JP2009165218A - Power regeneration circuit - Google Patents

Power regeneration circuit Download PDF

Info

Publication number
JP2009165218A
JP2009165218A JP2007340045A JP2007340045A JP2009165218A JP 2009165218 A JP2009165218 A JP 2009165218A JP 2007340045 A JP2007340045 A JP 2007340045A JP 2007340045 A JP2007340045 A JP 2007340045A JP 2009165218 A JP2009165218 A JP 2009165218A
Authority
JP
Japan
Prior art keywords
circuit
secondary battery
charge
electric charge
power regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007340045A
Other languages
Japanese (ja)
Other versions
JP5145932B2 (en
Inventor
Takashi Masako
隆志 眞子
Sadahiko Miura
貞彦 三浦
Jun Sunamura
潤 砂村
Masahiro Nomura
昌弘 野村
Naohiko Sugibayashi
直彦 杉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007340045A priority Critical patent/JP5145932B2/en
Publication of JP2009165218A publication Critical patent/JP2009165218A/en
Application granted granted Critical
Publication of JP5145932B2 publication Critical patent/JP5145932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Dram (AREA)
  • Power Sources (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the reuse efficiency of an electric charge which is temporarily accumulated in a power regeneration circuit. <P>SOLUTION: The charging timing of an emission electric charge from a first circuit (a circuit for emitting an electric charge) 202 via a first switch circuit 203 to a secondary battery 201, and the discharging timing of a charging electric charge from the secondary battery 201 to a second circuit (a circuit needing an electric charge) 204 via a second switch circuit 205 are controlled by a drive circuit 206 by arranging the secondary battery 201 in place of an electric charge accumulation capacitor. The secondary battery 201 can send all the charging electric charges to the second circuit 204 different from the electric charge accumulation capacitor. For example, when an electromotive force of the secondary battery 201 is set to be a half of each power supply voltage Vcc of the first circuit 202 and the second circuit 204, and when a half of an electric charge of the first circuit 202 is charged to the secondary battery 201, the half of the electric charge is sent to the secondary circuit 204, and thus the reuse efficiency of the electric charge is enhanced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、半導体集積回路(LSI)などにおいて、電荷を放出する回路からの電荷の一部を一時蓄積し、この一時蓄積した電荷を必要とする回路に供給することにより電力の回生を行う電力回生回路に関するものである。   The present invention relates to a power that regenerates power by temporarily storing a part of charges from a circuit that discharges charges in a semiconductor integrated circuit (LSI) or the like and supplying the temporarily stored charges to a circuit that requires it. This relates to the regenerative circuit.

昨今、LSI自身が消費する電力の低減は最重要課題の一つであり、低消費電力で動作可能なデバイスの検討が活発に行われている。その中には、一定時間毎に記憶保持のための再書き込み(リフレッシュ)を行う必要があるDRAM(ダイナミック型メモリセル)のリフレッシュ動作時に捨てている電荷の一部を回生することにより、LSIの消費電力を低減する試みがある。   Recently, reduction of power consumed by LSI itself is one of the most important issues, and devices that can operate with low power consumption are being actively studied. Among them, by regenerating part of the charge that was thrown away during the refresh operation of a DRAM (dynamic memory cell) that needs to be rewritten (refreshed) for holding data at regular intervals, There are attempts to reduce power consumption.

例えば、特許文献1には、DRAMのリフレッシュ動作時に、第1の駆動信号線に蓄えられている電荷のすべてを接地線に放出する代わりに、その電荷の一部をスイッチを介して第2の駆動信号線に回生することによって、電源から第2の駆動信号線に供給する電荷量を低減する方法が示されている。   For example, in Patent Document 1, instead of discharging all of the electric charge stored in the first drive signal line to the ground line during the refresh operation of the DRAM, a part of the electric charge is transferred to the second through the switch. A method of reducing the amount of charge supplied from the power source to the second drive signal line by regenerating the drive signal line is shown.

また、例えば、特許文献2には、第1の駆動信号線に蓄えられた電荷を直接第2の駆動信号線に回生するのではなく、一旦キャパシタに蓄積した後に、そのキャパシタに蓄積された電荷を必要に応じて第2の駆動信号線に回生する方法が示されている。また、これと同種の回生方法が特許文献3,4などにも示されている   Further, for example, in Patent Document 2, the charge stored in the first drive signal line is not directly regenerated to the second drive signal line, but is stored once in the capacitor and then stored in the capacitor. A method for regenerating the second drive signal line as necessary is shown. Also, the same type of regeneration method is shown in Patent Documents 3 and 4

特許文献2に示された回生方法は、電荷放出のタイミングと次段への電荷注入のタイミングが必ずしも同時でなくても良いことや、電荷を受け渡しする駆動信号線の組み合わせが任意に選びやすい点などから、特許文献1に示された回生方法よりも自由度が高い。   The regeneration method disclosed in Patent Document 2 does not necessarily require that the timing of charge emission and the timing of charge injection to the next stage be the same, and that the combination of drive signal lines for transferring charges can be arbitrarily selected. Therefore, the degree of freedom is higher than that of the regeneration method disclosed in Patent Document 1.

特開平3−295477号公報(特許第3255947号)JP-A-3-295477 (Patent No. 3255947) 特開平10−302466号公報JP-A-10-302466 特開2006−172535号公報JP 2006-172535 A 特開平9−146490号公報(特許第3241577号)JP 9-146490 A (Patent No. 3241777) 特開2004−281593号公報(特許第3989389号)JP 2004-281593 A (Patent No. 3989389)

このように、特許文献2に示された回生方法では、ひとつの駆動信号線から放出される電荷を、一時的に蓄積し、次に駆動信号線をチャージする際に再利用することで、LSIの総消費電力を低減することが期待できる。しかし、この回生方法では、電荷蓄積デバイスとしてキャパシタを用いているので、電荷の再利用効率を高くすることが難しいという問題があった。   As described above, in the regeneration method disclosed in Patent Document 2, the charge emitted from one drive signal line is temporarily accumulated, and then reused when the drive signal line is charged next. It can be expected to reduce the total power consumption. However, since this regeneration method uses a capacitor as a charge storage device, there is a problem that it is difficult to increase the charge recycling efficiency.

図4を用いてこの問題について説明する。この例では、電荷の蓄積に1個のキャパシタを用いるものとし、第1の駆動信号線の電荷を第1の駆動信号線の対地容量と同じ容量を持つキャパシタ(蓄積キャパシタ)に蓄積する場合を考える。   This problem will be described with reference to FIG. In this example, it is assumed that one capacitor is used for charge accumulation, and the charge of the first drive signal line is accumulated in a capacitor (storage capacitor) having the same capacity as the ground capacitance of the first drive signal line. Think.

図4(a)に示すように、第1の駆動信号線の電位がVccで、蓄積キャパシタが空である状態で、第1の駆動信号線と蓄積キャパシタとの間を電気的に接続すると、図4(b)に示すように、第1の駆動信号線に溜まっていた電荷の1/2が蓄積キャパシタに移動し、対地電位が1/2Vccとなる。   As shown in FIG. 4A, when the potential of the first drive signal line is Vcc and the storage capacitor is empty, the first drive signal line and the storage capacitor are electrically connected. As shown in FIG. 4B, 1/2 of the charge accumulated in the first drive signal line moves to the storage capacitor, and the ground potential becomes 1/2 Vcc.

次に、第1の駆動信号線と蓄積キャパシタとの間を切断し、蓄積キャパシタと第2の駆動信号線とを接続すると、図4(c)に示すように、対地電位は1/4Vccとなり、蓄積キャパシタの電荷の1/2が第2の駆動信号線の充電に使われ、全工程では、もともとの第1の駆動信号線の電荷の1/4が第2の駆動信号線の充電に再利用されたことになる。なお、図4(c)において、第1の駆動信号線に残された電荷は、第1の駆動信号線を接地線に接続することによって、放出している。   Next, when the first drive signal line and the storage capacitor are disconnected and the storage capacitor and the second drive signal line are connected, the ground potential becomes 1/4 Vcc as shown in FIG. ½ of the charge of the storage capacitor is used for charging the second drive signal line, and in all the steps, ¼ of the original charge of the first drive signal line is used for charging the second drive signal line. It was reused. In FIG. 4C, the charge remaining on the first drive signal line is discharged by connecting the first drive signal line to the ground line.

電荷蓄積にキャパシタを用いた場合の電荷の再利用率は、信号線容量と蓄積キャパシタ容量との比によって決定される。蓄積キャパシタ容量が信号線容量のk倍であるとすると、電荷再利用率ηは、η=k/(1+k)2 となる。このため、電荷蓄積にキャパシタを用いた場合の電荷の再利用率は、図4に示したk=1の場合が最大であることがわかる。 The charge recycling rate when a capacitor is used for charge storage is determined by the ratio of the signal line capacitance to the storage capacitor capacitance. If the storage capacitor capacity is k times the signal line capacity, the charge recycling rate η is η = k / (1 + k) 2 . For this reason, it can be seen that the charge re-use rate when the capacitor is used for charge storage is maximum when k = 1 shown in FIG.

このように、電荷蓄積にキャパシタを用いた場合、最適な容量を持つ電荷蓄積用キャパシタを用いたとしても、もともとの第1の駆動信号線の電荷の1/4しか第2の駆動信号線に送ることができず、電荷の再利用効率を高くすることが難しい。   Thus, when a capacitor is used for charge storage, even if a charge storage capacitor having an optimum capacity is used, only ¼ of the charge of the original first drive signal line is used as the second drive signal line. It is difficult to increase the charge recycling efficiency.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、電荷の再利用効率を高め、LSIなどの消費電力をさらに低減することができる電力回生回路を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a power regeneration circuit capable of improving charge recycling efficiency and further reducing power consumption of an LSI or the like. There is to do.

このような目的を達成するために本発明は、2次電池と、2次電池と電荷を放出する第1の回路との間に設けられた第1のスイッチ回路と、2次電池と電荷を必要とする第2の回路との間に設けられた第2のスイッチ回路と、第1のスイッチ回路を介する第1の回路からの放出電荷の2次電池への充電タイミングと第2のスイッチ回路を介する第2の回路への2次電池からの充電電荷の放電タイミングとを制御する駆動回路とを設けたものである。   In order to achieve such an object, the present invention relates to a secondary battery, a first switch circuit provided between the secondary battery and the first circuit for discharging electric charge, A second switch circuit provided between the required second circuit, a charge timing to the secondary battery of the charge discharged from the first circuit via the first switch circuit, and a second switch circuit And a drive circuit for controlling the discharge timing of the charge charged from the secondary battery to the second circuit via the.

この発明によれば、第1の回路と2次電池とを第1のスイッチ回路を介して接続すると、第1の回路からの放出電荷が2次電池に送られ、この放出電荷によって2次電池が充電される。次に、第2の回路と2次電池とを第2のスイッチ回路を介して接続すると、2次電池の充電電荷が第2の回路へ送られる。この場合、2次電池は、電荷蓄積用キャパシタと異なり、充電電荷の全てを第2の回路へ送ることが可能である。これにより、例えば、2次電池の起電力を第1の回路および第2の回路の電源電圧Vccの1/2とし、2次電池に第1の回路の電荷の1/2を充電させた場合、この1/2の電荷が第2の回路へ送られるものとなり、電荷の再利用効率が高まる。   According to the present invention, when the first circuit and the secondary battery are connected via the first switch circuit, the discharge electric charge from the first circuit is sent to the secondary battery, and the secondary battery is generated by the discharge electric charge. Is charged. Next, when the second circuit and the secondary battery are connected via the second switch circuit, the charge of the secondary battery is sent to the second circuit. In this case, unlike the charge storage capacitor, the secondary battery can send all of the charged charges to the second circuit. Thereby, for example, when the electromotive force of the secondary battery is set to 1/2 of the power supply voltage Vcc of the first circuit and the second circuit, the secondary battery is charged with 1/2 of the charge of the first circuit. This half charge is sent to the second circuit, and the charge recycling efficiency is increased.

本発明において、2次電池の起電力を第1の回路および第2の回路の電源電圧の1/2とすると、電荷の再利用効率を最大とすることが可能となる。また、本発明の一例として、2次電池を、半導体基板上に作成されたマイクロ2次電池とすることが考えられる。また、本発明の一例として、第1の回路および第2の回路を、DRAMもしくはその駆動信号線とすることが考えられる。第1の回路および第2の回路をDRAMもしくはその駆動信号線とする場合、第1の回路からの放出電荷の2次電池への充電タイミングおよび第2の回路への2次電池からの充電電荷の放電タイミングの制御によって、DRAMのリフレッシュを行うようにする。   In the present invention, when the electromotive force of the secondary battery is ½ of the power supply voltage of the first circuit and the second circuit, the charge recycling efficiency can be maximized. Further, as an example of the present invention, the secondary battery may be a micro secondary battery formed on a semiconductor substrate. As an example of the present invention, the first circuit and the second circuit may be DRAMs or their drive signal lines. When the first circuit and the second circuit are DRAMs or their drive signal lines, the charging timing of the discharge from the first circuit to the secondary battery and the charge from the secondary battery to the second circuit The DRAM is refreshed by controlling the discharge timing.

本発明によれば、電荷蓄積キャパシタの代わりに2次電池を設け、第1のスイッチ回路を介する第1の回路(電荷を放出する回路)からの放出電荷の2次電池への充電タイミングと第2のスイッチ回路を介する第2の回路(電荷を必要とする回路)への2次電池からの充電電荷の放電タイミングとを駆動回路によって制御するようにしたので、2次電池の充電電荷の全てを第2の回路へ送るようにして、電荷の再利用効率を高め、LSIなどの消費電力をさらに低減することができるようになる。   According to the present invention, a secondary battery is provided in place of the charge storage capacitor, and charging timing of the secondary battery discharged from the first circuit (circuit that discharges the charge) via the first switch circuit and Since the drive circuit controls the discharge timing of the charge from the secondary battery to the second circuit (the circuit that requires charge) via the two switch circuits, all of the charge of the secondary battery Is sent to the second circuit, the charge recycling efficiency can be increased, and the power consumption of the LSI or the like can be further reduced.

以下、本発明を図面に基づいて詳細に説明する。
〔基本原理〕
図1はこの発明に係る電力回生回路の基本原理を説明する図である。この例では、電荷の蓄積に1個の2次電池を用いるものとし、この2次電池(蓄積2次電池)の起電力が第1および第2駆動信号線の最大対地電圧(電源電圧)Vccの1/2であるものとする。
Hereinafter, the present invention will be described in detail with reference to the drawings.
〔Basic principle〕
FIG. 1 is a diagram for explaining the basic principle of a power regeneration circuit according to the present invention. In this example, one secondary battery is used for charge accumulation, and the electromotive force of the secondary battery (storage secondary battery) is the maximum ground voltage (power supply voltage) Vcc of the first and second drive signal lines. It is assumed that it is 1/2.

図1(a)に示すように、第1の駆動信号線の電位がVccで、蓄積2次電池が空である状態で、第1の駆動信号線と蓄積2次電池との間を電気的に接続すると、図1(b)に示すように、第1の駆動信号線に溜まっていた電荷の1/2が蓄積2次電池に放出され、この放出電荷によって蓄積2次電池が充電されるものとなる。   As shown in FIG. 1A, in the state where the potential of the first drive signal line is Vcc and the storage secondary battery is empty, an electrical connection is established between the first drive signal line and the storage secondary battery. 1B, as shown in FIG. 1B, 1/2 of the charge accumulated in the first drive signal line is released to the storage secondary battery, and the storage secondary battery is charged by this released charge. It will be a thing.

次に、第1の駆動信号線と蓄積2次電池との間を切断し、蓄積2次電池と第2の駆動信号線とを接続すると、図1(c)に示すように、蓄積2次電池の充電電荷の全てが第2の駆動信号線に放電され、第2の駆動信号線の対地電位が1/2Vccとなる。これにより、蓄積2次電池の充電電荷の全てが第2の駆動信号線の充電に使われ、全工程では、もともとの第1の駆動信号線の電荷の1/2が第2の駆動信号線の充電に再利用されたことになる。なお、図1(c)において、第1の駆動信号線に残された電荷は、第1の駆動信号線を接地線に接続することによって、放出している。   Next, when the first drive signal line and the storage secondary battery are disconnected and the storage secondary battery and the second drive signal line are connected, as shown in FIG. All of the charge of the battery is discharged to the second drive signal line, and the ground potential of the second drive signal line becomes 1/2 Vcc. Thereby, all of the charge of the storage secondary battery is used for charging the second drive signal line, and in all the steps, ½ of the original charge of the first drive signal line is used for the second drive signal line. It was reused for charging. In FIG. 1C, the charge remaining on the first drive signal line is discharged by connecting the first drive signal line to the ground line.

電荷蓄積に2次電池を用いた場合の電荷の再利用率は2次電池の起電力によって決定される。この場合、電荷再利用率ηは、2次電池の起電力が1/2Vccの場合に最大となる。すなわち、2次電池の起電力が信号線電圧のm倍とすると、電荷再利用率ηは、m≧0.5の時には、η=1−m、m<0.5の時には、η=mとなるため、2次電池の起電力が、1/2Vccの時に最大となる。   The charge recycle rate when a secondary battery is used for charge storage is determined by the electromotive force of the secondary battery. In this case, the charge reuse rate η is maximized when the electromotive force of the secondary battery is ½ Vcc. That is, when the electromotive force of the secondary battery is m times the signal line voltage, the charge recycling rate η is η = 1−m when m ≧ 0.5, and η = m when m <0.5. Therefore, the electromotive force of the secondary battery is maximized when it is 1/2 Vcc.

このように、電荷蓄積に2次電池を用いた場合、2次電池の起電力を1/2Vccとすると、もともとの第1の駆動信号線の電荷の1/2を第2の駆動信号線に送ることができるようになる。これにより、電荷蓄積にキャパシタを用いた場合と比較し、電荷の再利用効率が高まるものとなり、LSIなどの消費電力をさらに低減することができるようになる。   As described above, when a secondary battery is used for charge accumulation, assuming that the secondary battery has an electromotive force of ½ Vcc, ½ of the original charge of the first drive signal line is used as the second drive signal line. It will be possible to send. As a result, compared to the case where a capacitor is used for charge accumulation, the charge recycling efficiency is increased, and the power consumption of the LSI or the like can be further reduced.

また、もともとの電荷が溜まっていた第1の駆動信号線から2次電池へ、2次電池から第2の駆動信号線へ、電荷を移送するため、チャージポンプなどの昇圧手段を用いる必要は特になく、単純にスイッチ等で回路を接続するだけでよい。   Further, it is particularly necessary to use a boosting means such as a charge pump in order to transfer the charge from the first drive signal line where the original charge has accumulated to the secondary battery to the second drive signal line. Instead, it is sufficient to simply connect the circuit with a switch or the like.

〔実施の形態〕
図2は上述した基本原理に基づく本発明に係る電力回生回路の一実施の形態の要部を示す図である。同図において、101は電荷を放出する回路(第1の回路)であり、102は電荷を必要とする回路(第2の回路)であり、第1の回路101と第2の回路102との間に本発明に係る電力回生回路103が接続されている。
Embodiment
FIG. 2 is a diagram showing a main part of an embodiment of a power regeneration circuit according to the present invention based on the basic principle described above. In the figure, reference numeral 101 denotes a circuit for discharging electric charge (first circuit), and reference numeral 102 denotes a circuit that requires electric charge (second circuit). The circuit between the first circuit 101 and the second circuit 102 is shown in FIG. A power regeneration circuit 103 according to the present invention is connected between them.

電力回生回路103の内部には、トランジスタなどで形成される第1のスイッチ回路104および第2のスイッチ回路105と、2次電池106と、駆動回路107とが設けられている。   Inside the power regeneration circuit 103, there are provided a first switch circuit 104 and a second switch circuit 105 formed of transistors or the like, a secondary battery 106, and a drive circuit 107.

第1のスイッチ回路104は、固定接点104aと可動接点104b〜104dとを備え、固定接点104aが第1の回路101に接続され、可動接点104bが開放端子とされ、可動接点104cが2次電池106の正極性側に接続され、可動接点104dが接地されている。   The first switch circuit 104 includes a fixed contact 104a and movable contacts 104b to 104d, the fixed contact 104a is connected to the first circuit 101, the movable contact 104b is an open terminal, and the movable contact 104c is a secondary battery. Connected to the positive polarity side of 106, the movable contact 104d is grounded.

第2のスイッチ回路105は、固定接点105aと可動接点105b〜105dとを備え、固定接点105aが第2の回路102に接続され、可動接点105bが開放端子とされ、可動接点105cが2次電池106の正極性側に接続され、可動接点105dが電源電圧Vccの供給ラインに接続されている。   The second switch circuit 105 includes a fixed contact 105a and movable contacts 105b to 105d, the fixed contact 105a is connected to the second circuit 102, the movable contact 105b is an open terminal, and the movable contact 105c is a secondary battery. The movable contact 105d is connected to the supply line of the power supply voltage Vcc.

駆動回路107は、第1のスイッチ回路104における固定接点104aと可動接点104b〜104dとの間の接続状態および第2のスイッチ回路105における固定接点105aと可動接点105b〜105dとの間の接続状態を制御する機能を有している。駆動回路107は、初期状態において、第1のスイッチ回路104における固定接点104aと可動接点104bとの間を接続状態とし、第2のスイッチ回路105における固定接点105aと可動接点105bとの間を接続状態とする。   The drive circuit 107 has a connection state between the fixed contact 104a and the movable contacts 104b to 104d in the first switch circuit 104 and a connection state between the fixed contact 105a and the movable contacts 105b to 105d in the second switch circuit 105. It has a function to control. In an initial state, the drive circuit 107 connects the fixed contact 104a and the movable contact 104b in the first switch circuit 104, and connects the fixed contact 105a and the movable contact 105b in the second switch circuit 105. State.

なお、電力回生回路103において、2次電池106の負極性側は接地されており、2次電池106の起電力は1/2Vccとされている。また、第1の回路101および第2の回路102の電源電圧はVccとされている。   In the power regeneration circuit 103, the negative polarity side of the secondary battery 106 is grounded, and the electromotive force of the secondary battery 106 is ½ Vcc. The power supply voltage of the first circuit 101 and the second circuit 102 is Vcc.

また、この実施の形態において、第1の回路101および第2の回路102は、DRAMもしくはその駆動信号線とされている。また、電力回生回路103において、2次電池106は、半導体基板上に形成されたマイクロ2次電池とされている。   In this embodiment, the first circuit 101 and the second circuit 102 are DRAMs or their drive signal lines. In the power regeneration circuit 103, the secondary battery 106 is a micro secondary battery formed on a semiconductor substrate.

マイクロ2次電池は、例えば特許文献5などにも記載されているので、ここでの詳細な説明は省略する。特許文献5には、マイクロ2次電池の一例として、半導体素子基板それ自体の表面改質により半導体素子基板の表面の一部に形成した多孔質膜を負極活物質とする固体薄膜2次電池が示されている。本実施の形態では、このようなマイクロ2次電池を、2次電池106として用いる。   Since the micro secondary battery is also described in, for example, Patent Document 5 and the like, detailed description thereof is omitted here. Patent Document 5 discloses, as an example of a micro secondary battery, a solid thin film secondary battery using a porous film formed on a part of the surface of a semiconductor element substrate by surface modification of the semiconductor element substrate itself as a negative electrode active material. It is shown. In this embodiment, such a micro secondary battery is used as the secondary battery 106.

〔2次電池への充電(充電工程)〕
駆動回路107は、第1の回路101から電荷を放出する必要が生じた場合、スイッチ回路104の固定接点104aと可動接点104cとを接続する。これにより、固定接点104aが可動接点104cを介して2次電池106の正極性側に接続され、第1の回路101の端子電位(固定接点104aの電位)が2次電池106の起電力(1/2Vcc)と等しくなるまで、第1の回路101から2次電池106に対して、電荷の移動が起こる。すなわち、第1の回路101からの放出電荷がスイッチ回路104を介して2次電池106に流れ込み、2次電池106の充電が行われる。
[Charging the secondary battery (charging process)]
The drive circuit 107 connects the fixed contact 104a and the movable contact 104c of the switch circuit 104 when it is necessary to release the charge from the first circuit 101. Thereby, the fixed contact 104a is connected to the positive polarity side of the secondary battery 106 via the movable contact 104c, and the terminal potential of the first circuit 101 (the potential of the fixed contact 104a) is changed to the electromotive force (1 Charge transfer from the first circuit 101 to the secondary battery 106 until it is equal to / 2Vcc). That is, the charge discharged from the first circuit 101 flows into the secondary battery 106 via the switch circuit 104, and the secondary battery 106 is charged.

そして、駆動回路107は、2次電池106の充電を終了した後、必要に応じてスイッチ回路104の固定接点104aを可動接点104dに接続し、第1の回路101に残された電荷の接地線への放出を行い、しかる後に固定接点104aを可動接点104bに接続し、スイッチ回路104における固定接点104aと可動接点104b〜104dとの間の接続状態を初期状態に戻す。   Then, after the charging of the secondary battery 106 is completed, the drive circuit 107 connects the fixed contact 104a of the switch circuit 104 to the movable contact 104d as necessary, and the ground line of the charge left in the first circuit 101. Thereafter, the fixed contact 104a is connected to the movable contact 104b, and the connection state between the fixed contact 104a and the movable contacts 104b to 104d in the switch circuit 104 is returned to the initial state.

〔2次電池からの放電(放電工程)〕
駆動回路107は、第2の回路102に電荷を供給する必要が生じた場合、スイッチ回路105の固定接点105aと可動接点105cとを接続する。これにより、固定接点105aが可動接点105cを介して2次電池106の正極性側に接続され、第2の回路102の端子電位(固定接点105aの電位)が2次電池106の起電力(1/2Vcc)と等しくなるまで、2次電池106から第2の回路102に対して、電荷の移動が起こる。すなわち、2次電池106からの充電電荷がスイッチ回路105を介して第2の回路102へ流れ込み、2次電池106からの放電が行われる。
[Discharge from secondary battery (discharge process)]
The drive circuit 107 connects the fixed contact 105 a and the movable contact 105 c of the switch circuit 105 when it becomes necessary to supply electric charge to the second circuit 102. Thereby, the fixed contact 105a is connected to the positive polarity side of the secondary battery 106 via the movable contact 105c, and the terminal potential of the second circuit 102 (the potential of the fixed contact 105a) is changed to the electromotive force (1 Charge transfer from the secondary battery 106 to the second circuit 102 until equal to / 2Vcc). That is, the charge from the secondary battery 106 flows into the second circuit 102 via the switch circuit 105, and the secondary battery 106 is discharged.

そして、駆動回路107は、2次電池106からの放電を終了した後、必要に応じてスイッチ回路105の固定接点105aを可動接点105dに接続し、第2の回路102の端子電位が電源電圧Vccになるまで電荷の注入を行い、しかる後に固定接点105aを可動接点105bに接続し、スイッチ回路105における固定接点105aと可動接点105b〜105dとの間の接続状態を初期状態に戻す。   Then, after the discharge from the secondary battery 106 is completed, the drive circuit 107 connects the fixed contact 105a of the switch circuit 105 to the movable contact 105d as necessary, and the terminal potential of the second circuit 102 becomes the power supply voltage Vcc. The fixed contact 105a is connected to the movable contact 105b, and the connection state between the fixed contact 105a and the movable contacts 105b to 105d in the switch circuit 105 is returned to the initial state.

駆動回路107は、DRAMのリフレッシュを行う際、上述した充電工程と放電工程とを繰り返すことにより、第1の回路101から放出される電荷の一部を第2の回路102の充電に再利用する。この場合、上述した本発明の基本原理でも説明したように、もともとの第1の回路101の電荷の1/2を第2の回路102に送ることができるので、電荷蓄積にキャパシタを用いた場合と比較し、電荷の再利用効率が高まるものとなる。   When refreshing the DRAM, the drive circuit 107 repeats the charging process and the discharging process described above, thereby reusing part of the charge released from the first circuit 101 for charging the second circuit 102. . In this case, as described in the basic principle of the present invention described above, ½ of the original charge of the first circuit 101 can be sent to the second circuit 102, so that a capacitor is used for charge storage. Compared with the above, the charge recycling efficiency is increased.

なお、図2に示した電力回生回路103では、スイッチ回路104および105として固定接点と3つの可動接点とを備えた3路タイプのスイッチ回路を用いるようにしたが、必ずしもこのような3路タイプのスイッチ回路0としなくてもよい。また、2次電池106をマイクロ2次電池としたが、必ずしもマイクロ2次電池としなくてもよい。   In the power regeneration circuit 103 shown in FIG. 2, a three-way type switch circuit having a fixed contact and three movable contacts is used as the switch circuits 104 and 105. However, such a three-way type is not necessarily used. The switch circuit 0 may not be used. In addition, although the secondary battery 106 is a micro secondary battery, it is not necessarily required to be a micro secondary battery.

図3に本発明に係る電力回生回路の基本構成を示す。本発明に係る電力回生回路200は、2次電池201と、2次電池201と電荷を放出する回路(第1の回路)202との間に設けられた第1のスイッチ回路203と、2次電池201と電荷を必要とする回路(第2の回路)204との間に設けられた第2のスイッチ回路205と、第1のスイッチ回路203を介する第1の回路202からの放出電荷の2次電池201への充電タイミングと第2のスイッチ回路205を介する第2の回路204への2次電池201からの充電電荷の放電タイミングとを制御する駆動回路206とを備えている。   FIG. 3 shows a basic configuration of a power regeneration circuit according to the present invention. A power regeneration circuit 200 according to the present invention includes a secondary battery 201, a first switch circuit 203 provided between the secondary battery 201 and a circuit (first circuit) 202 that discharges electric charge, and a secondary battery. The second switch circuit 205 provided between the battery 201 and the circuit (second circuit) 204 that requires electric charge, and 2 of the discharge electric charge from the first circuit 202 via the first switch circuit 203 A drive circuit 206 that controls charging timing of the secondary battery 201 and discharging timing of charging charge from the secondary battery 201 to the second circuit 204 via the second switch circuit 205 is provided.

本発明に係る電力回生回路の基本原理を説明する図である。It is a figure explaining the basic principle of the electric power regeneration circuit which concerns on this invention. 本発明に係る電力回生回路の一実施の形態の要部を示す図である。It is a figure which shows the principal part of one Embodiment of the electric power regeneration circuit which concerns on this invention. 本発明に係る電力回生回路の基本構成を示す図である。It is a figure which shows the basic composition of the electric power regeneration circuit which concerns on this invention. 電荷蓄積にキャパシタを用いた場合の問題を説明する図である。It is a figure explaining the problem at the time of using a capacitor for electric charge accumulation.

符号の説明Explanation of symbols

101…第1の回路(電荷を放出する回路)、102…第2の回路(電荷を必要とする回路)、103…電力再生回路、104…第1のスイッチ回路、105…第2のスイッチ回路、106…2次電池、107…駆動回路、200…電力再生回路、201…2次電池、202…電荷を放出する回路(第1の回路)、203…第1のスイッチ回路、204…電荷を必要とする回路(第2の回路)、205…第2のスイッチ回路、206…駆動回路。   DESCRIPTION OF SYMBOLS 101 ... 1st circuit (circuit which discharges electric charge), 102 ... 2nd circuit (circuit which requires electric charge), 103 ... Power regeneration circuit, 104 ... 1st switch circuit, 105 ... 2nd switch circuit 106 ... secondary battery, 107 ... drive circuit, 200 ... power regeneration circuit, 201 ... secondary battery, 202 ... circuit for discharging electric charge (first circuit), 203 ... first switch circuit, 204 ... electric charge Necessary circuit (second circuit), 205... Second switch circuit, 206... Drive circuit.

Claims (5)

2次電池と、
前記2次電池と電荷を放出する第1の回路との間に設けられた第1のスイッチ回路と、
前記2次電池と電荷を必要とする第2の回路との間に設けられた第2のスイッチ回路と、
前記第1のスイッチ回路を介する前記第1の回路からの放出電荷の前記2次電池への充電タイミングと前記第2のスイッチ回路を介する前記第2の回路への前記2次電池からの充電電荷の放電タイミングとを制御する駆動回路と
を備えることを特徴とする電力回生回路。
A secondary battery;
A first switch circuit provided between the secondary battery and a first circuit for discharging electric charge;
A second switch circuit provided between the secondary battery and a second circuit requiring electric charge;
Charge timing of the discharge from the first circuit via the first switch circuit to the secondary battery and charge from the secondary battery to the second circuit via the second switch circuit And a drive circuit for controlling the discharge timing of the power regeneration circuit.
請求項1に記載された電力回生回路において、
前記2次電池は、その起電力が前記第1の回路および前記第2の回路の電源電圧の1/2である
ことを特徴とする電力回生回路。
The power regeneration circuit according to claim 1,
The secondary battery has an electromotive force that is ½ of a power supply voltage of the first circuit and the second circuit.
請求項1又は2に記載された電力回生回路において、
前記2次電池は、半導体基板上に作成されたマイクロ2次電池である
ことを特徴とする電力回生回路。
In the power regeneration circuit according to claim 1 or 2,
The secondary battery is a micro secondary battery created on a semiconductor substrate. An electric power regeneration circuit.
請求項1〜3の何れか1項に記載された電力回生回路において、
前記第1の回路および前記第2の回路は、ダイナミック型メモリセルもしくはその駆動信号線である
ことを特徴とする電力回生回路。
In the electric power regeneration circuit described in any one of Claims 1-3,
The first circuit and the second circuit are dynamic memory cells or their drive signal lines. A power regeneration circuit.
請求項4に記載された電力回生回路において、
前記駆動回路は、前記第1の回路からの放出電荷の前記2次電池への充電タイミングおよび前記第2の回路への前記2次電池からの充電電荷の放電タイミングの制御によって、前記第ダイナミック型メモリセルのリフレッシュを行う
ことを特徴とする電力回生回路。
The power regeneration circuit according to claim 4,
The driving circuit controls the first dynamic type by controlling charging timing of the discharge charge from the first circuit to the secondary battery and discharging timing of the charge charge from the secondary battery to the second circuit. A power regeneration circuit characterized by refreshing a memory cell.
JP2007340045A 2007-12-28 2007-12-28 Power regeneration circuit Expired - Fee Related JP5145932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340045A JP5145932B2 (en) 2007-12-28 2007-12-28 Power regeneration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340045A JP5145932B2 (en) 2007-12-28 2007-12-28 Power regeneration circuit

Publications (2)

Publication Number Publication Date
JP2009165218A true JP2009165218A (en) 2009-07-23
JP5145932B2 JP5145932B2 (en) 2013-02-20

Family

ID=40967185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340045A Expired - Fee Related JP5145932B2 (en) 2007-12-28 2007-12-28 Power regeneration circuit

Country Status (1)

Country Link
JP (1) JP5145932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251529A (en) * 2012-04-30 2013-12-12 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor device operation method and electronic apparatus
WO2014069835A1 (en) * 2012-10-30 2014-05-08 Bae Youn-Soo Load current regenerating circuit and electrical device having load current regenerating circuit
JP2019195088A (en) * 2014-08-08 2019-11-07 株式会社半導体エネルギー研究所 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247867A (en) * 1996-03-11 1997-09-19 Canon Inc Charging and discharging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247867A (en) * 1996-03-11 1997-09-19 Canon Inc Charging and discharging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251529A (en) * 2012-04-30 2013-12-12 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor device operation method and electronic apparatus
WO2014069835A1 (en) * 2012-10-30 2014-05-08 Bae Youn-Soo Load current regenerating circuit and electrical device having load current regenerating circuit
CN104798284A (en) * 2012-10-30 2015-07-22 裵莲秀 Load current regenerating circuit and electrical device having load current regenerating circuit
AU2013338937B2 (en) * 2012-10-30 2015-10-29 Youn-Soo Bae Load current regenerating circuit and electrical device having load current regenerating circuit
US9806550B2 (en) 2012-10-30 2017-10-31 Youn-soo Bae Load current regenerating circuit and electrical device having load current regenerating circuit
JP2019195088A (en) * 2014-08-08 2019-11-07 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JP5145932B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP2009118727A (en) Hybrid power source
US20080129253A1 (en) Battery energy reclamation apparatus and method thereby
JP6313473B2 (en) Electrical system
JP2006121874A (en) Power supply apparatus and vehicle equipped with same
CN104641533A (en) Apparatus and method for controlling battery
CN101180718A (en) Electrostatic holding apparatus and electrostatic tweezers using same
JP4098805B2 (en) Charge / discharge system and electronic equipment
JP5145932B2 (en) Power regeneration circuit
US10340905B2 (en) Semiconductor device
TW201113880A (en) DRAM positive wordline voltage compensation device for array device threshold voltage and method thereof
CN100490270C (en) Power supplying apparatus and power supplying method
JP2012115031A (en) Vehicle power supply system
CN103010041A (en) Method for operating dual-accumulator vehicular circuit
EP1278202A3 (en) Nonvolatile semiconductor storage device
JP2004253361A (en) Device and method for power generation and power supply
JP5018063B2 (en) Vehicle power supply
JP2009225491A (en) Automatic carrier system and carrier
JP2009201240A (en) Dc power supply system, and method of charging and controlling the same
JP2009004164A (en) Heat storage system and vehicle equipped with the same
US9064557B2 (en) Systems and methods for non-volatile memory
JP2007037371A (en) Power supply device
JP6147317B2 (en) Power supply control device
KR102399471B1 (en) Pre-charge switching device and battery management system
KR20010051639A (en) Boosting circuit
US20240178678A1 (en) Control of an energy storage arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees