JP2009167467A - High-strength cold-rolled steel sheet excellent in bending property - Google Patents

High-strength cold-rolled steel sheet excellent in bending property Download PDF

Info

Publication number
JP2009167467A
JP2009167467A JP2008006756A JP2008006756A JP2009167467A JP 2009167467 A JP2009167467 A JP 2009167467A JP 2008006756 A JP2008006756 A JP 2008006756A JP 2008006756 A JP2008006756 A JP 2008006756A JP 2009167467 A JP2009167467 A JP 2009167467A
Authority
JP
Japan
Prior art keywords
ferrite
phase
steel sheet
low
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008006756A
Other languages
Japanese (ja)
Other versions
JP5564754B2 (en
Inventor
Futoshi Katsuki
太 香月
Kotaro Hayashi
宏太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008006756A priority Critical patent/JP5564754B2/en
Publication of JP2009167467A publication Critical patent/JP2009167467A/en
Application granted granted Critical
Publication of JP5564754B2 publication Critical patent/JP5564754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold-rolled steel sheet having ≥780 MPa tensile strength with ductility and bending property. <P>SOLUTION: The steel sheet includes a chemical composition composed of 0.05-2.0% C, 0.2-2.0% Si, 0.5-2.8% Mn, 0.005-0.15% P, ≤0.02% S, 0.005-1.5% Al and the balance Fe with impurities, and has 60-80 vol% volume fraction of ferrite phase and further, the ratio of a nano-hardness (Hnf) of the ferrite phase and the nano-hardness (Hnm) of low-temperature transforming phase: Hnm/Hnf is made to be ≥3.0. In another embodiment, the volume fraction of the ferrite phase is 20-50 vol%, and further, the ratio of the nano-hardness (Hnf)of the ferrite phase and the nano-hardness (Hnm) of the low-temperature transforming phase: Hnm/Hnf can be made to be ≤2.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主としてプレス成形される自動車部品などに用いて、引張り強さが780MPa以上で、かつ曲げ性などの加工性に優れる高強度冷延鋼板に関する。   The present invention relates to a high-strength cold-rolled steel sheet that is mainly used for press-molded automobile parts and the like and has a tensile strength of 780 MPa or more and excellent workability such as bendability.

シートレールなどの自動車シート部品用に用いられる引張強度780MPa級の高張力冷延鋼板では、強度と、伸びと、曲げ性とをバランスさせた特性が求められている。
今日、種々の強化法によって材料強度、つまり鋼板強度を確保することは可能であるが、高強度化に伴い加工性が低下するのが実情であった。加工性に優れた高強度薄鋼板として、フェライトとマルテンサイトやベイナイト等の低温変態相を第二相とする複合組織鋼板が提案されている。特に、伸びを重視した場合、二相鋼(DP鋼)とし、フェライト体積率を増大させれば良いことがわかっているが、曲げ性が劣化することが知られている。
High-tensile cold-rolled steel sheets with a tensile strength of 780 MPa used for automobile seat parts such as seat rails are required to have characteristics that balance strength, elongation, and bendability.
Today, it is possible to secure material strength, that is, steel plate strength by various strengthening methods, but the fact is that the workability decreases with increasing strength. As a high-strength thin steel sheet having excellent workability, a composite structure steel sheet having a low-temperature transformation phase such as ferrite and martensite or bainite as a second phase has been proposed. In particular, when emphasis is placed on elongation, it is known that a duplex phase steel (DP steel) may be used to increase the ferrite volume fraction, but it is known that the bendability deteriorates.

これに対して、曲げ性を重視し、マルテンサイトあるいはベイナイト単相組織鋼とすると、逆に伸びが劣化することが明らかにされている。
このように、両者を両立させた高強度鋼板が強く求められているにも関わらず、従来の高強度鋼板では、伸び、つまり延性と曲げの両立は困難であった。
On the other hand, it has been clarified that when the bendability is emphasized and martensite or bainite single phase structure steel is used, the elongation deteriorates conversely.
Thus, despite the high strength steel sheet that combines both are strongly demanded, in the conventional high-strength steel sheet, the elongation, i.e. ductility and bendability of compatibility was difficult.

ここで、高強度鋼板の技術として、例えば特許文献1には比較的高い温度で過時効処理をすることで、低温変態相の硬さを減じ、フェライトとの硬度差を小さくすることで局部延性を改善する方法が開示されている。また、この鋼板は低温変態相の体積率を高めることで、強度を確保している。しかしながら、低温変態相の分布に関する言及は無く、例えば偏析等による低温変態相の不均一分布によって局所変形が著しく不均一となり、曲げ性が劣化する恐れに関しては、何らの記載も無いのが現状であった。   Here, as a technique of high-strength steel sheet, for example, in Patent Document 1, by performing an overaging treatment at a relatively high temperature, the hardness of the low-temperature transformation phase is reduced, and the hardness difference with ferrite is reduced, thereby reducing the local ductility. A method of improving is disclosed. Moreover, this steel plate is ensuring the intensity | strength by raising the volume ratio of a low temperature transformation phase. However, there is no mention of the distribution of the low-temperature transformation phase. For example, there is no description about the possibility that local deformation becomes extremely non-uniform due to the non-uniform distribution of the low-temperature transformation phase due to segregation or the like, and the bendability deteriorates. there were.

また、特許文献2では低温変態相をベイナイトとし、フェライトを含まない低温変態相だけの単相組織とすることで優れた加工性を確保している。しかしながら強度を確保するために、また微細組織を得るために、炭化物形成元素としてMo、V、Ti、Mb等を添加する必要があり、コスト高になるという問題があった。   In Patent Document 2, excellent workability is ensured by using bainite as the low-temperature transformation phase and a single-phase structure including only the low-temperature transformation phase containing no ferrite. However, in order to secure the strength and to obtain a fine structure, it is necessary to add Mo, V, Ti, Mb, etc. as carbide forming elements, and there is a problem that the cost increases.

さらに、特許文献3では特許文献1と同様に、フェライト、ベイナイトさらに残留オーステナイト、マルテンサイトの体積分率とともに、各組織単体のナノ硬さを規定し、引張強さが980MPa以上で、加工性にすぐれた鋼板が開示されている。しかしながらこの鋼板は焼入れ性を高めるために、Mnを2〜4%と過剰に添加している。Mnは凝固時にミクロ偏析となりやすく、鋼板にした場合、これが圧延方向に筋状に偏析することが良く知られている。この結果、低温変態相や残留γ相(オーステナイト相)が鋼板に筋状に分布することになり、曲げ性に悪影響を及ぼすが、この鋼板ではその危険性には一切の言及が無い。仮に偏析の影響を何らかの方法で回避できたとして、特許文献3では曲げや伸びフランジ性と言った局所変形を4相もの組織の体積分率や各相単体のナノ硬さを複雑に制御する必要が生じるため、製造条件が限定されるという問題があった。
特開昭63−293121号公報 特開平3−277742号公報 特開2005−2404号公報
Furthermore, in Patent Document 3, as in Patent Document 1, the nano-hardness of each structure unit is specified together with the volume fraction of ferrite, bainite, retained austenite, and martensite, and the tensile strength is 980 MPa or more and the workability is improved. Excellent steel sheets are disclosed. However, in order to improve the hardenability, this steel sheet is excessively added with Mn in an amount of 2 to 4%. It is well known that Mn is prone to microsegregation during solidification, and when it is made into a steel plate, it segregates in a streak shape in the rolling direction. As a result, the low temperature transformation phase and the residual γ phase (austenite phase) are distributed in a streak pattern on the steel sheet, which adversely affects the bendability, but there is no mention of the danger in this steel sheet. Assuming that the effect of segregation could be avoided by some method, Patent Document 3 needs to control the volume fraction of the structure of four phases and the nano hardness of each phase in a complex manner such as bending and stretch flangeability. Therefore, there is a problem that manufacturing conditions are limited.
JP-A-63-293121 JP-A-3-277742 Japanese Patent Laid-Open No. 2005-2404

本発明は、鋼材を量産する場合に不可避である偏析による高張力鋼の局所変形特性の劣化を解決し、引張り強さが780MPa以上を達成するとともに、曲げ性等の加工性に優れる高強度冷延鋼板とその製造方法について提供することを目的とする。   The present invention solves the deterioration of local deformation characteristics of high-strength steel due to segregation, which is unavoidable when mass-producing steel materials, and achieves a tensile strength of 780 MPa or more and high-strength cooling excellent in workability such as bendability. It aims at providing about a rolled steel plate and its manufacturing method.

本発明者らは、低温変態相を容易に得るためにMnを添加するが、添加されるMn等の偏析が回避できない場合であっても、780MPa以上の高い引張強度を有する高張力鋼であって、伸びと曲げ性を両立することが可能な薄鋼板を開発すべく、研究を行った。   The present inventors add Mn in order to easily obtain a low temperature transformation phase, but even if segregation of added Mn or the like cannot be avoided, it is a high strength steel having a high tensile strength of 780 MPa or more. Therefore, research was conducted to develop a thin steel sheet capable of achieving both elongation and bendability.

ここに、本発明者らは、低温変態相を分散させた2相化による強度の確保と伸びの増大に加え、下記知見に基づき、これまで得られなかった局所変形特性、特に曲げ性を鋼板に付与することができることを見出した。   Here, in addition to securing the strength and increasing the elongation due to the two-phase transformation in which the low-temperature transformation phase is dispersed, the present inventors are able to obtain local deformation characteristics, particularly bendability, which have not been obtained so far, based on the following knowledge. It was found that it can be given to.

1)曲げ変形に伴うスジ状の表面凹凸(以後、スジ欠陥と呼ぶ)や表面キズ(以後、ワレ欠陥と呼ぶ)は軟質なフェライトと硬質相との変形能の差異に起因して起こるのであって、曲げ変形時に両者の界面にボイドが発生し、このボイドを起点とした亀裂の進展・伝播により生じることが知られている。   1) Striped surface irregularities (hereinafter referred to as streak defects) and surface flaws (hereinafter referred to as crack defects) accompanying bending deformation are caused by the difference in deformability between soft ferrite and hard phase. It is known that voids are generated at the interface between the two during bending deformation, and are caused by the propagation and propagation of cracks starting from these voids.

2)フェライト体積率(以下、フェライト率)を60体積%程度以上にすると同時に、フェライトと低温変態相の各ナノ硬さの比(以下、単に「硬度比」または「硬度差」という)を3倍程度以上にして、曲げ変形に伴う局所歪みをフェライト主体で吸収するようにすると、硬質で歪み吸収能の小さな低温変態相への歪み伝搬が小さくなり、低温変態相の局所分布による歪み不均一化が顕在化するのを避けることが可能となり、曲げ変形に伴うスジ欠陥およびワレ欠陥の発生が防止可能となる。   2) The ferrite volume ratio (hereinafter referred to as ferrite ratio) is set to about 60% by volume or more, and at the same time, the ratio of each nano hardness of ferrite and low-temperature transformation phase (hereinafter simply referred to as “hardness ratio” or “hardness difference”) is 3 If the local strain due to bending deformation is absorbed mainly by ferrite by making it about twice or more, the strain propagation to the low-temperature transformation phase, which is hard and has low strain absorption capacity, becomes small, and the strain is uneven due to the local distribution of the low-temperature transformation phase. It becomes possible to avoid the occurrence of crystallization, and it is possible to prevent the occurrence of streak defects and crack defects accompanying bending deformation.

3)溶接性を考慮し炭素量を低減する場合、フェライト率を50体積%程度以下に低減し、強度を確保すると同時に、フェライトと低温変態相の硬度差を2倍程度以下にすると、曲げ変形に伴う歪みをフェライトのみならず、低温変態相でも吸収することができる。この場合、低温変態相の分率が大きいため、低温変態相の局所分布が顕在化せず、スジ欠陥の発生を抑制することができる。   3) When reducing the carbon content in consideration of weldability, if the ferrite ratio is reduced to about 50% by volume or less to ensure the strength, and at the same time, the hardness difference between the ferrite and the low-temperature transformation phase is about twice or less, bending deformation Can be absorbed not only in ferrite but also in a low-temperature transformation phase. In this case, since the fraction of the low temperature transformation phase is large, the local distribution of the low temperature transformation phase does not become apparent, and the occurrence of streak defects can be suppressed.

ここに、本発明は次の通りである。
(1) 質量%で、C:0.05〜0.2%、Si: 0.2〜2.0%、Mn:0.5〜2.8%、P:0.005〜0.15%、S:0.02%以下、Al:0.005〜1.5%、残部Feおよび不純物からなる化学組成を有する鋼板であって、フェライト相および低温変態相を有し、フェライト相の体積分率が60体積%以上、80体積%以下であって、さらにフェライト相のナノ硬さHnfと低温変態相のナノ硬さHnmとの比:Hnm/Hnfが3.0以上である組織を備えたことを特徴とする引張強度780MPa以上の冷延鋼板。
Here, the present invention is as follows.
(1) By mass%, C: 0.05 to 0.2%, Si: 0.2 to 2.0%, Mn: 0.5 to 2.8%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 1.5%, balance Fe And a steel composition having a chemical composition comprising impurities, having a ferrite phase and a low-temperature transformation phase, wherein the volume fraction of the ferrite phase is 60% by volume or more and 80% by volume or less, and the nano hardness of the ferrite phase The ratio of Hnf to the nano-hardness Hnm of the low temperature transformation phase: A cold-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by having a structure with Hnm / Hnf of 3.0 or more.

(2)前記化学組成のSi含有量が0.8質量%以下、Al含有量が0.7〜1.5質量%であり、鋼板表面にめっき層を備えた、上記(1)記載の冷延鋼板。 (2) The cold-rolled steel sheet according to (1) above, wherein the chemical composition has an Si content of 0.8% by mass or less, an Al content of 0.7-1.5% by mass, and a plated layer on the steel sheet surface.

(3) 質量%で、C:0.05〜0.2%、Si: 0.2〜2.0%、Mn:0.5〜2.8%、P:0.005〜0.15%、S:0.02%以下、Al:0.005〜1.5%、残部Feおよび不純物からなる化学組成を有する鋼板であって、フェライト相および低温変態相を有し、フェライト相の体積分率が20体積%以上、50体積%以下であって、さらにフェライト相のナノ硬さHnfと低温変態相のナノ硬さHnmとの比:Hnm/Hnfが2.0以下である組織を備えたことを特徴とする引張強度780MPa以上の冷延鋼板。 (3) In mass%, C: 0.05-0.2%, Si: 0.2-2.0%, Mn: 0.5-2.8%, P: 0.005-0.15%, S: 0.02% or less, Al: 0.005-1.5%, balance Fe And a steel composition having a chemical composition comprising impurities, having a ferrite phase and a low-temperature transformation phase, wherein the volume fraction of the ferrite phase is 20% by volume or more and 50% by volume or less, and the nano hardness of the ferrite phase A ratio between Hnf and the nano-hardness Hnm of the low temperature transformation phase: a cold-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by having a structure with Hnm / Hnf of 2.0 or less.

(4) 前記化学組成のSi含有量が0.2〜0.8質量%、Al含有量が0.7〜1.5質量%であり、鋼板表面にめっき層を備えた、上記(3)記載の冷延鋼板。 (4) The cold-rolled steel sheet according to (3), wherein the chemical composition has an Si content of 0.2 to 0.8 mass%, an Al content of 0.7 to 1.5 mass%, and a plated layer on the steel sheet surface.

(5) 前記化学組成が、Feの一部に代えて、質量%で、Cr:0.01〜1.0%およびMo:0.01〜1.0%の少なくとも1種をさらに含む上記(1)ないし(4)のいずれかに記載の冷延鋼板。 (5) Any of the above (1) to (4), wherein the chemical composition further includes at least one of Cr: 0.01 to 1.0% and Mo: 0.01 to 1.0% by mass% instead of a part of Fe Cold-rolled steel sheet according to crab.

DP組織におけるフェライト率とフェライト相と低温変態相とのナノ硬さを調整することで、Mn等の偏析に起因したフェライトと低温変態相の分布不均一が生じた場合でも、伸び(延性)と曲げ特性を両立可能な高強度薄鋼板を提供することが可能となる。この結果、自動車用シートレール、サイドシル(ロッカー)などの製造に際して、従来よりも薄い鋼板で対応可能となり、自動車の車体部品の軽量化や衝突安全性に大きく寄与することができる。   By adjusting the ferrite rate in the DP structure and the nano hardness of the ferrite phase and the low-temperature transformation phase, even if the distribution of ferrite and the low-temperature transformation phase is uneven due to segregation such as Mn, elongation (ductility) and It is possible to provide a high-strength thin steel sheet that can achieve both bending characteristics. As a result, when manufacturing automobile seat rails, side sills (rockers), etc., it is possible to cope with thinner steel plates than before, which can greatly contribute to weight reduction and collision safety of automobile body parts.

本発明において鋼組成、製造方法を上述のように規定した理由についてさらに具体的に説明する。  The reason why the steel composition and the manufacturing method are defined as described above in the present invention will be described more specifically.

(1)超高張力鋼の二相組織とMn偏析
超高張力鋼は、延性に富んだフェライト中に硬質な低温変態相を分散させた二相組織(以後、DP組織)とすることで、強度と延性を同時に確保する。また、焼入れ性を確保するためにMn等を多量に添加するが、通常の量産鋼材では、Mnの偏析は避けられない。そのためDP組織を構成するマルテンサイトなど低温変態相がそのようなMn偏析に対応して分散する。通常、Mnは圧延方向に平行にスジ状に偏析するので、低温変態相も同様に100μm 間隔程度のスジ状に分布することになる。
(1) Two-phase structure and Mn segregation of ultra-high-strength steel Ultra-high-strength steel has a two-phase structure (hereinafter, DP structure) in which hard low-temperature transformation phase is dispersed in ductile-rich ferrite. Ensure strength and ductility at the same time. Further, in order to ensure hardenability, a large amount of Mn or the like is added, but segregation of Mn is unavoidable in ordinary mass-produced steel materials. Therefore, a low temperature transformation phase such as martensite constituting the DP structure is dispersed corresponding to such Mn segregation. Normally, Mn segregates in a streak shape parallel to the rolling direction, so that the low-temperature transformation phase is similarly distributed in a streak shape at intervals of about 100 μm.

(2)低温変態相のスジ状分布
DP鋼では、上記の偏析に起因して低温変態相が密集した領域と粗な領域が100μm 程度の間隔で圧延方向に延びているのが認められることが多い。例えば、自動車用に一般的に用いられる超高張力鋼ではDP鋼におけるフェライト相と低温変態相との割合は50体積%−50体積%程度であることが多いが、Mn偏析による低温変態相の占める割合は、Mn偏析の程度や冷却条件にもよるが、密集領域で60体積%、粗な領域では40体積%程度となる。
(2) Streaky distribution of low-temperature transformation phase In DP steel, it can be seen that the region where the low-temperature transformation phase is dense due to the segregation and the rough region extend in the rolling direction at intervals of about 100 μm. Many. For example, in ultra-high-strength steels commonly used for automobiles, the ratio of ferrite phase and low-temperature transformation phase in DP steel is often about 50% to 50% by volume. Depending on the degree of Mn segregation and the cooling conditions, the proportion occupied is 60% by volume in the dense region and about 40% by volume in the rough region.

(3)鋼板の曲げ特性
自動車のシートレール等に用いられる高張力鋼では、所定の引張り強度を有すると同時に、曲げ半径R1程度でもスジ欠陥やワレ欠陥が生じない曲げ特性が要求される。前述した低温変態相がスジ状に分布した超高張力鋼は、低温相が密な領域では伸びが小さく、フェライト主体の粗な領域では大きな伸びを示すことになる。このため、スジ方向に直行して曲げ変形を付加すると、伸びの小さな密な領域は表面に突き出るのに対して、大きく伸びる粗な領域は表面に対して陥没し、結果として、図1に示すように、鋼板表面において低温変態相の分布に対応した凹凸状のスジ欠陥が発生することになる。
(3) Bending properties of steel plates High-tensile steel used for automobile seat rails and the like are required to have a predetermined tensile strength and at the same time have bending properties that do not cause streak defects or crack defects even at a bending radius of about R1 t . The ultra-high strength steel in which the low-temperature transformation phase is distributed in a streak shape described above exhibits a small elongation in a region where the low-temperature phase is dense, and a large elongation in a coarse region mainly composed of ferrite. For this reason, when bending deformation is applied perpendicularly to the streak direction, a dense region with a small extension protrudes from the surface, while a rough region with a large extension sinks into the surface, and as a result, as shown in FIG. As described above, uneven streak defects corresponding to the distribution of the low temperature transformation phase are generated on the steel sheet surface.

ここに、図1においては、図1(a)に示すように、Mn偏析がみられる領域には低温変態相が集積するため、この領域に曲げ変形が加わると、図1(b)に示すように、低温変態相は歪み量が少ないから、歪み量の大きい周辺領域において厚さの減少がみられ、これが凹凸状のスジ欠陥となって現れるのである。  Here, in FIG. 1, as shown in FIG. 1 (a), the low temperature transformation phase accumulates in the region where Mn segregation is observed. Therefore, when bending deformation is applied to this region, it is shown in FIG. 1 (b). As described above, since the low-temperature transformation phase has a small amount of strain, a decrease in thickness is observed in the peripheral region where the amount of strain is large, and this appears as uneven stripe defects.

(4)フェライト率の増大による歪み吸収能の向上
フェライト単体の伸びは30%以上であり、焼入れままのマルテンサイト単体の3倍以上の伸びを示す。したがって、低温変態相が密であってもある程度のフェライトが存在すれば、フェライトのみで歪みを吸収することが可能となり、低温変態相への歪みの伝搬が避けられ。さらに、フェライトと低温変態相の硬度差が3倍以上であれば、さらにこの効果は顕著となる。この結果、曲げに伴う歪みの不均一が緩和され、スジ欠陥の発生を抑制することが可能となる。
(4) Improvement of strain absorption ability by increasing ferrite ratio The elongation of ferrite alone is 30% or more, which is more than 3 times that of as-quenched martensite alone. Therefore, if there is a certain amount of ferrite even at a low temperature transformation phase is dense, it is possible to absorb the distortion only in the ferrite, Ru is inevitable that the propagation of the distortion of the low-temperature transformation phase. Furthermore, if the hardness difference between the ferrite and the low temperature transformation phase is 3 times or more, this effect becomes more remarkable. As a result, the non-uniform distortion caused by bending is alleviated, and the occurrence of streak defects can be suppressed.

(5)フェライト率の低減による組織均一化
これに対して、フェライト率を低減し、低温変態相の分率を増大させることによっても、低温変態相の不均一分布を避けることが可能となる。この結果、曲げに伴う歪みの不均一は生じにくくなり、スジ欠陥の発生を回避することが可能となる。この場合、一定の伸びを確保するために、ある程度のフェライトが必要であるが、フェライトと低温変態相の硬度差は2倍以下程度とし、低温変態相への歪み伝播を容易にしておく必要がある。
(5) Structure homogenization by reducing ferrite ratio On the other hand, by reducing the ferrite ratio and increasing the fraction of the low-temperature transformation phase, it is possible to avoid non-uniform distribution of the low-temperature transformation phase. As a result, non-uniform distortion due to bending is less likely to occur, and the occurrence of streak defects can be avoided. In this case, a certain amount of ferrite is required to ensure a constant elongation, but the hardness difference between the ferrite and the low temperature transformation phase should be about twice or less to facilitate strain propagation to the low temperature transformation phase. is there.

(6)フェライト率とフェライトと低温変態相の硬度比の最適化による伸びと曲げ性の向上
以上より、フェライト率を適宜調整するとともに、フェライトと低温変態相との硬度比を最適化することで、超高張力鋼としての780MPa以上の引張強度を確保した上で、伸びと曲げ特性に優れた鋼板を得ることが可能となる。
(6) Improvement of elongation and bendability by optimizing the ferrite ratio and the hardness ratio of ferrite and low-temperature transformation phase From the above, by adjusting the ferrite ratio as appropriate and optimizing the hardness ratio of ferrite and low-temperature transformation phase In addition, it is possible to obtain a steel sheet having excellent elongation and bending properties while ensuring a tensile strength of 780 MPa or more as an ultra high strength steel.

なお、本発明において特に制限されるものではないが、本発明にかかる鋼板は通常は板厚が0.8〜2.3mm程度のいわゆる薄鋼板と呼ばれているものが曲げ成形用に適する。
また、「伸び」とは、いわゆる引張試験における伸びをいい、本発明の場合、通常、13 〜18 %程度であり、また、「曲げ特性」は
JIS Z 2248の規定に準拠したVブロック法による曲げ性を言う。
Although not particularly limited in the present invention, a so-called thin steel plate having a thickness of about 0.8 to 2.3 mm is usually suitable for bending forming.
“Elongation” refers to elongation in a so-called tensile test. In the present invention, it is usually about 13 to 18%, and “bending characteristics”
This refers to the bendability according to the V-block method in accordance with JIS Z 2248.

本発明にかかる鋼板は、自動車用シートレール、サイドシル(ロッカー)などの成形に際しての曲げ加工に優れた効果を発揮する。
ここに、図2に模式的に示すように、本発明においては、フェライト率が十分に高い場合は、DP組織を構成する二相の硬度比を3倍以上とし、曲げ変形に伴う歪みを主にフェライトで吸収することで、スジ欠陥の発生は避けることができる(図2の(a)領域参照)。
The steel plate according to the present invention exhibits an excellent effect in bending when forming a seat rail for an automobile, a side sill (rocker) and the like.
Here, as schematically shown in FIG. 2, in the present invention, when the ferrite ratio is sufficiently high, the hardness ratio of the two phases constituting the DP structure is set to 3 times or more, and the distortion caused by the bending deformation is the main. The generation of streak defects can be avoided by absorbing with ferrite (see the region (a) in FIG. 2).

一方、別の態様によれば、本発明において、逆にフェライト率を低減し、低温変態相の分布不均一を避けるとともに、二相の硬度比を2以下と小さくすることによって、低温変態相へ歪みを伝搬させ、スジ欠陥の発生を抑制するようにしてもよい(図2の(b)領域参照)。   On the other hand, according to another embodiment, in the present invention, the ferrite ratio is reduced, the distribution of the low-temperature transformation phase is avoided, and the hardness ratio of the two phases is reduced to 2 or less, so that the low-temperature transformation phase is achieved. You may make it propagate distortion and suppress generation | occurrence | production of a stripe defect (refer the area | region (b) of FIG. 2).

これらの結果からも分かるように、本発明によれば、いずれの場合も良好な曲げ性を確保できることになる。
(7)熱処理による組織、硬さの最適化
上記のフェライト率は、A3変態点以下、A1変態点以上の温度域での保持時間を変化させて、初析フェライト量を制御することで調節が可能である。また、後述するように焼入れ時の冷却速度を一定値以上にすることによって、任意のフェライト量を室温でも得ることが可能となる。
As can be seen from these results, according to the present invention, good bendability can be ensured in any case.
(7) tissues by heat treatment, the optimization above ferrite ratio of hardness, A 3 transformation point, by changing the holding time in the temperature range above the A 1 transformation point, by controlling the pro-eutectoid ferrite amount Adjustment is possible. Further, as described later, by setting the cooling rate during quenching to a certain value or more, an arbitrary amount of ferrite can be obtained even at room temperature.

さらに、フェライトと低温変態相の硬度差は、冷却速度を一定値以上とするとともに、鋼材炭素量、さらに、後述するように、過時効処理により調整可能である。   Furthermore, the hardness difference between the ferrite and the low temperature transformation phase can be adjusted by setting the cooling rate to a certain value or more, the amount of carbon of the steel material, and further by an overaging treatment as will be described later.

<鋼成分>
本発明で示した薄鋼板に添加する元素に関して、その範囲と限定理由を説明する。本明細書において鋼組成を示す「%」は特にことわりがないかぎり、「質量%」である。
<Steel component>
With respect to the elements added to the thin steel sheet shown in the present invention, the range and reasons for limitation will be described. In this specification, “%” indicating the steel composition is “% by mass” unless otherwise specified.

C:0.05〜0.20%
Cは、低温変態相を生じさせるのに必要であり、強度を確保するため少なくとも0.05%を添加する必要がある。しかしながら、添加量が0.20%を超えるとスポット溶接性が劣化するため、添加量の上限を0.20%とする。好ましくは、0.06 〜0.18 %である。
C: 0.05-0.20%
C is necessary for producing a low temperature transformation phase, and at least 0.05% needs to be added in order to ensure strength. However, if the added amount exceeds 0.20%, spot weldability deteriorates, so the upper limit of the added amount is 0.20%. Preferably, it is 0.06 to 0.18%.

Mn:0.5〜2.8%
Mnは強度及び靭性を高める作用がある。さらに焼入れ性を向上させる作用も有するため、マルテンサイトなど低温変態相の生成に不可欠である。これらの効果はMnの含有量が0.5%以上で得られる。一方、Mnの過剰な添加はフェライトが生成し難くなるだけでなく、前述の通り、Mn偏析も生じやすくなる。このため、Mn量を0.5〜2.8%の範囲に限定した。好ましくは、1.2 〜2.7 %である。
Mn: 0.5-2.8%
Mn has the effect of increasing strength and toughness. Furthermore, since it also has the effect | action which improves hardenability, it is indispensable for the production | generation of low temperature transformation phases, such as a martensite. These effects are obtained when the Mn content is 0.5% or more. On the other hand, excessive addition of Mn not only makes it difficult to generate ferrite, but also tends to cause Mn segregation as described above. For this reason, the amount of Mn was limited to the range of 0.5 to 2.8%. Preferably, it is 1.2 to 2.7%.

P:0.005〜0.15%
Pは強化元素として、好ましくは、少なくとも0.005%の添加を必要とするが、多量に添加した場合、溶接性の劣化を招く恐れがあるため、0.15%以下の範囲とする。好ましくは0.02 %以下である。
P: 0.005-0.15%
P, as a strengthening element, preferably needs to be added in an amount of at least 0.005%, but if added in a large amount, the weldability may be deteriorated, so the content is made 0.15% or less. Preferably it is 0.02% or less.

Si:0.2〜2.0%
Siは、フェライトの生成を促進し、DP組織を形成させるために有効な元素である。この効果を発揮させるためには、0.2%以上の含有が必要である。2.0%を超えて含有させると、溶接性が著しく低下するため、上限を2.0%とする。また、多量のSiの含有は、めっきの密着性や化成処理性を劣化させる傾向があり、そのために含有量を0.8%以下と低く抑える必要がある場合は、フェライトの生成が不十分でになるためAlの添加量を増大させ、SiとAlの添加量が合わせて1.5%以下になるよう調整すれば良い。Siの好ましい範囲は、0.3〜1.5%である。
Si: 0.2-2.0%
Si is an effective element for promoting the formation of ferrite and forming a DP structure. In order to exhibit this effect, the content of 0.2% or more is necessary. If the content exceeds 2.0%, the weldability is significantly reduced, so the upper limit is made 2.0%. In addition, a large amount of Si tends to deteriorate the adhesion and chemical conversion treatment of the plating. Therefore, when the content needs to be kept low as 0.8% or less, the generation of ferrite is insufficient. Therefore, the addition amount of Al is increased, and the addition amount of Si and Al may be adjusted to be 1.5% or less in total. A preferable range of Si is 0.3 to 1.5%.

Al:0.005〜1.5%
AlもSiと同様、フェライト生成元素であり、Si添加量が少ない場合は、DP組織形成に不可欠であり、1.5%以下添加する。好ましくは、0.7 〜1.2 %である。
上述の通り、Al添加量はSi添加量に左右されるが、めっき施工を念頭にSi添加量が制限される場合、Al添加量は0.5%以上、好ましくは、0.7%以上添加する。
一方、Si添加量に制限がない場合は、Alは主に脱酸のため添加する。Alを脱酸のために添加するときは、Alが0.005%未満では脱酸が十分でなく、0.5%を超えて添加してもコストが嵩むばかりで効果が飽和するため、0.005〜0.5%とする。好ましくは、0.01 〜0.1 %である。
Al: 0.005-1.5%
Al, like Si, is a ferrite-forming element. When the amount of Si added is small, it is indispensable for DP structure formation, and is added at 1.5% or less. Preferably, it is 0.7 to 1.2%.
As described above, the Al addition amount depends on the Si addition amount, but when the Si addition amount is limited in consideration of plating work, the Al addition amount is 0.5% or more, preferably 0.7% or more.
On the other hand, when there is no limitation on the amount of Si added, Al is mainly added for deoxidation. When Al is added for deoxidation, deoxidation is not sufficient if Al is less than 0.005%, and even if added over 0.5%, the effect is saturated and the effect is saturated, so 0.005-0.5% To do. Preferably, it is 0.01 to 0.1%.

S:0.02%以下
Sは鋼中不純物として存在するが、0.02%を超えると熱間圧延時に疵が発生しやすくなり表面性状が悪化するため、0.02%以下とする。
S: 0.02% or less S is present as an impurity in the steel, but if it exceeds 0.02%, flaws are likely to occur during hot rolling and the surface properties deteriorate, so the content is made 0.02% or less.

Crおよび/またはMo:それぞれ0.01〜1.0%
本発明では、必要に応じて上記元素を少なくとも一種含有できる。Cr、Moはフェライトの強化に有効に作用する。その効果を確実にするためには、Cr、Moは0.01%以上含有させる。ただし、Cr、Moは1%超含有すると延性の低下をもたらすとともに、これらの元素は高コストであるため、その上限を1.0%とする。
Cr and / or Mo: 0.01 to 1.0% each
In this invention, the said element can be contained at least 1 type as needed. Cr and Mo are effective for strengthening ferrite. In order to ensure the effect, Cr and Mo are contained 0.01% or more. However, if Cr and Mo are contained in excess of 1%, the ductility is lowered, and these elements are expensive, so the upper limit is made 1.0%.

<鋼組織>
本発明にかかる冷延鋼板は、フェライト相および例えば、マルテンサイト、ベイナイトなどの低温変態相を含有するものであり、その他、残留オーステナイトなどの相の存在を許容するが、好適態様では、フェライト相と残部、低温変態相とからなる鋼組織を備えた冷延鋼板である。低温変態相としては、マルテンサイトが代表例として挙げられるが、ベイナイト相、それらの混合相であってもよい。
(i)フェライト率60体積%以上、80体積%以下で硬度比3倍以下
本発明の1態様によれば、鋼板が含有するフェライト率を60体積%以上とするとともに、フェライトと低温変態相とのナノ硬さの硬度比を3倍以上とする。
<Steel structure>
The cold-rolled steel sheet according to the present invention contains a ferrite phase and a low-temperature transformation phase such as martensite and bainite, and allows the presence of a phase such as residual austenite. And the balance, a cold-rolled steel sheet having a steel structure consisting of a low-temperature transformation phase. A typical example of the low-temperature transformation phase is martensite, but it may be a bainite phase or a mixed phase thereof.
(i) Ferrite ratio 60 volume% or more and 80 volume% or less and hardness ratio 3 times or less According to one aspect of the present invention, the ferrite ratio contained in the steel sheet is 60 volume% or more, and the ferrite and the low-temperature transformation phase The hardness ratio of the nano hardness is set to 3 times or more.

フェライト率が60体積%未満で硬度比が3倍未満の場合、曲げ変形時の歪みが低温変態相にも導入されることになる。前述の通り、低温変態相はMn等の偏析によってスジ状に不均一に分布しているため、曲げに伴いスジ欠陥が生じる恐れが大きい。
さらに、フェライト率が80体積%超の場合は、硬質相である低温変態相の体積分率が20体積%未満と小さくなり、鋼材強度を780MPa以上にすることが困難なため、フェライト率は80体積%以下とする。
When the ferrite ratio is less than 60% by volume and the hardness ratio is less than 3 times, strain at the time of bending deformation is also introduced into the low temperature transformation phase. As described above, the low-temperature transformation phase is unevenly distributed in a streak shape due to segregation of Mn or the like, and therefore, there is a high possibility that a streak defect is generated with bending.
Furthermore, when the ferrite ratio exceeds 80% by volume, the volume fraction of the low-temperature transformation phase, which is a hard phase, decreases to less than 20% by volume, and it is difficult to increase the steel material strength to 780 MPa or more. Volume% or less.

(ii)フェライト率20体積%以上、50体積%以下で硬度比2倍以下
本発明の別の態様においては、鋼板が含有するフェライト率が50体積%以下であると同時に、フェライトと低温変態相のナノ硬さの硬度比を2倍以下とする。本態様では、フェライト率が50体積%超で硬度比が2倍超、または、フェライト率20体積%未満で硬度比2超の範囲内では、曲げ変形時に薄鋼板内に歪みの不均一が生じ、結果として、スジ欠陥が生じることになる。さらに、フェライト率が20体積%未満の場合、局所変形である曲げ性は低下しないものの、鋼材の基本特性である全伸びが低下する。そこで、フェライト率の下限を20体積%とした。
(ii) Ferrite ratio of 20 volume% or more and 50 volume% or less and a hardness ratio of 2 times or less In another embodiment of the present invention, the ferrite ratio contained in the steel sheet is 50 volume% or less, and at the same time ferrite and a low-temperature transformation phase The hardness ratio of the nano hardness is set to 2 times or less. In this embodiment, when the ferrite ratio is more than 50% by volume and the hardness ratio is more than twice, or within the range where the ferrite ratio is less than 20% by volume and the hardness ratio is more than 2, non-uniform distortion occurs in the thin steel sheet during bending deformation. As a result, streak defects are generated. Furthermore, when the ferrite ratio is less than 20% by volume, although the bendability that is local deformation does not decrease, the total elongation that is a basic characteristic of the steel material decreases. Therefore, the lower limit of the ferrite ratio is set to 20% by volume.

すなわち、図2の領域(a)、(b)として示すように、フェライト体積率50%超、60%未満では、硬度比をいかに調整しても所期の目的を達成できない。
ここに、「ナノ硬さ」は、鋭利なダイヤモンド探針を試料表面に押込み、このときの押込み深さから、探針と試料との接触面積を算出し、押込み荷重を接触面積で減じたときの変形抵抗によって定められる硬さを言う。本明細書では、実施例にも示すように、Hysitron社製のTriboscopeにberkovich探針を取付け計測されたデータを持って示す。
That is, as shown as regions (a) and (b) in FIG. 2, if the ferrite volume ratio is more than 50% and less than 60%, the intended purpose cannot be achieved no matter how the hardness ratio is adjusted.
Here, “nano hardness” is calculated when the sharp diamond probe is pushed into the sample surface, the contact area between the probe and the sample is calculated from the depth of the push, and the indentation load is reduced by the contact area. The hardness determined by the deformation resistance. In this specification, as shown in the examples, data obtained by attaching a berkovich probe to a Triboscope manufactured by Hysitron, Inc. is shown.

すでに述べたように、フェライト率を制御する方法としては、Ar3点からAr1点の範囲の温度域まで加熱した後、一定時間保持することでフェライト相と低温変態相とよりなる複合組織とする。この際の、保持温度と保持時間を選択することで、フェライト率を任意に制御可能となる。さらに、この焼鈍温度域に達した後、直ちに50℃以下に冷却することによって、硬質相である低温変態相の硬さを確保できるとともに、冷却速度を変えることで、制御したフェライト率を室温でも得ることが可能となる。 As already mentioned, as a method of controlling the ferrite rate, after heating from the Ar 3 point to the temperature range of the Ar 1 point, and holding for a certain time, a composite structure consisting of a ferrite phase and a low temperature transformation phase To do. At this time, the ferrite rate can be arbitrarily controlled by selecting the holding temperature and holding time. Furthermore, after reaching this annealing temperature range, by immediately cooling to 50 ° C. or less, the hardness of the low-temperature transformation phase, which is a hard phase, can be secured, and by changing the cooling rate, the controlled ferrite rate can be increased even at room temperature. Can be obtained.

また、鋼板組織を一旦、鋼板をAc3点以上の温度で焼鈍し、次いでAr3点からAr1点の範囲の温度域まで冷却した後、一定時間保持することでフェライト相と低温変態相とよりなる複合組織としてもよい。 In addition, once the steel sheet structure is annealed at a temperature of Ac 3 point or higher, and then cooled to a temperature range from the Ar 3 point to the Ar 1 point range, the ferrite phase and the low temperature transformation phase are maintained by holding for a certain period of time. It is good also as the composite structure which consists of.

なお、本発明において、低温変態相は、冷延鋼板をAr1〜Ar3 の温度域に加熱・焼鈍した後の冷却段階で生じるが、そのときの低温変態相として、マルテンサイト、ベイナイトなどであり、焼鈍時間そしてそれに先立つてAc3 〜900℃での加熱処理を行う場合にはその処理時間などによって、フェライト率が調整できるから、それに伴って上述の低温変態相の体積率も変化する。 In the present invention, the low-temperature transformation phase, occurs at the cooling stage after the cold-rolled steel sheet was heated and annealed to a temperature range of Ar 1 to Ar 3, a low-temperature transformation phase at that time, martensite, bainite, etc. In addition, when the heat treatment at Ac 3 to 900 ° C. is performed prior to the annealing time, the ferrite ratio can be adjusted depending on the treatment time, and accordingly, the volume ratio of the low-temperature transformation phase changes accordingly.

本発明では、フェライト率を60体積%以上とした場合、フェライトと低温変態相のナノ硬さの硬度比を3倍以上と規定する。フェライトのナノ硬さは、意図的に析出強化等を施さない場合、3〜4GPa程度である。一方、低温変態相の硬さは炭素量にほぼ比例することが知られており、0.4%以上の炭素を含有すれば低温変態相の硬さは9GPaとフェライトのおよそ3倍となる。   In the present invention, when the ferrite ratio is set to 60% by volume or more, the hardness ratio of the ferrite and the nano-hardness of the low temperature transformation phase is specified to be 3 times or more. The ferrite nano-hardness is about 3 to 4 GPa when the precipitation strengthening is not intentionally performed. On the other hand, it is known that the hardness of the low-temperature transformation phase is almost proportional to the amount of carbon. If 0.4% or more of carbon is contained, the hardness of the low-temperature transformation phase is 9 GPa, which is about three times that of ferrite.

溶接性を考慮し、自動車向けの鋼板の炭素含有量は最大でも0.2%程度である。一方、フェライトとオーステナイトの二相域で熱処理を施すことで、フェライト相の炭素が残留オーステナイト中に濃縮することが知られている。   Considering weldability, the maximum carbon content of steel sheets for automobiles is about 0.2%. On the other hand, it is known that carbon in the ferrite phase is concentrated in the retained austenite by performing heat treatment in a two-phase region of ferrite and austenite.

したがって、60体積%以上のフェライト率であれば、残留オーステナイト中に0.4%程度の炭素を固溶することは容易であり、次いで冷却することで0.4%以上の炭素を含有する低温変態相を得ることができる。この結果、60体積%以上のフェライト率を有し、低温変態相の硬さがフェライトの3倍以上のDP組織を得ることが可能となる。     Therefore, if the ferrite ratio is 60% by volume or more, it is easy to solidly dissolve about 0.4% carbon in the retained austenite, and then a low-temperature transformation phase containing 0.4% or more carbon is obtained by cooling. be able to. As a result, it is possible to obtain a DP structure having a ferrite ratio of 60% by volume or more and having a low temperature transformation phase hardness of 3 times or more that of ferrite.

これに対して、フェライト率を50体積%以下とする場合は、残留オーステナイト中への炭素の濃縮は限定的であり、低温変態相中の炭素含有量はそれほど増大せず、薄鋼板の炭素含有量を0.15%とすると、残留オーステナイト中の炭素含有量は0.20%程度となる。この場合、続く冷却により得られる低温変態相のナノ硬さは5GPa程度となり、フェライト相との硬度差は1.7倍弱であり、本発明の範囲内のフェライト率と硬さを得ることができる。   On the other hand, when the ferrite ratio is 50% by volume or less, the concentration of carbon in the retained austenite is limited, the carbon content in the low temperature transformation phase does not increase so much, and the carbon content of the thin steel plate If the amount is 0.15%, the carbon content in the retained austenite is about 0.20%. In this case, the nano hardness of the low-temperature transformation phase obtained by subsequent cooling is about 5 GPa, and the hardness difference from the ferrite phase is a little less than 1.7 times, so that the ferrite ratio and hardness within the scope of the present invention can be obtained.

また、冷却後の硬度比が2倍を超える場合は、300〜600℃の温度範囲で過時効処理を施し、低温変態相を軟化させることで、フェライト硬さとの硬度差を調整すれば良い。   Moreover, when the hardness ratio after cooling exceeds 2 times, the hardness difference with ferrite hardness should just be adjusted by performing an overaging process in the temperature range of 300-600 degreeC, and softening a low temperature transformation phase.

<製造方法>
所望の成分を有する鋼を転炉、電炉等の公知の通常の方法で溶製し、連続鋳造法でスラブ等の鋼素材とするのが望ましい。なお、連続鋳造法に代えて、造塊法、薄スラブ鋳造法などとしてもよい。この鋼素材に熱間圧延を施し熱延鋼板とする。熱間圧延は、鋳造された鋼素材を室温まで冷却せず温片のまま加熱炉に装入して加熱した後に圧延する直送圧延を行うか、あるいは保熱を行った後、直ちに圧延する直接圧延を行うか、あるいは一旦鋼素材を冷却した後に再加熱してから圧延を行ってもよい。
<Manufacturing method>
It is desirable that a steel having a desired component is melted by a known ordinary method such as a converter or an electric furnace, and a steel material such as a slab is formed by a continuous casting method. In place of the continuous casting method, an ingot casting method, a thin slab casting method, or the like may be used. This steel material is hot rolled to obtain a hot rolled steel sheet. In hot rolling, the cast steel material is not cooled to room temperature, but is charged directly into a heating furnace while being heated in a heating furnace, and then rolled directly, or directly heated after heat retention. Rolling may be performed, or rolling may be performed after the steel material is once cooled and then reheated.

熱延鋼板は通常の方法で酸洗を施した後に、冷間圧延されて冷延鋼板とされる。焼鈍中のオーステナイト粒径を微細にし、材質安定性をさらに向上させるためには、冷間圧延の圧下率は30%以上とするのが好ましい。   The hot-rolled steel sheet is pickled by a normal method and then cold-rolled to obtain a cold-rolled steel sheet. In order to make the austenite grain size during annealing finer and further improve the material stability, it is preferable that the rolling reduction of cold rolling is 30% or more.

得られた冷延鋼板には、Ac3〜900℃の温度範囲で10〜300秒焼鈍を行う。冷延鋼板の焼鈍は、好ましくは、連続焼鈍とし、冷延鋼板がオーステナイト単相組織となる温度以上(Ac3以上)になるまで加熱し、Ac3〜900℃の温度範囲で10〜300秒焼鈍する。一旦、冷延鋼板をオーステナイト単相組織にすることで、均一微細組織を有する冷延焼鈍板となる。 The obtained cold-rolled steel sheet is annealed for 10 to 300 seconds in a temperature range of Ac 3 to 900 ° C. The annealing of the cold-rolled steel sheet is preferably continuous annealing, heated until the temperature of the cold-rolled steel sheet becomes an austenite single phase structure or higher (Ac 3 or higher), and is 10 to 300 seconds in a temperature range of Ac 3 to 900 ° C. Annealing. Once the cold-rolled steel sheet has an austenite single-phase structure, it becomes a cold-rolled annealed sheet having a uniform microstructure.

焼鈍温度がAc3未満では、バンド状の加工組織が残存し、加工性が劣化するとともに、機械特性の変動が大きくなり、材質安定性に欠ける鋼板となる。また、焼鈍時間が300秒を超えると、炭化物が粗大化するとともに、焼鈍後のフェライトが粗大となり加工性が劣化する。 If the annealing temperature is less than Ac 3 , a band-like processed structure remains, the workability deteriorates, the mechanical properties fluctuate greatly, and the steel sheet lacks material stability. On the other hand, if the annealing time exceeds 300 seconds, the carbides become coarse, and the ferrite after annealing becomes coarse and the workability deteriorates.

以上より、冷延鋼板の焼鈍条件をAc3 〜900℃の温度範囲で10〜300秒焼鈍とした。
このように冷延鋼板の複合組織化を図ることができるが、このとき、フェライト率を制御する方法としては、前述の通り、薄鋼板をAr1 〜Ar3の温度域まで加熱し、一定時間保持することで、フェライト相とオーステナイト相からなる複合組織とする。この際の焼鈍温度と保持時間を選択することで、フェライト率が任意に制御可能となる。具体的には、加熱温度が高くなればオーステナイト相が多くなり、時間が経過すればフェライト相が多くなることから、それらを調整することでフェライト率を調整可能である。フェライト相は後続の冷却処理によっても保存される。
From the above, the annealing conditions of the cold-rolled steel sheet were annealed for 10 to 300 seconds in a temperature range of Ac 3 to 900 ° C.
In this way, a cold-rolled steel sheet can be formed into a composite structure. At this time, as a method for controlling the ferrite ratio, as described above, the thin steel sheet is heated to a temperature range of Ar 1 to Ar 3 and is fixed for a certain period of time. By holding, a composite structure composed of a ferrite phase and an austenite phase is obtained. By selecting the annealing temperature and holding time at this time, the ferrite rate can be arbitrarily controlled. Specifically, since the austenite phase increases as the heating temperature increases and the ferrite phase increases as time elapses, the ferrite ratio can be adjusted by adjusting them. The ferrite phase is also preserved by subsequent cooling processes.

さらに、Ac点以上900℃以下の温度で焼鈍後、Ar〜Arの温度域まで冷却し、フェライト相とオーステナイト相からなる複合組織としてもいい。冷却停止温度が高ければオーステナイト相が多くなり、冷却速度が小さければフェライト相が多くなることから、この際の冷却停止温度と冷却速度を選択することで、フェライト率が任意に制御可能となる。 Further, after annealing at a temperature of Ac 3 point or higher and 900 ° C. or lower, it is cooled to a temperature range of Ar 1 to Ar 3 to form a composite structure composed of a ferrite phase and an austenite phase. If the cooling stop temperature is high, the austenite phase increases, and if the cooling rate is low, the ferrite phase increases. Therefore, the ferrite rate can be arbitrarily controlled by selecting the cooling stop temperature and the cooling rate at this time.

冷延鋼板は、ArないしAr点の温度域から200℃までの平均冷却速度を100℃/秒以上、望ましくは800℃/秒以上で冷却され、これにより低温変態相が生成する。ArないしAr点の温度域から200℃までの平均冷却速度を100℃/秒以上、望ましくは800℃/秒以上で冷却する。平均冷却速度が、100℃/秒以下の場合、局所的に焼入れが不完全な領域が生じ、結果的にフェライト変態やパーライト変態が生じ、曲げ性劣化の要因となる。平均冷却速度を100℃/秒以上、望ましくは800℃/秒以上とすることで、所定のフェライト率が得られる。なお、平均冷却速度は高いほど良好な曲げ性を示すが、コストを考慮し、水焼入れを行うとすると1000℃/秒程度が限界である。また最終冷却温度は実用面を考え、200℃近傍で良い。 The cold-rolled steel sheet is cooled at an average cooling rate from Ar 3 to Ar 1 point to 200 ° C. at an average cooling rate of 100 ° C./second or more, preferably 800 ° C./second or more, thereby generating a low-temperature transformation phase. Ar 3 to the average cooling rate from the temperature range of 1 point Ar to 200 ° C. 100 ° C. / sec or more, preferably cooled at 800 ° C. / sec or more. When the average cooling rate is 100 ° C./second or less, a region where the quenching is locally incomplete occurs, and as a result, ferrite transformation and pearlite transformation occur, which causes deterioration of bendability. A predetermined ferrite ratio can be obtained by setting the average cooling rate to 100 ° C./second or more, desirably 800 ° C./second or more. The higher the average cooling rate, the better the bendability, but considering the cost, when water quenching is performed, the limit is about 1000 ° C./second. The final cooling temperature may be around 200 ° C. in consideration of practical use.


さらに本発明では、任意のフェライト相と低温変態相の硬度差を得るために、冷却後200〜500℃の温度範囲で30〜600秒保持による過時効処理を行ってもよい。

Furthermore, in the present invention, in order to obtain a hardness difference between an arbitrary ferrite phase and a low temperature transformation phase, an overaging treatment may be performed by holding for 30 to 600 seconds in a temperature range of 200 to 500 ° C. after cooling.

鋼素材成分の調整、熱間圧延と冷延後焼鈍条件の適正化により、フェライトの平均結晶粒径が1〜10μm であり、任意のフェライト率とフェライトと低温変態相の硬度差を有する冷延鋼板を得ることが可能となり、引張り強度が780MPa以上であって、伸びと曲げ性を両立した高強度冷延鋼板となる。   By adjusting the steel material components, optimizing the hot rolling and annealing conditions after cold rolling, the average grain size of ferrite is 1-10 μm, and cold rolling with any ferrite ratio and hardness difference between ferrite and low temperature transformation phase A steel sheet can be obtained, and a high strength cold-rolled steel sheet having a tensile strength of 780 MPa or more and having both elongation and bendability can be obtained.

本発明にかかる冷延鋼板には、耐食性をさらに改善するために、金属めっき、例えば、溶融亜鉛めっき、合金化溶融亜鉛めっき、などの亜鉛めっき行ってもよく、その場合には、めっき皮膜の付着力を高めるために、母材鋼板の鋼組成のSi含有量を0.8%以下、Al含有量を0.7〜1.5%に制限することが好ましい。   In order to further improve the corrosion resistance, the cold-rolled steel sheet according to the present invention may be subjected to metal plating, for example, galvanizing such as hot dip galvanizing, galvannealed alloying, etc. In order to increase the adhesion, it is preferable to limit the Si content of the base steel sheet to 0.8% or less and the Al content to 0.7 to 1.5%.

次に、実施例によって本発明の作用効果をさらに具体的に説明する。   Next, the effects of the present invention will be described more specifically with reference to examples.

表1に示す化学成分を含有する供試材No.1〜4の鋼板を試作した。
所望の成分を有する鋼を転炉、電炉等の公知の通常の方法で溶製し、連続鋳造法で連続鋳造により鋳片厚270mmのスラブとし、スラブ加熱後、熱間圧延により粗圧延後板厚40mm、仕上圧延後板厚2.6mmとし、その後冷却して巻き取った。さらに厚さ1.5mmまで冷間圧延し、Ac点以上で焼鈍した後に、連続焼鈍を施した。
Test specimens No. 1 to No. 4 containing the chemical components shown in Table 1 were made as trial products.
A steel having a desired component is melted by a known ordinary method such as a converter or an electric furnace, and a slab having a slab thickness of 270 mm is obtained by continuous casting by a continuous casting method, and after rough rolling by hot rolling after slab heating. The thickness was 40 mm after finishing rolling, and the thickness was 2.6 mm, and then cooled and wound up. Further, it was cold-rolled to a thickness of 1.5 mm, annealed at Ac 3 points or more, and then subjected to continuous annealing.

このようにして得た厚さ1.5mmの冷延鋼板について、ミクロ組織観察、引張り試験、曲げ試験、ナノ硬さ測定を実施した。フェライト率はミクロ組織写真より面積率として算出した。試験結果を表2にまとめて示す。なお、試験方法は下記の通りである。   The thus obtained 1.5 mm thick cold rolled steel sheet was subjected to microstructure observation, tensile test, bending test, and nano hardness measurement. The ferrite ratio was calculated as an area ratio from a microstructure photograph. The test results are summarized in Table 2. The test method is as follows.

(組織観察)
冷延焼鈍鋼板から試験片を採取し、圧延方向断面、圧延方向と直交する断面の組織を電子顕微鏡で観察し、フェライト率を画像解析により求めた。
(Tissue observation)
Test specimens were collected from the cold-rolled annealed steel sheet, the cross section in the rolling direction and the structure of the cross section perpendicular to the rolling direction were observed with an electron microscope, and the ferrite ratio was determined by image analysis.

(引張り試験)
冷延焼鈍鋼板の圧延方向に直交する方向にJIS5号引張試験片を採取し、引張り特性(引張り強度TS、伸びEl)を得た。
(Tensile test)
A JIS No. 5 tensile specimen was taken in a direction perpendicular to the rolling direction of the cold-rolled annealed steel sheet to obtain tensile properties (tensile strength TS, elongation El).

(曲げ試験)
冷延焼鈍鋼板から圧延方向に直交する方向を長手方向とするJIS3号曲げ試験片を採取し、JIS Z2248の規定に準拠したVブロック法により曲げ性を調査した。頂角90度の押し金具をバリが内側となるよう押込んだ。曲げ性の良否は目視で判定し、試験後に割れやスジが生じない押し金具の最小半径を板厚で減じ、規格化することで最小曲げ半径を算出した。なお、押し金具はそれぞれ半径が2、1、0.5、0 mmのものを用いた。
(Bending test)
A JIS No. 3 bending test piece with the direction perpendicular to the rolling direction as the longitudinal direction was taken from the cold-rolled annealed steel sheet, and the bendability was investigated by a V-block method in accordance with the provisions of JIS Z2248. The metal fitting with 90 ° apex was pushed in so that the burr was inside. The quality of bendability was judged visually, and the minimum bending radius was calculated by subtracting the minimum radius of the metal fitting that does not cause cracks or streaks after the test from the plate thickness and normalizing it. In addition, the pressing metal fittings having radii of 2, 1, 0.5, and 0 mm were used.

(ナノ硬さ)
フェライト、低温変態相それぞれのナノ硬さは以下のようにして求めた。測定位置は、鋼板の圧延方向に直交する方向の断面であり、鋼板表面から板中心方向へ25〜30μm 位置の各相の硬さを、Hysitron社のTriboscopeを用い測定した。ここで、測定時の荷重は500μNであり、探針押込み深さは、いずれの相であっても数10nmであった。各相について抽出した10カ所のナノ硬さを測定し、その平均値を用いた。
(Nano hardness)
The nano hardness of each of the ferrite and the low-temperature transformation phase was determined as follows. The measurement position was a cross section in a direction perpendicular to the rolling direction of the steel sheet, and the hardness of each phase at a position of 25 to 30 μm from the steel sheet surface to the sheet center direction was measured using a Hysitron Triboscope. Here, the load at the time of measurement was 500 μN, and the probe indentation depth was several tens of nm in any phase. The ten nano hardness values extracted for each phase were measured, and the average value was used.

表2から明らかなように、最小曲げ半径、引張り試験時の伸びは鋼組織により変化するが、プレス成形される自動車部品に用いられる事を想定し、伸び10%以上と曲げ半径R1t以下を満足するものを合格とした。   As is clear from Table 2, the minimum bending radius and the elongation during the tensile test vary depending on the steel structure, but assuming that it is used for press-molded automobile parts, the elongation is 10% or more and the bending radius R1t or less is satisfied. What to do was accepted.

Figure 2009167467
Figure 2009167467

Figure 2009167467
Figure 2009167467

曲げ性と偏析の関連を模式的に示した説明図である。It is explanatory drawing which showed typically the relationship between bendability and segregation. 良好な曲げ性と伸びを両立可能な範囲を模式的に示した説明図である。It is explanatory drawing which showed typically the range which can make favorable bendability and elongation compatible.

Claims (5)

質量%で、C:0.05〜0.2%、Si:0.2〜2.0%、Mn:0.5〜2.8%、P:0.005〜0.15%、S:0.02%以下、Al:0.005〜1.5%、残部Feおよび不純物からなる化学組成を有する鋼板であって、フェライト相および低温変態相を有し、フェライト相の体積分率が60体積%以上、80体積%以下であって、さらにフェライト相のナノ硬さHnfと低温変態相のナノ硬さHnmとの比:Hnm/Hnfが3.0以上である組織を備えたことを特徴とする引張強度780MPa以上の冷延鋼板。 In mass%, C: 0.05 to 0.2%, Si: 0.2 to 2.0%, Mn: 0.5 to 2.8%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 1.5%, balance Fe and impurities Steel composition having a ferrite phase and a low temperature transformation phase, the volume fraction of the ferrite phase is not less than 60% by volume and not more than 80% by volume, and the nano hardness Hnf of the ferrite phase and the low temperature A ratio of the transformation phase to the nano hardness Hnm: a cold-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by having a structure with Hnm / Hnf of 3.0 or more. 前記が化学組成のSi含有量が0.2〜0.8質量%、Al含有量が0.7〜1.5質量%であり、鋼板表面にめっき層を備えた、請求項1記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, wherein the Si composition has a chemical composition of 0.2 to 0.8 mass%, an Al content of 0.7 to 1.5 mass%, and a plated layer on the steel sheet surface. 質量%で、C:0.05〜0.2%、Si: 0.2〜2.0%、Mn:0.5〜2.8%、P:0.005〜0.15%、S:0.02%以下、Al:0.005〜1.5%、残部Feおよび不純物からなる化学組成を有する鋼板であって、フェライト相および低温変態相を有し、フェライト相の体積分率が20体積%以上、50体積%以下であって、さらにフェライト相のナノ硬さHnfと低温変態相のナノ硬さHnmとの比:Hnm/Hnfが2.0以下である組織を備えたことを特徴とする引張強度780MPa以上の冷延鋼板。 In mass%, C: 0.05 to 0.2%, Si: 0.2 to 2.0%, Mn: 0.5 to 2.8%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 1.5%, balance Fe and impurities Steel composition having a ferrite phase and a low-temperature transformation phase, the volume fraction of the ferrite phase being 20% by volume or more and 50% by volume or less, and the nano hardness Hnf of the ferrite phase and the low temperature A ratio of the transformation phase to the nano hardness Hnm: a cold-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by having a structure with Hnm / Hnf of 2.0 or less. 前記化学組成のSi含有量が0.2〜0.8質量%、Al含有量が0.7〜1.5質量%であり、鋼板表面にめっき層を備えた、請求項3記載の冷延鋼板。 The cold rolled steel sheet according to claim 3, wherein the chemical composition has an Si content of 0.2 to 0.8 mass%, an Al content of 0.7 to 1.5 mass%, and a plated layer on the steel sheet surface. 前記化学組成が、Feの一部に代えて、質量%で、Cr:0.01〜1.0%およびMo:0.01〜1.0%の少なくとも1種をさらに含む請求項1ないし4のいずれかに記載の冷延鋼板。 The cold rolling according to any one of claims 1 to 4, wherein the chemical composition further includes at least one of Cr: 0.01 to 1.0% and Mo: 0.01 to 1.0% by mass% instead of a part of Fe. steel sheet.
JP2008006756A 2008-01-16 2008-01-16 Manufacturing method of high-strength cold-rolled steel sheet with excellent bendability Active JP5564754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006756A JP5564754B2 (en) 2008-01-16 2008-01-16 Manufacturing method of high-strength cold-rolled steel sheet with excellent bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006756A JP5564754B2 (en) 2008-01-16 2008-01-16 Manufacturing method of high-strength cold-rolled steel sheet with excellent bendability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012252571A Division JP2013067866A (en) 2012-11-16 2012-11-16 High-strength cold-rolled steel sheet superior in bending property

Publications (2)

Publication Number Publication Date
JP2009167467A true JP2009167467A (en) 2009-07-30
JP5564754B2 JP5564754B2 (en) 2014-08-06

Family

ID=40968984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006756A Active JP5564754B2 (en) 2008-01-16 2008-01-16 Manufacturing method of high-strength cold-rolled steel sheet with excellent bendability

Country Status (1)

Country Link
JP (1) JP5564754B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067374A (en) * 2010-09-27 2012-04-05 Kunitomo Nekko Kk Metal reinforcing member, method of manufacturing metal reinforcing member, and heat treatment method of metal
WO2013099235A1 (en) 2011-12-26 2013-07-04 Jfeスチール株式会社 High-strength thin steel sheet and process for manufacturing same
WO2014014120A1 (en) * 2012-07-20 2014-01-23 新日鐵住金株式会社 Steel material
US9228244B2 (en) 2010-03-31 2016-01-05 Nippon Steel & Sumitomo Metal Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
EP2930253A4 (en) * 2012-12-06 2016-07-20 Nippon Steel & Sumitomo Metal Corp Steel material and shock-absorbent member
WO2018117500A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
WO2022210219A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same
CN115572891A (en) * 2021-06-21 2023-01-06 上海梅山钢铁股份有限公司 Cold-rolled annealed steel strip with yield strength of 420MPa for art designing blade

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052458A (en) * 2003-08-26 2006-02-23 Jfe Steel Kk High tensile strength cold-rolled steel sheet and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052458A (en) * 2003-08-26 2006-02-23 Jfe Steel Kk High tensile strength cold-rolled steel sheet and its production method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012047734; 河村健二、他3名: 'DP型高強度冷延鋼板の伸びフランジ性に及ぼす組織の影響' 材料とプロセス Vol.15 No.6, 20020901, Page.1229 *
JPN6012047736; Kohei HASEGAWA、他3名: 'Effects of Microstructure on Stretch-flange-formability of 980 MPa Grade Cold-rolled Ultra High Stre' ISIJ International Vol.44 No.3, 20040315, Page.603-609 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228244B2 (en) 2010-03-31 2016-01-05 Nippon Steel & Sumitomo Metal Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
US10113220B2 (en) 2010-03-31 2018-10-30 Nippon Steel & Sumitomo Metal Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
JP2012067374A (en) * 2010-09-27 2012-04-05 Kunitomo Nekko Kk Metal reinforcing member, method of manufacturing metal reinforcing member, and heat treatment method of metal
WO2013099235A1 (en) 2011-12-26 2013-07-04 Jfeスチール株式会社 High-strength thin steel sheet and process for manufacturing same
US10378090B2 (en) 2012-07-20 2019-08-13 Nippon Steel Corporation Steel material
WO2014014120A1 (en) * 2012-07-20 2014-01-23 新日鐵住金株式会社 Steel material
JP5660250B2 (en) * 2012-07-20 2015-01-28 新日鐵住金株式会社 Steel
CN104471094A (en) * 2012-07-20 2015-03-25 新日铁住金株式会社 Steel material
EP2930253A4 (en) * 2012-12-06 2016-07-20 Nippon Steel & Sumitomo Metal Corp Steel material and shock-absorbent member
US9862428B2 (en) 2012-12-06 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Steel material and impact absorbing member
WO2018117500A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
US10941468B2 (en) 2016-12-19 2021-03-09 Posco High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
WO2022210219A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same
KR20230151527A (en) 2021-03-30 2023-11-01 제이에프이 스틸 가부시키가이샤 High-strength hot rolled steel sheet and manufacturing method thereof
CN115572891A (en) * 2021-06-21 2023-01-06 上海梅山钢铁股份有限公司 Cold-rolled annealed steel strip with yield strength of 420MPa for art designing blade
CN115572891B (en) * 2021-06-21 2023-09-05 上海梅山钢铁股份有限公司 Cold-rolled annealed steel strip with yield strength of 420MPa for art knife blade

Also Published As

Publication number Publication date
JP5564754B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP5564754B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent bendability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
KR20190045277A (en) High Strength Steel Sheet and Manufacturing Method Thereof
WO2015093043A1 (en) High strength hot-dip galvanized steel sheet and manufacturing method therefor
JP5590254B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2011184756A (en) High strength steel sheet and method for producing the same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JPWO2020090303A1 (en) High-strength steel sheet and its manufacturing method
JP5741456B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
KR102507715B1 (en) High-strength steel sheet and manufacturing method thereof
JP7364933B2 (en) Steel plate and its manufacturing method
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR20190044105A (en) High Strength Steel Sheet and Manufacturing Method Thereof
JP6237963B1 (en) High strength steel plate and manufacturing method thereof
JPWO2019130713A1 (en) High strength steel sheet and method for manufacturing the same
JP2009079255A (en) High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
KR20170095977A (en) High-strength steel sheet and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350