JP2009166037A - Apparatus and method for desorption of deposit adhered onto particulate - Google Patents

Apparatus and method for desorption of deposit adhered onto particulate Download PDF

Info

Publication number
JP2009166037A
JP2009166037A JP2008329486A JP2008329486A JP2009166037A JP 2009166037 A JP2009166037 A JP 2009166037A JP 2008329486 A JP2008329486 A JP 2008329486A JP 2008329486 A JP2008329486 A JP 2008329486A JP 2009166037 A JP2009166037 A JP 2009166037A
Authority
JP
Japan
Prior art keywords
granular material
holding container
particulate matter
superheated steam
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329486A
Other languages
Japanese (ja)
Other versions
JP5142398B2 (en
Inventor
Haruichi Nakaki
治一 仲喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J TOP SERVICE CO Ltd
J-TOP SERVICE CO Ltd
SAKAI KOUHAN CO Ltd
Original Assignee
J TOP SERVICE CO Ltd
J-TOP SERVICE CO Ltd
SAKAI KOUHAN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J TOP SERVICE CO Ltd, J-TOP SERVICE CO Ltd, SAKAI KOUHAN CO Ltd filed Critical J TOP SERVICE CO Ltd
Priority to JP2008329486A priority Critical patent/JP5142398B2/en
Publication of JP2009166037A publication Critical patent/JP2009166037A/en
Application granted granted Critical
Publication of JP5142398B2 publication Critical patent/JP5142398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which desorbs deposits adhered onto particulates effectively by the use of superheated steam. <P>SOLUTION: The apparatus for desorption of deposits adhered onto particulates has a particulate holding container for sealing of particulates having a large number of holes which particulates cannot pass through, a sealed oven sealing the particulate holding container in a nearly sealed state, a rotation supporting section supporting the particulate holding container in a rotatable way, a rotation driving means of rotating the particulate holding container, and a steam introduction means of introducing superheated steam into the closed oven. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、砂、土、粒状の吸着剤などの粒状物に付着した付着物を脱離するための方法および装置に関する。なお、本願において「付着」とはファンデルワールス力により物理的に粒状物表面(表面中に形成されるの穴の内面を含む)に付着している場合と共有結合などにより化学的に粒状物表面に結合して付着している場合の両方が含まれる。また、「脱離」とはいわゆる脱離反応を意味するものではなく、単に粒状物から付着物が離れることを意味する。   The present invention relates to a method and an apparatus for desorbing deposits adhering to particulate matter such as sand, earth, and particulate adsorbent. In the present application, “attachment” refers to the case where the particles are physically attached to the surface of the particulate matter (including the inner surface of the hole formed in the surface) by van der Waals force, and the case where the particulate matter is chemically attached by a covalent bond or the like. Both of them are attached to the surface and attached. Further, “desorption” does not mean a so-called desorption reaction, but simply means that the deposit is separated from the particulate matter.

従来、吸着剤により有害物質を吸着させた後、吸着剤から有害物質を脱離することが行われる。例えば、重金属イオン物質を取り込んだイオン交換樹脂から重金属イオン物質を脱離する場合は、当該イオン交換樹脂を多量の高濃度の酸またはアルカリ溶液中に浸漬し、化学的に重金属イオンをイオン交換樹脂から分離させる方法がある。
また、有機物質が吸着した多孔質吸着剤である活性炭から有機物質を脱離する場合には、高温の過熱水蒸気に数十分さらすことで、有機物質を気化分解する方法がある。
Conventionally, after a harmful substance is adsorbed by an adsorbent, the harmful substance is desorbed from the adsorbent. For example, when desorbing a heavy metal ion substance from an ion exchange resin that has taken in a heavy metal ion substance, the ion exchange resin is immersed in a large amount of high-concentration acid or alkali solution to chemically remove heavy metal ions. There is a method of separating from.
In addition, when desorbing an organic substance from activated carbon, which is a porous adsorbent on which the organic substance is adsorbed, there is a method in which the organic substance is vaporized and decomposed by exposing it to high-temperature superheated steam for several tens of minutes.

イオン交換樹脂から重金属イオン物質を除去する場合、大量の高濃度アルカリ溶液を大量に使用するため、大型の施設が必要であり、また大量の廃液が発生する。さらに、処理に数時間を要し、脱離後のイオン交換樹脂を再生するために大量の水で水洗する必要がある等種々の欠点がある。
また、活性炭から有機物質を脱離する場合は大量の反応溶液を要することはないが、処理にエネルギーと時間がかかるという問題がある。例えば、300℃の過熱水蒸気を用いて有機物質を分解する場合は、60分以上の時間をかける必要がある。この試験結果を図7に示す。図7に示すのは、有機物質を吸着した活性炭100gを300℃の過熱水蒸気に反応させた場合における、時間ごとの有機物質の分解率を示したものである。また、500℃の過熱水蒸気を用いる場合は、30分から40分の時間を掛ける必要がある。この試験結果を図8に示す。図8に示すのは有機物質を吸着した活性炭100gを500℃の過熱水蒸気に反応させた場合における、時間ごとの有機物質の分解率を示したものである。また、この方法は長時間高温に晒すために酸素があると活性炭が酸化により劣化するためほぼ無酸素状態にする必要が在り、処理後の活性炭の発火や酸化を防ぐために温度が低下するまで待つ時間も必要である。
When removing a heavy metal ion substance from an ion exchange resin, a large amount of high-concentration alkaline solution is used in large quantities, so a large facility is required and a large amount of waste liquid is generated. Furthermore, there are various disadvantages such as that it takes several hours for the treatment and it is necessary to wash with a large amount of water in order to regenerate the ion exchange resin after desorption.
Further, when an organic substance is desorbed from activated carbon, a large amount of reaction solution is not required, but there is a problem that processing takes energy and time. For example, when decomposing an organic substance using superheated steam at 300 ° C., it is necessary to spend 60 minutes or more. The test results are shown in FIG. FIG. 7 shows the decomposition rate of the organic substance over time when 100 g of activated carbon adsorbed with the organic substance is reacted with superheated steam at 300 ° C. Moreover, when using 500 degreeC superheated water vapor | steam, it is necessary to take time for 30 minutes to 40 minutes. The test results are shown in FIG. FIG. 8 shows the decomposition rate of the organic substance over time when 100 g of activated carbon adsorbed with the organic substance is reacted with 500 ° C. superheated steam. Also, this method requires exposure to high temperatures for long periods of time, so that activated carbon degrades due to oxidation, so it needs to be almost oxygen-free. Wait until the temperature drops to prevent ignition and oxidation of the activated carbon after treatment. Time is also needed.

この両者は、化学反応を主とする脱離方法と過熱水蒸気を用いた脱離方法であるが、一長一短がある。ところで、過熱水蒸気を用いる方法は高温の水蒸気による作用と、急激な水蒸気の凝結作用を用いて付着物を脱離するもので、害が少なく活性炭に限られず、種々の粒状物に対する付着物の脱離に利用でき応用範囲が広く望ましい方法である。
一方で、上述したように活性炭などから有機物質を脱離するには、時間とエネルギーがかかるといった問題があり、また、粒状物に付着している物質が経時変化に伴い粒状物の凹凸状の表面や細孔内部で固化してしまうと、結合した付着物を過熱水蒸気の作用だけの効果では剥離させることは容易ではない。
以上のような観点に立ち、本願発明は、過熱水蒸気を用い、粒状物に付着した付着物を効果的に脱離する装置を提供することを課題とする。
Both of these are a desorption method mainly using a chemical reaction and a desorption method using superheated steam, but there are advantages and disadvantages. By the way, the method using superheated steam uses the action of high-temperature steam and the agglomeration action of rapid steam to desorb the deposits, which is less harmful and is not limited to activated carbon. This is a desirable method with a wide range of applications that can be used remotely.
On the other hand, there is a problem that it takes time and energy to desorb an organic substance from activated carbon or the like as described above, and the substance adhering to the granular material becomes uneven as the granular material changes with time. Once solidified on the surface or inside the pores, it is not easy to peel the bonded deposits by the effect of the superheated steam.
In view of the above, it is an object of the present invention to provide an apparatus for effectively desorbing deposits adhering to particulates using superheated steam.

上記課題を解決するために、本発明は次のような構成を有する。
請求項1に記載の発明は、粒状物を封入する、当該粒状物が通ることができない多数の穴が設けられた粒状物保持容器と、前記粒状物保持容器を略密閉状態で封入する密閉炉と、粒状物保持容器を回転可能に保持する回動支持部と、前記粒状物保持容器を回転させる回転駆動手段と、前記密閉炉内に過熱水蒸気を導入する蒸気導入手段とを有する粒状物付着物脱離装置である。
請求項2に記載の発明は、前記粒状物付着物脱離装置において、前記密閉炉内に、前記粒状物保持容器に液体を散布する液体散布手段が設けられたものである。
請求項3に記載の発明は、請求項1に記載の粒状物付着物脱離装置において、前記液体散布手段が2以上設けられたものである。
請求項4に記載の発明は、請求項1又は2に記載の粒状物付着物脱離装置において、前記液体散布手段により散布される液体を貯める槽体である貯留槽であって、前記粒状物保持容器の少なくとも一部が当該槽体内部に存するように位置づけられる貯留槽が設けられたものである。
In order to solve the above problems, the present invention has the following configuration.
The invention according to claim 1 includes a granular material holding container that encloses the granular material, provided with a large number of holes through which the granular material cannot pass, and a sealed furnace that encloses the granular material holding container in a substantially sealed state. And a rotating support unit for rotatably holding the granular material holding container, a rotation driving means for rotating the granular material holding container, and a steam introducing means for introducing superheated steam into the sealed furnace. It is a kimono detachment apparatus.
According to a second aspect of the present invention, in the particulate matter desorbing device, a liquid spraying means for spraying a liquid to the particulate matter holding container is provided in the sealed furnace.
According to a third aspect of the present invention, in the particulate matter deposit detachment apparatus according to the first aspect, two or more liquid spraying means are provided.
Invention of Claim 4 is a storage tank which is a tank body which stores the liquid sprayed by the said liquid spraying means in the particulate matter deposit | attachment detachment | desorption apparatus of Claim 1 or 2, Comprising: The said particulate matter A storage tank that is positioned so that at least a part of the holding container exists inside the tank body is provided.

請求項5に記載の発明は、前記粒状物付着物脱離装置において 前記粒状物保持容器は両開口が閉じられた軸が水平方向を向く円筒体であり、前記回動支持部は、前記円筒体の回転軸回りに前記粒状物保持容器を回動可能に保持するものである。
請求項6に記載の発明は、請求項5に記載の粒状物付着物脱離装置において、前記蒸気導入手段は、円筒体を構成する前記粒状物保持容器の下方側に沿って設けられる、先端が閉じられた管体であって、側面の前記粒状物保持容器に面した位置に複数の蒸気が噴出する開口が形成される蒸気噴出管を有するものである。
請求項7に記載の発明は、請求項2から6の粒状物付着物脱離装置において、前記粒状物保持容器は両開口が閉じられた円筒体であり、前記回動支持部は、前記円筒体の回転軸回りに前記粒状物保持容器を回動可能に保持するものであって、前記液体散布手段は、円筒体を構成する前記粒状物保持容器の上方側に沿って設けられる、先端が閉じられた管体であって、側面の前記粒状物保持容器に面した位置に複数の溶液が噴出する開口が形成される液体散布ヘッドが設けられたものである。
The invention according to claim 5 is the particulate matter depositing and detaching device according to the fifth aspect, wherein the particulate matter holding container is a cylindrical body in which an axis whose both openings are closed faces in a horizontal direction, and the rotation support portion is the cylinder The granular material holding container is rotatably held around the rotation axis of the body.
The invention according to claim 6 is the tip of the particulate matter detachment apparatus according to claim 5, wherein the vapor introducing means is provided along the lower side of the particulate matter holding container constituting the cylindrical body. Is a closed tube body, and has a steam ejection pipe in which openings for ejecting a plurality of steams are formed at positions on the side surface facing the granular material holding container.
According to a seventh aspect of the present invention, in the particulate matter adhering / detaching apparatus according to any one of the second to sixth aspects, the particulate matter holding container is a cylindrical body having both openings closed, and the rotation support portion is the cylindrical body. The granular material holding container is rotatably held around the rotation axis of the body, and the liquid spraying means is provided along the upper side of the granular material holding container constituting the cylindrical body, A closed pipe body is provided with a liquid spraying head in which an opening through which a plurality of solutions are ejected is formed at a position facing the granular material holding container on the side surface.

請求項8に記載の発明は、前記粒状物付着物脱離装置において、前記粒状物保持容器内部には、1以上の攪拌羽根が内部に向って設けられるものである。
請求項9に記載の発明は、前記粒状物付着物脱離装置において、前記密閉炉を外部から加熱する加熱手段が設けられるものである。
請求項10に記載の発明は、前記粒状物付着物脱離装置において、前記粒状物保持容器に対して、気体を吹き付ける気体散布手段が設けられたものである。
請求項11に記載の発明は、前記粒状物付着物脱離装置において、前記液体散布手段は、散布対象を空気に切り替えることができるように、液体層に連結する液体用ポンプとエアーコンプレッサーとに接続されるとともに、液体用ポンプからの導入とエアーコンプレッサーからの導入とを切り替える切り替え弁とが設けられるものである。
According to an eighth aspect of the present invention, in the particulate matter depositing and desorbing apparatus, one or more stirring blades are provided inside the particulate matter holding container.
According to a ninth aspect of the present invention, in the particulate matter deposit detachment apparatus, a heating means for heating the sealed furnace from the outside is provided.
According to a tenth aspect of the present invention, in the particulate matter deposit detachment apparatus, a gas spraying means for blowing gas to the particulate matter holding container is provided.
According to an eleventh aspect of the present invention, in the particulate matter deposit detachment apparatus, the liquid spraying means includes a liquid pump and an air compressor connected to the liquid layer so that the spray target can be switched to air. In addition to being connected, a switching valve for switching between introduction from the liquid pump and introduction from the air compressor is provided.

請求項12に記載の発明は、前記粒状物付着物脱離装置を用いて、アルミナを主成分とする多孔質の粒状物から窒素化合物を脱離する方法であって、前記粒状物をアルカリ溶液に浸漬する浸漬ステップと、前記浸漬ステップの後に、前記粒状物保持容器内に前記粒状物を封入し、前記回転駆動手段を回転させながら前記蒸気導入手段により、前記粒状物を過熱水蒸気に当てる過熱水蒸気ステップとを含む粒状物の付着物脱離方法である。なお、窒素化合物には、硝酸イオン、窒素酸化物などが例示される。
請求項13に記載の発明は、前記粒状物の付着物脱離方法において、前記過熱水蒸気ステップは、ほぼ無酸素状態で行われるものである。
The invention according to claim 12 is a method for desorbing a nitrogen compound from a porous granular material mainly composed of alumina using the granular material adhering substance desorbing device, wherein the granular material is treated with an alkaline solution. An immersion step in which the granular material is enclosed in the granular material holding container after the immersion step, and the granular material is applied to superheated steam by the steam introducing means while rotating the rotation driving means. A method for removing particulate matter including a water vapor step. Nitrogen compounds include nitrate ions and nitrogen oxides.
According to a thirteenth aspect of the present invention, in the particulate matter deposit detachment method, the superheated steam step is performed in an almost oxygen-free state.

上記構成により本発明は、次のような効果を奏する。
請求項1に記載の発明は、粒状物を多数の穴の開いた粒状物保持容器に入れて、密閉炉内で回転させながら、蒸気導入手段により密閉路内に過熱水蒸気を導入することで、粒状物保持容器内で攪拌される粒状物に万遍なく過熱水蒸気を作用させることができる。
請求項2に記載の発明は、前記粒状物保持容器に液体散布手段により液体を散布することができるので、液体として付着物に作用できる溶液を用いれば、溶液内の粒状物に当該溶液を万遍なく接触させることができる。
請求項3に記載の発明は、液体散布手段を2以上設けることで、例えば、一つの液体散布手段から酸性溶液を散布し、他の液体散布手段から水を散布する等、状況に応じて散布する液体を切り替えるようにできる。
請求項4に記載の発明は、粒状物保持容器の少なくとも一部が内部に存するように位置づけられる貯留槽を、粒状物保持容器の下方に設けることで、散布された液体が貯留槽に溜まると、粒状物保持容器内の粒状物の一部がこの貯留槽内の液体に漬かることになり、液体を粒状物に接触させる頻度を高くすることができる。
With the above configuration, the present invention has the following effects.
The invention according to claim 1 is to introduce the superheated steam into the sealed path by the steam introduction means while putting the granular material in the granular material holding container having a large number of holes and rotating in the sealed furnace. Superheated steam can be applied uniformly to the granular material stirred in the granular material holding container.
In the invention according to claim 2, since the liquid can be sprayed to the granular material holding container by the liquid spraying means, if a solution that can act on the deposit as a liquid is used, the solution can be applied to the granular material in the solution. Can be contacted evenly.
In the invention according to claim 3, by providing two or more liquid spraying means, for example, an acidic solution is sprayed from one liquid spraying means and water is sprayed from another liquid spraying means, depending on the situation. The liquid to be switched can be switched.
In the invention according to claim 4, when the sprayed liquid accumulates in the storage tank by providing a storage tank positioned so that at least a part of the granular material holding container exists inside the storage tank. Part of the granular material in the granular material holding container is immersed in the liquid in the storage tank, and the frequency with which the liquid is brought into contact with the granular material can be increased.

請求項5に記載の発明は、粒状物保持容器を水平方向に保持されて回転する円筒体とすることで、回転により粒状物保持容器の壁面は上方に移動するように動く部分が生じるので、粒状物が上がって落ちるという動作をすることでより攪拌されやすい。
請求項6に記載の発明は、円筒体の粒状物保持容器に沿った蒸気噴出管から粒状物保持容器に向って複数の穴から蒸気が噴出するので、粒状物保持容器内の粒状物に対し長さ方向に渡って均等に蒸気を吹き付けることができる。
請求項7に記載の発明は、円筒体の粒状物保持容器に沿った液体散布ヘッドから粒状物保持容器に向って複数の穴から液体が噴出するので、粒状物保持容器内の粒状物に対し長さ方向に渡って均等に液体を散布することができる。
請求項8に記載の発明は、粒状物保持容器内に攪拌羽根を設けることで、より粒状物の攪拌を促進することができる。
請求項9に記載の発明は、加熱手段により密閉炉を外部から加熱することで、密閉炉内の過熱蒸気の温度低下を抑制し、密閉路内を高温に保持することができる。
請求項10に記載の発明は、気体を吹き付ける気体散布手段により粒状物保持容器内の粒状物に気体を吹き付けることで、粒状物を乾燥させることができ、これにより、過熱水蒸気による凝結作用を促進することができる。
請求項11に記載の発明は、液体散布手段にエアーコンプレッサーを接続し、液体の噴射と気体の噴射とを切り替えるようにすることで、あらたに気体噴射用のノズル等を設ける必要が無くなり、気体を吹き付ける手段を設ける場合において構成を簡易にすることができる。
Since the invention described in claim 5 is a cylindrical body that rotates while being held in the horizontal direction by holding the granular material holding container, a part of the wall of the granular material holding container that moves so as to move upward is generated by the rotation. It is easier to stir by moving the granular material up and down.
According to the sixth aspect of the present invention, steam is ejected from a plurality of holes from a steam jet pipe along a cylindrical granular material holding container toward the granular material holding container. Steam can be sprayed evenly over the length.
According to the seventh aspect of the present invention, liquid is ejected from a plurality of holes toward the granular material holding container from the liquid spraying head along the cylindrical granular material holding container. The liquid can be evenly distributed over the length direction.
In the invention according to claim 8, the stirring of the granular material can be further promoted by providing the stirring blade in the granular material holding container.
According to the ninth aspect of the present invention, the temperature of the superheated steam in the sealed furnace can be suppressed and the inside of the sealed path can be kept at a high temperature by heating the sealed furnace from the outside by the heating means.
The invention according to claim 10 can dry the particulate matter by blowing the gas to the particulate matter in the particulate matter holding container by the gas spraying means for blowing the gas, thereby promoting the coagulation action by the superheated steam. can do.
According to the eleventh aspect of the present invention, an air compressor is connected to the liquid spraying means to switch between the liquid injection and the gas injection, so that it is not necessary to newly provide a gas injection nozzle or the like. In the case where a means for spraying is provided, the configuration can be simplified.

請求項12に記載の発明は、窒素化合物が付着したアルミナを主成分とする多孔質の粒状物を浸漬ステップにより、アルカリ溶液に浸漬することで、表層のアルミナごと窒素化合物を溶かしだす。そして、過熱水蒸気ステップで粒状物を粒状物保持容器内で攪拌しながら密閉した空間内で過熱水蒸気にふれさせることで、万遍なく過熱水蒸気を粒状物に作用させることができ、これにより、万遍なく粒状物から溶かしだした窒素化合物を高温の水蒸気によって窒素酸化物のガスとして分解し放出し、窒素化合物を粒状物から脱離させることができる。
請求項13に記載の発明は、過熱水蒸気ステップを無酸素状態で行うことにより、処理をする粒状物が酸化により機能が低下する等の問題がある場合に、処理時の粒状物の酸化を抑えることができる。
The invention according to claim 12 dissolves the nitrogen compound together with the alumina of the surface layer by immersing a porous granular material mainly composed of alumina, to which the nitrogen compound is adhered, in an alkaline solution by an immersion step. Then, the superheated steam can be applied to the granular material evenly by allowing the superheated steam to touch the superheated steam in the sealed space while stirring in the granular material holding container in the superheated steam step. Nitrogen compounds that are uniformly dissolved from the particulate matter are decomposed and released as a gas of nitrogen oxides by high-temperature steam, and the nitrogen compounds can be desorbed from the particulate matter.
The invention according to claim 13 suppresses the oxidation of the particulate matter during the treatment when the superheated steam step is performed in an oxygen-free state and the particulate matter to be treated has a problem that the function is deteriorated due to the oxidation. be able to.

以下、本発明の実施形態について図面を参照しながら説明する。
(実施形態1)
図1に実施形態に係る粒状物付着物脱離装置Xの構成を模式的に表す図を示す。粒状物付着物脱離装置Xは、脱離処理をする粒状物保持容器10、粒状物保持容器10を密閉状態にする密閉炉20、密閉炉20内に過熱水蒸気を導入する蒸気導入部30、密閉炉20内の粒状物保持容器10に液体を散布し、空気を噴射する液体・気体散布部40、同様に、粒状物保持容器10に液体を散布する液体散布部50、液体・気体散布部40および液体散布部50から散布される溶液を貯める貯留槽60、貯留槽60に貯まった液体を回収する廃液回収部70、ヒーター部80とから構成される。図2に、ヒーター部80内部を示す一部破断拡大斜視図を示し、図3に図2のA−A断面図を示す。
粒状物保持容器10を構成する容器本体11は網を円筒形に形成して開口部を円板により封止した籠体により形成される。網目の大きさは処理対象となる粒状物が通ることができない大きさに設定される。円板の一方には粒状物を出し入れするための蓋体11aが設けられている。また、容器本体11内部には図3に示すような断面形状をもつ板体から形成される撹拌羽根11bが内部に向かって4枚設けられている。さらに、前記各円板の中心には、円筒形の中心軸を通る回転軸12が固定されている。そして、後述する貯留槽60の両端には、粒状物保持容器10の回転軸12を回動可能に保持する上方に半円状の切り欠きが形成された板体からなる軸支体13a、13bが固定されている。回転軸12の後端側はカプラー14aを介して、密閉炉20外部に設けられるモーター14の回転軸に固定されており、モーター14により粒状物保持容器10は回転軸12を中心に回動するようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
The figure which represents typically the structure of the granular material deposit | attachment detachment | desorption apparatus X which concerns on FIG. 1 at embodiment is shown. The particulate matter detachment apparatus X includes a particulate matter holding container 10 that performs a detachment process, a sealed furnace 20 that seals the particulate matter holding container 10, a steam introduction unit 30 that introduces superheated steam into the sealed furnace 20, A liquid / gas spraying unit 40 that sprays liquid onto the granular material holding container 10 in the closed furnace 20 and jets air, and similarly, a liquid spraying unit 50 that sprays liquid onto the granular material holding container 10, and a liquid / gas spraying unit. 40 and a storage tank 60 for storing the solution sprayed from the liquid spraying section 50, a waste liquid recovery section 70 for recovering the liquid stored in the storage tank 60, and a heater section 80. 2 is a partially broken enlarged perspective view showing the inside of the heater section 80, and FIG. 3 is a cross-sectional view taken along line AA of FIG.
The container main body 11 constituting the granular material holding container 10 is formed of a casing in which a net is formed in a cylindrical shape and an opening is sealed with a disk. The size of the mesh is set to a size that the granular material to be processed cannot pass. One of the disks is provided with a lid 11a for taking in and out the particulate matter. Further, four stirring blades 11b formed from a plate body having a cross-sectional shape as shown in FIG. Further, a rotating shaft 12 passing through a cylindrical central axis is fixed at the center of each disk. And the axial support bodies 13a and 13b which consist of the plate body in which the semicircular notch was formed in the both ends of the storage tank 60 mentioned later on which the rotating shaft 12 of the granular material holding | maintenance container 10 was rotatably supported was formed. Is fixed. The rear end side of the rotating shaft 12 is fixed to the rotating shaft of the motor 14 provided outside the sealed furnace 20 via the coupler 14 a, and the granular material holding container 10 is rotated around the rotating shaft 12 by the motor 14. It is like that.

密閉炉20は、一方の開口が閉じられた円筒体であり、前方を後述する密閉蓋80aにより閉じられることで、外部に通じる管体からの通気以外は密閉状態となるように形成されている。
蒸気導入部30は、過熱蒸気発生装置32、蒸気噴出管31、蒸気流出管33、蒸気回収管34とから構成される。過熱蒸気発生装置32は水を貯めるタンクを有し、この水を高周波を用いて過熱水蒸気として蒸気流出管33から外部へ流出するものである。蒸気噴出管31は後述する貯留槽60の両脇上方に2本設けられ、前記粒状物保持容器10に沿って延びる先端が封止された、側方に複数の蒸気が噴出する開口が設けられ管体からなるものであり、後端に接続される蒸気流出管33から導入される過熱水蒸気を開口から密閉炉20内に噴出する。蒸気流出管33は二本の蒸気噴出管32に接続できるように先端が二股に分かれた管体である。蒸気回収管34は密閉炉20の上部に設けられる通気筒34aを有し、ここから過熱水蒸気発生装置32へと水蒸気を回収する。回収された水蒸気は再び過熱水蒸気発生装置32により加熱され過熱水蒸気となる。なお、密閉炉20内に過熱水蒸気が充満すると、元からあった空気中の酸素比率が減少するとともに、蒸気回収管34から排出された酸素は高圧状態で水に溶けるので、密閉炉20内はほぼ無酸素状態となる。
The closed furnace 20 is a cylindrical body with one opening closed, and is closed so that the front is closed by a sealing lid 80a, which will be described later, so that it is in a sealed state except for ventilation from the tubular body leading to the outside. .
The steam introduction unit 30 includes a superheated steam generator 32, a steam ejection pipe 31, a steam outflow pipe 33, and a steam recovery pipe 34. The superheated steam generator 32 has a tank for storing water, and this water flows out from the steam outlet pipe 33 to the outside as superheated steam using high frequency. Two steam ejection pipes 31 are provided above both sides of a storage tank 60 to be described later, and the opening extending along the granular material holding container 10 is sealed, and an opening for ejecting a plurality of steams is provided on the side. It consists of a pipe body, and superheated steam introduced from the steam outflow pipe 33 connected to the rear end is jetted into the sealed furnace 20 from the opening. The steam outlet pipe 33 is a tubular body having a bifurcated tip so that it can be connected to the two steam jet pipes 32. The steam recovery pipe 34 has a through-cylinder 34 a provided in the upper part of the closed furnace 20, and recovers steam from here to the superheated steam generator 32. The recovered steam is heated again by the superheated steam generator 32 to become superheated steam. In addition, when superheated steam is filled in the closed furnace 20, the oxygen ratio in the air that was originally reduced is reduced, and oxygen discharged from the steam recovery pipe 34 is dissolved in water in a high-pressure state. It becomes almost oxygen-free.

液体・気体散布部40は、散布ヘッド41、タンク42、ポンプ43、流通管44、電磁三方弁45、エアーコンプレッサー46とから構成される。散布ヘッド41は、前記粒状物保持容器の上方側に沿って設けられる、先端が閉じられた管体から構成され、側面の前記粒状物保持容器に面した位置に複数の溶液および空気が噴出する開口が設けられている。タンク42は散布する液体を貯留する一般的なタンクである。エアーコンプレッサー46は高圧の空気を送り出す一般的なエアーコンプレッサーから構成される。流通管44はタンク42およびエアーコンプレッサー46から散布ヘッド41へ液体や気体を送るための管体であり、途中にタンク42に直結するポンプ43が設けられ、さらに、ポンプ42の下流側の位置に三方電磁弁45が設けられている。三方電磁弁45の流通管44の流路上にない導入口には、エアーコンプレッサー46が接続されている。
即ち、三方電磁弁45を制御することにより、散布ヘッド41から液体を散布させるか空気を噴射させるか切り替えることができ、さらに、ポンプ43を制御することで液体の噴射と停止が制御でき、エアーコンプレッサー46を制御することにより、空気の噴射と停止を制御できるようになっている。
液体散布部50は液体・気体散布部40と同様の構成であり、液体散布ヘッド51、タンク52、ポンプ53、液体流通管54とから構成されるが、液体流通管54に三方電磁弁を介してエアーコンプレッサーが接続されていない点が異なる。なお、図1では液体散布ヘッド41と液体散布ヘッド51はずれて描いているが、これは便宜的な表現であり実際は図3に示すように平行に配置される。
貯留槽60は、前記粒状物保持容器10の容器本体11の長さよりもやや長く、容器本体11の幅よりもやや幅がある、上方が開放した直方体状の箱体である。貯留槽60の両端には、粒状物保持容器10の回転軸12を回動可能に保持する軸支体13a、13bが固定されている。貯留槽60の底面には密閉炉20の外部に通じる後述するドレン管73が設けられ、また、貯留槽60の側面の一定高さの位置には、側方から下方に曲がり密閉炉20の外部に通じる後述するオーバーフロー管71に通じている。なお、軸支体13a、13bに粒状物保持容器10が保持された状態で粒状物保持容器10の容器本体11下端はオーバーフロー管71の位置と底面とのほぼ中間位置に位置するように設定されている。
The liquid / gas spraying unit 40 includes a spraying head 41, a tank 42, a pump 43, a flow pipe 44, an electromagnetic three-way valve 45, and an air compressor 46. The spraying head 41 is composed of a tubular body provided along the upper side of the granular material holding container and having a closed end, and a plurality of solutions and air are ejected to positions on the side surface facing the granular material holding container. An opening is provided. The tank 42 is a general tank that stores the liquid to be sprayed. The air compressor 46 is composed of a general air compressor that sends out high-pressure air. The distribution pipe 44 is a pipe body for sending a liquid or gas from the tank 42 and the air compressor 46 to the spraying head 41, and a pump 43 directly connected to the tank 42 is provided on the way, and further at a position downstream of the pump 42. A three-way solenoid valve 45 is provided. An air compressor 46 is connected to an inlet that is not on the flow path of the flow pipe 44 of the three-way solenoid valve 45.
That is, by controlling the three-way solenoid valve 45, it is possible to switch between spraying liquid and spraying air from the spraying head 41, and controlling the pump 43 to control liquid injection and stopping. By controlling the compressor 46, the injection and stop of air can be controlled.
The liquid spraying unit 50 has the same configuration as the liquid / gas spraying unit 40, and includes a liquid spraying head 51, a tank 52, a pump 53, and a liquid circulation pipe 54. The liquid circulation pipe 54 is connected to a three-way electromagnetic valve. The difference is that the air compressor is not connected. In FIG. 1, the liquid spraying head 41 and the liquid spraying head 51 are depicted as being deviated from each other. However, this is an expedient expression, and actually, they are arranged in parallel as shown in FIG. 3.
The storage tank 60 is a rectangular parallelepiped box that is slightly longer than the container main body 11 of the granular material holding container 10 and slightly wider than the container main body 11 and is open at the top. At both ends of the storage tank 60, shaft supports 13a and 13b are rotatably fixed that rotatably hold the rotating shaft 12 of the granular material holding container 10. A drain pipe 73, which will be described later, communicates with the outside of the closed furnace 20 is provided on the bottom surface of the storage tank 60. In addition, the storage tank 60 is bent downward from the side at a certain height on the side surface of the storage tank 60. To an overflow pipe 71 which will be described later. Note that the lower end of the container body 11 of the granular material holding container 10 is set at a substantially intermediate position between the position of the overflow pipe 71 and the bottom surface in a state where the granular material holding container 10 is held by the shaft supports 13a and 13b. ing.

廃液回収部70は、オーバーフロー管71、ドレン管73、電磁弁72、74、第一廃液タンク75、第二廃液タンク76、電磁三方弁77より構成される。オーバーフロー管71は前述したように貯留槽60の一定高さの側面に連結されており、貯留槽60から一定高さを超えた液体が流れるようになっている。電磁弁72はオーバーフロー管71に設けられるがオーバーフロー管71に貯留槽60からの液体を通すために通常は開放している。ドレン管73は、前述したように貯留槽60の底に連結しており、貯留槽60に貯まった液体を抜き取る際に使用する。ドレン管73には電磁弁74が設けられており、電磁弁74は通常は閉じられており、貯留槽60の液体を抜き取る場合に電磁弁74を開放するようになっている。第一廃液タンク75および第二廃液タンク76は一般的なタンクである。電磁三方弁77は、オーバーフロー管71及びドレン管73から流れてくる液体を第一廃液タンク75と第二廃液タンク76のいずれかに導くかを切り替えるものであり、第一廃液タンク75に連結する連結管75a及び第二廃液タンク76に連結する連結管76aに接続されている。
ヒーター80は、密閉炉20を取り囲む円筒状の保温部を有するバンドヒーターであって密閉炉20内部を加熱する。具体的には、ヒーター80は密閉炉20内の図示しない温度計の温度をフィードバックし、密閉炉20内部の温度を一定の高温状態に維持するようになっている。ヒーター80の先端側は密閉蓋80aにより密閉状態で閉じることができるようになっている。この密閉蓋80aは密閉炉20の先端開口も同時に封止する。
なお、粒状物保持容器11を回転させるモーター14、過熱蒸気発生装置32、液体・気体散布部40、50のポンプ43、53、廃液回収部70の電磁弁72、74、電磁三方弁77、ヒーター80は図示しない制御手段によりプログラム制御されるようになっている。
The waste liquid recovery unit 70 includes an overflow pipe 71, a drain pipe 73, electromagnetic valves 72 and 74, a first waste liquid tank 75, a second waste liquid tank 76, and an electromagnetic three-way valve 77. As described above, the overflow pipe 71 is connected to the side surface of the storage tank 60 having a certain height, and the liquid exceeding the certain height flows from the storage tank 60. The electromagnetic valve 72 is provided in the overflow pipe 71, but is normally open to allow the liquid from the storage tank 60 to pass through the overflow pipe 71. The drain pipe 73 is connected to the bottom of the storage tank 60 as described above, and is used when the liquid stored in the storage tank 60 is extracted. The drain pipe 73 is provided with an electromagnetic valve 74. The electromagnetic valve 74 is normally closed, and the electromagnetic valve 74 is opened when the liquid in the storage tank 60 is extracted. The first waste liquid tank 75 and the second waste liquid tank 76 are general tanks. The electromagnetic three-way valve 77 switches whether the liquid flowing from the overflow pipe 71 and the drain pipe 73 is led to either the first waste liquid tank 75 or the second waste liquid tank 76, and is connected to the first waste liquid tank 75. The connecting pipe 75a and the connecting pipe 76a connected to the second waste liquid tank 76 are connected.
The heater 80 is a band heater having a cylindrical heat insulating portion surrounding the sealed furnace 20 and heats the inside of the sealed furnace 20. Specifically, the heater 80 feeds back the temperature of a thermometer (not shown) in the closed furnace 20 to maintain the temperature inside the closed furnace 20 at a constant high temperature. The front end side of the heater 80 can be closed in a sealed state by a sealing lid 80a. The sealing lid 80a also seals the opening of the front end of the sealing furnace 20 at the same time.
The motor 14 for rotating the granular material holding container 11, the superheated steam generator 32, the pumps 43 and 53 of the liquid / gas spraying units 40 and 50, the electromagnetic valves 72 and 74 of the waste liquid recovery unit 70, the electromagnetic three-way valve 77, the heater 80 is program-controlled by control means (not shown).

次に、以上のような構成を有する粒状物付着物脱離装置Xを用いた粒状物の付着物脱離方法について説明する。ここでは、粒状物としてアルミナを主成分とする多孔質無機吸着体の粒体(以下、「吸着剤粒」という)にニッケルが付着したものからニッケルを脱離する場合を例示する。ここでは重金属であるニッケルを脱離するので、液体・気体散布部40のタンク42には希薄酸性溶液が入れられ、また、もう一方の液体散布部50のタンク52には水が入れられる。なお、フッ素等の陰イオンを脱離する場合は液体・気体散布部40のタンク42には希薄アルカリ溶液が入れられる。   Next, a particulate matter detachment method using the particulate matter detachment apparatus X having the above configuration will be described. Here, a case where nickel is desorbed from a porous inorganic adsorbent particle (hereinafter referred to as “adsorbent particle”) mainly composed of alumina as a granular material is exemplified. Here, since nickel, which is a heavy metal, is desorbed, a dilute acidic solution is placed in the tank 42 of the liquid / gas spraying unit 40, and water is placed in the tank 52 of the other liquid spraying unit 50. When desorbing anions such as fluorine, a dilute alkaline solution is placed in the tank 42 of the liquid / gas spraying unit 40.

まず、密閉蓋80aを開けて、粒状物保持容器11を取り出し、内部にニッケルを吸着した吸着剤粒を封入する。その後、密閉炉20内部に粒状物保持容器11をセットし、密閉蓋80aを閉じる。この状態で、モーター14を駆動して粒状物保持容器11を回転させ、さらに、過熱蒸気発生装置32を稼働し、過熱蒸気を密閉炉内に導入する(過熱水蒸気ステップ)。この際、過熱蒸気は蒸気噴出管31により粒状物保持容器11内に向かって下方両側から均等に吹き付けられる。
また、密閉炉20内はヒーター80により所定の温度に維持されるので過熱水蒸気の温度が低下することはない。また、過熱水蒸気は蒸気回収管34から外部に排出され再び過熱蒸気発生装置32を介して再び加熱されて密閉炉20内に戻る。
このように密閉炉内に過熱水蒸気が導入されることにより、吸着剤粒表明や細孔内部では過熱水蒸気の急激な凝結作用が起こり、細孔内に水が充満し吸着しているニッケルが細孔上部に浮き上がる。なお、過熱水蒸気は密閉炉20内に充満しており、吸着剤粒は回転する粒状物保持容器11内で攪拌羽根11bにより撹拌されながら回転しているので、ほとんどの吸着剤粒に凝結作用が及ぶ。しかし、このままの状態であると吸着剤粒表面の温度がすぐに100度を超え凝結作用が起こらなくなり、逆に、凝結した水が再び蒸気となって浮き上がったニッケルが再び細孔内に戻ってしまう。そこで、吸着剤粒が100度に近づくまえに液体・気体散布部40により希薄酸性溶液を粒状物保持容器11上から散布する(溶液処理・冷却ステップ)。希薄酸性溶液は常温であるので吸着剤粒を冷却することができるとともに、酸性溶液の働きにより細孔近傍に浮かび上がったニッケルを洗い流すことができ、さらに、一度の凝結作用では剥離しなかったニッケルを溶解作用により剥離しやすくさせることができる。希薄酸性溶液の散布量は吸着剤粒の表面および細孔内部全体を溶解させながら冷却する量、例えば、吸着剤粒の投入量に対し約1/10〜同量程度の量とする。なお、吸着剤粒は撹拌されながら回転しているので、希薄酸性溶液をほぼ均等に接触させることができる。そして、この希薄酸性溶液の散布を定期的に繰り返すことで、冷却と凝結を何度でも繰り返すことができる。なお、希薄酸性溶液の散布時には過熱水蒸気の発生を停止してもよい。
また、さらに凝結による剥離効果を高めるために、希薄酸性溶液の散布後に吸着剤粒表面の細孔内を乾燥させる工程を加えることができる。即ち、一定時間希薄酸性溶液散布した後に、液体・気体散布部40の電磁三方弁45を切り替えて、エアーコンプレッサー46が散布ヘッド41に連通するようにして、エアーコンプレッサーを作動させることにより、散布ヘッド41から常温・高圧の空気流を、吸着剤粒に一定時間当てる。これにより、吸着剤粒表面および細孔内の希薄酸性溶液等の水分が吹き飛ばされ、同時に、吸着剤粒表面および細孔内の温度を冷やすことができる。この工程により、吸着剤粒がより乾いた状態となるので、凝結作用よる剥離を効果的に起すことができる。
First, the sealing lid 80a is opened, the granular material holding container 11 is taken out, and adsorbent particles having adsorbed nickel inside are enclosed. Then, the granular material holding container 11 is set inside the closed furnace 20, and the sealed lid 80a is closed. In this state, the motor 14 is driven to rotate the granular material holding container 11, and the superheated steam generator 32 is operated to introduce superheated steam into the closed furnace (superheated steam step). At this time, the superheated steam is blown evenly from the lower sides toward the inside of the granular material holding container 11 by the steam ejection pipe 31.
Moreover, since the inside of the closed furnace 20 is maintained at a predetermined temperature by the heater 80, the temperature of the superheated steam does not decrease. Further, the superheated steam is discharged to the outside from the steam recovery pipe 34, is heated again via the superheated steam generator 32, and returns to the sealed furnace 20.
By introducing superheated steam into the closed furnace in this way, the agglomeration of superheated steam occurs inside the adsorbent particles and inside the pores, and the pores are filled with water and adsorbed nickel is fine. Float above the hole. The superheated steam is filled in the closed furnace 20, and the adsorbent particles are rotated while being stirred by the stirring blade 11b in the rotating granular material holding container 11, so that most of the adsorbent particles have a coagulation action. It reaches. However, in this state, the temperature of the surface of the adsorbent particles immediately exceeds 100 ° C., and the condensing action does not occur. Conversely, the condensed water is again vaporized and the nickel that has floated up again returns to the pores. End up. Therefore, before the adsorbent particles approach 100 degrees, the diluted acidic solution is sprayed from above the granular material holding container 11 by the liquid / gas spraying unit 40 (solution treatment / cooling step). Since the diluted acidic solution is at room temperature, the adsorbent particles can be cooled, and the nickel that has floated in the vicinity of the pores can be washed away by the action of the acidic solution. Can be easily peeled by a dissolving action. The amount of the dilute acidic solution sprayed is the amount cooled while dissolving the entire surface of the adsorbent particles and the inside of the pores, for example, about 1/10 to the same amount as the amount of adsorbent particles charged. In addition, since the adsorbent particles are rotated while being stirred, the diluted acidic solution can be brought into almost uniform contact. And cooling and condensation can be repeated any number of times by spraying this dilute acidic solution regularly. Note that the generation of superheated steam may be stopped when the dilute acidic solution is sprayed.
Further, in order to further enhance the peeling effect due to condensation, a step of drying the pores on the surface of the adsorbent particles after the application of the dilute acidic solution can be added. That is, after spraying the dilute acidic solution for a certain period of time, the electromagnetic three-way valve 45 of the liquid / gas spraying unit 40 is switched so that the air compressor 46 is in communication with the spraying head 41 and the air compressor is operated. A normal temperature / high pressure air flow from 41 is applied to the adsorbent granules for a certain period of time. Thereby, moisture such as a dilute acidic solution in the adsorbent particle surface and pores is blown off, and at the same time, the temperature in the adsorbent particle surface and pores can be cooled. By this step, since the adsorbent particles are in a drier state, it is possible to effectively cause peeling due to the coagulation action.

また、散布された希薄酸性溶液は吸着剤粒や粒状物保持容器11に接触したのち、貯留槽20内に貯まっていくことになる。貯留槽20に貯まった希薄酸性溶液が一定量貯まると、粒状物保持容器が貯留層20内の希薄酸性溶液に浸かることになり、これにより粒状物保持容器10内の吸着剤粒の一部が貯留槽内の希薄酸性溶液を通ることになり、これにより、吸着剤粒に付着した凝結作用により浮き上がったニッケルが洗い流され、また、剥離していないニッケルを剥離しやすくさせることができる。即ち、上方からの溶液の散布と貯留槽20による浸漬とにより、二重に希薄酸性溶液と吸着剤粒とが接触する仕組みとなっているため、使用する希薄酸性溶液量を少なくすることができる。また、貯留槽20に希薄酸性溶液が多く溜まり、オーバーフロー管71の開口部に達すると、この部分を越える希薄酸性溶液は、オーバーフロー管71を通って、電磁三方弁77により導かれる第一廃液タンク75と第二廃液タンク76のいずれかに溜まっていくことになる。
このように、過熱水蒸気雰囲気内で、定期的に希薄酸性溶液の散布を行い脱離処理が完了する。その後、電磁弁74を開いてドレン管73から貯留槽20に溜まった廃液を電磁三方弁77により導かれる第一廃液タンク75と第二廃液タンク76のいずれかに回収し、粒状物保持容器10を密閉炉20から出して、処理後の吸着剤粒を回収して作業は完了する。
Further, the sprayed dilute acidic solution is stored in the storage tank 20 after coming into contact with the adsorbent particles and the granular material holding container 11. When a certain amount of the diluted acidic solution stored in the storage tank 20 is stored, the granular material holding container is immersed in the diluted acidic solution in the storage layer 20, whereby a part of the adsorbent particles in the granular material holding container 10 is formed. The dilute acidic solution in the storage tank is passed through, so that the nickel floating due to the coagulation action adhering to the adsorbent particles is washed away, and the nickel that has not been peeled can be easily peeled off. That is, since the dilute acidic solution and the adsorbent particles are in contact with each other by spraying the solution from above and being immersed in the storage tank 20, the amount of the dilute acidic solution to be used can be reduced. . When a large amount of dilute acidic solution is accumulated in the storage tank 20 and reaches the opening of the overflow pipe 71, the dilute acidic solution exceeding this portion passes through the overflow pipe 71 and is guided by the electromagnetic three-way valve 77. 75 and the second waste liquid tank 76.
In this way, the desorption treatment is completed by periodically spraying the diluted acidic solution in the superheated steam atmosphere. Thereafter, the electromagnetic valve 74 is opened, and the waste liquid collected in the storage tank 20 from the drain pipe 73 is collected in either the first waste liquid tank 75 or the second waste liquid tank 76 guided by the electromagnetic three-way valve 77, and the granular material holding container 10 is collected. Is removed from the closed furnace 20 and the treated adsorbent particles are collected to complete the operation.

なお、過熱水蒸気の最適温度は、条件により変わるが、一般に過熱水蒸気が気体から液体になる凝結量はその温度は高ければ凝結速度も早くなり過熱水蒸気体積も増えることから、温度が低い一定温度の物体に触れると凝結量も増えていくことが推察されるため凝結量は結果的に多くなり、希薄な酸性溶液をさらに薄めすぎるため、溶解作用を弱めてしまう現象が起き、また、温度が高いと100度以下に冷却しにくくなるという状況も生じる。本実施形態において30gの吸着剤粒において過熱水蒸気温度を変化させる実験をした場合の実験結果を図4に示す。図4は過熱水蒸気の温度とニッケルの脱離率を表すデータである。この実験結果から、本実施形態においては400℃の過熱水蒸気温度が最も脱離率が高いことがわかった。600℃、800℃と過熱水蒸気の温度が高い場合は、凝結量が多くなることから酸性溶液の溶解作用を弱める働き等が生じたものと推察され、エネルギーコストを考えても低い過熱水蒸気温度の方が有利のため最小限の過熱水蒸気温度は400℃が最適であると考えられる。   The optimum temperature of superheated steam varies depending on the conditions, but generally the amount of condensation of superheated steam from gas to liquid increases with increasing temperature and the volume of superheated steam increases. It is assumed that the amount of condensation will increase when touching an object, so the amount of condensation will increase as a result, and the diluted acidic solution will be further diluted, resulting in a phenomenon that weakens the dissolving action, and the temperature is high. In some cases, it becomes difficult to cool to 100 degrees or less. FIG. 4 shows an experimental result when an experiment is performed in which the superheated steam temperature is changed in 30 g of adsorbent particles in the present embodiment. FIG. 4 shows data representing the temperature of superheated steam and the desorption rate of nickel. From this experimental result, it was found that the superheated steam temperature of 400 ° C. has the highest desorption rate in this embodiment. When the temperature of superheated steam is high at 600 ° C and 800 ° C, it is speculated that the action of weakening the dissolving action of the acidic solution occurred due to the increase in the amount of condensate. Because it is more advantageous, the minimum superheated steam temperature is considered to be optimal at 400 ° C.

また、希薄酸性溶液の散布間隔は吸着剤粒の処理量や、希薄酸性溶液の散布量や温度、過熱水蒸気の温度などにより変わることとなるが、過熱水蒸気温度400度、吸着剤粒30g、希薄酸性溶液の温度を常温で、一回の散布量を15ml、サイクル回数4回とした場合、実験結果から1分間隔が最適であることがわかった。図5に実験結果を表すグラフを示す。このグラフから1分間隔で希薄酸性溶液を散布するのがよいことがわかる。このような結果になるのは、1分以上をすぎると吸着剤粒の表面または細孔内部温度が飽和水蒸気温度100℃に達し、0.5分以内の場合は、凝結による剥離が十分に起こらないことが原因であると考えられる。
これらのデータが示すように、このような条件設定によって希薄酸シャワーを4回繰り返すと5回分の過熱水蒸気の凝結作用(最初の過熱水蒸気照射を開始したときも起こるため5回)が起こることで、4回分の酸の溶解作用および冷却作用とが複合して多孔質吸着剤の細孔内部に吸着した重金属物質ニッケルを約65%以上脱離することができた。
In addition, the spray interval of the dilute acidic solution varies depending on the processing amount of the adsorbent particles, the spray amount and temperature of the dilute acidic solution, the temperature of the superheated steam, the superheated steam temperature of 400 degrees, the adsorbent particles of 30 g, the dilute When the temperature of the acidic solution was normal temperature, the application amount per application was 15 ml, and the number of cycles was 4 times, it was found from the experimental results that the 1 minute interval was optimal. FIG. 5 shows a graph representing the experimental results. It can be seen from this graph that the dilute acidic solution should be sprayed at 1 minute intervals. Such a result is obtained when the surface temperature of the adsorbent particles or the pore internal temperature reaches a saturated water vapor temperature of 100 ° C. after 1 minute or more, and when it is within 0.5 minutes, peeling due to condensation is sufficiently caused. It is thought that the cause is not.
As these data show, if the dilute acid shower is repeated 4 times under such conditions, the condensation of superheated steam for 5 times (5 times because it occurs when the first superheated steam irradiation is started) occurs. It was possible to desorb about 65% or more of the heavy metal substance nickel adsorbed inside the pores of the porous adsorbent by combining the dissolving action and cooling action of four times of acid.

この方法は過熱水蒸気によるガス脱離であり、散布する希薄酸性溶液は多孔質体表面にかける程度の量のため非常に少ない量ですみ、さらに水分は炉内で殆ど蒸発するため廃液として発生する量はきわめて少なく、通常のイオン交換樹脂等に吸着した重金属物質を脱離する方法に比べ、30〜50分の1以下の廃液量ですむ。
また、吸着した重金属物質であるニッケルは貯留層内で高温で煮詰められて水分が蒸発する結果、高濃度のスラリー(ニッケル濃厚液)として廃液タンクに回収できる。即ち、水分含有量の少ない高濃度のニッケル濃縮液として回収できるため、水分蒸発工程時間が大幅に短縮できるフィルタープレス処理等を施せば、水分を蒸発させるため加熱工程の時間を短くでき、低コストでニッケルスラッジを容易に作り出せ、ニッケルの資源回収としての有効利用も実現でき低コストで廃棄物が殆どでないクローズド型の脱離処理が達成できる。
This method is gas desorption due to superheated steam, and the dilute acidic solution to be sprayed is very small because it is applied to the surface of the porous body, and moreover, the water is almost evaporated in the furnace and is generated as waste liquid. The amount is extremely small, and the amount of waste liquid is 30 to 50 times less than the method of desorbing heavy metal substances adsorbed on ordinary ion exchange resins.
In addition, the adsorbed nickel, which is a heavy metal substance, is boiled at a high temperature in the reservoir and the water is evaporated, so that it can be recovered in the waste liquid tank as a high-concentration slurry (nickel concentrate). In other words, since it can be recovered as a highly concentrated nickel concentrate with a low water content, the time of the heating process can be shortened and the cost can be reduced by applying a filter press process that can significantly reduce the time of the water evaporation process. Thus, nickel sludge can be easily produced, and effective use for nickel resource recovery can be realized, and a closed type desorption process can be achieved with low cost and almost no waste.

また、本実施形態に係る重金属物質を脱離する方法は、1分間程度の数分単位で複数回の少ない繰り返し処理を用いて脱離できるため脱離所要時間は5分〜10分間となる。従って、1つの小さな粒状物付着物脱離装置Xの1時間稼動で6回分、24時間なら24×6=144回分脱離できる。例えば、1回分がわずか3kgの粒状物でも1日単位でみると3kg×144回=432Kgが脱離でき、小さな装置でも大量の粒状物から重金属物質を脱離することができる、ランニングコストも非常に安価となる。
このように粒状物付着物脱離装置Xは、小さな炉でも処理時間が短いために、サイクル数を増やすことで大量の粒状物および多孔質体を脱離できる。したがって、密閉炉20が小さくてすむことにより少ないエネルギーで高温まであげることができ、また、過熱水蒸気容積も小さくできるためそのエネルギー使用量は非常に低くなりエネルギー効率が高くなるというメリットが生じる。つまり、一度温度が上がれば、小さい容積の炉のため温度を維持するエネルギー量は小さく、過熱水蒸気が注入されていることによっても温度が維持されるため、必要とするエネルギー量は少なくてすむ。
さらに、粒状物付着物脱離装置Xは、全体を小さくできるので設置面積が小さくコンパクトであり、さらに一つの過熱水蒸気発生源装置から過熱水蒸気を複数分岐させることで、複数の密閉炉20に過熱水蒸気を同時に供給できることも可能であるため、複数の粒状物保持容器10に対する処理を一つの過熱水蒸気発生装置32で行え、処理量を増加させる場合でも製造コストを抑えることができ、過熱水蒸気発生装置32を一つで済ませることで、粒状物の処理量の増加に対するランニングのエネルギーコストの増加量を小さくすることができる。
In addition, since the method for desorbing a heavy metal material according to the present embodiment can be desorbed using a few repeated treatments in units of several minutes of about 1 minute, the desorption time is 5 minutes to 10 minutes. Therefore, one small particulate matter depositing apparatus X can be desorbed 6 times in 1 hour operation, and 24 × 6 = 144 times in 24 hours. For example, 3kg x 144 times = 432Kg can be desorbed even if the granular material is only 3kg in one batch, and heavy metal substances can be desorbed from a large amount of granular material even with a small device. It will be cheaper.
As described above, the particulate matter detachment apparatus X has a short processing time even in a small furnace, so that a large amount of particulate matter and porous material can be detached by increasing the number of cycles. Therefore, since the closed furnace 20 can be made small, it is possible to increase the temperature to a high temperature with a small amount of energy, and the volume of superheated steam can be reduced, so that the amount of energy used is extremely low and the energy efficiency is increased. That is, once the temperature rises, the amount of energy for maintaining the temperature is small because the furnace has a small volume, and the temperature is maintained even when superheated steam is injected, so that less energy is required.
Furthermore, since the particulate matter deposit detachment apparatus X can be reduced in size as a whole, the installation area is small and compact. Further, by dividing a plurality of superheated steam from one superheated steam generation source apparatus, the plurality of sealed furnaces 20 are superheated. Since it is also possible to supply water vapor at the same time, the processing for the plurality of granular material holding containers 10 can be performed by one superheated steam generator 32, and even when the processing amount is increased, the manufacturing cost can be suppressed, and the superheated steam generator By using only one 32, it is possible to reduce the amount of increase in the energy cost of running with respect to the increase in the processing amount of granular materials.

なお、ここではニッケルを吸着したアルミナを主成分とする多孔質吸着体を例に挙げたが、重金属イオン物質や陰イオン物質が付着した吸着剤や砂などの粒状物にも、ほぼ同様の処理を行うことで、付着物を脱離することができる。なお、散布する溶液は、処理する粒状物を構成している材料の主成分又は付着している重金属物質または陰イオン物質の主成分が酸で溶解するのかアルカリで溶解するのかまたは酸アルカリ両方とも溶解するのかを見極めたうえで選択することになる。溶解特性が両性の場合、例えばアルミや鉛の場合は酸でもアルカリでも溶解するためどちらを選択してもかまわない。   In this example, a porous adsorbent mainly composed of alumina adsorbed with nickel was used as an example, but almost the same treatment is applied to adsorbents and heavy particulates such as sand adhering heavy metal ion substances and anion substances. By performing the above, the deposit can be detached. It should be noted that the solution to be sprayed is either whether the main component of the material constituting the granular material to be processed or the main component of the adhering heavy metal substance or anionic substance is dissolved in acid or alkali, or both acid and alkali. It will be selected after determining whether it dissolves. When the dissolution properties of amphoteric, for example, in the case of aluminum or lead may be selected either to dissolve in the alkali in acid.

また、散布する希薄酸性溶液もしくは希薄アルカリ溶液の繰り返し回数を削減する場合、もしくは、付着している物質の結合力が強い固化状態等の場合には、処理する粒状物を過熱水蒸気にさらす前に、散布する溶液に近似するpH値の酸性もしくはアルカリ性の溶液に数分間浸漬するとよい(浸漬ステップ)。実際に、固化した重金属が付着した吸着剤に対して、希薄な酸性溶液例えば塩酸濃度が数%のHCIに数分間以上浸してから過熱水蒸気雰囲気中で希薄な塩酸溶液の酸シャワーを組み合わせることで脱離することができた。これは事前に酸の溶解作用による重金属物質の結合力を切り離すことで、重金属物質が結合状態から付着状態に変化した後、過熱水蒸気が対流している雰囲気中に投入することで、過熱水蒸気の凝結作用により、結合力が弱くなった重金属物質を洗い流すように剥離させることができるためであると考えられる。また、付着物の結合力がそれほど強くない場合は、結合力がさらに弱くなるので、希薄酸性溶液もしくは希薄アルカリ溶液を散布する回数を減らしても、脱離できる付着物の量を維持でき、処理時間を短縮することができる。   Also, when reducing the number of repetitions of the dilute acidic solution or dilute alkaline solution to be sprayed, or in the case of a solidified state where the binding force of the adhered substance is strong, before subjecting the treated granular material to superheated steam, It is preferable to immerse in an acidic or alkaline solution having a pH value approximate to the solution to be spread for several minutes (immersion step). Actually, by adsorbing the adsorbent with solidified heavy metal in a dilute acidic solution such as HCI with a concentration of several percent of hydrochloric acid for several minutes or more, combined with an acid shower of dilute hydrochloric acid solution in a superheated steam atmosphere. It was possible to desorb. This is because the heavy metal substance is changed from the bonded state to the adhering state after the heavy metal substance is changed from the bonded state to the adhering state by cutting off the binding force of the acid due to the dissolving action of the acid in advance. This is considered to be because the heavy metal substance having a weak binding force can be peeled off by the coagulation action. In addition, when the bond strength of the deposit is not so strong, the bond strength is further weakened, so that the amount of deposit that can be detached can be maintained even if the number of times of dilute acidic solution or dilute alkaline solution is reduced. Time can be shortened.

ところで散布する希薄酸性溶液もしくは希薄アルカリ溶液によって粒状物が溶解する場合、特に粒状物が吸着剤であって、これを再生する場合には、吸着剤の細孔がダメージを受ける場合がある。しかし、過熱水蒸気の凝結作用は水蒸気の液化作用であるため、粒状物に付着する酸やアルカリによる溶融効果の進行を希釈し抑える働きも同時に有しているため、上述のダメージは緩和される。さらに、このダメージを緩和するため、希薄酸性溶液もしくは希薄アルカリ溶液の散布サイクルに、水の散布を加えることができる(水洗ステップ)。このように水を散布することで酸性もしくはアルカリ性溶液は希釈され、溶解による粒状物である吸着剤のダメージを抑制することができる。なお、水は、液体散布部50より散布すればよい。そして、さらに散水後に、液体・気体散布部40より室温状態の高圧の空気を噴出させて吸着剤表面を乾燥させるようにしてもよい。これにより、吸着剤表面および細孔内の温度を低い状態に維持したまま溶液を乾燥させることで、凝結効果を高めるとともに、酸もしくはアルカリ性溶液によるダメージを抑制し、散布サイクル数に比例した凝結効果を得ることができる。   By the way, when the granular material is dissolved by the diluted acidic solution or the diluted alkaline solution to be sprayed, particularly when the granular material is the adsorbent and is regenerated, the pores of the adsorbent may be damaged. However, since the coagulation action of superheated steam is a liquefaction action of water vapor, it also has the function of diluting the progress of the melting effect due to the acid or alkali adhering to the particulate matter, and thus the above-mentioned damage is alleviated. Furthermore, in order to alleviate this damage, water can be applied to the application cycle of the dilute acidic solution or dilute alkaline solution (water washing step). By spraying water in this manner, the acidic or alkaline solution is diluted, and damage to the adsorbent that is a granular material due to dissolution can be suppressed. The water may be sprayed from the liquid spraying unit 50. Further, after spraying water, the surface of the adsorbent may be dried by ejecting high-pressure air at room temperature from the liquid / gas spraying unit 40. As a result, the solution is dried while keeping the temperature of the adsorbent surface and pores at a low level, thereby enhancing the setting effect and suppressing the damage caused by the acid or alkaline solution. The setting effect is proportional to the number of spray cycles. Can be obtained.

(実施形態2)
次に実施形態2に係る粒状物の付着物脱離方法について説明する。本実施形態は付着物として耐熱性をもつ有機物質および耐熱性のない一般的な有機物質が共存する場合の脱離処理である。本実施形態においても、実施形態1で用いた粒状物付着物脱離装置Xを用いる。ここでは、粒状物として活性炭粒を用いる。なお、液体・気体散布部40のタンク42には水が入れられるものとする。
(Embodiment 2)
Next, the particulate matter detachment method according to the second embodiment will be described. The present embodiment is a desorption process in the case where an organic material having heat resistance and a general organic material having no heat resistance coexist as an adhering substance. Also in the present embodiment, the particulate matter deposit detachment apparatus X used in the first embodiment is used. Here, activated carbon particles are used as the granular material. It is assumed that water is put into the tank 42 of the liquid / gas spraying unit 40.

まず、最初に耐熱性と非耐熱性の有機物質が混在して細孔内部全体に飽和状態で結合した飽和活性炭粒を希薄な酸性溶液中に一定時間浸漬する(浸漬ステップ)。これにより、有機物質と活性炭との結合部分を事前に溶解させる。なお、活性炭は酸に溶解することがないため細孔内部が溶解されることはなく、活性炭の吸着能力や比表面積等の状態が劣化することはない。尚、浸漬する溶液は結合している有機物質の溶解特性によってはアルカリ溶液を用いることができる。   First, saturated activated carbon particles in which heat-resistant and non-heat-resistant organic substances are mixed and bonded to the whole pores in a saturated state are immersed in a dilute acidic solution for a certain period of time (immersion step). Thereby, the joint part of an organic substance and activated carbon is dissolved beforehand. In addition, since activated carbon does not melt | dissolve in an acid, the inside of a pore is not melt | dissolved and states, such as the adsorption capacity of a activated carbon, a specific surface area, do not deteriorate. Note that an alkaline solution can be used as the solution to be immersed depending on the dissolution characteristics of the organic substance bonded thereto.

次に、浸漬処理した活性炭粒を実施形態1と同様に粒状物保持容器11に入れて、密閉炉20内にセットし、この状態で、モーター14を駆動して粒状物保持容器11を回転させる。その後、過熱蒸気発生装置32を稼働し、過熱蒸気を密閉炉20内に導入する(過熱水蒸気ステップ)。密閉炉20内はヒーター80により一定の高温に維持され、過熱水蒸気は密閉炉内20を通るように循環する。なお、ここでは後述するように過熱水蒸気の温度を300℃としている。
このように密閉炉内に過熱水蒸気が導入されることにより、活性炭粒表面や細孔内部では過熱水蒸気の急激な凝結作用が起こり、浸漬処理により結合力が弱くなった有機物質は、凝結作用により剥離し、耐熱性のない有機化合物の一部は高温の過熱水蒸気により気化分解する。一方、耐熱性のある有機化合物は、凝結作用により細孔上部へと浮き上る。なお、実施形態1と同様に過熱水蒸気は密閉炉20内に充満しており、活性炭粒は回転する粒状物保持容器11内で攪拌羽根11bにより撹拌されながら回転しているので、ほとんどの活性炭粒に凝結作用が及ぶ。このような過熱水蒸気雰囲気の中で、さらに液体・気体散布部40を通じて水を散布することで、細孔上部に浮き上った有機化合物を洗い流す。また、水の散布により活性炭は冷却される。その後、散水を停止すると、冷却された活性炭に対して凝結作用が起こり、耐熱性のない有機化合物の気化分解と耐熱性のある有機化合物の剥離上昇が起こる。その後、散水を間欠的に繰り返すことで、過熱水蒸気の作用と、水洗及び冷却を交互に行う。この際、最後の工程では散水を一定時間以上、止めた状態とすることで、活性炭粒の温度を200度程度まで上昇させ、耐熱性のない有機化合物をすべて気化分解させる。なお、水の散布時には過熱水蒸気の発生を停止するようにしてもよい。
さらに、水の散布後に、液体・気体散布部40の電磁三方弁45を切り替えて、エアーコンプレッサー46と散布ヘッド41を連通するようにし、散布ヘッド41から常温・高圧の空気流を、活性炭粒に一定時間当てるようにしてもよい。これにより、活性炭粒表面および細孔内の水分を吹き飛ばされ、同時に、吸着在の温度を冷やすことができる。この工程により、活性炭粒が室温に近い状態を維持しながら、より乾いた状態となるので、凝結作用よる剥離をより効果的に起すことができる。
最後に、液体・気体散布部40を通じて水を散布することで活性炭粒を冷却して(水洗ステップ)、脱離処理が完了する。脱離処理が完了したら、電磁弁74を開いてドレン管73から貯留槽20に溜まった廃液を電磁三方弁77により導かれる第一廃液タンク75と第二廃液タンク76のいずれかに回収し、粒状物保持容器10を密閉炉20から出して、処理後の吸着剤粒を回収して作業は完了する。
このように、過熱水蒸気により耐熱性のない有機化合物を気化分解させ、耐熱性のある有機化合物を過熱水蒸気の凝結作用により剥離し、水洗することで脱離させることにより、耐熱性のない有機化合物と耐熱性のある有機化合物が混在していても、双方を脱離させることができる。これを、過熱水蒸気のみで行おうとする場合、例えば、ビスアリールフルオレン化合物またはポリフェニレンサルファイド等の200℃以上の温度でも熱分解しにくい耐熱性の有機物質が含まれている場合、気化分解のためには300℃以上、理想的には400℃以上の高温を要し、活性炭内部の温度を300℃〜400℃にするには、400℃〜500℃以上の高温の過熱水蒸気が必要となる。これは、電気エネルギー等を余計に消費することとなり、無駄が多い。一方、このような耐熱性の有機化合物に対して、気化分解しない比較的低い温度の過熱水蒸気凝結作用により剥離した後に水を散布する水洗処理を行わない場合、凝結した水は直ぐに気化するので剥離した耐熱性の有機化合物は再び細孔内に戻ってしまい、脱離させることができなくなってしまう。
Next, the activated carbon particles subjected to the immersion treatment are put in the granular material holding container 11 in the same manner as in the first embodiment, set in the closed furnace 20, and in this state, the motor 14 is driven to rotate the granular material holding container 11. . Thereafter, the superheated steam generator 32 is operated to introduce superheated steam into the closed furnace 20 (superheated steam step). The inside of the closed furnace 20 is maintained at a constant high temperature by the heater 80, and the superheated steam circulates through the inside of the closed furnace 20. Here, as described later, the temperature of the superheated steam is set to 300 ° C.
By introducing superheated steam into the closed furnace in this way, the agglomerated action of superheated steam occurs on the surface of the activated carbon particles and inside the pores, and the organic substance whose bonding strength has been weakened by the immersion treatment is caused by the condensation action. Part of the organic compound that peels off and has no heat resistance is vaporized and decomposed by high-temperature superheated steam. On the other hand, the organic compound having heat resistance rises to the upper part of the pores due to the coagulation action. As in the first embodiment, superheated steam is filled in the closed furnace 20, and the activated carbon particles are rotated while being stirred by the stirring blade 11b in the rotating granular material holding container 11, so that most of the activated carbon particles. Condensation effect is exerted on. In such an overheated steam atmosphere, water is further sprayed through the liquid / gas spraying section 40 to wash away the organic compound floating above the pores. Moreover, activated carbon is cooled by spraying water. Thereafter, when watering is stopped, a coagulation action occurs on the cooled activated carbon, and vaporization decomposition of the organic compound having no heat resistance and increase in peeling of the organic compound having heat resistance occur. Then, by repeating watering intermittently, the action of superheated steam, water washing and cooling are performed alternately. At this time, in the last step, the watering is stopped for a certain time or more to raise the temperature of the activated carbon particles to about 200 ° C., thereby vaporizing and decomposing all organic compounds having no heat resistance. Note that generation of superheated steam may be stopped when water is sprayed.
Further, after the water is sprayed, the electromagnetic three-way valve 45 of the liquid / gas spraying unit 40 is switched so that the air compressor 46 and the spraying head 41 communicate with each other. You may make it hit for a fixed time. Thereby, the water | moisture content in the activated carbon particle surface and pore is blown off, and the temperature of adsorption | suction can be cooled simultaneously. This step allows the activated carbon particles to be in a drier state while maintaining a state close to room temperature, so that peeling due to the setting action can be more effectively caused.
Finally, the activated carbon particles are cooled by spraying water through the liquid / gas spraying unit 40 (water washing step), and the desorption process is completed. When the desorption process is completed, the electromagnetic valve 74 is opened, and the waste liquid collected in the storage tank 20 from the drain pipe 73 is collected in either the first waste liquid tank 75 or the second waste liquid tank 76 guided by the electromagnetic three-way valve 77, The particulate holding container 10 is taken out of the closed furnace 20 and the treated adsorbent particles are collected to complete the operation.
In this way, an organic compound having no heat resistance is vaporized and decomposed by superheated steam, and the organic compound having heat resistance is peeled off by the coagulation action of the superheated steam, and desorbed by washing with water. Even if organic compounds having heat resistance are mixed, both can be desorbed. When this is performed only with superheated steam, for example, when a heat-resistant organic substance that is difficult to thermally decompose even at a temperature of 200 ° C. or higher, such as a bisarylfluorene compound or polyphenylene sulfide, is included, for vaporization decomposition Requires a high temperature of 300 ° C. or higher, ideally 400 ° C. or higher, and high temperature superheated steam of 400 ° C. to 500 ° C. or higher is required to bring the temperature inside the activated carbon to 300 ° C. to 400 ° C. This consumes extra electrical energy and is wasteful. On the other hand, for such heat-resistant organic compounds, if the water-washing treatment is not performed, in which water is sprinkled after peeling by a relatively low-temperature superheated steam condensing action that does not vaporize and decompose, the condensed water will be vaporized immediately and peel off. The heat-resistant organic compound thus returned returns to the pores and cannot be desorbed.

なお、過熱水蒸気の温度は過熱水蒸気発生装置で調整ができ、ここでは過熱水蒸気の温度を約300℃としている。この場合の最適な処理時間を図6の実験データにより示す。この図は、活性炭量100gで過熱水蒸気温度を300℃にした場合の、処理時間と耐熱性のない有機化合物の分解率との関係を示すグラフである。この実験結果から過熱水蒸気300℃の場合、5分以上の処理時間で80%以上の有機物質の脱離ができることがわかる。これは図7に示す、従来の過熱水蒸気のみによる有機物質の気化分解率と同等以上効果であり、前述したように従来の方法では300℃の過熱水蒸気で60分以上の処理時間がかかることから、大幅な時間短縮が実現できた。また、有機物質の気化分解後に水を散布することで、約200℃以上になった活性炭粒を無酸素状態の炉内で、瞬間的に100℃未満に冷却してから取り出すため大気と触れても燃え上がるような酸化現象が生じず、活性炭粒を損なうことなく短時間で取出すことができる。この水による冷却は短時間ですむのでためこの取り出すための所要冷却時間は約1分未満で足り、トータルの処理時間は1回あたり約10分からときわめて短い時間となる。
なお、最後の冷却処理の前に繰り返しおこなわれる散水において、水を散布することに替えて、浸漬した際の酸又はアルカリ溶液を散布するようにしてもよい。
In addition, the temperature of superheated steam can be adjusted with a superheated steam generator, and here the temperature of superheated steam is about 300 degreeC. The optimum processing time in this case is shown by the experimental data in FIG. This figure is a graph showing the relationship between the treatment time and the decomposition rate of an organic compound having no heat resistance when the amount of activated carbon is 100 g and the superheated steam temperature is 300 ° C. From this experimental result, it can be seen that when the superheated steam is 300 ° C., 80% or more of the organic substance can be desorbed in a treatment time of 5 minutes or more. This is an effect equivalent to or higher than the conventional vaporization decomposition rate of organic substances only by superheated steam shown in FIG. 7, and as described above, the conventional method takes 60 minutes or more of processing time with superheated steam at 300 ° C. A significant time reduction was achieved. In addition, by spraying water after vaporization and decomposition of the organic substance, the activated carbon particles having reached about 200 ° C. or higher are instantaneously cooled to below 100 ° C. in an oxygen-free furnace, and then exposed to the atmosphere. No burning phenomenon occurs, and the activated carbon particles can be taken out in a short time without damaging them. Since the cooling with water is short, the cooling time required for the extraction is less than about 1 minute, and the total processing time is as short as about 10 minutes per time.
In addition, in the watering repeatedly performed before the last cooling process, it may replace with spraying water and may spray the acid or alkali solution at the time of immersion.

(実施形態3)
実施形態3に係る粒状物の付着物脱離方法も付着物が有機物質である場合の脱離処理であるが、実施形態2と異なり、最初の希薄酸性溶液による浸漬処理は行わない。本実施形態においても、実施形態1で用いた粒状物付着物脱離装置Xを用いる。ここでは、やはり粒状物として有機物質が吸着した活性炭粒を用いる。なお、液体・気体散布部40のタンク42には希薄酸性溶液が入れられ、液体散布部50のタンク52には水が入れられるものとする。
(Embodiment 3)
The particulate matter depositing method according to the third embodiment is also a desorption treatment in the case where the deposit is an organic substance, but unlike the second embodiment, the first immersion treatment with a dilute acidic solution is not performed. Also in the present embodiment, the particulate matter deposit detachment apparatus X used in the first embodiment is used. Here, activated carbon particles on which organic substances are adsorbed are also used as the granular materials. It is assumed that a dilute acidic solution is placed in the tank 42 of the liquid / gas spraying unit 40 and water is placed in the tank 52 of the liquid spraying unit 50.

最初に、有機物質が細孔内部全体に飽和状態で結合した飽和活性炭粒を実施形態1と同様に粒状物保持容器11に入れて、密閉炉20内にセットし、この状態で、モーター14を駆動して粒状物保持容器11を回転させる。その後、過熱蒸気発生装置32を稼働し、過熱蒸気を密閉炉20内に導入する(過熱水蒸気ステップ)。密閉炉20内はヒーター80により一定の高温に維持され、過熱水蒸気は密閉炉内20を通るように循環する。
このように密閉炉内に過熱水蒸気が導入されることにより、活性炭粒表面や細孔内部では過熱水蒸気の急激な凝結作用が起こり、有機物質の一部は、凝結作用により剥離したり、高温の過熱水蒸気により気化分解する。しかし、このままの状態であると粒状物表面の温度がすぐに100度を超え凝結作用が起こらなくなる。そこで、粒状物が100度に近づくまえに液体・気体散布部40により希薄酸性溶液を粒状物保持容器11上から散布する(溶液処理・冷却ステップ)。希薄酸性溶液は常温であるので粒状物を冷却することができるとともに、酸性溶液の働きにより、一度の凝結作用では気化分解しなかった有機物質を溶解作用により気化分解しやすくさせることができる。なお、粒状物は撹拌されながら回転しているので、希薄酸性溶液をほぼ均等に接触させることができる。そして、この希薄酸性溶液の散布を定期的に繰り返すことで、冷却と凝結を何度でも繰り返すことができる。なお、散布する溶液は、脱離させる有機物質の溶解特性によりアルカリ溶液を用いることもある。また、溶液の散布時には過熱水蒸気の発生を停止してもよい。
さらに、実施形態1と同様に溶液の散布直後に、液体・気体散布部40から空気を噴射するようにして、活性炭粒を乾燥する処理を加えてもよい。
First, saturated activated carbon particles in which organic substances are saturatedly bonded to the entire inside of the pores are placed in the granular material holding container 11 in the same manner as in the first embodiment, set in the closed furnace 20, and in this state, the motor 14 is turned on. Driven to rotate the granular material holding container 11. Thereafter, the superheated steam generator 32 is operated to introduce superheated steam into the closed furnace 20 (superheated steam step). The inside of the closed furnace 20 is maintained at a constant high temperature by the heater 80, and the superheated steam circulates through the inside of the closed furnace 20.
By introducing superheated steam into the closed furnace in this way, the agglomeration of superheated steam occurs on the surface of the activated carbon particles and inside the pores, and part of the organic substance is peeled off due to the condensation action, Vaporizes and decomposes with superheated steam. However, in this state, the temperature on the surface of the granular material immediately exceeds 100 ° C. and no condensing action occurs. Therefore, before the granular material approaches 100 degrees, the liquid / gas spraying unit 40 sprays the diluted acidic solution from the granular material holding container 11 (solution treatment / cooling step). Since the dilute acidic solution is at room temperature, the particulate matter can be cooled, and the action of the acidic solution makes it easy to vaporize and decompose organic substances that have not been vaporized and decomposed by a single coagulation action. In addition, since the granular material is rotating while being stirred, the diluted acidic solution can be brought into almost uniform contact. And cooling and condensation can be repeated any number of times by spraying this dilute acidic solution regularly. Note that an alkaline solution may be used as the solution to be dispersed depending on the solubility characteristics of the organic substance to be desorbed. Moreover, you may stop generation | occurrence | production of superheated steam at the time of dispersion | distribution of a solution.
Furthermore, just like the first embodiment, immediately after the solution is sprayed, the activated carbon particles may be dried by spraying air from the liquid / gas spraying unit 40.

また、散布された希薄酸性溶液は粒状物や粒状物保持容器11に接触したのち、貯留槽20内に貯まっていくことになる。貯留槽20に貯まった希薄酸性溶液が一定量貯まると、粒状物保持容器が貯留層20内の希薄酸性溶液に浸かることになり、これにより粒状物保持容器10内の粒状物の一部が貯留槽内の希薄酸性溶液を通ることになり、これにより、やはり、剥離していない有機物質を気化分解しやすくさせることができる。このように上方からの溶液の散布と貯留槽20による浸漬とにより、二重に希薄酸性溶液と粒状物とが接触する仕組みとなっているため、使用する希薄酸性溶液量を少なくすることができる。
このように希薄酸性溶液で冷却と溶解を繰り返しながら複数回凝結作用が活性炭粒に起こるとほとんどの有機物質を気化分解することができる。有機物質の脱離が完了したら、最後に冷却のために液体散布部50を通じて水を散布することで活性炭粒を冷却して(水洗ステップ)、粒状物保持容器10を密閉炉20から出して、処理後の吸着剤粒を回収し、電磁弁74を開いてドレン管73から貯留槽20に溜まった廃液を電磁三方弁77により導かれる第一廃液タンク75と第二廃液タンク76のいずれかに回収して作業は完了する。なお、本実施形態では過熱水蒸気温度を300℃とし、希薄酸性溶液を5分間隔で2回散布し、さらに5分後に水を散布することで、約12分で1回の脱離処理を実現することができた。
Further, the sprayed diluted acidic solution is stored in the storage tank 20 after contacting the granular material or the granular material holding container 11. When a certain amount of the diluted acidic solution stored in the storage tank 20 is stored, the granular material holding container is immersed in the diluted acidic solution in the storage layer 20, whereby a part of the granular material in the granular material holding container 10 is stored. The dilute acidic solution in the tank is passed through, so that it is possible to easily vaporize and decompose organic substances that have not been peeled off. In this way, since the solution is sprayed from above and immersed in the storage tank 20, the diluted acidic solution and the granular material are in contact with each other, so that the amount of the diluted acidic solution to be used can be reduced. .
As described above, most of the organic substances can be vaporized and decomposed when the agglomeration action occurs multiple times in the activated carbon particles while repeating cooling and dissolution with a dilute acidic solution. When the desorption of the organic substance is completed, the activated carbon particles are finally cooled by spraying water through the liquid spraying unit 50 for cooling (water washing step), and the particulate matter holding container 10 is taken out from the sealed furnace 20, The treated adsorbent particles are collected, the electromagnetic valve 74 is opened, and the waste liquid accumulated in the storage tank 20 from the drain pipe 73 is guided to either the first waste liquid tank 75 or the second waste liquid tank 76 guided by the electromagnetic three-way valve 77. The work is completed after collection. In this embodiment, the superheated steam temperature is set to 300 ° C., a dilute acidic solution is sprayed twice at intervals of 5 minutes, and water is sprayed after 5 minutes, thereby realizing one desorption process in about 12 minutes. We were able to.

この方法の場合は同一工程のサイクル的処理のため結合力の強い有機性物質や完全に結合し長い時間の経過で、活性炭等に固化する程度に固まった有機性物質の分解に有効である。また、事前の希薄酸性溶液による浸漬処理を行わないため廃液量を大幅に削減したい場合にも有効である。   This method is effective for decomposing organic substances having strong binding strength and organic substances that are completely bonded and solidified to activated carbon or the like after a long time because of the cyclic treatment of the same process. Further, since the immersion treatment with a dilute acidic solution in advance is not performed, it is effective when it is desired to greatly reduce the amount of waste liquid.

(実施形態4)
本実施形態は、アルミナを主成分とする多孔質吸着体の粒状物から窒素化合物を脱離するものである。本実施形態においても、実施形態1で用いた粒状物付着物脱離装置Xを用いる。また、粒状物は実施形態1と同様にアルミナを主成分とする吸着剤粒を用い、付着物として硝酸性窒素(NO-N)が付着している場合を例示する。なお、吸着剤粒はアルミナを90%以上含み、残りの主な成分として二酸化ケイ素、酸化ナトリウムからなる。また、液体・気体散布部40のタンク42には水が入れられるものとする。
(Embodiment 4)
In the present embodiment, a nitrogen compound is desorbed from a granular material of a porous adsorbent mainly composed of alumina. Also in the present embodiment, the particulate matter deposit detachment apparatus X used in the first embodiment is used. Furthermore, granules with adsorbent particles containing alumina as a main component as in the first embodiment, illustrating a case where nitrate nitrogen (NO 3 -N) is attached as a deposit. The adsorbent grains contain 90% or more of alumina, and the remaining main components are silicon dioxide and sodium oxide. In addition, it is assumed that water is placed in the tank 42 of the liquid / gas spraying unit 40.

まず、最初に硝酸性窒素を吸着した吸着剤粒をpH10以上のアルカリ溶液に20分程度浸漬する(浸漬ステップ)。ここでは、アルカリ溶液としてpH10以上の水酸化ナトリウム溶液を用いる。この時、活性アルミナの溶出に伴い、吸着剤粒の細孔内部に吸着していた硝酸性窒素も溶けて硝酸イオンNO3 として溶出してくる。 First, the adsorbent particles having adsorbed nitrate nitrogen are immersed in an alkaline solution having a pH of 10 or more for about 20 minutes (immersion step). Here, a sodium hydroxide solution having a pH of 10 or more is used as the alkaline solution. At this time, with the elution of activated alumina, the nitrate nitrogen adsorbed inside the pores of the adsorbent particles is also dissolved and eluted as nitrate ions NO 3 .

次に、浸漬処理した吸着剤粒を実施形態1と同様に粒状物保持容器11に入れて、密閉炉20内にセットし、この状態で、モーター14を駆動して粒状物保持容器11を回転させる。その後、過熱蒸気発生装置32を稼働し、過熱蒸気を密閉炉20内に導入する(過熱水蒸気ステップ)。密閉炉20内はヒーター80により一定の高温に維持され、過熱水蒸気は密閉炉内20を通るように循環する。ここでは、過熱蒸気の温度は400℃に設定される。
このように密閉炉内に過熱水蒸気が導入され15分以上経過すると、過熱水蒸気の作用により硝酸イオンが分解し、窒素酸化物としてガス化する。ガス化した窒素酸化物は一般的なアンモニア接触還元法による脱窒触媒を利用することで最終的に窒素ガスとして大気中に放出することができる。
次式にその最終的な反応を示す。
4NOx+4NH+O→4N2↑+6H
このように脱離した窒素酸化物は窒素N2と水H2Oに分解される。すなわち、窒素酸化物を窒素として大気中に戻すことができる。
最後に、液体・気体散布部40を通じて水を散布することで吸着剤粒を冷却し(水洗ステップ)、脱離処理は完了する。その後、その後、電磁弁74を開いてドレン管73から貯留槽20に溜まった廃液を電磁三方弁77により導かれる第一廃液タンク75と第二廃液タンク76のいずれかに回収し、粒状物保持容器10を密閉炉20から出して、処理後の吸着剤粒を回収して作業は完了する。
Next, the adsorbent particles subjected to the immersion treatment are put in the granular material holding container 11 in the same manner as in the first embodiment, set in the sealed furnace 20, and in this state, the motor 14 is driven to rotate the granular material holding container 11. Let Thereafter, the superheated steam generator 32 is operated to introduce superheated steam into the closed furnace 20 (superheated steam step). The inside of the closed furnace 20 is maintained at a constant high temperature by the heater 80, and the superheated steam circulates through the inside of the closed furnace 20. Here, the temperature of the superheated steam is set to 400 ° C.
Thus, when superheated steam is introduced into the closed furnace and 15 minutes or more elapses, nitrate ions are decomposed by the action of superheated steam and gasified as nitrogen oxides. The gasified nitrogen oxide can be finally released into the atmosphere as nitrogen gas by using a denitrification catalyst by a general ammonia catalytic reduction method.
The following equation shows the final reaction.
4NOx + 4NH 3 + O 2 → 4N 2 ↑ + 6H 2 O
The nitrogen oxides thus desorbed are decomposed into nitrogen N 2 and water H 2 O. That is, nitrogen oxides can be returned to the atmosphere as nitrogen.
Finally, the adsorbent particles are cooled by spraying water through the liquid / gas spraying unit 40 (water washing step), and the desorption process is completed. Thereafter, the electromagnetic valve 74 is opened, and the waste liquid collected in the storage tank 20 from the drain pipe 73 is collected in either the first waste liquid tank 75 or the second waste liquid tank 76 guided by the electromagnetic three-way valve 77 to hold the particulate matter. The container 10 is taken out of the closed furnace 20 and the treated adsorbent particles are collected to complete the operation.

なお、アルカリ溶液に浸漬する時間は長いほど窒素化合物は溶出するが吸着剤粒も溶けるので過熱水蒸気による昇温分解が十分なされる限度において短い方がよい。この観点から、下記に示す方法で硝酸性窒素の脱離分解実験を行った。
まず、硝酸性窒素濃度が1%以上含まれる1Lの液に、吸着剤粒120gを1時間以上浸して硝酸性窒素を吸着させる。この硝酸性窒素を吸着した吸着剤粒を20gずつに分け、一つをブランク用として残し、残りはそれぞれ浸漬処理時間および過熱水蒸気の反応時間を変えて硝酸性窒素がどの程度脱離分解するかを比べた。結果を下記の表1に示す。
ここで過熱水蒸気と反応させて取り出した吸着剤粒を酸で完全溶融させてこの吸着剤粒に残存する硝酸性窒素濃度(X)とし、浸漬処理後のアルカリ溶液中の硝酸性窒素濃度を(A)とする。
As the time of immersion in the alkaline solution is longer, the nitrogen compound is eluted, but the adsorbent particles are also dissolved. Therefore, it is preferable that the temperature is reduced as long as the temperature decomposition by superheated steam is sufficient. From this point of view, a nitrate nitrogen desorption decomposition experiment was conducted by the method described below.
First, 120 g of adsorbent particles are immersed in 1 L of liquid containing 1% or more of nitrate nitrogen concentration for 1 hour or more to adsorb nitrate nitrogen. Separate the adsorbent particles adsorbing nitrate nitrogen into 20g portions, leaving one for the blank, and the rest is how much nitrate nitrogen is desorbed and decomposed by changing the immersion treatment time and the reaction time of superheated steam, respectively. Compared. The results are shown in Table 1 below.
Here, the adsorbent particles taken out by reaction with superheated steam are completely melted with an acid to obtain the concentration of nitrate nitrogen (X) remaining in the adsorbent particles, and the concentration of nitrate nitrogen in the alkaline solution after immersion treatment is ( A).

実験結果に示すように浸漬処理をしていない状態で400℃以上の過熱水蒸気が対流している炉内に20分および60分以上投入してもその吸着剤粒中に含有する硝酸性窒素は初期値の100に近い90以上の割合で残留していた、すなわち脱離率としては10%未満の値であった。これは、硝酸性窒素は殆どガスに分解されておらず、単なる過熱水蒸気をこの硝酸性窒素が結合した吸着剤粒に60分以上の長時間を反応させても脱離することはできないことがわかる。
次に、この浸漬処理の時間を比べると水酸化ナトリウムの濃度が10%の場合において、浸漬時間が10分間程度では400℃の過熱水蒸気を60分間と長時間反応させてもその脱離率は33%程度と小さな値である。一方、浸漬時間が20分間の場合は、400℃の過熱水蒸気をわずか15分間程度反応させただけでも約90%以上の脱離率があり、吸着剤粒中の硝酸性窒素は7.2%とほとんど残存しないことが見出された。なお、過熱水蒸気との反応時間を2倍の30分間としても脱離率の大幅な向上は見られないため、処理工程の効率化を考えると15分程度の反応時間で十分実用的に問題ないと考えられる。
これは、pH10以上の水酸化ナトリウム溶液中に硝酸性窒素を吸着した吸着剤粒を20分間程度の時間で浸すことで、吸着剤粒の細孔を構成している主成分であるアルミ成分の溶解が始まり細孔内部では内面のアルミ膜が一皮むけるような状態になっていると考えられ、この剥離したアルミ膜と結合している硝酸性窒素がアルミ膜の剥離とともに脱離するものであると推察される。この状態になった後すぐに400℃以上の過熱水蒸気を約15分間以上反応させると、細孔内部で剥離した硝酸性窒素は水酸基の働きと過熱水蒸気の高温蒸気の加熱により細孔内部の温度が上昇するにつれて窒素酸化物等のガスと水に昇温分解していくと考えられる。
なお、ここでは窒素化合物として硝酸性窒素を例示したが、他の窒素化合物についても、同様の方法により、窒素酸化物としてガス分解することで脱離することが可能である。
尚、この窒素酸化物はアンモニア接触還元法の触媒利用で最終的に窒素ガスまで分解し大気中に放出することができる。
As shown in the experimental results, the nitrate nitrogen contained in the adsorbent granule is 20 minutes or 60 minutes or more in a furnace in which superheated steam at 400 ° C. or higher is convected in a state where immersion treatment is not performed. It remained at a ratio of 90 or more close to the initial value of 100, that is, the desorption rate was less than 10%. This is because nitrate nitrogen is hardly decomposed into gas, and mere superheated steam cannot be desorbed even if it reacts for a long time of 60 minutes or more with this adsorbent particle bonded with nitrate nitrogen. Recognize.
Next, when this immersion treatment time is compared, when the concentration of sodium hydroxide is 10%, if the immersion time is about 10 minutes, even if superheated steam at 400 ° C. is reacted for 60 minutes, the desorption rate is It is a small value of about 33%. On the other hand, when the immersion time is 20 minutes, there is a desorption rate of about 90% or more even when superheated steam at 400 ° C. is reacted for only 15 minutes, and nitrate nitrogen in the adsorbent grains is 7.2%. It was found that almost no residue. Note that even if the reaction time with the superheated steam is doubled for 30 minutes, no significant improvement in the desorption rate is seen, so considering the efficiency of the treatment process, the reaction time of about 15 minutes is sufficiently practically satisfactory. it is conceivable that.
This is because the adsorbent grains adsorbing nitrate nitrogen in a sodium hydroxide solution having a pH of 10 or more are immersed in a time of about 20 minutes, so that the aluminum component which is the main component constituting the pores of the adsorbent grains. It is thought that the dissolution starts and the inner aluminum film is peeled off inside the pores, and nitrate nitrogen bound to the peeled aluminum film is detached with the peeling of the aluminum film. Inferred. When superheated steam at 400 ° C. or higher is allowed to react for about 15 minutes or more immediately after this state is reached, nitrate nitrogen exfoliated inside the pores becomes a temperature inside the pores due to the action of hydroxyl groups and heating of the high-temperature steam of the superheated steam. It is thought that as temperature rises, it is decomposed by heating to a gas such as nitrogen oxides and water.
Although nitrate nitrogen is exemplified here as the nitrogen compound, other nitrogen compounds can also be desorbed by gas decomposition as nitrogen oxides by the same method.
This nitrogen oxide can be finally decomposed into nitrogen gas and released into the atmosphere by using a catalyst of the ammonia catalytic reduction method.

実施形態に係る粒状物付着物脱離装置Xの構成を模式的に表す図である。It is a figure which represents typically the structure of the granular material deposit | attachment detachment apparatus X which concerns on embodiment. 粒状物付着物脱離装置のヒーター部内部を示す一部破断拡大斜視図である。It is a partially broken expanded perspective view which shows the inside of the heater part of a granular material deposit | attachment detachment | desorption apparatus. 図2のA−A断面図である。It is AA sectional drawing of FIG. 実施形態1において過熱水蒸気温度を変化させた場合の脱離率の変化を示す図である。It is a figure which shows the change of the desorption rate at the time of changing superheated steam temperature in Embodiment 1. FIG. 実施形態1において、希薄性溶液の散布サイクルを変化させたときの脱離率の変化を示す図である。In Embodiment 1, it is a figure which shows the change of a desorption rate when changing the spreading | spreading cycle of a dilute solution. 実施形態2において、過熱水蒸気の反応時間と分解率の変化を示す図でる。In Embodiment 2, it is a figure which shows the reaction time of superheated steam, and the change of a decomposition rate. 従来の方法による、過熱水蒸気温度300℃における反応時間と活性炭から有機物質を脱離する脱離率との関係を示す図である。It is a figure which shows the relationship between the reaction time in the superheated steam temperature of 300 degreeC by the conventional method, and the detachment | desorption rate which detach | desorbs an organic substance from activated carbon. 従来の方法による、過熱水蒸気温度500℃における反応時間と活性炭から有機物質を脱離する脱離率との関係を示す図である。It is a figure which shows the relationship between the reaction time in the superheated steam temperature of 500 degreeC by the conventional method, and the detachment | desorption rate which detach | desorbs an organic substance from activated carbon.

符号の説明Explanation of symbols

X 粒状物付着物脱離装置
10 粒状物保持容器
11 容器本体
11b 攪拌羽根
12 回転軸
13a、13b 軸支体
14 モーター
20 密閉炉
30 蒸気導入部
31 蒸気噴出管
32 過熱蒸気発生装置
40 液体・気体散布部
50 液体散布部
41、51 液体散布ヘッド
45 三方電磁弁
46 エアーコンプレッサー
60 貯留槽
70 廃液回収部
80 ヒーター部
X particulate adhering substance detaching apparatus 10 granular substance holding container 11 container main body 11b stirring blade 12 rotating shafts 13a and 13b shaft support body 14 motor 20 sealed furnace 30 steam introduction part 31 steam ejection pipe 32 superheated steam generator 40 liquid / gas Spraying unit 50 Liquid spraying unit 41, 51 Liquid spraying head 45 Three-way solenoid valve 46 Air compressor 60 Storage tank 70 Waste liquid recovery unit 80 Heater unit

Claims (13)

粒状物を封入する、当該粒状物が通ることができない多数の穴が設けられた粒状物保持容器と、
前記粒状物保持容器を略密閉状態で封入する密閉炉と、
粒状物保持容器を回転可能に保持する回動支持部と、
前記粒状物保持容器を回転させる回転駆動手段と、
前記密閉炉内に過熱水蒸気を導入する蒸気導入手段とを有する粒状物付着物脱離装置。
A granular material holding container that encloses the granular material and provided with a number of holes through which the granular material cannot pass;
A closed furnace for sealing the granular material holding container in a substantially sealed state;
A rotation support unit for rotatably holding the granular material holding container;
A rotation driving means for rotating the particulate holding container;
A particulate matter desorbing device having steam introducing means for introducing superheated steam into the closed furnace.
前記密閉炉内において、前記粒状物保持容器に液体を散布する液体散布手段が設けられた請求項1に記載の粒状物付着物脱離装置。   The particulate matter detachment apparatus according to claim 1, further comprising a liquid spraying means for spraying a liquid to the particulate matter holding container in the sealed furnace. 前記液体散布手段が2以上設けられた請求項2に記載の粒状物付着物脱離装置。   The particulate matter detachment apparatus according to claim 2, wherein two or more liquid spraying means are provided. 前記液体散布手段により散布される液体を貯める槽体である貯留槽であって、前記粒状物保持容器の少なくとも一部が当該槽体内部に存するように位置づけられる貯留槽が設けられた請求項2又は3に記載の粒状物付着物脱離装置。   The storage tank which is a tank body which stores the liquid sprayed by the said liquid spraying means, Comprising: The storage tank positioned so that at least one part of the said granular material holding | maintenance container exists in the said tank body was provided. Or the particulate matter desorbing device according to 3. 前記粒状物保持容器は両開口が閉じられた軸が水平方向を向く円筒体であり、
前記回動支持部は、前記円筒体の回転軸回りに前記粒状物保持容器を回動可能に保持するものである
請求項1から4のいずれか1項に記載の粒状物付着物脱離装置。
The granular material holding container is a cylindrical body whose axis with both openings closed is oriented in the horizontal direction,
The particulate matter detachment device according to any one of claims 1 to 4, wherein the turning support portion rotatably holds the particulate matter holding container around a rotation axis of the cylindrical body. .
前記蒸気導入手段は、円筒体を構成する前記粒状物保持容器の下方側に沿って設けられる、先端が閉じられた管体であって、側面の前記粒状物保持容器に面した位置に複数の蒸気が噴出する開口が形成される蒸気噴出管を有する請求項5に記載の粒状物付着物脱離装置。   The steam introducing means is a tube body provided along the lower side of the granular material holding container constituting the cylindrical body, the tip of which is closed, and a plurality of steam introduction means are provided at positions facing the granular material holding container on the side surface. The particulate matter detachment apparatus according to claim 5, further comprising a steam ejection pipe in which an opening for ejecting steam is formed. 前記粒状物保持容器は両開口が閉じられた円筒体であり、
前記回動支持部は、前記円筒体の回転軸回りに前記粒状物保持容器を回動可能に保持するものであって、
前記液体散布手段は、円筒体を構成する前記粒状物保持容器の上方側に沿って設けられる、先端が閉じられた管体であって、側面の前記粒状物保持容器に面した位置に複数の溶液が噴出する開口が形成される液体散布ヘッドが設けられた請求項2から6のいずれか1項に記載の粒状物付着物脱離装置。
The granular material holding container is a cylindrical body whose both openings are closed,
The rotation support unit is configured to rotatably hold the granular material holding container around a rotation axis of the cylindrical body,
The liquid spraying means is a tube body provided along the upper side of the granular material holding container constituting the cylindrical body and having a closed end, and a plurality of liquid spraying means are disposed at positions facing the granular material holding container on the side surface. The particulate matter detachment apparatus according to any one of claims 2 to 6, further comprising a liquid spraying head in which an opening through which the solution is ejected is formed.
前記粒状物保持容器内部には、1以上の攪拌羽根が内部に向って設けられる請求項1から7のいずれか1項に記載の粒状物付着物脱離装置。   8. The particulate matter desorbing device according to claim 1, wherein one or more stirring blades are provided inside the particulate matter holding container. 前記密閉炉を外部から加熱する加熱手段が設けられる請求項1から8のいずれか1項に記載の粒状物付着物脱離装置。   The particulate matter detachment apparatus according to any one of claims 1 to 8, further comprising heating means for heating the sealed furnace from the outside. 前記粒状物保持容器に対して、気体を吹き付ける気体散布手段が設けられた請求項1から9のいずれか1項に記載の粒状物付着物脱離装置。   The particulate matter detachment apparatus according to any one of claims 1 to 9, wherein gas dispersion means for blowing gas to the particulate matter holding container is provided. 前記液体散布手段は、散布対象を空気に切り替えることができるように、液体層に連結する液体用ポンプとエアーコンプレッサーとに接続されるとともに、液体用ポンプからの導入とエアーコンプレッサーからの導入とを切り替える切り替え弁とが設けられる請求項2から9のいずれか1項に記載の粒状物付着物脱離装置。   The liquid spraying means is connected to a liquid pump and an air compressor connected to the liquid layer so that the object to be sprayed can be switched to air, and introduces from the liquid pump and the air compressor. The particulate matter desorption device according to any one of claims 2 to 9, wherein a switching valve for switching is provided. 請求項1から11のいずれか1項に記載の粒状物付着物脱離装置を用いて、アルミナを主成分とする多孔質の粒状物から窒素化合物を脱離する方法であって、
前記粒状物をアルカリ溶液に浸漬する浸漬ステップと、
前記浸漬ステップの後に、前記粒状物保持容器内に前記粒状物を封入し、前記回転駆動手段を回転させながら前記蒸気導入手段により、前記粒状物を過熱水蒸気に当てる過熱水蒸気ステップと
を含む粒状物の付着物脱離方法。
A method for desorbing a nitrogen compound from a porous granular material mainly composed of alumina using the particulate matter desorbing device according to any one of claims 1 to 11,
An immersion step of immersing the granular material in an alkaline solution;
After the dipping step, the granular material is sealed in the granular material holding container, and the granular material includes a superheated steam step of applying the granular material to superheated steam by the steam introducing means while rotating the rotation driving means. The method for desorbing deposits.
前記過熱水蒸気ステップは、ほぼ無酸素状態で行われる請求項12に記載の粒状物の付着物脱離方法。   The particulate matter desorption method according to claim 12, wherein the superheated steam step is performed in an almost oxygen-free state.
JP2008329486A 2007-12-18 2008-12-25 Particulate matter detachment apparatus and particulate matter detachment method Active JP5142398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329486A JP5142398B2 (en) 2007-12-18 2008-12-25 Particulate matter detachment apparatus and particulate matter detachment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007325657 2007-12-18
JP2007325657 2007-12-18
JP2008329486A JP5142398B2 (en) 2007-12-18 2008-12-25 Particulate matter detachment apparatus and particulate matter detachment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008140774A Division JP4275721B1 (en) 2007-12-18 2008-05-29 Particulate matter detachment method and particulate matter detachment apparatus

Publications (2)

Publication Number Publication Date
JP2009166037A true JP2009166037A (en) 2009-07-30
JP5142398B2 JP5142398B2 (en) 2013-02-13

Family

ID=40821546

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008140774A Expired - Fee Related JP4275721B1 (en) 2007-12-18 2008-05-29 Particulate matter detachment method and particulate matter detachment apparatus
JP2008329486A Active JP5142398B2 (en) 2007-12-18 2008-12-25 Particulate matter detachment apparatus and particulate matter detachment method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008140774A Expired - Fee Related JP4275721B1 (en) 2007-12-18 2008-05-29 Particulate matter detachment method and particulate matter detachment apparatus

Country Status (1)

Country Link
JP (2) JP4275721B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088583B1 (en) * 2021-08-05 2022-06-21 Jトップ株式会社 Adsorbent regeneration method and adsorbent regenerator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397853B (en) * 2011-11-08 2015-03-25 江苏竹溪活性炭有限公司 Activated carbon pickling device with faster reaction, less activated carbon lose and longer service life
CN102397851A (en) * 2011-11-08 2012-04-04 江苏竹溪活性炭有限公司 Activated carbon pickling tank
CN102430540B (en) * 2011-11-08 2015-03-25 江苏竹溪活性炭有限公司 Activated carbon pickling bath fast in response, quick in liquid delivery and low in activated carbon loss
CN102500571B (en) * 2011-11-08 2014-01-15 江苏竹溪活性炭有限公司 Active carbon pickling device
CN107213921B (en) * 2016-03-22 2023-08-29 河南永大化工科技有限公司 Be used for laboratory constant temperature impregnating device of (2)
CN107282596A (en) * 2017-06-22 2017-10-24 江苏国胶化学科技有限公司 Remain blob of viscose recycle device
JP6813863B1 (en) * 2020-03-26 2021-01-13 Jトップ株式会社 Adsorbent regenerator, adsorbent regeneration method and adsorbent cooling method
CN112090563B (en) * 2020-09-02 2021-04-30 山西途悦选煤工程技术有限公司 Coal washing process for mining coal
CN114081061B (en) * 2022-01-24 2022-04-19 山西省平遥县宝聚源肉制品股份有限公司 Meat cleaning machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153784A (en) * 1974-06-03 1975-12-11
JPS5435194A (en) * 1977-08-24 1979-03-15 Unitika Ltd Reactivation of activated carbon
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05504191A (en) * 1990-02-26 1993-07-01 カスタム イクイップメント コーポレーション reactor
JPH10259995A (en) * 1997-03-18 1998-09-29 Chikatsu Harada Gas reactant supplier
JPH11217208A (en) * 1998-01-30 1999-08-10 Sankyo Sangyo Kk Active carbon production/regeneration unit
JP2000297287A (en) * 1999-04-13 2000-10-24 Tetsugen Corp Regeneration of used, molded and dry-type desulfurization agent and device therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153784A (en) * 1974-06-03 1975-12-11
JPS5435194A (en) * 1977-08-24 1979-03-15 Unitika Ltd Reactivation of activated carbon
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05504191A (en) * 1990-02-26 1993-07-01 カスタム イクイップメント コーポレーション reactor
JPH10259995A (en) * 1997-03-18 1998-09-29 Chikatsu Harada Gas reactant supplier
JPH11217208A (en) * 1998-01-30 1999-08-10 Sankyo Sangyo Kk Active carbon production/regeneration unit
JP2000297287A (en) * 1999-04-13 2000-10-24 Tetsugen Corp Regeneration of used, molded and dry-type desulfurization agent and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088583B1 (en) * 2021-08-05 2022-06-21 Jトップ株式会社 Adsorbent regeneration method and adsorbent regenerator

Also Published As

Publication number Publication date
JP5142398B2 (en) 2013-02-13
JP4275721B1 (en) 2009-06-10
JP2009166023A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5142398B2 (en) Particulate matter detachment apparatus and particulate matter detachment method
US9079134B2 (en) Carbon dioxide separating and capturing apparatus
JP5820254B2 (en) Carbon dioxide separator
JP2010036155A (en) Water treatment device and water treatment method
CN101848754A (en) Removal of carbon dioxide from air
KR101410561B1 (en) Hot air desorbing type reactivator of waste carbon
CN107487809A (en) Based on handling the method and system that make waste water upgrading up to standard in a manner of activated carbon is renewable
JP2014140823A (en) Exhaust gas treatment system and method
JP2003017297A (en) Discharge device and plasma reactor
WO2015190213A1 (en) Carbon dioxide application device
JP5572198B2 (en) Substrate processing apparatus and chemical solution recycling method
CN112237822B (en) Method for recovering elemental mercury in nonferrous smelting flue gas
JP2011218326A (en) System for removing volatile organic compound
JP2010142790A (en) System for treating exhaust
JP5497325B2 (en) Method and apparatus for removing adsorbate from porous adsorbent
JP2011036801A (en) Gas treatment apparatus
JPH0576618A (en) Purification processing method of earth polluted with organic solvent and purification processing device
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit
JP2012055849A (en) System for removing volatile organic compound
JP4617504B2 (en) Cleaning device
JP5031244B2 (en) How to regenerate the absorbent
JP2016112547A (en) Adsorption tower and method for recycling adsorbent
TWM570308U (en) No heat regeneration system
JP2005125206A (en) Recovery treatment device for high-concentration malodor and volatile organic compound
JP2016112535A (en) Method for generating hydrogen arsenide adsorption active carbon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5142398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250