JP2009167968A - Air-fuel ratio control device and air-fuel ratio control method - Google Patents

Air-fuel ratio control device and air-fuel ratio control method Download PDF

Info

Publication number
JP2009167968A
JP2009167968A JP2008009056A JP2008009056A JP2009167968A JP 2009167968 A JP2009167968 A JP 2009167968A JP 2008009056 A JP2008009056 A JP 2008009056A JP 2008009056 A JP2008009056 A JP 2008009056A JP 2009167968 A JP2009167968 A JP 2009167968A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
neural network
engine
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009056A
Other languages
Japanese (ja)
Other versions
JP4930389B2 (en
Inventor
Shunichi Hirao
俊一 平尾
Katsuhiko Miyamoto
勝彦 宮本
Masayuki Yamashita
正行 山下
Kenji Goshima
賢司 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008009056A priority Critical patent/JP4930389B2/en
Publication of JP2009167968A publication Critical patent/JP2009167968A/en
Application granted granted Critical
Publication of JP4930389B2 publication Critical patent/JP4930389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-fuel ratio control device and an air-fuel ratio control method capable of reducing exhaust emission by inhibiting slippage between an air-fuel ratio during actual travel and an estimated air-fuel ratio calculated by using a neural network. <P>SOLUTION: When the estimated air-fuel ratio A/F_n is calculated by inputting a plurality of physical quantity data indicating the state of an engine 1 to the neural network 34 and the air-fuel ratio during a cold start is controlled based on the calculated estimated air-fuel ratio A/F_n, the physical quantity data are accumulated if a difference between the estimated air-fuel ratio A/F_n and the actual air-fuel ratio A/F is larger than a preset prescribed value, and the accumulated physical quantity is inputted to the neural network 34 to make the neural network 34 relearn during an engine stop. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空燃比制御装置及び空燃比制御方法に関し、とくに冷態始動時にニューラルネットワークを用いて空燃比の制御を行う空燃比制御装置及び空燃比制御方法に関する。   The present invention relates to an air-fuel ratio control device and an air-fuel ratio control method, and more particularly to an air-fuel ratio control device and an air-fuel ratio control method that control an air-fuel ratio using a neural network at the time of cold start.

従来、自動車からの排出ガスを低減するために、冷態始動直後からO2センサ、リニア空燃比センサ(LAFS)等の空燃比センサによって検出した値を燃料噴射量にフィードバックして空燃比(A/F)を制御できるようにすることが望まれている。しかし、このような制御を実現するためには始動時に空燃比センサが活性化している必要がある。空燃比センサを早期に活性化させる手段としては空燃比センサのプリヒートが公知であるが、条件によってはプリヒートによる空燃比センサの活性化が始動に間に合わない場合も多い。   Conventionally, in order to reduce exhaust gas from an automobile, a value detected by an air-fuel ratio sensor such as an O2 sensor or a linear air-fuel ratio sensor (LAFS) immediately after the cold start is fed back to the fuel injection amount and the air-fuel ratio (A / It is desired to be able to control F). However, in order to realize such control, the air-fuel ratio sensor needs to be activated at the time of starting. As a means for activating the air-fuel ratio sensor at an early stage, preheating of the air-fuel ratio sensor is known, but depending on the conditions, activation of the air-fuel ratio sensor by preheating is often not in time for starting.

このような中、冷態始動直後の空燃比制御として、エンジンの状態を表す低温時でも測定可能な複数の物理量の検出を行い、検出された物理量をパラメータとしてこの物理量と空燃比との関係をニューラルネットワーク(NN)に学習させ、その結果を利用して適切な空燃比制御を行うようにした空燃比制御装置が提案されている(例えば、特許文献1参照)。   Under such circumstances, as the air-fuel ratio control immediately after the cold start, a plurality of physical quantities that can be measured even at low temperatures representing the state of the engine are detected, and the relationship between the physical quantity and the air-fuel ratio is detected using the detected physical quantities as parameters. There has been proposed an air-fuel ratio control apparatus that learns from a neural network (NN) and performs appropriate air-fuel ratio control using the result (see, for example, Patent Document 1).

特開平10−176578号公報JP-A-10-176578

しかしながら、上述したようなニューラルネットワークを利用した空燃比制御にあっても、例えば、経年劣化等の影響によって物理量と空燃比との関係が変化する等により、ニューラルネットワークを用いて算出した推定空燃比と、実際の走行において測定される空燃比との間にズレが生じる可能性を否定できず、推定空燃比と実走行時の空燃比との間にズレが生じた場合、冷態始動時の空燃比制御の精度が低下し排出ガスを低減する効果が低下するおそれがあった。   However, even in the air-fuel ratio control using the above-described neural network, for example, the estimated air-fuel ratio calculated using the neural network is changed due to, for example, the relationship between the physical quantity and the air-fuel ratio being changed due to the influence of aging deterioration or the like. If there is a deviation between the estimated air-fuel ratio and the actual air-fuel ratio during actual driving, the possibility of a deviation between There is a possibility that the accuracy of air-fuel ratio control is lowered and the effect of reducing exhaust gas is lowered.

このようなことから本発明は、ニューラルネットワークを用いて算出した推定空燃比と実走行時の空燃比との間にズレが生じることを抑制し、排出ガスを低減することが可能な空燃比制御装置及び空燃比制御方法を提供することを目的とする。   For this reason, the present invention suppresses the occurrence of deviation between the estimated air-fuel ratio calculated using the neural network and the air-fuel ratio during actual traveling, and can reduce exhaust gas. An object is to provide an apparatus and an air-fuel ratio control method.

上記課題を解決する第1の発明に係る空燃比制御装置は、エンジンの状態を表す複数の物理量を検出する状態検出手段と、前記複数の物理量をパラメータとして入力しニューラルネットワークを用いて導出した推定空燃比に基づいて燃料噴射量を調整することにより空燃比を調整可能な空燃比調整手段とを備えた空燃比制御装置において、前記エンジンの実際の空燃比を検出する実空燃比検出手段と、前記実空燃比検出手段によって検出された実際の空燃比と前記推定空燃比との差が予め設定する所定値以上である場合にこのとき検出された前記複数の物理量のデータを蓄積するデータ蓄積手段と、前記エンジンが停止状態にあるときに前記データ蓄積手段に蓄積された前記物理量のデータを前記ニューラルネットワークに入力して該ニューラルネットワークに再学習を行わせるニューラルネットワーク学習手段とを備えたことを特徴とする。   An air-fuel ratio control apparatus according to a first aspect of the present invention for solving the above-mentioned problem is a state detection means for detecting a plurality of physical quantities representing an engine state, and an estimation derived using a neural network by inputting the plurality of physical quantities as parameters. An air-fuel ratio control device comprising an air-fuel ratio adjustment means capable of adjusting the air-fuel ratio by adjusting the fuel injection amount based on the air-fuel ratio; an actual air-fuel ratio detection means for detecting the actual air-fuel ratio of the engine; Data storage means for storing data of the plurality of physical quantities detected at this time when the difference between the actual air-fuel ratio detected by the actual air-fuel ratio detection means and the estimated air-fuel ratio is equal to or greater than a predetermined value set in advance. When the engine is in a stopped state, the physical quantity data stored in the data storage means is input to the neural network to input the new data. Characterized by comprising a neural network learning means to perform re-learning le network.

上記課題を解決する第2の発明に係る空燃比制御装置は、第1の発明において、前記状態検出手段が、少なくともエンジン回転数を検出するセンサと、吸入空気圧を検出するセンサと、エンジンの冷却水の水温を検出するセンサとを備えることを特徴とする。   An air-fuel ratio control apparatus according to a second invention for solving the above-described problems is the air fuel ratio control apparatus according to the first invention, wherein the state detection means includes at least a sensor for detecting engine speed, a sensor for detecting intake air pressure, and engine cooling. And a sensor for detecting the temperature of the water.

上記課題を解決する第3の発明に係る空燃比制御装置は、第1又は第2の発明において、前記空燃比調整手段が、前記状態検出手段によって検出された前記複数の物理量に基づいて燃料噴射量を算出する基本燃料噴射量演算手段と、前記ニューラルネットワークを用いて算出した前記推定空燃比の前記ニューラルネットワークを用いて直前に算出した前記推定空燃比に対する変化量に基づいて燃料噴射量の補正量を算出する補正量演算手段とを備えることを特徴とする。   An air-fuel ratio control apparatus according to a third aspect of the present invention for solving the above-mentioned problems is the fuel injection system according to the first or second aspect, wherein the air-fuel ratio adjusting means is based on the plurality of physical quantities detected by the state detecting means. A basic fuel injection amount calculating means for calculating an amount; and a correction of the fuel injection amount based on a change amount of the estimated air-fuel ratio calculated using the neural network with respect to the estimated air-fuel ratio calculated immediately before using the neural network And a correction amount calculating means for calculating the amount.

上記課題を解決する第4の発明に係る空燃比制御方法は、エンジンの状態を表す複数の物理量のデータを入力してニューラルネットワークを用いて推定空燃比を算出し、算出された前記推定空燃比に基づいて冷態始動時の空燃比の制御を行う空燃比制御方法において、前記推定空燃比と実際に検出した空燃比との差が予め設定する所定値より大きい場合に前記物理量のデータを蓄積し、エンジンが停止状態にあるときに蓄積した前記物理量をニューラルネットワークに入力して該ニューラルネットワークの再学習を行うことを特徴とする。   An air-fuel ratio control method according to a fourth aspect of the present invention for solving the above-described problem is to input a plurality of physical quantity data representing an engine state, calculate an estimated air-fuel ratio using a neural network, and calculate the estimated air-fuel ratio. In the air-fuel ratio control method for controlling the air-fuel ratio at the cold start based on the above, the physical quantity data is accumulated when the difference between the estimated air-fuel ratio and the actually detected air-fuel ratio is larger than a predetermined value set in advance. The physical quantity accumulated when the engine is stopped is input to a neural network, and the neural network is relearned.

上述した第1の発明に係る空燃比制御装置によれば、ニューラルネットワークを用いて冷態始動時における空燃比を調整可能な空燃比制御装置と、実空燃比検出手段によって検出された実際の空燃比と推定空燃比との差が予め設定する所定値以上である場合にこのとき検出された複数の物理量のデータを蓄積するデータ蓄積手段と、エンジンが停止状態にあるときにデータ蓄積手段に蓄積された物理量のデータをニューラルネットワークに入力して該ニューラルネットワークに再学習を行わせるニューラルネットワーク学習手段とを備えているため、経年劣化等により生じる実際の空燃比と推定空燃比との差が拡大することを再学習により効果的に防止して始動直後から高精度に空燃比のフィードバック制御を行い排出ガスを低減することができるとともに、エンジン停止中に再学習するため走行中にエンジンコントロールユニットにおける計算負荷が増加することを防止し、効率よくニューラルネットワークの再学習を実施することができる。   According to the air-fuel ratio control apparatus according to the first aspect described above, the air-fuel ratio control apparatus capable of adjusting the air-fuel ratio at the time of cold start using a neural network, and the actual air-fuel ratio detection means detected by the actual air-fuel ratio detection means. Data storage means for storing data of a plurality of physical quantities detected at this time when the difference between the fuel ratio and the estimated air-fuel ratio is greater than or equal to a predetermined value set in advance, and storage in the data storage means when the engine is stopped Since there is a neural network learning means for inputting the physical quantity data into the neural network and causing the neural network to perform relearning, the difference between the actual air-fuel ratio and the estimated air-fuel ratio caused by aged deterioration is increased. Effective re-learning to reduce the exhaust gas by performing air-fuel ratio feedback control with high accuracy immediately after starting. With wear, it is possible to prevent the calculation load in the engine control unit during travel to re-learned during the engine stop is increased, to implement the relearning efficiently neural network.

また、第2の発明に係る空燃比制御装置によれば、状態検出手段が、少なくともエンジン回転数を検出するセンサと、吸入空気圧を検出するセンサと、エンジンの冷却水の水温を検出するセンサとを備えるようにしたため、冷態始動直後から安定した情報を検出できるセンサを有効活用してニューラルネットワークを利用することにより高精度に空燃比を制御することができ、冷態始動時における排出ガスを低減することができる。   According to the air-fuel ratio control apparatus of the second invention, the state detection means includes at least a sensor for detecting the engine speed, a sensor for detecting the intake air pressure, and a sensor for detecting the coolant temperature of the engine. Therefore, it is possible to control the air-fuel ratio with high accuracy by using a neural network by effectively utilizing a sensor that can detect stable information immediately after the cold start, and the exhaust gas at the cold start can be reduced. Can be reduced.

また、第3の発明に係る空燃比制御装置によれば、空燃比調整手段が、状態検出手段によって検出された複数の物理量に基づいて燃料噴射量を算出する基本燃料噴射量演算手段と、ニューラルネットワークを用いて算出した推定空燃比のニューラルネットワークを用いて直前に算出した推定空燃比に対する変化量に基づいて燃料噴射量の補正量を算出する補正量演算手段とを備えるようにしたため、効率よく燃料噴射量を算出することができる。   Further, according to the air-fuel ratio control apparatus of the third invention, the air-fuel ratio adjusting means, the basic fuel injection amount calculating means for calculating the fuel injection quantity based on the plurality of physical quantities detected by the state detecting means, and the neural network A correction amount calculation means for calculating a correction amount of the fuel injection amount based on a change amount of the estimated air-fuel ratio calculated using the network with respect to the estimated air-fuel ratio calculated immediately before using the neural network is efficiently provided. The fuel injection amount can be calculated.

また、第4の発明に係る空燃比制御方法によれば、ニューラルネットワークを用いて冷態始動時における空燃比の制御を行う空燃比制御方法において、推定空燃比と実際に検出した空燃比との差が予め設定する所定値より大きい場合に物理量のデータを蓄積し、エンジンが停止状態にあるときに蓄積した物理量をニューラルネットワークに入力して該ニューラルネットワークの再学習を行うようにしたため、経年劣化等により生じる実際の空燃比と推定空燃比との差が拡大することを再学習により効果的に防止して始動直後から高精度に空燃比のフィードバック制御を行い排出ガスを低減することができるとともに、エンジン停止中に再学習するため走行中にエンジンコントロールユニットにおける計算負荷が増加することを防止し、効率よくニューラルネットワークの再学習を実施することができる。   According to the air-fuel ratio control method of the fourth invention, in the air-fuel ratio control method for controlling the air-fuel ratio at the time of cold start using a neural network, the estimated air-fuel ratio and the actually detected air-fuel ratio are Since physical quantity data is accumulated when the difference is larger than a predetermined value set in advance and the accumulated physical quantity is input to the neural network when the engine is stopped, the neural network is re-learned. It is possible to effectively prevent the difference between the actual air-fuel ratio and the estimated air-fuel ratio caused by, for example, by re-learning, and to reduce the exhaust gas by performing feedback control of the air-fuel ratio with high accuracy immediately after starting. In order to re-learn when the engine is stopped, the calculation load on the engine control unit is prevented from increasing while driving It is possible to carry out the re-learning of the neural network.

本発明の実施の形態を以下の実施例において詳細に説明する。   Embodiments of the present invention will be described in detail in the following examples.

図を用いて本発明の一実施例を説明する。図1は本実施例に係る空燃比制御装置の構成を示すブロック図、図2は本実施例に係る空燃比制御装置を示す概略構成図、図3は本実施例に係る空燃比制御装置の動作を表すフローチャート、図4は本実施例におけるニューラルネットワークの学習過程の一例を表す説明図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an air-fuel ratio control apparatus according to the present embodiment, FIG. 2 is a schematic configuration diagram showing an air-fuel ratio control apparatus according to the present embodiment, and FIG. 3 shows an air-fuel ratio control apparatus according to the present embodiment. FIG. 4 is an explanatory diagram showing an example of the learning process of the neural network in this embodiment.

図1に示すように、本実施例に係る空燃比制御装置は主にエンジン1の状態を検出する状態検出手段としての状態検出部2と、空燃比調整手段としてのエンジンコントロールユニット(ECU)3とから構成されている。   As shown in FIG. 1, the air-fuel ratio control apparatus according to this embodiment mainly includes a state detection unit 2 as a state detection unit that detects the state of the engine 1, and an engine control unit (ECU) 3 as an air-fuel ratio adjustment unit. It consists of and.

状態検出部2はエンジン1の状態を表す複数の物理量を検出する部分であり、本実施例では、図2に示すように、低温時でも検出可能な複数の物理量を検出する状態検出手段としてのクランク角センサ21、吸入空気圧センサ22、及び冷却水温センサ23と、実空燃比検出手段としての空燃比センサ(本実施例ではLAFS)24とを有して構成される。   The state detection unit 2 is a part that detects a plurality of physical quantities representing the state of the engine 1, and in this embodiment, as shown in FIG. 2, as a state detection unit that detects a plurality of physical quantities that can be detected even at low temperatures. A crank angle sensor 21, an intake air pressure sensor 22, a cooling water temperature sensor 23, and an air-fuel ratio sensor (LAFS in this embodiment) 24 as an actual air-fuel ratio detection means are configured.

ここで、クランク角センサ21はクランクシャフト11に設けられてエンジン回転数Neを検出するセンサ、吸入空気圧センサ22は吸気マニホールド12に設けられて吸入空気圧(インマニ圧力)Pbを検出するセンサ、冷却水温センサ23はウォータージャケット13に設けられてエンジン水温WTを検出するセンサ、空燃比センサ24は排気マニホールド14に設けられて排気中の酸素濃度を基に空燃比A/Fを検出するセンサである。   Here, the crank angle sensor 21 is provided on the crankshaft 11 to detect the engine speed Ne, the intake air pressure sensor 22 is provided on the intake manifold 12 to detect the intake air pressure (intake manifold pressure) Pb, and the cooling water temperature. A sensor 23 is provided in the water jacket 13 to detect the engine water temperature WT, and an air-fuel ratio sensor 24 is provided in the exhaust manifold 14 to detect the air-fuel ratio A / F based on the oxygen concentration in the exhaust.

また、エンジンコントロールユニット3は状態検出部2から入力された複数の物理量、即ち、上述した各種センサ21〜24によって検出したエンジン回転数Ne、吸入空気圧Pb、エンジン水温WT、及び空燃比A/Fを用いて、空燃比を所定の一定値に保つようなインジェクタパルス幅Pwを算出し、算出した結果をインジェクタ4へ出力する機能を備えている。インジェクタ4はエンジンコントロールユニット3から入力されたインジェクタパルス幅Pwに基づいてエンジン1内に燃料を噴射する(但し、空燃比センサ24の出力は該空燃比センサ24が活性化した後に実施される)。   The engine control unit 3 also receives a plurality of physical quantities input from the state detector 2, that is, the engine speed Ne, the intake air pressure Pb, the engine water temperature WT, and the air-fuel ratio A / F detected by the various sensors 21 to 24 described above. Is used to calculate an injector pulse width Pw that keeps the air-fuel ratio at a predetermined constant value, and outputs the calculated result to the injector 4. The injector 4 injects fuel into the engine 1 based on the injector pulse width Pw input from the engine control unit 3 (however, the output of the air-fuel ratio sensor 24 is performed after the air-fuel ratio sensor 24 is activated). .

より詳しく説明すると、本実施例においてエンジンコントロールユニット3は、上述した空燃比A/Fを所定の値に保つようなインジェクタパルス幅Pwを算出する手段として、基本インジェクタ駆動時間演算部31、学習データ蓄積部32、ニューラルネットワーク学習部33、ニューラルネットワーク34、空燃比補正量演算部35を備えている。   More specifically, in this embodiment, the engine control unit 3 uses the basic injector driving time calculation unit 31, learning data as means for calculating the injector pulse width Pw that keeps the above-mentioned air-fuel ratio A / F at a predetermined value. An accumulation unit 32, a neural network learning unit 33, a neural network 34, and an air-fuel ratio correction amount calculation unit 35 are provided.

基本インジェクタ駆動時間演算部31は、状態検出部2で各種センサ21〜24によって検出された物理量に基づき、マップを用いたフィードフォワード制御により、また空燃比センサ24が使用できる温度域においてはフィードバック制御をも加味して基本インジェクタパルス幅Pw_bを公知の手法によって算出する部分である。本実施例において、該基本インジェクタ駆動時間演算部31には状態検出部2で検出されたエンジン回転数Ne、吸入空気圧Pb、エンジン水温WT、空燃比A/Fが入力される。通常定常時にはこの基本インジェクタ駆動時間演算部31のみで空燃比A/Fの値は所定の一定値に保たれる。   The basic injector drive time calculation unit 31 is based on the physical quantities detected by the various sensors 21 to 24 in the state detection unit 2 and is feedback controlled by feedforward control using a map and in a temperature range where the air-fuel ratio sensor 24 can be used. Is a part for calculating the basic injector pulse width Pw_b by a known method. In this embodiment, the engine speed Ne detected by the state detector 2, the intake air pressure Pb, the engine water temperature WT, and the air-fuel ratio A / F are input to the basic injector drive time calculator 31. In normal steady state, the value of the air-fuel ratio A / F is maintained at a predetermined constant value only by the basic injector drive time calculation unit 31.

また、学習データ蓄積部32は、様々なパターンを網羅するように試験を行う等により予め取得した複数の物理量(ここでは、エンジン回転数Ne、吸入空気圧Pb、エンジン水温WT、空燃比A/F)の時系列データが保存されているとともに、状態検出部2で各種センサ21〜24によって検出された物理量(本実施例ではエンジン回転数Ne、吸入空気圧Pb、エンジン水温WT、空燃比A/F)のデータを追加して記憶する部分である。   The learning data storage unit 32 also has a plurality of physical quantities (in this case, the engine speed Ne, the intake air pressure Pb, the engine water temperature WT, the air-fuel ratio A / F, etc.) acquired in advance by performing tests so as to cover various patterns. ), And physical quantities (in this embodiment, the engine speed Ne, the intake air pressure Pb, the engine water temperature WT, the air-fuel ratio A / F) detected by the various sensors 21 to 24 in the state detector 2. ) Data is added and stored.

該学習データ蓄積部32においては、空燃比センサ24が活性化した後に該空燃比センサ24によって検出される実際の空燃比A/Fと、ニューラルネットワーク34を用いて算出した推定空燃比A/F_nとの差が予め設定する一定値より大きくなった場合に、状態検出部2において検出した上記物理量のデータを追加保存する。   In the learning data storage unit 32, the actual air-fuel ratio A / F detected by the air-fuel ratio sensor 24 after the air-fuel ratio sensor 24 is activated, and the estimated air-fuel ratio A / F_n calculated using the neural network 34 are used. When the difference between and becomes larger than a predetermined value set in advance, the physical quantity data detected by the state detection unit 2 is additionally stored.

ニューラルネットワーク学習部33は、学習データ蓄積部32に蓄積された物理量をパラメータとして後述するニューラルネットワーク34の再学習を実行する部分であって、エンジン1の状態を監視し、エンジン1が停止状態となった後にニューラルネットワーク34の再学習を実行させる機能を備えている。つまり、ニューラルネットワーク学習部33は、エンジン1が停止している状態であってもニューラルネットワーク34の再学習を行うことができるように構成され、車両の走行中等のエンジン1が停止していない状態にあっては、ニューラルネットワーク34の再学習の実施を抑制するように構成されている。   The neural network learning unit 33 is a part that executes relearning of the neural network 34 described later using the physical quantity accumulated in the learning data accumulation unit 32 as a parameter, monitors the state of the engine 1, and determines that the engine 1 is in a stopped state. A function to execute the relearning of the neural network 34 after the learning is completed. That is, the neural network learning unit 33 is configured so that the neural network 34 can be re-learned even when the engine 1 is stopped, and the engine 1 is not stopped, such as when the vehicle is running. In this case, the re-learning of the neural network 34 is suppressed.

そして、ニューラルネットワーク34は、図4に示すように冷態始動時におけるエンジン回転数Ne、吸入空気圧Pb、インジェクタパルス幅Pw、エンジン水温WT、空燃比A/Fの時系列的なデータを入力とし、空燃比A/Fを出力として学習させたものであり、冷態始動時において、状態検出部2でクランク角センサ21、吸入空気圧センサ22、冷却水温センサ23によってそれぞれ検出したエンジン回転数Ne、吸入空気圧Pb、エンジン水温WT、および前回の制御周期において本ニューラルネットワーク34により算出された空燃比の推定値(以下、推定空燃比という)に基づいて推定空燃比A/F_nを算出するように構成されている。   As shown in FIG. 4, the neural network 34 receives time-series data of the engine speed Ne at the cold start, the intake air pressure Pb, the injector pulse width Pw, the engine water temperature WT, and the air-fuel ratio A / F. The air-fuel ratio A / F is learned as an output, and at the time of cold start, the engine speed Ne detected by the crank angle sensor 21, the intake air pressure sensor 22, and the cooling water temperature sensor 23 in the state detection unit 2, respectively. The estimated air-fuel ratio A / F_n is calculated based on the intake air pressure Pb, the engine water temperature WT, and the estimated value of the air-fuel ratio (hereinafter referred to as the estimated air-fuel ratio) calculated by the neural network 34 in the previous control cycle. Has been.

また、該ニューラルネットワーク34は、車両の走行時に学習データ蓄積部32に新たに蓄積されたエンジン回転数Ne、吸入空気圧Pb、インジェクタパルス幅Pw、エンジン水温WT、及び、空燃比A/Fのデータを入力して再学習を行うことにより、適宜更新されるようになっている。なお、ニューラルネットワーク34を用いて算出された推定空燃比と空燃比センサ24によって検出した実際の空燃比A/Fとの比較はエンジン1が暖機後でアイドル領域にある間中行うものとする。   The neural network 34 also stores the engine speed Ne, the intake air pressure Pb, the injector pulse width Pw, the engine water temperature WT, and the air-fuel ratio A / F newly accumulated in the learning data accumulation unit 32 when the vehicle is running. Is updated as appropriate by performing the re-learning. The estimated air-fuel ratio calculated using the neural network 34 and the actual air-fuel ratio A / F detected by the air-fuel ratio sensor 24 are compared while the engine 1 is in the idle region after warming up. .

また、空燃比補正量演算部35は、基本インジェクタ駆動時間演算部31により算出された基本インジェクタパルス幅Pw_bの冷態始動時等における補正量(以下、インジェクタパルス幅の補正量という)ΔPwを算出する部分である。該空燃比補正量演算部35においては、始動直後はニューラルネットワーク34において導出した推定空燃比A/F_nおよび前回の制御周期においてニューラルネットワーク34により算出された推定空燃比A/F_nと目標空燃比とのズレからインジェクタパルス幅補正量ΔPwを算出する。なお、通常走行時は空燃比センサ24によって検出した実際の空燃比A/Fと目標空燃比とのズレに基づいてインジェクタパルス幅補正量ΔPwを算出する。   The air-fuel ratio correction amount calculation unit 35 calculates a correction amount ΔPw (hereinafter referred to as an injector pulse width correction amount) ΔCw at the time of cold start of the basic injector pulse width Pw_b calculated by the basic injector drive time calculation unit 31. It is a part to do. In the air-fuel ratio correction amount calculation unit 35, immediately after startup, the estimated air-fuel ratio A / F_n derived in the neural network 34, the estimated air-fuel ratio A / F_n calculated by the neural network 34 in the previous control cycle, and the target air-fuel ratio are calculated. The injector pulse width correction amount ΔPw is calculated from the deviation. During normal travel, the injector pulse width correction amount ΔPw is calculated based on the difference between the actual air-fuel ratio A / F detected by the air-fuel ratio sensor 24 and the target air-fuel ratio.

即ち、本実施例では、冷態始動時には基本インジェクタ駆動時間演算部31において算出した基本インジェクタパルス幅Pw_bに、推定空燃比を基に空燃比補正量演算部35において算出したインジェクタパルス幅補正量ΔPwを加算して得られたインジェクタパルス幅Pwをインジェクタ4へ出力して空燃比A/Fを制御し、通常走行時には基本インジェクタ駆動時間演算部31において算出した基本インジェクタパルス幅Pw_bに、実空燃比を基に空燃比補正量演算部35において算出したインジェクタパルス幅補正量ΔPwを加算して得られたインジェクタパルス幅Pwをインジェクタ4へ出力して空燃比A/Fを制御するようにしている。   That is, in this embodiment, the injector pulse width correction amount ΔPw calculated by the air-fuel ratio correction amount calculation unit 35 based on the estimated air-fuel ratio is added to the basic injector pulse width Pw_b calculated by the basic injector drive time calculation unit 31 at the cold start. Is output to the injector 4 to control the air-fuel ratio A / F, and the normal air-fuel ratio Pw_b calculated by the basic injector driving time calculation unit 31 during normal traveling is set to the actual air-fuel ratio. Based on the above, the injector pulse width Pw obtained by adding the injector pulse width correction amount ΔPw calculated by the air-fuel ratio correction amount calculation unit 35 is output to the injector 4 to control the air-fuel ratio A / F.

以下に、図3に基づいて本実施例に係る空燃比制御装置の動作について説明する。図3に示すように、本実施例に係る空燃比制御装置においては、冷態始動後、まず空燃比センサ(LAFS)24が活性化した状態か否か、例えば、空燃比センサ24が使用できる温度域にあるか否かの判定を行う(ステップS1)。   Hereinafter, the operation of the air-fuel ratio control apparatus according to this embodiment will be described with reference to FIG. As shown in FIG. 3, in the air-fuel ratio control apparatus according to this embodiment, after the cold start, first, the air-fuel ratio sensor (LAFS) 24 is activated or not, for example, the air-fuel ratio sensor 24 can be used. It is determined whether or not it is in the temperature range (step S1).

ステップS1において空燃比センサ24が活性化していないと判定された場合(NO)は状態検出部2で各種センサ21〜23によって検出したエンジン回転数Ne、吸入空気圧Pb、エンジン水温WTに基づきニューラルネットワーク34を用いて推定空燃比A/F_nを算出し、空燃比補正量演算部35において実際の空燃比A/Fが該推定空燃比A/F_nに保たれるように、インジェクタパルス幅補正量ΔPwを算出し、これを基本インジェクタ駆動時間演算部31が算出した基本インジェクタパルス幅Pw_bに加算した結果をインジェクタ4へ出力する(ステップS8)。   If it is determined in step S1 that the air-fuel ratio sensor 24 is not activated (NO), the neural network is based on the engine speed Ne, the intake air pressure Pb, and the engine water temperature WT detected by the various sensors 21 to 23 in the state detection unit 2. 34 is used to calculate the estimated air-fuel ratio A / F_n, and the injector pulse width correction amount ΔPw so that the actual air-fuel ratio A / F is maintained at the estimated air-fuel ratio A / F_n in the air-fuel ratio correction amount calculator 35. And the result obtained by adding this to the basic injector pulse width Pw_b calculated by the basic injector drive time calculation unit 31 is output to the injector 4 (step S8).

一方、空燃比センサ24が活性化していると判定された場合(YES)は空燃比センサ24によって検出した空燃比A/Fを用いてフィードバック制御を開始し(ステップS2)、更にエンジン1がアイドル領域にあるか否かの判定を行う(ステップS3)。
そして、ステップS3においてエンジン1がアイドル領域にないと判定された場合(NO)はステップS1の処理に戻る。
On the other hand, if it is determined that the air-fuel ratio sensor 24 is activated (YES), feedback control is started using the air-fuel ratio A / F detected by the air-fuel ratio sensor 24 (step S2), and the engine 1 is idle. It is determined whether or not the area is present (step S3).
And when it determines with the engine 1 not being in an idle area | region in step S3 (NO), it returns to the process of step S1.

一方、ステップS3における判定の結果、エンジン1がアイドル領域にあると判定された場合(YES)は、続いて、状態検出部2で各種センサ21〜23によって検出したエンジン回転数Ne、吸入空気圧Pb、及びエンジン水温WTに基づきニューラルネットワーク34を用いて算出した推定空燃比A/F_nと、空燃比センサ24が検出した実際の空燃比A/Fとの差(以下、空燃比差という)ΔA/Fが、予め設定する一定値以内にあるか否かの判定を行う(ステップS4)。   On the other hand, if it is determined as a result of the determination in step S3 that the engine 1 is in the idle region (YES), the engine speed Ne and the intake air pressure Pb detected by the various sensors 21 to 23 in the state detection unit 2 are subsequently continued. , And the difference between the estimated air-fuel ratio A / F_n calculated using the neural network 34 based on the engine water temperature WT and the actual air-fuel ratio A / F detected by the air-fuel ratio sensor 24 (hereinafter referred to as air-fuel ratio difference) ΔA / It is determined whether F is within a predetermined value set in advance (step S4).

そして、ステップS4において、空燃比差ΔA/Fの絶対値が予め設定する一定値以内にある(一時的に空燃比差ΔA/Fの絶対値が予め設定する一定値を超えた場合であって、その継続時間が予め設定する所定時間より短い場合を含む)と判定された場合(YES)は推定空燃比A/F_nが精度よく算出されているとしてステップS1の処理に戻り、空燃比A/F制御処理を継続する。   In step S4, the absolute value of the air-fuel ratio difference ΔA / F is within a preset fixed value (in the case where the absolute value of the air-fuel ratio difference ΔA / F temporarily exceeds a preset fixed value) If it is determined that the duration is shorter than a predetermined time set in advance (YES), it is determined that the estimated air-fuel ratio A / F_n has been accurately calculated, and the process returns to step S1, and the air-fuel ratio A / The F control process is continued.

一方、ステップS4において、空燃比差ΔA/Fの絶対値が予め設定する一定値を超えている(本実施例では、空燃比差ΔA/Fの絶対値が予め設定する一定値を超えており、かつその継続時間があらかじめ設定する所定時間を越えている)と判定された場合(NO)は、空燃比差ΔA/Fの絶対値が予め設定する一定値を超えている間、学習データ蓄積部32により状態検出部2で各種センサ21〜24が検出した物理量のデータを保存する(ステップS5)。   On the other hand, in step S4, the absolute value of the air-fuel ratio difference ΔA / F exceeds a preset constant value (in this embodiment, the absolute value of the air-fuel ratio difference ΔA / F exceeds a preset constant value). If the determination is NO (NO), the learning data is accumulated while the absolute value of the air-fuel ratio difference ΔA / F exceeds a preset constant value. Data of physical quantities detected by the various sensors 21 to 24 by the state detection unit 2 is stored by the unit 32 (step S5).

続いてエンジン1が停止したか否かの判定を行い(ステップS6)、エンジン1が稼動していると判定された場合(NO)はステップS1の処理に戻り、空燃比A/F制御処理を継続する。   Subsequently, it is determined whether or not the engine 1 has stopped (step S6). If it is determined that the engine 1 is operating (NO), the process returns to step S1, and the air-fuel ratio A / F control process is performed. continue.

一方、ステップS6においてエンジン1が停止していると判定された場合(YES)は、ニューラルネットワーク学習部33において学習データ蓄積部32に蓄積された物理量を入力としてニューラルネットワーク34に再学習を行わせる処理を行う(ステップS7)。   On the other hand, when it is determined in step S6 that the engine 1 is stopped (YES), the neural network 34 performs relearning using the physical quantity accumulated in the learning data accumulation unit 32 in the neural network learning unit 33 as an input. Processing is performed (step S7).

上述した本実施例に係る空燃比制御装置によれば、エンジン1の始動後であって空燃比センサ24が活性化した後、ニューラルネットワーク34を用いて導出した推定空燃比A/F_nと、空燃比センサ24によって検出した実際の空燃比A/Fとの差を監視し、該ニューラルネットワーク34を用いて導出した推定空燃比A/F_nと、空燃比センサ24によって検出した実際の空燃比A/Fとの差が予め設定した一定値以上である場合にのみ空燃比センサ24が活性化した後に取得したデータ(本実施例ではエンジン回転数Ne、吸入空気圧Pb、インジェクタパルス幅Pw、エンジン水温WT、空燃比A/F等)を学習データ蓄積部32に保存するとともに、新たにデータが追加された場合にのみ、エンジン1が停止した後にニューラルネットワーク34の再学習を行うようにしたため、エンジンコントロールユニット3における計算負荷を低減しつつ始動直後から空燃比のフィードバック制御を高精度に実施することが可能となり、始動直後の排出ガスを抑制することが可能となる。   According to the air-fuel ratio control apparatus according to this embodiment described above, after the engine 1 is started and the air-fuel ratio sensor 24 is activated, the estimated air-fuel ratio A / F_n derived using the neural network 34 and the The difference between the actual air-fuel ratio A / F detected by the fuel-fuel ratio sensor 24 is monitored, and the estimated air-fuel ratio A / F_n derived using the neural network 34 and the actual air-fuel ratio A / F detected by the air-fuel ratio sensor 24 are monitored. Data obtained after the air-fuel ratio sensor 24 is activated only when the difference from F is equal to or greater than a predetermined value (in this embodiment, engine speed Ne, intake air pressure Pb, injector pulse width Pw, engine water temperature WT , Air-fuel ratio A / F, etc.) are stored in the learning data storage unit 32, and only when new data is added, the Since the relearning of the network 34 is performed, it is possible to perform the air-fuel ratio feedback control with high accuracy immediately after the start while reducing the calculation load in the engine control unit 3, and to suppress the exhaust gas immediately after the start. Is possible.

なお、状態検出部2によって検出する物理量は上述した実施例において説明したものに限られるものではなく、該状態検出部2を構成するセンサとして上述したものに加えて適宜他のセンサを設け、さらに多くの物理量を検出するようにしてもよいことはいうまでもない。   Note that the physical quantity detected by the state detection unit 2 is not limited to that described in the above-described embodiments, and in addition to the above-described sensors constituting the state detection unit 2, other sensors are provided as appropriate. It goes without saying that many physical quantities may be detected.

本発明は、冷態始動時にニューラルネットワークを用いて空燃比の制御を行う空燃比制御装置及び空燃比制御方法に利用可能である。   The present invention is applicable to an air-fuel ratio control apparatus and an air-fuel ratio control method for controlling an air-fuel ratio using a neural network at the time of cold start.

本発明の実施例に係る空燃比制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the air fuel ratio control apparatus which concerns on the Example of this invention. 本発明の実施例に係る空燃比制御装置を示す概略構成図である。It is a schematic block diagram which shows the air fuel ratio control apparatus which concerns on the Example of this invention. 本発明の実施例に係る空燃比制御装置の動作を表すフローチャートである。It is a flowchart showing operation | movement of the air fuel ratio control apparatus which concerns on the Example of this invention. 本発明の実施例におけるニューラルネットワークの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the neural network in the Example of this invention.

符号の説明Explanation of symbols

1 エンジン
2 状態検出部
3 エンジンコントロールユニット
4 インジェクタ
21 クランク角センサ
22 吸入空気圧センサ
23 冷却水温センサ
24 空燃比センサ
31 基本インジェクタ駆動時間演算部
32 学習データ蓄積部
33 ニューラルネットワーク学習部
34 ニューラルネットワーク
35 空燃比補正量演算部
DESCRIPTION OF SYMBOLS 1 Engine 2 State detection part 3 Engine control unit 4 Injector 21 Crank angle sensor 22 Intake air pressure sensor 23 Cooling water temperature sensor 24 Air-fuel ratio sensor 31 Basic injector drive time calculation part 32 Learning data storage part 33 Neural network learning part 34 Neural network 35 Empty Fuel ratio correction amount calculation unit

Claims (4)

エンジンの状態を表す複数の物理量を検出する状態検出手段と、前記複数の物理量をパラメータとして入力しニューラルネットワークを用いて導出した推定空燃比に基づいて燃料噴射量を調整可能な空燃比調整手段とを備えた空燃比制御装置において、
前記エンジンの実際の空燃比を検出する実空燃比検出手段と、
前記実空燃比検出手段によって検出された実際の空燃比と前記推定空燃比との差が予め設定する所定値以上である場合にこのとき検出された前記複数の物理量のデータを蓄積するデータ蓄積手段と、
前記エンジンが停止状態にあるときに前記データ蓄積手段に蓄積された前記物理量のデータを前記ニューラルネットワークに入力して該ニューラルネットワークに再学習を行わせるニューラルネットワーク学習手段とを備えた
ことを特徴とする空燃比制御装置。
State detecting means for detecting a plurality of physical quantities representing the state of the engine, and air-fuel ratio adjusting means capable of adjusting the fuel injection amount based on the estimated air-fuel ratio derived using a neural network by inputting the plurality of physical quantities as parameters. In an air-fuel ratio control device comprising:
An actual air-fuel ratio detecting means for detecting an actual air-fuel ratio of the engine;
Data storage means for storing data of the plurality of physical quantities detected at this time when the difference between the actual air-fuel ratio detected by the actual air-fuel ratio detection means and the estimated air-fuel ratio is equal to or greater than a predetermined value set in advance. When,
Neural network learning means for inputting the physical quantity data stored in the data storage means to the neural network and causing the neural network to perform relearning when the engine is in a stopped state. An air-fuel ratio control device.
前記状態検出手段が、少なくともエンジン回転数を検出するセンサと、吸入空気圧を検出するセンサと、エンジンの冷却水の水温を検出するセンサとを備えることを特徴とする請求項1記載の空燃比制御装置。   2. The air-fuel ratio control according to claim 1, wherein the state detecting means includes at least a sensor for detecting an engine speed, a sensor for detecting an intake air pressure, and a sensor for detecting a coolant temperature of the engine. apparatus. 前記空燃比調整手段が、前記状態検出手段によって検出された前記複数の物理量に基づいて燃料噴射量を算出する基本燃料噴射量演算手段と、前記ニューラルネットワークを用いて算出した前記推定空燃比の前記ニューラルネットワークを用いて直前に算出した前記推定空燃比に対する変化量に基づいて燃料噴射量の補正量を算出する補正量演算手段とを備えることを特徴とする請求項1又は2記載の空燃比制御装置。   The air-fuel ratio adjusting means calculates basic fuel injection amount calculating means for calculating a fuel injection amount based on the plurality of physical quantities detected by the state detecting means, and the estimated air-fuel ratio calculated using the neural network. 3. The air-fuel ratio control according to claim 1, further comprising correction amount calculation means for calculating a fuel injection amount correction amount based on a change amount with respect to the estimated air-fuel ratio calculated immediately before using a neural network. apparatus. エンジンの状態を表す複数の物理量のデータを入力してニューラルネットワークを用いて推定空燃比を算出し、算出された前記推定空燃比に基づいて冷態始動時の空燃比の制御を行う空燃比制御方法において、
前記推定空燃比と実際に検出した空燃比との差が予め設定する所定値より大きい場合に前記物理量のデータを蓄積し、
エンジンが停止状態にあるときに蓄積した前記物理量をニューラルネットワークに入力して該ニューラルネットワークの再学習を行う
ことを特徴とする空燃比制御方法。
Air-fuel ratio control that inputs data of a plurality of physical quantities representing the state of the engine, calculates an estimated air-fuel ratio using a neural network, and controls the air-fuel ratio at the time of cold start based on the calculated estimated air-fuel ratio In the method
When the difference between the estimated air-fuel ratio and the actually detected air-fuel ratio is larger than a predetermined value set in advance, the physical quantity data is accumulated,
An air-fuel ratio control method, wherein the physical quantity accumulated when the engine is in a stopped state is input to a neural network and the neural network is relearned.
JP2008009056A 2008-01-18 2008-01-18 Air-fuel ratio control device and air-fuel ratio control method Expired - Fee Related JP4930389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009056A JP4930389B2 (en) 2008-01-18 2008-01-18 Air-fuel ratio control device and air-fuel ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009056A JP4930389B2 (en) 2008-01-18 2008-01-18 Air-fuel ratio control device and air-fuel ratio control method

Publications (2)

Publication Number Publication Date
JP2009167968A true JP2009167968A (en) 2009-07-30
JP4930389B2 JP4930389B2 (en) 2012-05-16

Family

ID=40969423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009056A Expired - Fee Related JP4930389B2 (en) 2008-01-18 2008-01-18 Air-fuel ratio control device and air-fuel ratio control method

Country Status (1)

Country Link
JP (1) JP4930389B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014617A (en) * 2010-07-05 2012-01-19 Honda Motor Co Ltd Neural network learning device
US10605188B2 (en) 2018-02-06 2020-03-31 Hitachi, Ltd. Control device, control method, and control program
CN111016920A (en) * 2018-10-09 2020-04-17 丰田自动车株式会社 Control device and control method for vehicle drive device, in-vehicle electronic control unit, learned model, and machine learning system
JP2020070742A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 Control device
JP2020119246A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Machine learning apparatus
JP2021017815A (en) * 2019-07-17 2021-02-15 株式会社トランストロン Engine controller and neural network program provided in the same
JP2021032114A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Vehicular learning control system, vehicular control device, and vehicular learning device
JP2021067193A (en) * 2019-10-18 2021-04-30 トヨタ自動車株式会社 Control device for vehicle
US11530662B2 (en) 2019-10-18 2022-12-20 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11654915B2 (en) 2019-10-18 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11679784B2 (en) 2020-01-09 2023-06-20 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium
US11745746B2 (en) 2020-01-09 2023-09-05 Toyota Jidosha Kabushiki Kaisha Method for generating vehicle controlling data, vehicle controller, vehicle control system, and learning device for vehicle
US11840245B2 (en) 2020-01-09 2023-12-12 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196434A (en) * 1996-01-17 1997-07-31 Toshiba Corp Air-conditioning control device
JPH10176578A (en) * 1996-05-28 1998-06-30 Matsushita Electric Ind Co Ltd Air-fuel ratio control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196434A (en) * 1996-01-17 1997-07-31 Toshiba Corp Air-conditioning control device
JPH10176578A (en) * 1996-05-28 1998-06-30 Matsushita Electric Ind Co Ltd Air-fuel ratio control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014617A (en) * 2010-07-05 2012-01-19 Honda Motor Co Ltd Neural network learning device
US10605188B2 (en) 2018-02-06 2020-03-31 Hitachi, Ltd. Control device, control method, and control program
CN111016920A (en) * 2018-10-09 2020-04-17 丰田自动车株式会社 Control device and control method for vehicle drive device, in-vehicle electronic control unit, learned model, and machine learning system
JP2020070742A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 Control device
CN111120122A (en) * 2018-10-30 2020-05-08 丰田自动车株式会社 Control device
CN111120122B (en) * 2018-10-30 2023-04-11 丰田自动车株式会社 Control device
US11436488B2 (en) 2018-10-30 2022-09-06 Toyota Jidosha Kabushiki Kaisha Control device
JP2020119246A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Machine learning apparatus
JP7231144B2 (en) 2019-07-17 2023-03-01 株式会社トランストロン Engine control device and neural network program it has
JP2021017815A (en) * 2019-07-17 2021-02-15 株式会社トランストロン Engine controller and neural network program provided in the same
JP2021032114A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Vehicular learning control system, vehicular control device, and vehicular learning device
AU2020217421B2 (en) * 2019-08-22 2022-01-13 Toyota Jidosha Kabushiki Kaisha Vehicle learning control system, vehicle control device, and vehicle learning device
JP2021067193A (en) * 2019-10-18 2021-04-30 トヨタ自動車株式会社 Control device for vehicle
US11530662B2 (en) 2019-10-18 2022-12-20 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11248553B2 (en) 2019-10-18 2022-02-15 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control system, and vehicle control method
US11654915B2 (en) 2019-10-18 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11679784B2 (en) 2020-01-09 2023-06-20 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium
US11745746B2 (en) 2020-01-09 2023-09-05 Toyota Jidosha Kabushiki Kaisha Method for generating vehicle controlling data, vehicle controller, vehicle control system, and learning device for vehicle
US11840245B2 (en) 2020-01-09 2023-12-12 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium

Also Published As

Publication number Publication date
JP4930389B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4930389B2 (en) Air-fuel ratio control device and air-fuel ratio control method
JP4424393B2 (en) Fuel injection control device for internal combustion engine
JP4407730B2 (en) Fuel injection control device for internal combustion engine
JP2007278142A (en) Abnormality diagnosis device for internal combustion engine
JP2008095647A (en) Air/fuel ratio control device for internal combustion engine
EP2400124B1 (en) Exhaust gas purification system for internal combustion engine
JP2004036473A (en) Air-fuel ratio control device for internal combustion engine
JP2011220178A (en) Catalyst temperature estimating device
JP2008128123A (en) Air volume calculating unit and fuel control unit for internal combustion engine
JP6497048B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP4102401B2 (en) Internal combustion engine control device
JP2011231628A (en) Method for correcting control of fuel injection and fuel injection controlling device
JP4919945B2 (en) Air-fuel ratio control method by engine sliding mode control, and fuel control apparatus including the method
JPH0242156A (en) Fuel feed quantity control device for internal combustion engine
KR20130140575A (en) Method and device for adapting the torque of an internal combustion engine
JP4551425B2 (en) Fuel injection control device for diesel engine
US20040199323A1 (en) Plant control device
JP2013060864A (en) Fuel supply control device of internal combustion engine
JP2009097347A (en) Device for controlling internal combustion engine
JP4706670B2 (en) Fuel injection control device for diesel engine
JP4825297B2 (en) Control device for internal combustion engine
JP2018155179A (en) Engine control device and engine control method
JP5589910B2 (en) Engine control device
JP2008274795A (en) Air-fuel ratio control device for internal combustion engine
JP2011080480A (en) Control device of vehicular engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees