fuel cell system including an air shut valve and an air compressor provided in an air supply channel.
1…燃料電池システム、2…燃料電池、8…エアバイパス流路、11…エア供給流路、12…エア排気流路、14…エアコンプレッサ、17…エアバイパスバルブ、18…エア入口シャットバルブ(エアシャットバルブ)、18a…(エア入口シャットバルブの)ダイアフラム DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel cell, 8 ... Air bypass flow path, 11 ... Air supply flow path, 12 ... Air exhaust flow path, 14 ... Air compressor, 17 ... Air bypass valve, 18 ... Air inlet shut-off valve ( Air shut valve), 18a ... Diaphragm (for air inlet shut valve)

Claims (8)

  1.  エア供給流路に設けられたエアシャットバルブとエアコンプレッサとを備えた燃料電池システムにおいて、
     当該燃料電池システムの起動時に、前記エアコンプレッサを駆動し、前記エアシャットバルブの上流側の圧力が所定圧力に達した時点またはその後の時点で前記エアシャットバルブを開弁させる制御装置を備える、燃料電池システム。
    In a fuel cell system including an air shut valve and an air compressor provided in an air supply flow path,
    A fuel that includes a control device that drives the air compressor when the fuel cell system is started and opens the air shut valve at a time point when the pressure on the upstream side of the air shut valve reaches a predetermined pressure; Battery system.
  2.  前記エア供給流路と排気流路とを結ぶエアバイパス流路にエアバイパスバルブを備え、前記エアシャットバルブの開弁までの間、前記エアバイパスバルブの上流側の圧力を制御する、請求項1に記載の燃料電池システム。 The air bypass valve is provided in an air bypass flow path connecting the air supply flow path and the exhaust flow path, and the pressure on the upstream side of the air bypass valve is controlled until the air shut valve opens. The fuel cell system described in 1.
  3.  前記エアシャットバルブの開弁までの間、前記エアバイパスバルブを制御する、請求項2に記載の燃料電池システム。 The fuel cell system according to claim 2, wherein the air bypass valve is controlled until the air shut valve opens.
  4.  前記エアシャットバルブの開弁までの間、前記エアコンプレッサを制御する、請求項2または3に記載の燃料電池システム。 4. The fuel cell system according to claim 2, wherein the air compressor is controlled until the air shut valve is opened.
  5.  前記エアシャットバルブの開弁までの間、エアの圧力を脈動させる、請求項1から4のいずれか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the air pressure is pulsated until the air shut valve opens.
  6.  前記エアシャットバルブの開弁までの間、前記エアシャットバルブのダイアフラムの上下に交互にエアを供給して加圧する、請求項1から4のいずれか一項に記載の燃料電池システム。 5. The fuel cell system according to any one of claims 1 to 4, wherein air is alternately supplied and pressurized up and down the diaphragm of the air shut valve until the air shut valve opens.
  7.  前記エアシャットバルブの上流側の圧力が所定圧力に達した時点から所定時間経過しても該エアシャットバルブが動作しない場合に当該エアシャットバルブの故障を検出する、請求項1から5のいずれか一項に記載の燃料電池システム。 6. The failure of the air shut valve is detected when the air shut valve does not operate even if a predetermined time elapses after the pressure on the upstream side of the air shut valve reaches the predetermined pressure. The fuel cell system according to one item.
  8.  エア供給流路に設けられたエアシャットバルブとエアコンプレッサとを備えた燃料電池システムの起動時における開弁動作の制御方法において、
     前記エアコンプレッサを駆動し、前記エアシャットバルブの上流側の圧力が所定圧力に達した時点またはその後の時点で前記エアシャットバルブを開弁する、燃料電池システムの起動時における開弁動作の制御方法。
    In the control method of the valve opening operation at the time of starting the fuel cell system including the air shut valve provided in the air supply flow path and the air compressor,
    A control method of valve opening operation at the time of start-up of a fuel cell system, wherein the air compressor is driven, and the air shut valve is opened when the pressure on the upstream side of the air shut valve reaches a predetermined pressure or after that .
PCT/JP2009/006883 2008-12-17 2009-12-15 Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated WO2010070881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008320716A JP2010146788A (en) 2008-12-17 2008-12-17 Fuel cell system and control method of valve-opening operation at starting
JP2008-320716 2008-12-17

Publications (1)

Publication Number Publication Date
WO2010070881A1 true WO2010070881A1 (en) 2010-06-24

Family

ID=42268561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006883 WO2010070881A1 (en) 2008-12-17 2009-12-15 Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated

Country Status (2)

Country Link
JP (1) JP2010146788A (en)
WO (1) WO2010070881A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206375B2 (en) * 2014-11-12 2017-10-04 トヨタ自動車株式会社 Fuel cell system and vehicle equipped with fuel cell
JP6465408B2 (en) * 2016-01-15 2019-02-06 トヨタ自動車株式会社 Fuel cell system
JP6726393B2 (en) * 2017-02-24 2020-07-22 トヨタ自動車株式会社 Fuel cell system
JP7299196B2 (en) 2020-06-12 2023-06-27 トヨタ自動車株式会社 fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443975U (en) * 1987-09-11 1989-03-16
JP2005100967A (en) * 2003-09-05 2005-04-14 Nissan Motor Co Ltd Fuel cell system
WO2008111659A1 (en) * 2007-03-09 2008-09-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008243762A (en) * 2007-03-29 2008-10-09 Toyota Motor Corp Fuel cell system
JP2008243764A (en) * 2007-03-29 2008-10-09 Toyota Motor Corp Fuel cell system
WO2008132948A1 (en) * 2007-04-18 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443975A (en) * 1987-08-10 1989-02-16 Toshiba Corp Pressure boosting operation method for fuel cell generator system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443975U (en) * 1987-09-11 1989-03-16
JP2005100967A (en) * 2003-09-05 2005-04-14 Nissan Motor Co Ltd Fuel cell system
WO2008111659A1 (en) * 2007-03-09 2008-09-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008243762A (en) * 2007-03-29 2008-10-09 Toyota Motor Corp Fuel cell system
JP2008243764A (en) * 2007-03-29 2008-10-09 Toyota Motor Corp Fuel cell system
WO2008132948A1 (en) * 2007-04-18 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP2010146788A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
KR101811107B1 (en) Fuel cell system and method for discharging fluid in the system
JP5224082B2 (en) Fuel cell system and drainage control method thereof
JP4993293B2 (en) Fuel cell system and moving body
JP5446023B2 (en) Fuel cell system
WO2006112427A1 (en) Fuel cell system, operation method thereof, and fuel cell vehicle
JP2007305563A (en) Fuel cell system, and method for estimating exhaust gas amount
JP2008130442A (en) Fuel cell system
WO2010070881A1 (en) Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated
JP5077636B2 (en) Fuel cell system
JP5168821B2 (en) Fuel cell system
JP2008084603A (en) Fuel cell system and its purging method
JP5013171B2 (en) Fuel cell system
JP2008293761A (en) Fuel cell system
JP5136874B2 (en) Fuel cell system and exhaust valve abnormality determination method
JP5109280B2 (en) Fuel cell system
JP5151185B2 (en) Fuel cell system and scavenging method thereof
JP2008196596A (en) Solenoid valve
JP5164020B2 (en) Fuel cell system and starting method thereof
JP5110347B2 (en) Fuel cell system and its stop processing method
JP4941641B2 (en) Fuel cell system
JP5041215B2 (en) FUEL CELL SYSTEM AND ITS START-UP COMPLETION LEVEL DISPLAY METHOD
JP5141893B2 (en) Fuel cell system
JP2008282778A (en) Fuel cell system and scavenging processing method for fuel cell
JP2009140658A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833189

Country of ref document: EP

Kind code of ref document: A1