JP2009165710A - Quantitative measuring instrument of fundus blood flow - Google Patents

Quantitative measuring instrument of fundus blood flow Download PDF

Info

Publication number
JP2009165710A
JP2009165710A JP2008008465A JP2008008465A JP2009165710A JP 2009165710 A JP2009165710 A JP 2009165710A JP 2008008465 A JP2008008465 A JP 2008008465A JP 2008008465 A JP2008008465 A JP 2008008465A JP 2009165710 A JP2009165710 A JP 2009165710A
Authority
JP
Japan
Prior art keywords
blood flow
blood vessel
image
blood
oct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008008465A
Other languages
Japanese (ja)
Other versions
JP5166889B2 (en
Inventor
Yoshiaki Yasuno
嘉晃 安野
Shuichi Makita
修一 巻田
Masahide Ito
雅英 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2008008465A priority Critical patent/JP5166889B2/en
Publication of JP2009165710A publication Critical patent/JP2009165710A/en
Application granted granted Critical
Publication of JP5166889B2 publication Critical patent/JP5166889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • A61B3/1233Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation for measuring blood flow, e.g. at the retina

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a quantitative measuring instrument of a fundus blood flow simply extracting the retinal blood vessels using the two-dimensional en-face image and two-dimensional tomographic blood flow image of light coherence tomography to quantitatively determine its blood flow. <P>SOLUTION: A structure of the retinal blood vessels is extracted by a Doppler light coherence angiographic means to enable the quantification of the blood flow of the retinal blood vessels. The Doppler light coherence angiographic means is constituted so that an en-face blood vessel image and a blood flow image are formed by light coherence tomography, the diameter, direction and position of the blood vessel are obtained from both the en-face blood vessel image and the blood flow image to determine the blood flow, and the frequency shift of complex OCT (optical coherence tomography) data is analyzed to measure the velocity of the fundus blood flow. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、眼底血流量の定量測定装置に関し、詳細には、ドップラー光コヒーレンス血管造影手段(ドップラーOCT)によって網膜血管構造の抽出(セグメンテーション)を行うことで網膜血管の血流量の定量化をおこなう眼底血流量の定量測定装置に関する。   The present invention relates to a fundus blood flow quantitative measurement apparatus, and more specifically, retinal blood flow is quantified by extracting (segmentation) a retinal vascular structure by Doppler optical coherence angiography means (Doppler OCT). The present invention relates to a device for quantitatively measuring fundus blood flow.

網膜の血流測定は病理上、血行異常の診断のために必要とされている。従来、 網膜血管に適用されるいくつかの血流測定手段が報告されている。   The measurement of blood flow in the retina is necessary for the diagnosis of abnormal blood circulation due to pathology. Conventionally, several blood flow measurement means applied to retinal blood vessels have been reported.

例えば、血管に注入された色素の蛍光強度をモニターすることによって、網膜血管の流量を追跡する手段がある。しかしながら、色素の注射は患者の負担になる。また、レーザードップラー速度測定(LDV)手段によって網膜血管の血流量を測ることができるが、2方向から散乱光を計測する必要があるという煩わしさがある。   For example, there are means for tracking the flow rate of the retinal blood vessels by monitoring the fluorescence intensity of the dye injected into the blood vessels. However, dye injection is a burden on the patient. In addition, although the blood flow rate of the retinal blood vessel can be measured by laser Doppler velocity measurement (LDV) means, there is an inconvenience that it is necessary to measure scattered light from two directions.

また、光断層画像装置「光コヒーレンストモグラフィー」(OCT)を用いて血流のイメージを観察する手段も知られている。   In addition, means for observing an image of blood flow using an optical tomographic imaging apparatus “optical coherence tomography” (OCT) is also known.

基本的なOCT43は、マイケルソン干渉計を基本としており、その原理を図7で説明する。光源44から射出された光は、コリメートレンズ45で平行化された後に、ビームスプリッター46により参照光と物体光に分割される。物体光は、物体アーム内の対物レンズ47によって被計測物体48に集光され、そこで散乱・反射された後に再び対物レンズ47、ビームスプリッター46に戻る。   The basic OCT 43 is based on a Michelson interferometer, and its principle will be described with reference to FIG. The light emitted from the light source 44 is collimated by the collimator lens 45 and then divided into reference light and object light by the beam splitter 46. The object light is condensed on the measurement object 48 by the objective lens 47 in the object arm, scattered and reflected there, and then returns to the objective lens 47 and the beam splitter 46 again.

一方、参照光は参照アーム内の対物レンズ49を通過した後に参照鏡50によって反射され、再び対物レンズ49を通してビームスプリッター46に戻る。このようにビームスプリッター46に戻った物体光と参照光は、物体光とともに集光レンズ51に入射し光検出器52(フォトダイオード等)に集光される。   On the other hand, the reference light passes through the objective lens 49 in the reference arm, is reflected by the reference mirror 50, and returns to the beam splitter 46 through the objective lens 49 again. The object light and the reference light that have returned to the beam splitter 46 in this way are incident on the condensing lens 51 together with the object light and are collected on the photodetector 52 (photodiode or the like).

OCTの光源44は、時間的に低コヒーレンスな光(異なった時刻に光源から出た光同士は極めて干渉しにくい光)の光源を利用する。時間的低コヒーレンス光を光源としたマイケルソン型の干渉計では、参照アームと物体アームの距離がほぼ等しいときにのみ干渉信号が現れる。この結果、参照アームと物体アームの光路長差(τ)を変化させながら、光検出器52で干渉信号の強度を計測すると、光路長差に対する干渉信号(インターフェログラム)が得られる。   The light source 44 of the OCT uses a light source of light having low temporal coherence (light emitted from the light source at different times is extremely difficult to interfere with each other). In a Michelson interferometer using temporally low coherence light as a light source, an interference signal appears only when the distance between the reference arm and the object arm is approximately equal. As a result, when the intensity of the interference signal is measured by the photodetector 52 while changing the optical path length difference (τ) between the reference arm and the object arm, an interference signal (interferogram) for the optical path length difference is obtained.

そのインターフェログラムの形状が、被計測物体48の奥行き方向の反射率分布を示しており、1次元の軸方向走査により被計測物体48の奥行き方向の構造を得ることができる。このように、OCT43では、光路長走査により、被計測物体48の奥行き方向の構造を計測できる。   The shape of the interferogram shows the reflectance distribution in the depth direction of the measurement object 48, and the structure in the depth direction of the measurement object 48 can be obtained by one-dimensional axial scanning. Thus, in the OCT 43, the structure in the depth direction of the measurement object 48 can be measured by optical path length scanning.

このような軸方向の走査のほかに、横方向の機械的走査を加え、2次元の走査を行うことで被計測物体の2次元断面画像が得られる。この横方向の走査を行う走査装置としては、被計測物体を直接移動させる構成、物体は固定したままで対物レンズをシフトさせる構成、被計測物体も対物レンズも固定したままで、対物レンズの瞳面付近においたガルバノミラーの角度を回転させる構成等が用いられている。   In addition to the scanning in the axial direction, a two-dimensional cross-sectional image of the object to be measured can be obtained by performing a two-dimensional scanning by adding a horizontal mechanical scanning. The scanning device that performs the horizontal scanning includes a configuration in which the object to be measured is directly moved, a configuration in which the objective lens is shifted while the object is fixed, and a pupil of the objective lens while the object to be measured and the objective lens are fixed. The structure etc. which rotate the angle of the galvanometer mirror in the surface vicinity are used.

以上の基本的なOCTが発展したものとして、分光器を用いてスペクトル信号を得るスペクトルドメインOCT(SD−OCT)と、光源の波長を走査してスペクトル干渉信号を得る波長走査型OCT(Swept Source OCT、略して「SS−OCT」という。)がある。SD−OCTには、フーリエドメインOCT(Fourier Domain OCT、略して「FD−OCT」という。特許文献2参照)、及び偏光感受型OCT(Polarization-Sensitive OCT、略して「PS−OCT」という。特許文献3参照)がある。   As the development of the basic OCT described above, a spectral domain OCT (SD-OCT) that obtains a spectrum signal using a spectroscope, and a wavelength scanning OCT (Swept Source) that obtains a spectrum interference signal by scanning the wavelength of the light source. OCT, abbreviated as “SS-OCT”). SD-OCT includes Fourier domain OCT (Fourier Domain OCT, abbreviated as “FD-OCT”; see Patent Document 2), and polarization-sensitive OCT (Polarization-Sensitive OCT, abbreviated as “PS-OCT”). Reference 3).

フーリエドメインOCTは、被計測物体からの反射光の波長スペクトルを、スペクトロメーター(スペクトル分光器)で取得し、このスペクトル強度分布に対してフーリエ変換することで、実空間(OCT信号空間)上での信号を取り出すことを特徴とするものであり、このフーリエドメインOCTは、奥行き方向の走査を行う必要がなく、x軸方向の走査を行うことで被計測物体の断面構造を計測可能である。   In the Fourier domain OCT, the wavelength spectrum of the reflected light from the object to be measured is acquired with a spectrometer (spectrum spectrometer), and Fourier transform is performed on this spectrum intensity distribution, so that the real space (OCT signal space) is obtained. This Fourier domain OCT does not need to scan in the depth direction, and can measure the cross-sectional structure of the object to be measured by scanning in the x-axis direction.

波長走査型OCTは、高速波長スキャニングレーザーにより光源の波長を変え、スペクトル信号と同期取得された光源走査信号を用いて干渉信号を最配列し、信号処理を加えることで3次元光断層画像を得るものである。なお、光源の波長を変える手段として、モノクロメーターを利用したものでも、波長走査型OCTとして利用可能である。   The wavelength scanning type OCT obtains a three-dimensional optical tomographic image by changing the wavelength of a light source by a high-speed wavelength scanning laser, rearranging interference signals using a light source scanning signal acquired in synchronization with a spectrum signal, and applying signal processing. Is. As a means for changing the wavelength of the light source, a device using a monochromator can be used as the wavelength scanning OCT.

ドップラー光コヒーレンストモグラフィー(ドップラーOCT)による、網膜の血流の分布の計測が知られている。これは、上記フーリエドメインOCT等を用いて、網膜の血流の分布が計測を行うことのできる手段であり、同様に、スペクトルドメインOCTを使うことによって、横断面網膜血流画像形成が得られ、また次元の網膜の脈管構造も観察することができる。   Measurement of blood flow distribution in the retina by Doppler optical coherence tomography (Doppler OCT) is known. This is a means by which the distribution of retinal blood flow can be measured using the Fourier domain OCT or the like. Similarly, by using the spectral domain OCT, cross-sectional retinal blood flow image formation can be obtained. Also, the vascular structure of the retina can be observed.

特開2002−310897号公報JP 2002-310897 A 特開平11−325849号公報JP 11-325849 A 特開2004−028970号公報JP 2004-028970 A

ドップラーOCTを用いた血流の定量測定において、例えば、光軸方向と横方向の速度計測法、複数角度からの計測についていくつか報告されている。しかしながらこれらの計測は生体人眼計測に適用することは困難である。またスペクトルドメインOCTでは光軸方向の測定レンジの問題もある。   In quantitative measurement of blood flow using Doppler OCT, for example, several methods have been reported regarding velocity measurement methods in the optical axis direction and lateral direction, and measurement from multiple angles. However, these measurements are difficult to apply to living human eye measurements. In the spectral domain OCT, there is a problem of the measurement range in the optical axis direction.

本発明は、光コヒーレンストモグラフィーの2次元en−face像と2次元断層血流像を用い、2ステップで簡便に網膜血管の抽出し、定量的にその血流量を求めることを可能とする眼底血流量の定量測定装置を実現することを課題とする。   The present invention uses a two-dimensional en-face image and a two-dimensional tomographic blood flow image of optical coherence tomography to easily extract retinal blood vessels in two steps and to obtain the blood flow volume quantitatively. It is an object to realize a quantitative measurement device for flow rate.

本発明は上記課題を解決するために、ドップラー光コヒーレンス血管造影手段によって網膜血管構造の抽出を行い網膜血管の血流量の定量化が可能な眼底血流量の定量測定装置であって、前記ドップラー光コヒーレンス血管造影手段は、光コヒーレンストモグラフィーの構成を有し、複素OCTデータの周波数シフトを解析することで、眼底血流の流速を計測可能な構成であることを特徴とする眼底血流量の定量測定装置を提供する。   In order to solve the above-mentioned problems, the present invention provides a quantitative measurement apparatus for fundus blood flow that can extract the retinal blood vessel structure by Doppler optical coherence angiography means and quantify the blood flow of the retinal blood vessel, the Doppler light The coherence angiography means has a configuration of optical coherence tomography, and is capable of measuring the flow velocity of the fundus blood flow by analyzing the frequency shift of the complex OCT data. Providing equipment.

前記光コヒーレンストモグラフィーは、en−face血管像および血流像を形成し、該en−face血管像と血流像の2枚とから血管の直径、方向及び位置が得られ、該血管の直径、方向及び位置から、前記血流量が決められる構成としてもよい。   The optical coherence tomography forms an en-face blood vessel image and a blood flow image, and the diameter, direction and position of the blood vessel are obtained from the en-face blood vessel image and the blood flow image, the diameter of the blood vessel, The blood flow rate may be determined from the direction and position.

前記血流量の絶対値は、ドップラー周波数シフトの値と血管の直径、方向及び位置から求められる構成としてもよい。   The absolute value of the blood flow rate may be obtained from the value of the Doppler frequency shift and the diameter, direction, and position of the blood vessel.

本発明に係る眼底血流量の定量測定装置によれば、光コヒーレンストモグラフィーの2次元en−face像と2次元断層血流像を用い、2ステップで簡便に網膜血管の抽出し、定量的にその血流量を求めることができる。   According to the apparatus for quantitatively measuring fundus blood flow according to the present invention, a retinal blood vessel is simply extracted in two steps using a two-dimensional en-face image and a two-dimensional tomographic blood flow image of optical coherence tomography. Blood flow can be determined.

本発明に係る眼底血流量の定量測定装置を実施するための最良の形態を実施例に基づいて図面を参照して、以下に説明する。   The best mode for carrying out the fundus blood flow quantitative measurement apparatus according to the present invention will be described below with reference to the drawings based on the embodiments.

まず、本発明に係る眼底血流量の定量測定装置を実施するために必要なドップラー光コヒーレンス血管造影手段(ドップラーOCT)として使用するフーリエドメインOCT(FD−OCT)を及び波長走査型OCT(SS−OCT)を概略説明する。   First, Fourier domain OCT (FD-OCT) used as Doppler optical coherence angiography means (Doppler OCT) necessary for implementing the quantitative measurement apparatus for fundus blood flow according to the present invention and wavelength scanning OCT (SS-) OCT) will be schematically described.

図1は、FD−OCT1の全体構成を示す図である。広帯域光源2、低コヒーレンス干渉計3、及び分光器4(スペクトロメーター)とを備えている。このFD−OCT1は、低コヒーレンス干渉の原理を用いて奥行き方向の分解能を得ているため、光源として、SLD(スーパールミネツセントダイオード)や超短パルスレーザー等の広帯域光源2が用いられる。   FIG. 1 is a diagram illustrating an overall configuration of the FD-OCT 1. A broadband light source 2, a low coherence interferometer 3, and a spectrometer 4 (spectrometer) are provided. Since the FD-OCT 1 obtains resolution in the depth direction using the principle of low coherence interference, a broadband light source 2 such as an SLD (super luminescent diode) or an ultrashort pulse laser is used as a light source.

広帯域光源2から出た光は、まずビームスプリッター5で物体光と参照光に分割される。このうち物体光は、レンズ6を通してガルバノミラー7で反射され被計測物体8(眼底などの生体試料)を照射し、そこで反射、散乱された後に分光器4に導かれる。一方、参照光はレンズ9を通して参照鏡10(平面鏡)で反射された後に物体光と並行に分光器4に導かれる。これらの二つの光は分光器4の回折格子11によって同時に分光され、スペクトル領域で干渉し、結果、スペクトル干渉縞がCCD12によって計測される。   The light emitted from the broadband light source 2 is first split into object light and reference light by the beam splitter 5. Of these, the object light is reflected by the galvanometer mirror 7 through the lens 6 and irradiates the measurement object 8 (biological sample such as the fundus), and is reflected and scattered there and then guided to the spectrometer 4. On the other hand, the reference light is reflected by the reference mirror 10 (plane mirror) through the lens 9 and then guided to the spectroscope 4 in parallel with the object light. These two lights are simultaneously dispersed by the diffraction grating 11 of the spectroscope 4 and interfere in the spectral region. As a result, the spectral interference fringes are measured by the CCD 12.

このスペクトル干渉縞に対して適当な信号処理を行うことで、被計測物体8のある点における深さ方向1次元の屈折率分布の微分、つまり、反射率分布を得ることが可能となる。さらに、被計測物体8上の計測点をガルバノミラー7を駆動し1次元走査することにより2次元断層画像(FD−OCT画像)を得ることができる。   By performing appropriate signal processing on the spectral interference fringes, it is possible to obtain a differential of the one-dimensional refractive index distribution in the depth direction at a certain point of the measured object 8, that is, a reflectance distribution. Furthermore, a two-dimensional tomographic image (FD-OCT image) can be obtained by driving the galvanometer mirror 7 and one-dimensionally scanning a measurement point on the measurement object 8.

通常のOCTでは、2次元断層画像を得るために、深さ(光軸)方向の走査(この走査を「A−スキャン」と言い、この方向を「A−方向」、「Aスキャン方向」とも言う。)と、縦方向の操作(この走査を「B−スキャン」と言い、この方向を「B−方向」、「Bスキャン方向」とも言う。)の2次元の機械的走査が必要なのに対して、FD−OCT1では、A−スキャンは不要で一回の測定で深さ方向の後方散乱データを取得することができるから、B−スキャンの1次元の機械的走査しか必要とされない。   In normal OCT, in order to obtain a two-dimensional tomographic image, scanning in the depth (optical axis) direction (this scanning is called “A-scan”, and this direction is also referred to as “A-direction” and “A-scan direction”). And two-dimensional mechanical scanning is required for vertical operation (this scanning is called “B-scan”, and this direction is also called “B-direction”, “B-scan direction”). In FD-OCT1, since A-scan is unnecessary and backscattering data in the depth direction can be acquired by one measurement, only one-dimensional mechanical scanning of B-scan is required.

なお、A−方向とB−方向で形成される平面に垂直な方向のスキャンを「C−スキャン」と言い、この方向を「C−方向」、「Cスキャン方向」とも言う。要するに、FD−OCT1では、面内に2次元走査(B−スキャンおよびC−スキャン)をすることにより高速な断層計測が可能で、被計測物体8内部の2次元および3次元情報を得ることができる。   A scan in a direction perpendicular to the plane formed by the A-direction and the B-direction is referred to as “C-scan”, and this direction is also referred to as “C-direction” or “C-scan direction”. In short, in FD-OCT1, two-dimensional scanning (B-scan and C-scan) is performed in the plane, so that high-speed tomographic measurement is possible, and two-dimensional and three-dimensional information inside the measurement object 8 can be obtained. it can.

図2は、波長走査型OCT(SS−OCT)24の全体構成を示す図である。波長走査型光源25から出射された出力光を、ファイバー26を通してファイバーカップラー27に送る。この出力光を、ファイバーカップラー27において、ファイバー28を通して被計測物体29への照射する物体光と、ファイバー30を通して固定参照鏡31に照射する参照光に分割する。   FIG. 2 is a diagram showing an overall configuration of the wavelength scanning OCT (SS-OCT) 24. The output light emitted from the wavelength scanning light source 25 is sent to the fiber coupler 27 through the fiber 26. In the fiber coupler 27, the output light is divided into object light that is irradiated onto the measurement object 29 through the fiber 28 and reference light that is irradiated onto the fixed reference mirror 31 through the fiber 30.

物体光は、ファイバー28、レンズ32、角度が可変な走査鏡33及びレンズ34を介して、被計測物体29に照射、反射され、同じルートでファイバーカップラー27に戻る。参照光は、ファイバー30、レンズ35及びレンズ36を介して固定参照鏡31に照射、反射されて同じルートでファイバーカップラー27に戻る。   The object light is irradiated and reflected on the measurement object 29 through the fiber 28, the lens 32, the scanning mirror 33 and the lens 34 having variable angles, and returns to the fiber coupler 27 through the same route. The reference light is irradiated and reflected on the fixed reference mirror 31 through the fiber 30, the lens 35, and the lens 36, and returns to the fiber coupler 27 through the same route.

そして、これらの物体光と参照光はファイバーカップラー27で重ねられ、ファイバー37を通して光検知器38(PD(フォトダイオード)等のポイントセンサが使用される。)に送られ、スペクトル干渉信号として検出され、コンピュータ39に取り込まれる。光検知器38における検知出力に基づいて、被計測物体29の奥行き方向(A方向)と走査鏡の走査方向(B方向)の断面画像が形成される。コンピュータ39にはディスプレー40が接続されている。   Then, the object light and the reference light are overlapped by the fiber coupler 27 and sent to the optical detector 38 (a point sensor such as a PD (photodiode) is used) through the fiber 37 to be detected as a spectrum interference signal. Is taken into the computer 39. Based on the detection output of the photodetector 38, cross-sectional images of the measured object 29 in the depth direction (A direction) and the scanning direction of the scanning mirror (B direction) are formed. A display 40 is connected to the computer 39.

ここで、波長走査型光源25は、時間的に波長を変化させて走査する光源であり、即ち波長が時間依存性を有する光源である。これにより、固定参照鏡31を走査(移動。A−スキャン)することなく、 被計測物体29の奥行き方向の反射率分布を得て奥行き方向の構造を取得することができ、1次方向の走査(B−スキャン)をするだけで、二次元の断層画像を形成することができる。   Here, the wavelength scanning light source 25 is a light source that scans while changing the wavelength with time, that is, a light source having a wavelength-dependent wavelength. This makes it possible to obtain the reflectance distribution in the depth direction of the object 29 to be measured and to obtain the structure in the depth direction without scanning (moving, A-scan) the fixed reference mirror 31. Scanning in the primary direction A two-dimensional tomographic image can be formed simply by performing (B-scan).

本発明に係る眼底血流量の定量測定装置では、以上説明したフーリエドメインOCT(FD−OCT)や波長走査型OCT(SS−OCT)を、ドップラー光コヒーレンス血管造影(Doppler optical coherence angiography:ドップラーOCA) 手段用のOCT(以下、「ドップラーOCT」という。)として適用する。   In the fundus blood flow quantitative measurement apparatus according to the present invention, the above-described Fourier domain OCT (FD-OCT) or wavelength scanning OCT (SS-OCT) is used for Doppler optical coherence angiography (Doppler optical coherence angiography). It is applied as OCT for means (hereinafter referred to as “Doppler OCT”).

そして、このようなOCTにより、被計測物体である眼底の網膜血管像の3次元複素OCT像をコンピュータに取り込み、そのデータに基づき血管構造の抽出(セグメンテーション)、その抽出データに基づきコンピュータの定量化手段(具体的には定量化ソフトの機能手段)によって網膜血管の血流速度の定量化をおこない、抽出データから求められた血管内腔直径を用いて、眼底血流量の定量測定を行うものである。   Then, by such OCT, a three-dimensional complex OCT image of the retinal blood vessel image of the fundus oculi, which is the object to be measured, is taken into a computer, blood vessel structure extraction (segmentation) based on the data, and computer quantification based on the extracted data The blood flow velocity of the retinal blood vessels is quantified by means (specifically, functional means of quantification software), and the fundus blood flow is quantitatively measured using the blood vessel lumen diameter obtained from the extracted data. is there.

以下において、本発明における定量化手段の構成、具体的には、ドップラーOCTで抽出した網膜血管構造のデータに基づき、コンピュータの定量化手段が行う網膜血管の血流量の定量化を行う内容(ステップ)について説明する。   In the following, the configuration of the quantifying means in the present invention, specifically, the contents for quantifying the blood flow volume of the retinal blood vessels performed by the computer quantifying means based on the data of the retinal blood vessel structure extracted by Doppler OCT (steps) ).

本発明に係る眼底血流量の定量測定装置において、血流量の定量化を行うためには、コンピュータの定量化手段により、絶対的な血流速度と血管の内腔(直径)を求める必要がある。   In the fundus blood flow quantitative measurement apparatus according to the present invention, in order to quantify the blood flow, it is necessary to obtain an absolute blood flow velocity and a blood vessel lumen (diameter) by a computer quantification means. .

ドップラーOCTを用いて絶対的な血流速度を求めるためには、まずドップラー角が必要である。従って、まず、コンピュータの定量化手段(具体的には定量化ソフトの機能手段)における血管抽出アルゴリズムにより、血管の方向と直径を求める血管構造分析が必要となる。   In order to obtain an absolute blood flow velocity using Doppler OCT, first a Doppler angle is required. Therefore, first, blood vessel structure analysis is required to determine the direction and diameter of the blood vessel by the blood vessel extraction algorithm in the computer quantification means (specifically, the quantification software function means).

そして、OCT画の3次元像において、光軸に垂直な面(Aスキャン方向に垂直な面、BスキャンとCスキャン方向を含む面)をエンフェース(en−face)と言う。網膜血管のネットワークが、網膜の表面付近に、網膜とほとんど平行に走っているので en−faceの網膜血管像は、ほぼ網膜の血管構造(配置)と見なすことができる。したがって血管構造分析は、後記する2つのステップでおこなう。   In the three-dimensional image of the OCT image, a plane perpendicular to the optical axis (a plane perpendicular to the A scan direction, a plane including the B scan and C scan directions) is referred to as an en-face. Since the network of retinal blood vessels runs almost parallel to the retina near the surface of the retina, the en-face retinal blood vessel image can be regarded as a blood vessel structure (arrangement) of the retina. Therefore, the blood vessel structure analysis is performed in the following two steps.

図3は、en−face投影像の投影面と、投影面に直交し、互いに直交する2つの面A、Pに対する、血管壁Sの配置を示す図である。血管壁Sの配置のパラメータとしては、第1のステップでは、方位角θ(アジムス角θ)と血管の直径Dを求める。これらの値はen−face像の投影面である、光軸(z軸)に垂直な面E内で求める。   FIG. 3 is a diagram showing the arrangement of the blood vessel wall S with respect to the projection plane of the en-face projection image and the two planes A and P orthogonal to the projection plane and orthogonal to each other. As parameters for the arrangement of the blood vessel wall S, in the first step, the azimuth angle θ (azimuth angle θ) and the diameter D of the blood vessel are obtained. These values are obtained in a plane E perpendicular to the optical axis (z axis), which is a projection plane of the en-face image.

第2のステップでは、血管の天頂角φを求める。この値は光軸(z軸)と血管を含む面A内で求める。面Pは面Aに垂直で光軸を含む面である。   In the second step, the zenith angle φ of the blood vessel is obtained. This value is obtained in the plane A including the optical axis (z-axis) and the blood vessel. The plane P is a plane perpendicular to the plane A and including the optical axis.

これら第1及び第2のステップで血管壁Sの位置が決まる。通常の手段では血管壁の位置を決めるためには3次元データすべて(100×100×100の画像なら百万個)スキャンし血管壁の特徴を持つ画素を抽出してつなげるが、本発明では上記θ、D,φの3つのパラメータのみを求めればいいので、計算時間を短縮化することができる。   The position of the blood vessel wall S is determined by these first and second steps. In order to determine the position of the blood vessel wall with normal means, all the three-dimensional data (one million images for a 100 × 100 × 100 image) are scanned and pixels having the characteristics of the blood vessel wall are extracted and connected. Since only three parameters θ, D, and φ need be obtained, the calculation time can be shortened.

En−face血管像の2次微分から、血管の曲線構造を求めることができる。2次微分像Hは、適当な分散σを持つガウス関数G(r,σ)の2回微分L=[∂/∂x,∂/∂y]T[∂/∂x,∂/∂y]G(r,σ)でEn−face血管像Iをラインフィルタリングすることで高速に得ることができる(HはLとIの相関)。 From the second-order derivative of the En-face blood vessel image, the blood vessel curve structure can be obtained. The second derivative image H is the second derivative L of the Gaussian function G (r, σ) with an appropriate variance σ = [∂ / ∂x, ∂ / ∂y] T [∂ / ∂x, ∂ / ∂y] It is possible to obtain the En-face blood vessel image I by line filtering with G (r, σ) at high speed (H is the correlation between L and I).

注目している画像が血管であるかどうか半自動的に判定するために“血管らしさ”を定義し、その値の大きさを用いて判定をおこなう。血管らしさFは、行列Hの固有値Λ1およびΛ2から定義される。F={|Λ2|(|Λ2|+Λ1)}1/2 , (Λ21≦0のとき)、{|Λ2|(|Λ2|+αΛ1) }1/2 , (Λ2<0<|Λ2|/αのとき)、および 0, (それ以外)となる。 In order to determine semi-automatically whether or not the image of interest is a blood vessel, a “blood vessel-likeness” is defined, and the determination is performed using the size of the value. The blood vessel likelihood F is defined from the eigenvalues Λ 1 and Λ 2 of the matrix H. F = {| Λ 2 | (| Λ 2 | + Λ 1 )} 1/2 , (when Λ 21 ≦ 0), {| Λ 2 | (| Λ 2 | + αΛ 1 )} 1 / 2 (when Λ 2 <0 <| Λ 2 | / α), and 0 (otherwise).

たとえば、|Λ1|〜|Λ2|>>0のときFはゼロで、これは画像では斑点状の構造に相当している。また、Λ2<0<Λ1のときFは大きな値になりこれは連続した曲線構造に相当している。したがって、この手段では、連続した曲線構造と斑点状の構造を分離するものであり、線上の不連続構造(斑点状の構造)に敏感なものになっていて、血管構造の抽出に有効である。αは不連続構造の抽出感度で、たとえば、0.25などにセットされる。 For example, when | Λ 1 | ˜ | Λ 2 | >> 0, F is zero, which corresponds to a spotted structure in the image. Further, when Λ 2 <0 <Λ 1 , F becomes a large value, which corresponds to a continuous curve structure. Therefore, this means separates a continuous curved structure and a spot-like structure, is sensitive to a discontinuous structure (spot-like structure) on the line, and is effective in extracting a blood vessel structure. . α is the extraction sensitivity of the discontinuous structure, and is set to 0.25, for example.

本発明に係る眼底血流量の定量測定装置においては、抽出される血管像は周囲より明るいと仮定している。通常のOCTのen−face像では血管は陰として暗く計測されるため、解析するための画像は明暗を反転して血管部分の明るい像を用いる必要がある。そのため事前に画像強度の反転が必要である。   In the fundus blood flow quantitative measurement device according to the present invention, it is assumed that the extracted blood vessel image is brighter than the surroundings. In a normal OCT en-face image, blood vessels are measured as dark as shadows. Therefore, it is necessary to use a bright image of a blood vessel portion by reversing light and dark as an image for analysis. Therefore, it is necessary to reverse the image intensity in advance.

行列Hの固有値Λ1およびΛ2は、画像中の線構造の方向を表しているため、固有ベクトルの指し示す方向は方位角θの方向となる。上記ラインフィルタリングにおいて用いたラインフィルターの基となるガウス関数G(r,σ)の分散σを変えることでスケールの異なる線構造を抽出することができる(マルチスケールラインフィルタリング法)。ここでいうスケールとは、注目している血管構造のたとえば直径が何画素で構成されているかというような、画素と構造の大きさの関係である。 Since the eigenvalues Λ 1 and Λ 2 of the matrix H represent the direction of the line structure in the image, the direction indicated by the eigenvector is the direction of the azimuth angle θ. Line structures with different scales can be extracted by changing the variance σ of the Gaussian function G (r, σ) that is the basis of the line filter used in the line filtering (multi-scale line filtering method). The scale here refers to the relationship between the size of the pixel and the structure, such as how many pixels the diameter of the vascular structure of interest is composed of.

血管らしさFはガウス関数の分散σで規格化されてσF(σ)と表す。ある点での血管らしさは規格化された血管らしさの最大値F’=max[σF(σ)]で表す。血管の直径はD=4σmaxで表されその時、F’=σmax F(σmax)となる。これらの処理は、コンピュータの定量化手段(具体的にはソフトの機能手段)により、行うことが可能である。 The blood vessel likelihood F is normalized by the variance σ of the Gaussian function and expressed as σF (σ). The likelihood of a blood vessel at a certain point is represented by the standardized maximum value F ′ = max [σF (σ)] of the likelihood of a blood vessel. The diameter of the blood vessel is represented by D = 4σ max , and at that time, F ′ = σ max F (σ max ) These processes can be performed by computer quantification means (specifically, software function means).

En−face像において、網膜血管の抽出は、シルクハット(トップハット)型の関数と相関をとり(フィルターリング処理)、その相関の値に閾値処理をおこなうことで半自動的に抽出される。網膜血管の交差する部分については上記の自動抽出は行うことができないため、オペレーターは網膜血管の交差する部分を示す必要がある。抽出された血管について、血管らしさF’の最大値となる画素を線で結ぶことにより血管の中心部分を決めることができる。   In the En-face image, retinal blood vessels are extracted semi-automatically by correlating with a top hat function (filtering processing) and performing threshold processing on the correlation value. Since the above automatic extraction cannot be performed with respect to a portion where retinal blood vessels intersect, the operator needs to indicate a portion where retinal blood vessels intersect. With respect to the extracted blood vessel, the central portion of the blood vessel can be determined by connecting the pixels having the maximum value of the blood vessel likelihood F ′ with a line.

血管の方位角θと血管の中心線がわかると、その血管の中心線を含む血管の長手方向に平行な断面(図3の面A)における血流像と、その軸方向が、3次元血流像から求められる。血管の天頂角φは前段落において説明したようにして決められた血管中心を結びその線と、光軸との角度を形算することで求めることができる。   When the azimuth angle θ of the blood vessel and the center line of the blood vessel are known, the blood flow image in the cross section (plane A in FIG. 3) parallel to the longitudinal direction of the blood vessel including the center line of the blood vessel and the axial direction thereof are three-dimensional blood. It is obtained from the flow image. The zenith angle φ of the blood vessel can be obtained by connecting the blood vessel center determined as described in the previous paragraph and calculating the angle between the line and the optical axis.

血管横断面(図3の面P参照)の深度(光軸方向の深さ位置)と内腔の直径Dから双方向血流が3次元血流像から求められる。この血管横断面の深度は、面PのOCT像と直径Dの円との相関の最大値から得ることができる。   Bidirectional blood flow is determined from a three-dimensional blood flow image from the depth (depth position in the optical axis direction) of the blood vessel cross section (see plane P in FIG. 3) and the diameter D of the lumen. The depth of the blood vessel cross section can be obtained from the maximum value of the correlation between the OCT image of the surface P and the circle of diameter D.

血管の天頂角φは、すべての血流ベクトルが平行であるとすると、ドップラー角(以下、「ドップラー角φ」とする)と考えることができる。ドップラー流速計測においては、光軸方向(z方向)の速度成分にのみ感度があり、光軸に垂直な流れには感度を持たない。ドップラー角とは、光軸と血流ベクトルのなす角のことであり天頂角φに相当する。ドップラー流速計測では、ドップラー角φとドップラー周波数シフトΔfから、血流速は補正することができる。   The zenith angle φ of the blood vessel can be considered as a Doppler angle (hereinafter referred to as “Doppler angle φ”) assuming that all blood flow vectors are parallel. In Doppler flow velocity measurement, only the velocity component in the optical axis direction (z direction) is sensitive, and the flow perpendicular to the optical axis is insensitive. The Doppler angle is an angle formed by the optical axis and the blood flow vector and corresponds to the zenith angle φ. In Doppler flow velocity measurement, the blood flow velocity can be corrected from the Doppler angle φ and the Doppler frequency shift Δf.

絶対的な血流速VはV=λ0Δf/(2n・ cosφ)で表される。ここで、λ0は光源の中心波長、nはサンプルの屈折率を表す。ドップラー周波数シフトが測定限界以下となるため、この式はφが90°付近になると使うことができない。 The absolute blood flow velocity V is expressed by V = λ 0 Δf / (2n · cosφ). Here, λ 0 represents the center wavelength of the light source, and n represents the refractive index of the sample. Since the Doppler frequency shift is below the measurement limit, this equation cannot be used when φ is near 90 °.

これらの血管のパラメータにより、面Pにおける断面血流像における血管内腔楕円Sを見積もることができる。血流量Jは、血管内腔S内で、ドップラー周波数シフトとドップラー角を考慮しJ=ΣS0Δf)/(2n) tanφΔsのように横方向の血流速を積分する(和をとる)ことで得られる。ここでΔsは断面血流像の1画素の面積である。 With these blood vessel parameters, the blood vessel lumen ellipse S in the cross-sectional blood flow image on the plane P can be estimated. The blood flow volume J is integrated in the blood vessel lumen S by taking into account the Doppler frequency shift and the Doppler angle and integrating the lateral blood flow velocity as J = Σ S0 Δf) / (2n) tanφΔs To obtain). Here, Δs is the area of one pixel of the cross-sectional blood flow image.

本発明に係る眼底血流量の定量測定装置の実施例を以下、説明する。この実施例における眼底血流量の定量測定装置では、ドップラーOCTとして、27.7kHzの軸方向走査速度、生体内での軸方向分解能約3μmの超高分解能SD−OCTを用い、その計測例としては、網膜動脈の分岐部分(図5参照、特に図5Aの白い四角内の領域参照)における血流量の保存の計測とする。   An embodiment of a fundus blood flow quantitative measurement apparatus according to the present invention will be described below. In the apparatus for quantitatively measuring the fundus blood flow in this embodiment, as the Doppler OCT, an axial scanning speed of 27.7 kHz and an ultra high resolution SD-OCT having an axial resolution of about 3 μm in the living body are used. The measurement of the preservation of the blood flow rate in the bifurcated portion of the retinal artery (see FIG. 5, in particular, the region in the white square in FIG. 5A).

なお、計測対象として網膜静脈ではなく網膜動脈とした理由は次のとおりである。網膜血管のほとんどすべてが入射ビームと垂直に交わるため、ドップラー周波数シフトは小さい。このことは血管の抽出に誤差をもたらす。このような状況を避けるために、動脈のドップラー周波数シフトが静脈のそれより大きいため、静脈よりむしろ動脈を対象とするほうがよい。   The reason for selecting the retinal artery instead of the retinal vein as the measurement target is as follows. Since almost all of the retinal vessels intersect perpendicularly with the incident beam, the Doppler frequency shift is small. This introduces an error in blood vessel extraction. To avoid this situation, it is better to target the artery rather than the vein because the arterial Doppler frequency shift is greater than that of the vein.

ドップラーシフトが起こっている部分は血流があると考えられ、それらの部分は血流像を構成する。血流像において、ドップラーシフトによる周波数変化はごくわずかなので、光波の周波数変化はその位相変化として観測される。位相変化は0〜2πとそのレンジが限られているために、2πの位相不確定が生じる。それを補正し、正しい周波数シフト量を求めるために、位相飛びが起こった部分については、2次元的に2πの位相接続アルゴリズムを用いる。   The portions where the Doppler shift occurs are considered to have blood flow, and those portions constitute a blood flow image. In the blood flow image, since the frequency change due to the Doppler shift is very small, the frequency change of the light wave is observed as the phase change. Since the phase change has a limited range of 0 to 2π, a phase uncertainty of 2π occurs. In order to correct this and obtain the correct frequency shift amount, a 2π phase connection algorithm is used two-dimensionally for the portion where the phase jump has occurred.

血流像のモーションアーチファクトの除去は、ヒストグラムによる手段を用いた(特開2007−127425号公報参照)。計測中に測定対象が動く(バルクモーション)ことによって像がゆがむ現象であるところの、バルクモーションによる像の歪みは、像の連続性を考慮して、数値的に補正した(S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821−7840 (2006)参照)。   Removal of motion artifacts in the blood flow image was performed by means using a histogram (see Japanese Patent Application Laid-Open No. 2007-127425). The distortion of the image due to the bulk motion, which is a phenomenon in which the measurement object moves during measurement (bulk motion), was corrected numerically considering the continuity of the image (S. Makita, Y Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821-7840 (2006)).

網膜色素上皮(RPE)の周りの3次元OCT対数像の最大値投影(MIP)を計算することによって、図5Bのようなコントラストの高いen−face血管像を得ることができる。段落0045〜0047にしたがってマルチスケールラインフィルターを行ったen−face網膜血管像が図4であり、それに基づき血管抽出を行った結果が図5である。図4Aはen−face血管像、図4Bは血管らしさF’の分布、図4Cは方位角の分布、図4Dは血管直径をそれぞれ示す。   By calculating the maximum projection (MIP) of the three-dimensional OCT logarithmic image around the retinal pigment epithelium (RPE), a high-contrast en-face blood vessel image as shown in FIG. 5B can be obtained. FIG. 4 shows an en-face retinal blood vessel image obtained by performing the multi-scale line filter according to the paragraphs 0045 to 0047, and FIG. 5 shows the result of blood vessel extraction based on the image. 4A shows an en-face blood vessel image, FIG. 4B shows a distribution of blood vessel likelihood F ′, FIG. 4C shows an azimuth distribution, and FIG. 4D shows a blood vessel diameter.

SD−OCTによる上記軸方向の走査で、血管抽出と抽出された3つの血管(図5A、Bに示す分岐を構成する3つの血管)の流量計算時間は、コンピュータ(AMD Athlon64 3500+, 2Gb RAM)を用いて約3分で算出可能であった。   In the above axial scan by SD-OCT, blood vessel extraction and the flow calculation time of the three extracted blood vessels (three blood vessels constituting the branch shown in FIGS. 5A and 5B) are calculated using a computer (AMD Athlon64 3500+, 2Gb RAM ) Was calculated in about 3 minutes.

また、SD−OCTによる上記軸方向の走査で、半自動的に抽出された像と眼底写真(図5A)が得られた。解析領域(対象とする分岐部分を含む領域)は、図5Aの白い四角内である。図5B(図5Aの白い四角内の領域に対応する。)の血管61、62、63内の、血管61、62、63に沿う線と、この線に直交する線は、それぞれ、自動的に抽出された血管中心線と垂直横断線である。血管61では抽出された血管像がほとんど水平にもかかわらず、計算された方位角は小さい傾きを持っている。   In addition, an image and a fundus photograph (FIG. 5A) extracted semi-automatically were obtained by scanning in the axial direction by SD-OCT. The analysis region (the region including the target branch portion) is within the white square in FIG. 5A. The lines along the blood vessels 61, 62, and 63 in the blood vessels 61, 62, and 63 in FIG. 5B (corresponding to the area within the white square in FIG. 5A) and the line orthogonal to the lines are automatically The extracted blood vessel center line and the vertical transverse line. In the blood vessel 61, although the extracted blood vessel image is almost horizontal, the calculated azimuth angle has a small inclination.

しかしながら、眼底写真(図5A)でみると血管62は小さい方位角を持っていることがわかる。このことはマルチスケールフィルタリング手段は、画素以下の構造に敏感であることが考えられる。   However, it can be seen from the fundus photograph (FIG. 5A) that the blood vessel 62 has a small azimuth angle. This can be considered that the multi-scale filtering means is sensitive to the sub-pixel structure.

血管の長手方向に直交する横断面(図3の面P参照)の血管内腔及び血流像が図5C、E、Gに示されている。また、血管の長手方向に平行断面(図3の面A参照)の血管内腔及び血流像が図5D、F、Hに示されている。図5D,F,Hの太線は血管像の中心において血管中心を示す補助線である。   5C, E, and G show blood vessel lumens and blood flow images in a cross section (see plane P in FIG. 3) orthogonal to the longitudinal direction of the blood vessel. 5D, F, and H show blood vessel lumen and blood flow images in a cross section parallel to the longitudinal direction of the blood vessel (see plane A in FIG. 3). The thick lines in FIGS. 5D, F, and H are auxiliary lines indicating the center of the blood vessel at the center of the blood vessel image.

測定の単位となるボクセル(3次元の格子点上の小さな立方体。その集合で形状を表すことを『ボクセル表現』という。)の大きさは異方的な(立方体ではない)ので、血管抽出の精度と血流の測定精度は方位角に依存する。血流のパラメータを20セットすべてについて求め、ピーク血流速度Vpeak、血管直径D、体積流量Jを求めた。これを表1(図5Bの血管61〜63について)に示す。   Since the size of voxels (small cubes on three-dimensional lattice points. Representing the shape by the set is called “voxel expression”) is anisotropic (not cubes). Accuracy and blood flow measurement accuracy depend on the azimuth. Blood flow parameters were determined for all 20 sets, and peak blood flow velocity Vpeak, blood vessel diameter D, and volumetric flow rate J were determined. This is shown in Table 1 (for blood vessels 61-63 in FIG. 5B).

表1において、流速と流量の符号は、分岐に流れ込むものを+、分岐から出て行くものを−とし、流れの方向を示している。図5Bにおいて、血管1の総流量と、血管2と血管3の流量和をプロットしたものが図6である。   In Table 1, the sign of the flow velocity and the flow rate indicates the direction of the flow, with + indicating the flow into the branch and − indicating the flow out of the branch. FIG. 6 is a plot of the total flow rate of the blood vessel 1 and the sum of the flow rates of the blood vessels 2 and 3 in FIG. 5B.

血液の流入量と流出量は正比例の関係にあり、その相関係数は0.75となっている。流入血流量3.41μl/minは流出血流量3.23μl/mimとほぼ一致している。従って、本発明に係る眼底血流量の定量測定装置は精度及び信頼性がある点が確認できた。   The inflow amount and outflow amount of blood are in a directly proportional relationship, and the correlation coefficient is 0.75. The inflow blood flow rate of 3.41 μl / min substantially coincides with the outflow blood flow rate of 3.23 μl / mim. Therefore, it was confirmed that the fundus blood flow quantitative measurement apparatus according to the present invention has accuracy and reliability.

以上、本発明を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   The best mode for carrying out the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and within the scope of the technical matters described in the claims. Needless to say, there are various embodiments.

本発明に係る本発明に係る眼底血流量の定量測定装置、以上のような構成であるから、眼底血流量の定量測定はもちろんのこと、医療用検査装置一般に、さたに高精度な分解能が要求される各種の技術分野、例えば、動植物物の生体、構造観察等にも適用可能である。   Since the fundus blood flow quantitative measurement device according to the present invention according to the present invention is configured as described above, not only quantitative measurement of the fundus blood flow, but also medical examination devices generally have a high-resolution resolution. The present invention can be applied to various technical fields required, for example, living organisms and structures of animals and plants.

本発明のドップラーOCTに使用するFD−OCTの全体構成を説明する図である。It is a figure explaining the whole structure of FD-OCT used for Doppler OCT of this invention. 本発明のドップラーOCTに使用するSS−OCTの全体構成を説明する図である。It is a figure explaining the whole structure of SS-OCT used for Doppler OCT of the present invention. 本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 従来の基本的なOCTを説明する図である。It is a figure explaining the conventional basic OCT.

符号の説明Explanation of symbols

1 FD−OCT
2 広帯域光源
3 低コヒーレンス干渉計
4 分光器
5 ビームスプリッター
6、9、32、34、35、36 レンズ
7 ガルバノミラー
8 被計測物体
10 参照鏡
11 回折格子
12 CCD
13、21 画像処理装置
14 CCD光検出器
15 OCT干渉信号入力部
16 OCT干渉信号平滑化手段
17 エンベロープ検出手段
18 逆フィルター作成手段
19 エンベロープ補正手段
20 OCT干渉信号出力部
22 干渉信号変換エンベロープ検出手段
24 波長走査型OCT
25 波長走査型光源
26、28、37 ファイバー
27 ファイバーカップラー
29、48 被計測物体
30 ファイバー
31 固定参照鏡
33 走査鏡
38 光検知器
39 コンピュータ
40 ディスプレー
43 OCT
44 光源
45 コリメートレンズ
46 ビームスプリッター
47 物体アーム内の対物レンズ
49 参照アーム内の対物レンズ
50 参照鏡
51 集光レンズ
52 (フォトダイオード等)光検出器
61〜63 血管
1 FD-OCT
2 Broadband light source
3 Low coherence interferometer
4 Spectrometer
5 Beam splitter
6, 9, 32, 34, 35, 36 Lens
7 Galvano mirror
8 Object to be measured
10 Reference mirror
11 Diffraction grating
12 CCD
DESCRIPTION OF SYMBOLS 13, 21 Image processing apparatus 14 CCD photodetector 15 OCT interference signal input part 16 OCT interference signal smoothing means 17 Envelope detection means 18 Reverse filter preparation means 19 Envelope correction means 20 OCT interference signal output part 22 Interference signal conversion envelope detection means
24 wavelength scanning OCT
25 wavelength scanning light source
26, 28, 37 fiber
27 Fiber coupler
29, 48 Object to be measured
30 fiber
31 Fixed reference mirror
33 Scanning mirror
38 Light detector
39 computers
40 display
43 OCT
44 Light source
45 Collimating lens
46 Beam splitter
47 Objective lens in the object arm
49 Objective lens in the reference arm
50 reference mirror
51 condenser lens
52 (Photodiode etc.) Photodetector
61-63 blood vessels

Claims (3)

ドップラー光コヒーレンス血管造影手段によって網膜血管構造の抽出を行い網膜血管の血流量の定量化が可能な眼底血流量の定量測定装置であって、
前記ドップラー光コヒーレンス血管造影手段は、光コヒーレンストモグラフィーの構成を有し、複素OCTデータの周波数シフトを解析することで、眼底血流の流速を計測可能な構成であることを特徴とする眼底血流量の定量測定装置。
An apparatus for quantitatively measuring the fundus blood flow that can extract the retinal blood vessel structure by Doppler optical coherence angiography means and quantify the blood flow of the retinal blood vessel,
The Doppler optical coherence angiography means has a configuration of optical coherence tomography, and can measure the flow velocity of the fundus blood flow by analyzing the frequency shift of complex OCT data. Quantitative measurement device.
前記光コヒーレンストモグラフィーは、en−face血管像および血流像を形成し、該en−face血管像と血流像の2枚とから血管の直径、方向及び位置が得られ、該血管の直径、方向及び位置から、前記血流量が決められることを特徴とする請求項1記載の眼底血流量の定量測定装置。   The optical coherence tomography forms an en-face blood vessel image and a blood flow image, and the diameter, direction and position of the blood vessel are obtained from the en-face blood vessel image and the blood flow image, the diameter of the blood vessel, The apparatus for quantitatively measuring fundus blood flow according to claim 1, wherein the blood flow is determined from a direction and a position. 前記血流量の絶対値は、ドップラー周波数シフトの値と血管の直径、方向及び位置から求められる構成であることを特徴とする請求項1記載の眼底血流量の定量測定装置。   The apparatus for quantitatively measuring fundus blood flow according to claim 1, wherein the absolute value of the blood flow is obtained from a Doppler frequency shift value and a diameter, direction, and position of a blood vessel.
JP2008008465A 2008-01-17 2008-01-17 Quantitative measurement device for fundus blood flow Active JP5166889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008465A JP5166889B2 (en) 2008-01-17 2008-01-17 Quantitative measurement device for fundus blood flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008465A JP5166889B2 (en) 2008-01-17 2008-01-17 Quantitative measurement device for fundus blood flow

Publications (2)

Publication Number Publication Date
JP2009165710A true JP2009165710A (en) 2009-07-30
JP5166889B2 JP5166889B2 (en) 2013-03-21

Family

ID=40967587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008465A Active JP5166889B2 (en) 2008-01-17 2008-01-17 Quantitative measurement device for fundus blood flow

Country Status (1)

Country Link
JP (1) JP5166889B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500799A (en) * 2009-08-04 2013-01-10 カール ツァイス メディテック アクチエンゲゼルシャフト Non-linear projection of 3D medical image data
JP2013506136A (en) * 2009-09-23 2013-02-21 ライトラブ イメージング, インコーポレイテッド Device, system and method for in vivo blood removal in a lumen
WO2013137148A1 (en) 2012-03-12 2013-09-19 株式会社トプコン Optical image measurement device, image display device, and image display method
JP2013208158A (en) * 2012-03-30 2013-10-10 Topcon Corp Image display device, image display method, and program
WO2014031961A1 (en) * 2012-08-23 2014-02-27 University Of Washington Through Its Center For Commercialization Methods and systems for determining volumetric properties of a tissue
JP2014515298A (en) * 2011-06-01 2014-06-30 コーニンクレッカ フィリップス エヌ ヴェ Determining the flow characteristics of an object movable in an element
US8879070B2 (en) 2009-06-11 2014-11-04 University Of Tsukuba Two beams formed by Wollaston prism in sample arm in an optical coherence tomography apparatus
CN104159505A (en) * 2014-05-14 2014-11-19 深圳市斯尔顿科技有限公司 Blood pressure measurement device and method
WO2014188946A1 (en) 2013-05-24 2014-11-27 国立大学法人筑波大学 Jones matrix oct system and program for carrying out image processing on measured data obtained by said oct
JP2015515894A (en) * 2012-05-10 2015-06-04 カール ツアイス メディテック アクチエンゲゼルシャフト Analysis and visualization of OCT angiography data
JP2015180863A (en) * 2014-01-31 2015-10-15 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for performing multidimensional velocity measurements using amplitude and phase in optical interferometry
JP2015230174A (en) * 2014-06-03 2015-12-21 株式会社トプコン Interferometer device
CN105286779A (en) * 2015-10-30 2016-02-03 温州医科大学 Method of imaging of in vivo retina haemodynamics and measuring of absolute flow velocity
WO2015165989A3 (en) * 2014-05-02 2016-02-04 Carl Zeiss Meditec, Inc. Enhanced vessel characterization in optical coherence tomograogphy angiography
CN105310677A (en) * 2014-08-01 2016-02-10 深圳市斯尔顿科技有限公司 Device and method for measuring blood flow rate
JP2016106651A (en) * 2014-12-02 2016-06-20 株式会社ニデック Optical coherence tomography apparatus and speed measurement program
JP2016106652A (en) * 2014-12-02 2016-06-20 株式会社ニデック Optical coherence tomography apparatus and control program for use in the same
WO2016098474A1 (en) * 2014-12-19 2016-06-23 国立大学法人旭川医科大学 Blood flow measurement device
JP2017042602A (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measuring device
WO2017033669A1 (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
WO2017033670A1 (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measuring device
JP2017042338A (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
WO2017069019A1 (en) * 2015-10-23 2017-04-27 株式会社トプコン Blood flow measurement device
JP2017202369A (en) * 2017-08-23 2017-11-16 株式会社トプコン Ophthalmologic image processing device
JP2018038689A (en) * 2016-09-09 2018-03-15 株式会社トプコン Ophthalmic photographing apparatus and ophthalmic image processing apparatus
JP2018046959A (en) * 2016-09-21 2018-03-29 株式会社トプコン Ophthalmologic photographing apparatus
JP2018046958A (en) * 2016-09-21 2018-03-29 株式会社トプコン Ophthalmologic photographing apparatus and ophthalmologic image processing apparatus
CN109085378A (en) * 2018-08-03 2018-12-25 佛山科学技术学院 A kind of the three-dimensional flow measuring device and method of low-coherent light projection tomography
JP2019042264A (en) * 2017-09-05 2019-03-22 株式会社トプコン Ophthalmologic imaging apparatus and ophthalmologic information processing apparatus
JP2019042263A (en) * 2017-09-05 2019-03-22 株式会社トプコン Ophthalmologic system, ophthalmologic imaging apparatus, and ophthalmologic information processing apparatus
CN109692071A (en) * 2018-12-29 2019-04-30 佛山科学技术学院 Vision correction instrument and the method for carrying out myoporthosis using it
JP2019084366A (en) * 2019-01-24 2019-06-06 株式会社トプコン Ophthalmologic examination support system and ophthalmologic examination support server
US10426335B2 (en) 2015-04-14 2019-10-01 Kabushiki Kaisha Topcon Ophthalmic image display device and ophthalmic imaging device
WO2019203091A1 (en) * 2018-04-19 2019-10-24 キヤノン株式会社 Image processing device, image processing method, and program
US10660515B2 (en) 2016-01-21 2020-05-26 Canon Kabushiki Kaisha Image display method of providing diagnosis information using three-dimensional tomographic data
CN111436909A (en) * 2020-04-28 2020-07-24 北京信息科技大学 Optical coherence tomography system and method for living tissue
JP2020127727A (en) * 2020-03-10 2020-08-27 株式会社トプコン Blood flow measurement device
US10905323B2 (en) 2014-12-19 2021-02-02 Kabushiki Kaisha Topcon Blood flow measurement apparatus
US11678796B2 (en) 2014-12-19 2023-06-20 Kabushiki Kaisha Topcon Blood flow measurement apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172581A1 (en) * 2014-05-14 2015-11-19 深圳市斯尔顿科技有限公司 Device and method for measuring blood flow

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325849A (en) * 1998-03-30 1999-11-26 Carl Zeiss Jena Gmbh Optical tomography based on spectrum interference and optical surface profile measuring apparatus
JP2002238850A (en) * 2001-02-19 2002-08-27 Canon Inc Optometrical device
JP2002310897A (en) * 2001-04-13 2002-10-23 Japan Science & Technology Corp High speed optical retardation generating method and its high speed optical retardation generator by movement of translucent body in optical coherence tomography
JP2004028970A (en) * 2002-06-21 2004-01-29 Institute Of Tsukuba Liaison Co Ltd Polarization-sensitive optical spectral interferometric coherence tomography apparatus and measuring method for polarization information inside sample by the same
JP2006153838A (en) * 2004-11-08 2006-06-15 Topcon Corp Optical image measuring apparatus and optical image measurement method
WO2007028531A1 (en) * 2005-09-09 2007-03-15 Carl Zeiss Meditec Ag Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
JP2007127425A (en) * 2005-10-31 2007-05-24 Univ Of Tsukuba Correction method in optical tomographic imaging method
JP2007298461A (en) * 2006-05-02 2007-11-15 Univ Of Tsukuba Instrument for measuring polarized light light-receiving image

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325849A (en) * 1998-03-30 1999-11-26 Carl Zeiss Jena Gmbh Optical tomography based on spectrum interference and optical surface profile measuring apparatus
JP2002238850A (en) * 2001-02-19 2002-08-27 Canon Inc Optometrical device
JP2002310897A (en) * 2001-04-13 2002-10-23 Japan Science & Technology Corp High speed optical retardation generating method and its high speed optical retardation generator by movement of translucent body in optical coherence tomography
JP2004028970A (en) * 2002-06-21 2004-01-29 Institute Of Tsukuba Liaison Co Ltd Polarization-sensitive optical spectral interferometric coherence tomography apparatus and measuring method for polarization information inside sample by the same
JP2006153838A (en) * 2004-11-08 2006-06-15 Topcon Corp Optical image measuring apparatus and optical image measurement method
WO2007028531A1 (en) * 2005-09-09 2007-03-15 Carl Zeiss Meditec Ag Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
JP2007127425A (en) * 2005-10-31 2007-05-24 Univ Of Tsukuba Correction method in optical tomographic imaging method
JP2007298461A (en) * 2006-05-02 2007-11-15 Univ Of Tsukuba Instrument for measuring polarized light light-receiving image

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879070B2 (en) 2009-06-11 2014-11-04 University Of Tsukuba Two beams formed by Wollaston prism in sample arm in an optical coherence tomography apparatus
JP2013500799A (en) * 2009-08-04 2013-01-10 カール ツァイス メディテック アクチエンゲゼルシャフト Non-linear projection of 3D medical image data
US9105123B2 (en) 2009-08-04 2015-08-11 Carl Zeiss Meditec, Inc. Non-linear projections of 3-D medical imaging data
JP2013506136A (en) * 2009-09-23 2013-02-21 ライトラブ イメージング, インコーポレイテッド Device, system and method for in vivo blood removal in a lumen
JP2014515298A (en) * 2011-06-01 2014-06-30 コーニンクレッカ フィリップス エヌ ヴェ Determining the flow characteristics of an object movable in an element
EP3272276A1 (en) 2012-03-12 2018-01-24 Kabushiki Kaisha Topcon Image displaying apparatus and image displaying method
US9848772B2 (en) 2012-03-12 2017-12-26 Kabushiki Kaisha Topcon Image displaying method
US9492082B2 (en) 2012-03-12 2016-11-15 Kabushiki Kaisha Topcon Optical image measuring apparatus, image displaying apparatus and image displaying method
US9936870B2 (en) 2012-03-12 2018-04-10 Kabushiki Kaisha Topcon Image displaying apparatus
WO2013137148A1 (en) 2012-03-12 2013-09-19 株式会社トプコン Optical image measurement device, image display device, and image display method
EP2829219A4 (en) * 2012-03-12 2015-12-02 Topcon Corp Optical image measurement device, image display device, and image display method
EP3269297A1 (en) 2012-03-12 2018-01-17 Kabushiki Kaisha Topcon Image displaying apparatus and image displaying method
EP3127474A1 (en) 2012-03-12 2017-02-08 Kabushiki Kaisha TOPCON Image displaying apparatus and image displaying method
JP2013208158A (en) * 2012-03-30 2013-10-10 Topcon Corp Image display device, image display method, and program
JP2015515894A (en) * 2012-05-10 2015-06-04 カール ツアイス メディテック アクチエンゲゼルシャフト Analysis and visualization of OCT angiography data
WO2014031961A1 (en) * 2012-08-23 2014-02-27 University Of Washington Through Its Center For Commercialization Methods and systems for determining volumetric properties of a tissue
US10470663B2 (en) 2013-05-24 2019-11-12 University Of Tsukuba Jones matrix OCT system and program for carrying out image processing on measured data obtained by said OCT
WO2014188946A1 (en) 2013-05-24 2014-11-27 国立大学法人筑波大学 Jones matrix oct system and program for carrying out image processing on measured data obtained by said oct
JP2015180863A (en) * 2014-01-31 2015-10-15 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for performing multidimensional velocity measurements using amplitude and phase in optical interferometry
US10398302B2 (en) 2014-05-02 2019-09-03 Carl Zeiss Meditec, Inc. Enhanced vessel characterization in optical coherence tomograogphy angiography
WO2015165989A3 (en) * 2014-05-02 2016-02-04 Carl Zeiss Meditec, Inc. Enhanced vessel characterization in optical coherence tomograogphy angiography
CN104159505B (en) * 2014-05-14 2016-03-09 深圳市斯尔顿科技有限公司 Blood flow measurement device and method
CN104159505A (en) * 2014-05-14 2014-11-19 深圳市斯尔顿科技有限公司 Blood pressure measurement device and method
WO2015172322A1 (en) * 2014-05-14 2015-11-19 深圳市斯尔顿科技有限公司 Blood flow measuring device and method
JP2015230174A (en) * 2014-06-03 2015-12-21 株式会社トプコン Interferometer device
CN105310677A (en) * 2014-08-01 2016-02-10 深圳市斯尔顿科技有限公司 Device and method for measuring blood flow rate
CN105310677B (en) * 2014-08-01 2018-01-12 深圳市斯尔顿科技有限公司 A kind of device and method for measuring blood flow
JP2016106651A (en) * 2014-12-02 2016-06-20 株式会社ニデック Optical coherence tomography apparatus and speed measurement program
JP2016106652A (en) * 2014-12-02 2016-06-20 株式会社ニデック Optical coherence tomography apparatus and control program for use in the same
WO2016098474A1 (en) * 2014-12-19 2016-06-23 国立大学法人旭川医科大学 Blood flow measurement device
US20180279874A1 (en) * 2014-12-19 2018-10-04 National University Corporation Asahikawa Medical University Blood flow measurement apparatus
US10905323B2 (en) 2014-12-19 2021-02-02 Kabushiki Kaisha Topcon Blood flow measurement apparatus
US10980416B2 (en) 2014-12-19 2021-04-20 National University Corporation Asahikawa Medical University Blood flow measurement apparatus
US11678796B2 (en) 2014-12-19 2023-06-20 Kabushiki Kaisha Topcon Blood flow measurement apparatus
JP2016116595A (en) * 2014-12-19 2016-06-30 国立大学法人旭川医科大学 Blood flow measurement device
US10426335B2 (en) 2015-04-14 2019-10-01 Kabushiki Kaisha Topcon Ophthalmic image display device and ophthalmic imaging device
JP2017042337A (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
WO2017033671A1 (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
WO2017033669A1 (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
JP2017042602A (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measuring device
WO2017033670A1 (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measuring device
US10799116B2 (en) 2015-08-26 2020-10-13 Topcon Corporation Device and method of measuring blood flow
JP2017042338A (en) * 2015-08-26 2017-03-02 株式会社トプコン Blood flow measurement device
JP2017079886A (en) * 2015-10-23 2017-05-18 株式会社トプコン Blood flow measurement device
WO2017069019A1 (en) * 2015-10-23 2017-04-27 株式会社トプコン Blood flow measurement device
CN105286779A (en) * 2015-10-30 2016-02-03 温州医科大学 Method of imaging of in vivo retina haemodynamics and measuring of absolute flow velocity
US10660515B2 (en) 2016-01-21 2020-05-26 Canon Kabushiki Kaisha Image display method of providing diagnosis information using three-dimensional tomographic data
JP2018038689A (en) * 2016-09-09 2018-03-15 株式会社トプコン Ophthalmic photographing apparatus and ophthalmic image processing apparatus
JP2018046958A (en) * 2016-09-21 2018-03-29 株式会社トプコン Ophthalmologic photographing apparatus and ophthalmologic image processing apparatus
JP2018046959A (en) * 2016-09-21 2018-03-29 株式会社トプコン Ophthalmologic photographing apparatus
JP2017202369A (en) * 2017-08-23 2017-11-16 株式会社トプコン Ophthalmologic image processing device
JP2019042264A (en) * 2017-09-05 2019-03-22 株式会社トプコン Ophthalmologic imaging apparatus and ophthalmologic information processing apparatus
JP2019042263A (en) * 2017-09-05 2019-03-22 株式会社トプコン Ophthalmologic system, ophthalmologic imaging apparatus, and ophthalmologic information processing apparatus
JP7262929B2 (en) 2018-04-19 2023-04-24 キヤノン株式会社 Image processing device, image processing method and program
WO2019203091A1 (en) * 2018-04-19 2019-10-24 キヤノン株式会社 Image processing device, image processing method, and program
JP2019187550A (en) * 2018-04-19 2019-10-31 キヤノン株式会社 Image processing device, image processing method, and program
CN109085378A (en) * 2018-08-03 2018-12-25 佛山科学技术学院 A kind of the three-dimensional flow measuring device and method of low-coherent light projection tomography
CN109692071A (en) * 2018-12-29 2019-04-30 佛山科学技术学院 Vision correction instrument and the method for carrying out myoporthosis using it
JP2019084366A (en) * 2019-01-24 2019-06-06 株式会社トプコン Ophthalmologic examination support system and ophthalmologic examination support server
JP2020127727A (en) * 2020-03-10 2020-08-27 株式会社トプコン Blood flow measurement device
JP7068366B2 (en) 2020-03-10 2022-05-16 株式会社トプコン Blood flow measuring device
CN111436909A (en) * 2020-04-28 2020-07-24 北京信息科技大学 Optical coherence tomography system and method for living tissue
CN111436909B (en) * 2020-04-28 2023-03-28 北京信息科技大学 Optical coherence tomography system and method for living tissue

Also Published As

Publication number Publication date
JP5166889B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5166889B2 (en) Quantitative measurement device for fundus blood flow
US10660515B2 (en) Image display method of providing diagnosis information using three-dimensional tomographic data
US10354385B2 (en) Optical coherence tomography (OCT) data processing method, storage medium storing program for executing the OCT data processing method, and processing device
US9046339B2 (en) Systems and methods for bidirectional functional optical coherence tomography
US10667707B2 (en) Microangiography method and system based on full-space modulation spectrum splitting and angle compounding
US8433393B2 (en) Inter-frame complex OCT data analysis techniques
CN107595250B (en) Blood flow imaging method and system based on motion and graph mixed contrast
US9839351B2 (en) Image generating apparatus, image generating method, and program
US9814384B2 (en) High temporal resolution doppler OCT imaging of retinal blood flow
US9354038B2 (en) Swept source optical coherence tomography and method for stabilizing phase thereof
JP4389032B2 (en) Optical coherence tomography image processing device
Trasischker et al. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography
JP4461259B2 (en) Optical tomographic image processing method
CN107862724B (en) Improved microvascular blood flow imaging method
US20160066798A1 (en) Methods and Systems for Determining Hemodynamic Properties of a Tissue
JP6602108B2 (en) Ophthalmic apparatus, information processing method, and program
US20180000341A1 (en) Tomographic imaging apparatus, tomographic imaging method, image processing apparatus, image processing method, and program
KR101746763B1 (en) Diagnostic technique and imaging method of retinal and choroidal optical coherence tomography angiography
JP5602363B2 (en) Optical coherence tomography system
JP6606640B2 (en) Ophthalmic apparatus and control method thereof
JP6402921B2 (en) Optical coherence tomography apparatus and speed measurement program
US20240341588A1 (en) Optical coherence tomography system and method for imaging of a sample
EP4384072A1 (en) Using the dynamic forward scattering signal for optical coherence tomography based flow quantification
Fürst Optical coherence tomography for vascular skin imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250