JP2009164938A - Speed determining method, speed determining circuit and speed determining device - Google Patents

Speed determining method, speed determining circuit and speed determining device Download PDF

Info

Publication number
JP2009164938A
JP2009164938A JP2008001017A JP2008001017A JP2009164938A JP 2009164938 A JP2009164938 A JP 2009164938A JP 2008001017 A JP2008001017 A JP 2008001017A JP 2008001017 A JP2008001017 A JP 2008001017A JP 2009164938 A JP2009164938 A JP 2009164938A
Authority
JP
Japan
Prior art keywords
speed
signal
circuit
determination
preamble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001017A
Other languages
Japanese (ja)
Other versions
JP5334087B2 (en
Inventor
Kazutaka Hara
一貴 原
Shunji Kimura
俊二 木村
Hirotaka Nakamura
浩崇 中村
Koji Kitahara
浩司 北原
Yoshikazu Urabe
義和 卜部
Masahiro Endo
雅広 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2008001017A priority Critical patent/JP5334087B2/en
Publication of JP2009164938A publication Critical patent/JP2009164938A/en
Application granted granted Critical
Publication of JP5334087B2 publication Critical patent/JP5334087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a speed determining method which determines a transmission speed faster than a conventional art; a speed determining circuit; and a speed determining device. <P>SOLUTION: The speed determining device comprises: delay elements 2, 3 for generating two signals having a delay difference equivalent to an integral multiple of a pattern cycle of a preamble signal included in an input signal into an input terminal 1; a coincidence detector 4 for comparing logics of the two signals outputted from the delay elements 2, 3; an integration circuit 6 for integrating an output signal of the coincidence detector 4; and a comparator 7 for comparing a signal obtained by the integration circuit 6 with a threshold value Vref to output a determination result. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、複数の伝送速度(ビットレート)のいずれの信号が伝送されているか分からない信号伝送方式において、伝送されている信号の伝送速度を判別する方法、回路および装置に係り、特に、時間とともに伝送速度が高速に変化する信号伝送方式において、高速に伝送速度を判定する方法、回路および装置に関するものである。   The present invention relates to a method, a circuit, and an apparatus for determining a transmission speed of a signal being transmitted in a signal transmission system in which it is not known which signal has a plurality of transmission speeds (bit rates). In addition, the present invention relates to a method, circuit, and apparatus for determining a transmission speed at high speed in a signal transmission system in which the transmission speed changes at high speed.

インターネットの普及に伴い、通信事業者によって様々な伝送速度のサービスが提供されているが、伝送速度毎に異なる伝送装置を用いるため、保守運用コストが増大している。このコスト増大を防ぐために、伝送装置の単一品種化が求められている。複数の伝送速度に対応可能な伝送装置が提案され、装置内部で伝送速度の判定を行い(特許文献1)、速度に応じて受光感度を切り換える機構も提案されている(特許文献2)。   With the spread of the Internet, services with various transmission speeds are provided by telecommunications carriers. However, since different transmission apparatuses are used for different transmission speeds, maintenance operation costs are increasing. In order to prevent this cost increase, there is a demand for a single transmission device. A transmission apparatus capable of supporting a plurality of transmission speeds has been proposed, and a mechanism for determining the transmission speed inside the apparatus (Patent Document 1) and switching the light receiving sensitivity according to the speed has also been proposed (Patent Document 2).

これら伝送速度を判定する速度判定回路は、大別すると2種類の方式に分類される。信号のエッジ部分(“0”/“1”の論理符号の切換部)を一定時間幅のパルスとして出力し、それを時間で積分することによって、信号の切り換わり頻度(即ち伝送速度)を特定する方式(特許文献1:以下、エッジ検出方式と呼ぶ)か、もしくは信号に含まれる同符号連続信号の低周波成分を検出することで伝送速度を特定する方式(特許文献2:以下、低周波検出方式と呼ぶ)の2つである。両方式とも伝送速度を特定した後は、特定された伝送速度で恒常的に使用することを前提としており、時々刻々と変化する伝送速度に高速に追従することを念頭に置いていない。これは、以下の理由による。   These speed judgment circuits for judging the transmission speed are roughly classified into two types. Output the edge part of the signal (the logic code switching part of “0” / “1”) as a pulse with a fixed time width, and integrate it over time to specify the signal switching frequency (ie, transmission speed) (Patent Document 1: hereinafter referred to as an edge detection method) or a method for specifying a transmission rate by detecting a low-frequency component of the same sign continuous signal included in a signal (Patent Document 2: hereinafter, a low frequency) It is called a detection method). In both systems, after specifying the transmission rate, it is assumed that the transmission rate is constantly used at the specified transmission rate, and it is not intended to follow the transmission rate that changes every moment at high speed. This is due to the following reason.

エッジ検出方式は信号のエッジ部分を検出するが、エッジの密度は信号に含まれる同符号連続によって変化する。低速信号でも交番信号ならある程度のエッジ密度が得られるが、高速信号でも長い連続符号が多く含まれる場合、エッジの密度は低くなってしまう。このため、判定精度を高めるためにはある程度の時間(一般的にはビット数にして1万から百万ビット程度の時間)をかけて統計的に判定する必要があるため、エッジ信号の積分時間が長くなってしまう。また、低周波検出方式はその名の通り低周波成分を検出するため、低域透過フィルタの帯域を低周波とする必要があり、このフィルタの時定数がエッジ検出方式における積分回路と同様の大きなオーダとなってしまう。   The edge detection method detects an edge portion of a signal, but the density of the edge varies depending on the same sign sequence included in the signal. Even if the signal is a low-speed signal, a certain level of edge density can be obtained. For this reason, in order to improve the determination accuracy, it is necessary to perform statistical determination over a certain amount of time (generally, a time of about 10,000 to 1 million bits), so the integration time of the edge signal Will become longer. The low-frequency detection method detects low-frequency components as the name suggests, so the band of the low-pass transmission filter needs to be low, and the time constant of this filter is as large as the integration circuit in the edge detection method. It becomes an order.

近年、複数のユーザを1つの局内装置で取り扱うポイント・トゥー・マルチポイント型ネットワークが普及し、伝送速度の多様化に伴い、異なる伝送速度のユーザを収容したいという要望が高まりを見せているが、上記の理由により、従来の速度判定回路を用いて、高速に伝送速度が切り換わる信号に対して、即時伝送速度を判定する機能を実現するのは困難である。
特開2000−40960公報 WO 2005/078927
In recent years, point-to-multipoint networks that handle multiple users with a single in-station device have become widespread, and with the diversification of transmission speeds, there is an increasing demand for accommodating users with different transmission speeds. For the above reason, it is difficult to realize a function for determining an immediate transmission rate for a signal whose transmission rate is switched at high speed using a conventional speed determination circuit.
JP 2000-40960 A WO 2005/078927

上記に述べたように、従来技術の速度判定回路は判定に時間がかかるため、時間とともに伝送速度が高速に変化する信号伝送方式において、高速に伝送速度を判定することができない。   As described above, since the speed determination circuit of the prior art takes time to determine, in the signal transmission method in which the transmission speed changes at high speed with time, the transmission speed cannot be determined at high speed.

本発明の目的は、従来技術と比べて高速に伝送速度の判定を可能とする速度判定方法、速度判定回路および速度判定装置を提供することである。   An object of the present invention is to provide a speed determination method, a speed determination circuit, and a speed determination device that can determine a transmission speed at a higher speed than the prior art.

上記目的を達成するために、請求項1にかかる発明の速度判定方法は、入力信号に含まれる固有のプリアンブル信号の内の同一パターンの繰り返しを判別して、前記入力信号の速度を判定することを特徴とする。
請求項2にかかる発明は、請求項1に記載の速度判定方法において、前記同一パターンの繰り返しを同符号連続信号に変換し、該同符号連続信号を積分して閾値判定することで、プリアンブル信号受信時間内に信号速度を判別することを特徴とする。
請求項3にかかる発明の速度判定回路は、入力信号から該入力信号に含まれる固有のプリアンブル信号のパターン周期の整数倍に相当する遅延差をもつ2つの信号を生成する遅延手段と、該遅延手段から出力する前記2つの信号の論理を比較する一致検出手段と、該一致検出手段の出力信号を積分する積分手段と、該積分手段で得られた信号を閾値と比較して判定結果を出力する比較手段とを備えることを特徴とする。
請求項4にかかる発明の速度判定回路は、入力信号から該入力信号に含まれる固有のプリアンブル信号のパターン周期の2分の1の奇数倍に相当する遅延差をもつ2つの信号を生成する遅延手段と、該遅延手段から出力する前記2つの信号の論理を比較する不一致検出手段と、該不一致検出手段の出力信号を積分する積分手段と、該積分手段で得られた信号を閾値と比較して判定結果を出力する比較手段とを備えることを特徴とする。
請求項5にかかる発明は、請戎項3又は4に記載の速度判定回路において、前記積分手段は、判定しようとする伝送速度の信号のプリアンブル信号受信時間に相当する積分時定数が設定されていることを特徴とする。
請求項6にかかる発明の速度判定装置は、共通の入力端子に請求項3、4又は5に記載の速度判定回路を複数個接続し、各速度判定回路が各々有する前記遅延差、前記積分手段の積分時定数を異なる値とすることで、複数の速度の判定を可能としたことを特徴とする。
請求項7にかかる発明の速度判定装置は、請求項3、4、5又は6に記載の速度判定回路の判定結果を記憶する記憶回路を備え、該記憶回路は判定結果が変更になるまで前の判定結果を保持することを特徴とする。
請求項8にかかる発明は、請求項6を引用する請求項7に記載の速度判定装置において、使用する複数の速度判定回路のうち、2以上の速度判定回路が自己が担当する伝送速度であると同時に判定したとき、該2以上の速度判定回路のうち、最も高速な信号の判定を担当する速度判定回路の判定を優先することを特徴とする。
請求項9にかかる発明は、請求項7に記載の速度判定装置において、請求項3に記載の1つの速度判定回路を低速信号の速度判定回路とし、請求項4に記載の1つの速度判定回路を高速信号の速度判定回路として、各々共通の入力端子に接続し、前記請求項3に記載の速度判定回路の判定出力信号を立ち上がりエッジ部にパルス幅圧縮するパルス圧縮手段を設けたことを特徴とする。
In order to achieve the above object, the speed judging method of the invention according to claim 1 judges the speed of the input signal by discriminating the repetition of the same pattern in the unique preamble signal included in the input signal. It is characterized by.
The invention according to claim 2 is the speed determination method according to claim 1, wherein the repetition of the same pattern is converted into a continuous signal of the same sign, and the threshold signal is determined by integrating the continuous signal of the same sign, whereby the preamble signal is obtained. The signal speed is discriminated within the reception time.
According to a third aspect of the present invention, there is provided a speed judging circuit comprising: delay means for generating two signals having a delay difference corresponding to an integral multiple of a pattern period of a specific preamble signal included in the input signal from the input signal; A coincidence detecting means for comparing the logics of the two signals output from the means, an integrating means for integrating the output signal of the coincidence detecting means, and a signal obtained by the integrating means is compared with a threshold value and a determination result is output. And a comparison means.
According to a fourth aspect of the present invention, there is provided a speed determination circuit that generates two signals having a delay difference corresponding to an odd multiple of one half of a pattern period of a specific preamble signal included in the input signal from the input signal. A non-coincidence detection unit that compares the logic of the two signals output from the delay unit, an integration unit that integrates the output signal of the non-coincidence detection unit, and a signal obtained by the integration unit is compared with a threshold value. And a comparison means for outputting the determination result.
The invention according to claim 5 is the speed determination circuit according to claim 3 or 4, wherein the integration means is set with an integration time constant corresponding to a preamble signal reception time of a signal having a transmission speed to be determined. It is characterized by being.
According to a sixth aspect of the present invention, there is provided a speed judging apparatus comprising: a plurality of speed judging circuits according to the third, fourth, or fifth aspect connected to a common input terminal; It is characterized in that a plurality of speeds can be determined by setting different integration time constants.
According to a seventh aspect of the present invention, there is provided a speed judgment device comprising a storage circuit for storing the judgment result of the speed judgment circuit according to the third, fourth, fifth or sixth aspect, the storage circuit before the judgment result is changed. The determination result is held.
The invention according to claim 8 is the speed determination apparatus according to claim 7 quoting claim 6, wherein among the plurality of speed determination circuits to be used, two or more speed determination circuits are transmission rates that they are responsible for. When the determination is made at the same time, priority is given to the determination of the speed determination circuit in charge of determining the fastest signal among the two or more speed determination circuits.
The invention according to claim 9 is the speed determination device according to claim 7, wherein one speed determination circuit according to claim 3 is a speed determination circuit for a low speed signal, and one speed determination circuit according to claim 4 is provided. As a high-speed signal speed determination circuit, each of which is connected to a common input terminal, and pulse compression means for compressing the determination output signal of the speed determination circuit according to claim 3 at the rising edge portion is provided. And

本発明によれば、従来回路のようにランダム符号から作り出した“0”、“1”をある程度含む論理符号を積分して判定するのではなく、信号の伝送速度が変化した際に、信号の先頭部分に付加される既知のプリアンブル信号の同一パターンの繰り返しを判別するものであり、より詳しくはその同一パターンの繰り返しを同符号連続信号に変換し、信号に含まれる同符号連続長よりは長いものの、従来回路に要していた時定数に比べて1桁から3桁程度短い(数十ビットから数千ビット程度の長さの)同符号連続信号を発生させることで、積分時間を該発生させた同符号連続信号長と同程度に短縮化できるため、プリアンブル信号受信時間内に高速に速度を判定することが出来る。   According to the present invention, instead of integrating and determining a logic code including “0” and “1” generated from a random code to some extent as in the conventional circuit, when the signal transmission speed changes, This is to determine the repetition of the same pattern of the known preamble signal added to the head part. More specifically, the repetition of the same pattern is converted into the same code continuous signal, and is longer than the same code continuous length included in the signal. However, the integration time is generated by generating a continuous signal of the same sign (with a length of about several tens of bits to several thousand bits) that is one to three digits shorter than the time constant required for the conventional circuit. Since it can be shortened to the same length as the same code continuous signal length, the speed can be determined at high speed within the preamble signal reception time.

<第1の実施例>
図1に本発明の第1の実施例の速度判定回路の構成を示す。図中の符号は、1は入力端子、2、3は遅延素子、4は一致検出回路(排他的否定論理和回路)、5は終端回路、6は積分回路(時定数はτ)、7は比較回路、8は電源もしくは接地、9は参照電位入力端子、10は出力端子、を示す(図中のアルファベットの説明は図2の説明文に記載)。本実施例では簡単のために、伝送される信号の速度は高低の2種類とする。
<First embodiment>
FIG. 1 shows the configuration of a speed determination circuit according to the first embodiment of the present invention. In the figure, 1 is an input terminal, 2 is a delay element, 4 is a coincidence detection circuit (exclusive NOR circuit), 5 is a termination circuit, 6 is an integration circuit (time constant is τ 0 ), 7 Denotes a comparison circuit, 8 denotes a power source or ground, 9 denotes a reference potential input terminal, and 10 denotes an output terminal (the alphabetical explanation in the figure is described in the explanatory text of FIG. 2). In this embodiment, for the sake of simplicity, the speed of the transmitted signal is assumed to be high and low.

まず、一致検出回路4のノードA,Bに接続されている遅延素子2,3は、それら遅延素子2と3の遅延時間差が本回路に入力される高速信号のプリアンブル信号の同一パターンの繰り返し周期の整数倍の長さに調整されている。図中、便宜上、遅延素子2と3の両方を接続した例を示したが、一方の遅延素子の遅延時間が前記整数倍の長さと等しければ、どちらか一方の遅延素子のみでも構わない。また、遅延素子2,3の入力側端子は入力端子1に接続されている例を示したが、各々が物理的に分離されていても良い。また、同相入力信号でなく差動入力信号を入力する際には、一致検出回路4を排他的論理和回路に変更すれば同様の効果が得られる。積分回路6は、比較回転7に積分回路6の時定数(τ)と同等の応答速度のものを使用すれば、省略可能である。 First, the delay elements 2 and 3 connected to the nodes A and B of the coincidence detection circuit 4 are such that the delay time difference between the delay elements 2 and 3 is the repetition period of the same pattern of the preamble signal of the high-speed signal input to this circuit. The length is adjusted to an integer multiple of. In the figure, for the sake of convenience, an example is shown in which both delay elements 2 and 3 are connected. However, as long as the delay time of one delay element is equal to the integral multiple of the length, only one of the delay elements may be used. Moreover, although the input side terminals of the delay elements 2 and 3 are shown as being connected to the input terminal 1, they may be physically separated from each other. Further, when a differential input signal is input instead of an in-phase input signal, the same effect can be obtained by changing the coincidence detection circuit 4 to an exclusive OR circuit. The integration circuit 6 can be omitted if the comparison rotation 7 has a response speed equivalent to the time constant (τ 0 ) of the integration circuit 6.

図2に本発明の第1実施例の動作を示すタイムチャートを示す。図中の符号は、図1に記載の同一の符号で示したノードの電位を示す。図2(a)は第1実施例に高速信号が入ったときの動作を、図2(b)は低速信号が入ったときの動作を示す。図2(a)に示すように、ここではプリアンブル周期を「110010」の6ビットとし、6ビット分(プリアンブルパターン周期の1倍)の遅延時間差Dを遅延素子2と3の間に設けたときの動作を示している。ノードAとBの信号は遅延時間差Dをもって一致検出回路4に入力され、その出力がノードCに電位として出力される。無信号状態からプリアンブルの先頭部分に移る部分で、1周期分の不一致による符号“0”を出力するものの、プリアンブル部分は符号“1”の同符号連続(図中τで示した部分)となることが分かる。 FIG. 2 is a time chart showing the operation of the first embodiment of the present invention. The reference numerals in the figure indicate the potentials of the nodes indicated by the same reference numerals shown in FIG. FIG. 2A shows the operation when a high speed signal is input to the first embodiment, and FIG. 2B shows the operation when a low speed signal is input. As shown in FIG. 2A, here, the preamble period is 6 bits of “110010”, and a delay time difference D 0 corresponding to 6 bits (one time of the preamble pattern period) is provided between the delay elements 2 and 3. When the operation is shown. The signals of the nodes A and B are input to the coincidence detection circuit 4 with a delay time difference D 0 , and the output is output to the node C as a potential. The part that moves from the no-signal state to the head part of the preamble outputs the code “0” due to the mismatch for one period, but the preamble part is the same code continuation of the code “1” (part indicated by τ 0 in the figure). I understand that

積分回路6はその時定数をτ程度となるように設計することで、プリアンブル程度の長さの同符号連続に対して反応し、ノードDに比較回路7の閾値(参照電位:Vref)を越える電位を出力できる。その後ペイロード部分のランダムな信号が入力されると、一致出力はマーク率2分の1の信号同士の一致を出力するので、出力信号も確率的にマーク率2分の1となり、ノードDの積分出力は“1”の同符号連続時の半分(厳密には、(VH+VL)/2。ここでVHは論理符号“1”のHI電位、VLは符号“0”のLOW電位を表す)の平均電位に低下する。その結果、比較回路7の出力端子10には、プリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号が出力されることになる。 The integration circuit 6 is designed so that its time constant is about τ 0, so that it reacts to the same sign sequence having a length of the preamble and exceeds the threshold value (reference potential: Vref) of the comparison circuit 7 at the node D. Potential can be output. After that, when a random signal in the payload portion is input, the coincidence output outputs coincidence between the signals with a mark ratio of 1/2, so the output signal also becomes the mark ratio with a probability of 1/2, and integration of the node D The output is half of “1” when the same sign is continuous (strictly, (VH + VL) / 2, where VH represents the HI potential of the logical code “1” and VL represents the LOW potential of the code “0”). Drops to potential. As a result, a pulse signal having a finite width having a rising edge in the middle of the preamble is output to the output terminal 10 of the comparison circuit 7.

一方、図2(b)に示すように、低速信号が入力された場合には、ノードA,B間の遅延時間差が低速信号のプリアンブル周期(ここでは高速信号と同一パターンで速度が3分の1の場合を例として示している)と合っていないため、プリアンブル部分の一致出力は“1”の同符号連続とはならない(ここではマーク率3分の1の信号となっている)。このため、積分回路6の出力は比較回路7の閾値を越えることがないので、比較回路7の出力端子10にはパルス信号が出力されない。   On the other hand, as shown in FIG. 2B, when a low speed signal is input, the delay time difference between the nodes A and B is the preamble cycle of the low speed signal (here, the same pattern as the high speed signal and the speed is 3 minutes). Therefore, the coincidence output of the preamble portion does not have the same sign continuation of “1” (in this case, the signal has a mark rate of 1/3). For this reason, since the output of the integration circuit 6 does not exceed the threshold value of the comparison circuit 7, no pulse signal is output to the output terminal 10 of the comparison circuit 7.

以上、説明したように、第1実施例の構成を用いることで、より低速な信号には反応せずに、特定のビットレートの信号のプリアンブル部の受信時にパルスを出力する速度判定回路を構成することが出来る。ただし、低速信号に高速信号のプリアンブル長と同程度の同符号連続が含まれる場合は、同符号連続部の一致出力の積分値が閾値を超える可能性があるので、低速信号の同符号連続長よりも高速信号のプリアンブル長が十分長い場合においてのみ有効である。図中、信号入力前の無信号状態の長さは無視できる程度に短く、従ってノードDの初期値は、1つ前の信号のペイロード部分に対する出力電位((VH+VL)/2)とした。ただし、信号と信号の間に、高速信号のプリアンブル長より長い無信号状態が存在する場合は、同符号連続と同様に作用する。ただし、この場合は、プリアンブル部でない無信号部分で判定結果を出力することになるので、特に問題は生じない。   As described above, by using the configuration of the first embodiment, a speed determination circuit that outputs a pulse when receiving a preamble portion of a signal of a specific bit rate without reacting to a lower-speed signal is configured. I can do it. However, if the low-speed signal contains the same sign continuation as the preamble length of the high-speed signal, the integrated value of the coincidence output of the same sign continuation part may exceed the threshold value, so the same sign continuation length of the low-speed signal It is effective only when the preamble length of the high-speed signal is sufficiently long. In the figure, the length of the no-signal state before the signal input is negligibly short. Therefore, the initial value of the node D is the output potential ((VH + VL) / 2) for the payload portion of the previous signal. However, when there is no signal state longer than the preamble length of the high-speed signal between the signals, the operation is the same as the same code continuity. However, in this case, since the determination result is output in the non-signal portion that is not the preamble portion, there is no particular problem.

<第2実施例>
図3に本発明の第2の実施例の速度判定回路の構成を示す。図中、図1と同様のものは同じ符号で示し、11、12は遅延素子、13は積分回路(時定数はτ)、を示す。本実施例においても、伝送される信号の速度は高低の2種類とする。図3の構成は図1の構成とほぼ同一で、遅延素子11,12の遅延時間差が低速信号のプリアンブル信号のパターン周期の整数倍の長さに調整されている点が異なる。図中、便宜上、遅延素子11と12の両方を接続した例を示したが、一方の遅延素子の遅延が前記整数倍の長さと等しければ、どちらか一方の遅延素子のみでも構わない。また、遅延素子11,12の入力側端子は入力端子1に接続されている例を示したが、各々が物理的に分離されていても良い。また、同相入力信号でなく差動入力信号を入力する際には、一致検出回路4を排他的論理和回路に変更すれば同様の効果が得られる。積分回路13は、比較回路7に積分回路13の時定数(τ)と同等の応答速度のものを使用すれば、省略可能である。
<Second embodiment>
FIG. 3 shows a configuration of a speed determination circuit according to the second embodiment of the present invention. In the figure, components similar to those in FIG. 1 are denoted by the same reference numerals, 11 and 12 are delay elements, and 13 is an integration circuit (time constant is τ 1 ). Also in this embodiment, there are two types of transmitted signal speeds, high and low. The configuration of FIG. 3 is substantially the same as the configuration of FIG. 1 except that the delay time difference between the delay elements 11 and 12 is adjusted to a length that is an integral multiple of the pattern period of the preamble signal of the low-speed signal. In the drawing, for the sake of convenience, an example is shown in which both delay elements 11 and 12 are connected. However, if the delay of one delay element is equal to the integral multiple of the length, only one of the delay elements may be used. Moreover, although the input side terminals of the delay elements 11 and 12 are shown as being connected to the input terminal 1, they may be physically separated from each other. Further, when a differential input signal is input instead of an in-phase input signal, the same effect can be obtained by changing the coincidence detection circuit 4 to an exclusive OR circuit. The integration circuit 13 can be omitted if the comparison circuit 7 has a response speed equivalent to the time constant (τ 1 ) of the integration circuit 13.

図4に本発明の第2実施例の動作を示すタイムチャートを示す。図中の符号は、図3に記載の同一の符号で示したノードの電位を示す。図4(a)は第2実施例に低速信号が入ったときの動作を、図4(b)は高速信号が入ったときの動作を示す。図4(a)に示すように、ここでもプリアンブル周期を「110010」の6ビットとし、6ビット分(プリアンブルパターン周期の1倍)の遅延時間差Dを遅延素子11と12の間に設けたときの動作を示している。図2(a)の説明と同様に、比較回路7の出力端子10にはプリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号が出力されることになることは明らかである。 FIG. 4 is a time chart showing the operation of the second embodiment of the present invention. The reference numerals in the figure indicate the potentials of the nodes indicated by the same reference numerals shown in FIG. FIG. 4A shows the operation when a low speed signal is input to the second embodiment, and FIG. 4B shows the operation when a high speed signal is input. As shown in FIG. 4A, the preamble period is 6 bits of “110010” here, and a delay time difference D 1 corresponding to 6 bits (one time of the preamble pattern period) is provided between the delay elements 11 and 12. When the operation is shown. As in the description of FIG. 2A, it is clear that a pulse signal having a finite width having a rising edge in the middle of the preamble is output to the output terminal 10 of the comparison circuit 7.

一方、高速信号が入力された場合、低速信号のプリアンブル周期が高速信号のプリアンブル周期の整数倍でない場合は、図2(b)で説明したのと同様にプリアンブル部分の一致出力が同符号連続とならないため、積分回路13出力は比較回路7の閾値を越えない。しかし、図4(b)に示すように、低速信号のプリアンブル周期が高速信号のプリアンブル周期の整数倍(3倍)である場合は、一致出力が同符号連続となってしまう。積分回路13の時定数τが低速信号のプリアンブル長とほぼ等しい値とすると、一般には高速信号のプリアンブル長は伝送速度に反比例して短くなるため、τ<τとなる。ペイロード部分では一致出力の積分値が低下することを前提とすれば、τ程度の長さの連続符号では十分に閾値を超えず、τ程度の長さの同符号連続でようやく閾値を超えるように閾値電圧(参照電位Vref)を設定すれば、高速信号の入力に対してプリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号を出力しないよう調整することが出来る。 On the other hand, when a high-speed signal is input, if the preamble period of the low-speed signal is not an integral multiple of the preamble period of the high-speed signal, the coincidence output of the preamble part is the same sign continuous as described in FIG. Therefore, the output of the integration circuit 13 does not exceed the threshold value of the comparison circuit 7. However, as shown in FIG. 4B, when the preamble period of the low-speed signal is an integral multiple (three times) of the preamble period of the high-speed signal, the coincidence output becomes the same code sequence. If the time constant τ 1 of the integration circuit 13 is set to a value substantially equal to the preamble length of the low-speed signal, the preamble length of the high-speed signal generally becomes shorter in inverse proportion to the transmission speed, so that τ 01 . Assuming that the integrated value of the coincidence output decreases in the payload portion, the continuous code having a length of about τ 0 does not sufficiently exceed the threshold value, and finally the threshold value is exceeded by the continuous code having a length of about τ 1. By setting the threshold voltage (reference potential Vref) in this way, it is possible to adjust so as not to output a pulse signal having a finite width having a rising edge in the middle of the preamble with respect to the input of the high-speed signal.

以上、説明したように、第2実施例の構成を用いることで、より高速な信号には反応せずに、特定のビットレートの信号のプリアンブル部にパルスを出力する速度判定回路を構成することが出来る。第1実施例と同様に、高速信号に低速信号のプリアンブル長と同程度の同符号連続が含まれる場合は、同符号連続部の一致出力の積分値が閾値を超える可能性があるので、高速信号の同符号連続長よりも低速信号のプリアンブル長が十分長い場合においてのみ有効である。図4も図2と同様、信号入力前の無信号状態の長さは無視できる程度に短く、ノードDの初期値は、1つ前の信号のペイロード部分に対する出力電位((VH+VL)/2)とした。ただし、信号と信号の間に、低速信号のプリアンブル長より長い無信号状態が存在する場合は、同符号連続と同様に作用するが、プリアンブル部でない無信号部分で判定結果を出力することになるので、同様に問題は生じない。ただこの場合に、同時に低速信号のプリアンブル周期が高速信号のプリアンブル周期の整数倍である場合は、無信号に引き続き高速信号のプリアンブル部にかかるように判定結果のパルスを出力する可能性がある。この場合の判定誤作動への対処法は、第4実施例以降の説明時に述べる。   As described above, by using the configuration of the second embodiment, a speed determination circuit that outputs a pulse to a preamble portion of a signal having a specific bit rate without reacting to a higher-speed signal is configured. I can do it. Similar to the first embodiment, when the high-speed signal includes the same code continuation as much as the preamble length of the low-speed signal, the integrated value of the coincidence output of the same code continuation part may exceed the threshold value. This is effective only when the preamble length of the low-speed signal is sufficiently longer than the same-code continuous length of the signal. 4, the length of the no-signal state before the signal input is negligibly short as in FIG. 2, and the initial value of the node D is the output potential ((VH + VL) / 2) for the payload portion of the previous signal. It was. However, if there is a no-signal state longer than the preamble length of the low-speed signal between the signals, it operates in the same way as the same sign continuation, but the determination result is output in the no-signal part that is not the preamble part. So there is no problem as well. However, in this case, if the preamble period of the low-speed signal is an integral multiple of the preamble period of the high-speed signal at the same time, there is a possibility that the determination result pulse is output so as to be applied to the preamble portion of the high-speed signal following the no signal. A countermeasure against the determination malfunction in this case will be described in the description of the fourth and subsequent embodiments.

第1実施例と第2実施例の動作説明から明らかなように、特定のビットレートの信号のプリアンブル周期の整数倍の遅延時間差を入力部に設け、プリアンブル長程度の時定数を有する積分回路を用いれば、該特定のビットレートより高速な信号や低速な信号に対して反応せずに、該特定のビットレートの信号のプリアンブル部の受信時に立ち上がりを有する有限幅パルスを出力できる。これは言い換えれば、特定のビットレートであるか否かだけしか判定できないということになるので、入力信号のビットレートを特定するには本発明の速度判定回路を複数用いて判定を行う必要がある。また、出力されるパルスはペイロード部分ではオフになってしまうので、次の信号の判定結果が出るまでの間、判定結果を保持する記憶回路が必要となる。これらについては後記する。   As is apparent from the description of the operations of the first and second embodiments, an integration circuit having a delay time difference that is an integral multiple of the preamble period of a signal of a specific bit rate at the input section and having a time constant of about the preamble length is provided. If used, it is possible to output a finite width pulse having a rising edge when receiving the preamble portion of the signal of the specific bit rate without reacting to a signal higher or lower than the specific bit rate. In other words, since it can only be determined whether or not the bit rate is a specific bit rate, it is necessary to perform determination using a plurality of speed determination circuits of the present invention in order to specify the bit rate of the input signal. . Further, since the output pulse is turned off in the payload portion, a storage circuit for holding the determination result is required until the determination result of the next signal is obtained. These will be described later.

<第3実施例>
図5に本発明の第3の実施例の速度判定装置の構成を示す。図中、図1と同様のものは同じ符号で示し、14,15は本発明の第1実施例もしくは第2実施例の速度判定回路、16はリセットセット・フリップフロップ回路(RS−FF)、17は反転出力端子、を示す。図6は第3実施例の動作を示すタイムチャートで、図中の符号は図5に記載の同一の符号で示したノードの電位を示す。速度判定回路14、15がそれぞれ異なる速度の信号を判定する回路であるとする(図6では14が低速信号の速度判定回路)。各々の速度判定回路14,15が判定信号として各々の速度の信号のプリアンブル部でパルス信号を出力した場合、図6に示すような信号が出力端子10および反転出力端子17に得られ、フリップフロップ16で保持される。この出力信号でどちらの速度の信号が入力されているか判定できる。
<Third embodiment>
FIG. 5 shows the configuration of the speed determining apparatus according to the third embodiment of the present invention. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, 14 and 15 are speed judgment circuits of the first or second embodiment of the present invention, 16 is a reset set flip-flop circuit (RS-FF), Reference numeral 17 denotes an inverting output terminal. FIG. 6 is a time chart showing the operation of the third embodiment, and the reference numerals in the figure indicate the potentials of the nodes indicated by the same reference numerals shown in FIG. Assume that the speed determination circuits 14 and 15 are circuits for determining different speed signals (14 in FIG. 6 is a speed determination circuit for a low speed signal). When each speed determination circuit 14, 15 outputs a pulse signal as a determination signal at the preamble portion of each speed signal, signals as shown in FIG. 6 are obtained at the output terminal 10 and the inverted output terminal 17, and the flip-flop 16 is held. With this output signal, it is possible to determine which speed signal is being input.

<第4実施例>
図7に本発明の前記第3実施例の誤動作を示すタイムチャートを示す。図中、図6と同様のものは同じ符号を示し、18は誤動作部分、を示す。前述したように、信号と信号の間に低速信号のプリアンブル長より長い無信号状態が存在する場合、無信号部分に判定結果のパルスを出力する可能性がある。この場合、フリップフロップ回路16のS端子とR端子に同時に“1”が入力される「禁止入力」となるため、誤動作の可能性がある。
<Fourth embodiment>
FIG. 7 is a time chart showing the malfunction of the third embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same reference numerals, and 18 denotes a malfunctioning portion. As described above, when a no-signal state longer than the preamble length of the low-speed signal exists between the signals, there is a possibility that a determination result pulse is output to the no-signal portion. In this case, since “1” is simultaneously input to the S terminal and the R terminal of the flip-flop circuit 16, there is a possibility of malfunction.

また、低速信号の速度判定回路14の積分回路13は、高速信号の速度判定回路15の積分回路6よりも時定数が長いので、時定数の設定によっては、高速信号の速度判定回路15が出力する高速信号のプリアンブル終了後の立ち下がりエッジよりも、低速信号の速度判定回路14が出力する長い無信号状態の後の(高速信号の先頭部分の)立ち下がりエッジの方が遅くなる。この場合、フリップフロップ16の判定結果に誤りを生じる(図7の符号18)。   Further, the integration circuit 13 of the low-speed signal speed determination circuit 14 has a longer time constant than the integration circuit 6 of the high-speed signal speed determination circuit 15, so that the high-speed signal speed determination circuit 15 outputs depending on the setting of the time constant. The falling edge after the long no-signal state (at the head portion of the high-speed signal) output by the low-speed signal speed determination circuit 14 is slower than the falling edge after the completion of the preamble of the high-speed signal. In this case, an error occurs in the determination result of the flip-flop 16 (reference numeral 18 in FIG. 7).

図8に本発明の第4の実施例の速度判定装置の構成を示す。図中、図5と同様のものは同じ符号で示し、19,20は遅延素子、21は否定回路、22は論理積回路、を示す(図中のアルファベットの説明は図9の説明文に記載)。図8では積分回路の時定数の差による立ち下がりエッジのズレを補正する遅延素子19,20を速度判定回路14,15の出力部に付けて、誤動作が生じないよう補償している(立ち下がりエッジを揃えている)。図中、便宜上、遅延素子19と20の両方を接続した例を示したが、一方の遅延素子で前記立ち下がりエッジが揃えば、どちらか一方の遅延素子のみでも構わない。さらにフリップフロップ回路16に禁止入力が入らないよう、R端子に“1”が入る場合には、否定回路21と論理積回路22を用いてS端子側の入力を強制的に“0”に変換している。これは、S端子とR端子に同時に“1”が入る場合は、高速信号の入力時であることによる。   FIG. 8 shows the configuration of the speed determination device according to the fourth embodiment of the present invention. In the figure, the same elements as those in FIG. 5 are denoted by the same reference numerals, 19 and 20 are delay elements, 21 is a negation circuit, and 22 is a logical product circuit (the alphabetical explanation in the figure is described in the explanatory text of FIG. 9). ). In FIG. 8, delay elements 19 and 20 for correcting the deviation of the falling edge due to the time constant difference of the integration circuit are attached to the output portions of the speed determination circuits 14 and 15 to compensate for the malfunction (falling). Edges are aligned). In the figure, for the sake of convenience, an example in which both delay elements 19 and 20 are connected is shown. However, if one of the delay elements has the same falling edge, only one of the delay elements may be used. Further, when “1” is input to the R terminal so that the prohibition input is not input to the flip-flop circuit 16, the input on the S terminal side is forcibly converted to “0” using the NOT circuit 21 and the AND circuit 22. is doing. This is because when “1” is simultaneously input to the S terminal and the R terminal, the high-speed signal is being input.

図9に本発明の第4実施例の動作を示すタイムチャートを示す。図中の符号は図8に記載の同一の符号で示したノードの電位を示す。S端子側入力から長い無信号状態および無信号状態直後の誤判定出力がなくなるため、正しい判定結果が得られることが分かる。遅延素子19,20の挿入による判定信号と入力信号との相対的な時間差は、信号側にも遅延等を用いて補正すれば良い。   FIG. 9 is a time chart showing the operation of the fourth embodiment of the present invention. Reference numerals in the figure indicate node potentials indicated by the same reference numerals shown in FIG. It can be seen that a correct determination result can be obtained because there is no longer a no-signal state from the S terminal side input and an erroneous determination output immediately after the no-signal state. The relative time difference between the determination signal and the input signal due to the insertion of the delay elements 19 and 20 may be corrected on the signal side using a delay or the like.

図10に本発明の第4実施例の誤動作を示すタイムチャートを示す。図中の符号は図7と同様のものを示す。低速信号のプリアンブル長より長い無信号状態が存在し、同時に低速信号のプリアンブル周期が高速信号のプリアンブル周期の整数倍である場合は、無信号に引き続き高速信号のプリアンブル部にかかるように判定結果のパルスを出力する可能性がある。この場合、低速信号の速度判定回路14が出力する立ち下がりエッジは、第4実施例の遅延素子19,20による補正を超えて誤判定を生じる。   FIG. 10 is a time chart showing a malfunction of the fourth embodiment of the present invention. The reference numerals in the figure are the same as those in FIG. If there is a no-signal state longer than the preamble length of the low-speed signal and the preamble period of the low-speed signal is an integral multiple of the preamble period of the high-speed signal at the same time, There is a possibility of outputting a pulse. In this case, the falling edge output from the speed determination circuit 14 of the low-speed signal causes an erroneous determination beyond the correction by the delay elements 19 and 20 of the fourth embodiment.

図11に、本発明の第4実施例の応用例の動作を示すタイムチャートを示す。図中の符号は図10と同様のものを示し、23は低速信号のプリアンブル長より長い無信号状態の後、低速信号が入力された際に速度判定回路が出力するパルスの立ち下がりエッジの時間差、を示す。本応用例では、遅延素子19,20の遅延時間差の値を、図9で用いた値に高速信号のプリアンブル長相当の遅延時間を加えて補正している。これによって低速信号のプリアンブル長より長い無信号状態の後、低速信号が入力された際に速度判定回路が出力するパルスの立ち下がりエッジの時間差23が、論理積回路22やフリップフロップ16が十分に動作する程度の時間差であれば誤動作が生じないことが分かる。   FIG. 11 is a time chart showing the operation of the application example of the fourth embodiment of the present invention. The reference numerals in the figure indicate the same as in FIG. 10, and reference numeral 23 denotes a time difference between falling edges of pulses output by the speed judgment circuit when a low speed signal is input after a no-signal state longer than the preamble length of the low speed signal. , Indicate. In this application example, the value of the delay time difference between the delay elements 19 and 20 is corrected by adding the delay time corresponding to the preamble length of the high-speed signal to the value used in FIG. As a result, after the no-signal state longer than the preamble length of the low-speed signal, the time difference 23 of the falling edge of the pulse output by the speed judgment circuit when the low-speed signal is input is sufficiently reduced by the AND circuit 22 and the flip-flop 16. It can be seen that a malfunction does not occur if the time difference is such that it operates.

<第5実施例>
図12に、本発明の第5実施例の速度判定回路の構成を示す。図中、図1と同様のものは同じ符号で示し、24,25は遅延素子、26は不一致検出回路(排他的論理和回路)、を示す。第4実施例までは一致検出回路4を用いていたため、プリアンブルよりも長い同符号連続や無信号状態に対し一致検出回路4が“1”の同符号連続を出力し、誤判定の原因になっていた。この問題を解決するために、本回路では遅延素子24と25によって生じる遅延時間差を、本回路に入力される高速信号のプリアンブル信号のパターン周期の2分の1の奇数倍の長さに調整している。
<Fifth embodiment>
FIG. 12 shows the configuration of the speed determination circuit according to the fifth embodiment of the present invention. In the figure, components similar to those in FIG. 1 are denoted by the same reference numerals, 24 and 25 are delay elements, and 26 is a mismatch detection circuit (exclusive OR circuit). Since the coincidence detection circuit 4 has been used up to the fourth embodiment, the coincidence detection circuit 4 outputs the same sign continuation of “1” for the same sign continuation or no signal state longer than the preamble, causing erroneous determination. It was. In order to solve this problem, in this circuit, the delay time difference caused by the delay elements 24 and 25 is adjusted to a length that is an odd multiple of one half of the pattern period of the preamble signal of the high-speed signal input to this circuit. ing.

この回路が有効に動作する条件は、高速信号のプリアンブル信号パターンが、その周期の半分のところで極性反転し、前半のパターンの反転符号が後半のパターンとなっていることである。この場合、プリアンブル周期の2分の1の奇数倍の遅延差を与えた場合、不一致検出回路26の入力信号は相補信号(差動信号)となるので、出力は“1”の同符号連続となる。無信号などの同符号連続の入力には“0”の同符号連続を出力するため、ペイロード部分にプリアンブルと同一のパターンがプリアンブル並みに長く続かない限り誤判定が生じない。   The condition under which this circuit operates effectively is that the preamble signal pattern of the high-speed signal is inverted in polarity at half of its period, and the inversion code of the first half pattern is the latter half pattern. In this case, when a delay difference that is an odd multiple of one half of the preamble period is given, the input signal of the mismatch detection circuit 26 becomes a complementary signal (differential signal), so that the output is the same sign sequence of “1”. Become. Since the same sign continuation of “0” is output to the input of the same sign continuation such as no signal, an erroneous determination does not occur unless the same pattern as the preamble continues in the payload portion as long as the preamble.

図13に本発明の第5実施例の動作を示すタイムチャートを示す。図中、図2と同様のものは同じ符号で示す。図では最も簡単なプリアンプルパターンとして「1010」の交番信号を用いている。図13(a)は高速信号に対する動作、図13(b)は低速信号に対する動作を示す。図13(a)に示すように、ここではプリアンブル周期が2ビットなので、1ビット分(プリアンブルパターン周期の2分の1の1倍)の遅延時間差Dを遅延素子24と25の間に設けたときの動作を示している。ノードAとBの信号は遅延時間差Dをもって不一致検出回路26に入力され、その出力がノードCの電位として出力される。プリアンブル部分は符号“1”の同符号連続(図中て“0”で示した部分)となることが分かる。積分回路6はその時定数をτとなるように設計することで、プリアンブル程度の長さの同符号連続に対して反応し、比較回路7の閾値を越える電位を出力できる。その後ペイロード部分のランダムな信号が入力されると、不一致出力はマーク率2分の1の信号同士の不一致を出力するので、出力信号も確率的にマーク率2分の1となり、その積分出力は“1”の同符号連続時の半分の平均電位に低下する。その結果、比較回路7の出力端子10にはプリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号が出力されることになる。 FIG. 13 is a time chart showing the operation of the fifth embodiment of the present invention. In the figure, components similar to those in FIG. In the figure, an alternating signal of “1010” is used as the simplest preample pattern. FIG. 13A shows an operation for a high-speed signal, and FIG. 13B shows an operation for a low-speed signal. As shown in FIG. 13A, since the preamble period is 2 bits here, a delay time difference D 2 of 1 bit (one half of the preamble pattern period) is provided between the delay elements 24 and 25. Shows the operation when Node signals A and B are input to the mismatch detection circuit 26 with a delay time difference D 2, its output is outputted as the potential of the node C. It can be seen that the preamble part is the same code continuation of the code “1” (the part indicated by “0” in the figure). By designing the integration circuit 6 so that its time constant is τ 0 , the integration circuit 6 can react to the same sign sequence having a length of the preamble and output a potential exceeding the threshold value of the comparison circuit 7. After that, when a random signal in the payload portion is input, the mismatch output outputs a mismatch between the signals with a mark ratio of 1/2, so the output signal also becomes a mark ratio with a probability of 1/2, and its integrated output is It drops to an average potential that is half of the continuous “1” sign. As a result, a pulse signal having a finite width having a rising edge in the middle of the preamble is output to the output terminal 10 of the comparison circuit 7.

一方、図13(b)に示すように、低速信号が入力された場合には、ノードAとBの間の遅延差が低速信号のプリアンブル周期(ここでは高速信号と同一パターンで速度が3分の1の場合を例として示している)と合っていないため、プリアンブル部分の不一致検出回路26の出力は“1”の同符号連続とはならない(ここではマーク率3分の1の信号となっている)。このため、積分回路6の出力は比較回路7の閾値を越えることがないので、比較回路7の出力端子10にはパルス信号が出力されない。   On the other hand, as shown in FIG. 13B, when a low speed signal is input, the delay difference between the nodes A and B is the preamble period of the low speed signal (here, the same pattern as the high speed signal and the speed is 3 minutes). Therefore, the output of the mismatch detection circuit 26 in the preamble part is not “1” in the same sign sequence (here, the signal has a mark ratio of 1/3). ing). For this reason, since the output of the integration circuit 6 does not exceed the threshold value of the comparison circuit 7, no pulse signal is output to the output terminal 10 of the comparison circuit 7.

以上、説明したように、第5実施例の構成を用いることで、第1実施例と同等の機能を実現できるだけで無く、ペイロードに含まれる同符号連続や信号間に長い無信号状態が含まれていても誤判定が生じない。   As described above, by using the configuration of the fifth embodiment, not only functions equivalent to those of the first embodiment can be realized, but also the same code sequence included in the payload and a long no-signal state between signals are included. Misjudgment does not occur.

<第6実施例>
図14に本発明の第6実施例の速度判定回路の構成を示す。図中、図3、図12と同様のものは同じ符号で示し、27,28は遅延素子、を示す。本実施例は第5実施例(図12)と同様に、第2実施例(図3)において一致検出回路4を使用することによって生じる誤判定の課題を解決したもので、本回路では遅延素子27と28によって生じる遅延時間差Dを、本回路に入力される低速信号のプリアンブル信号のパターン周期の2分の1の奇数倍の長さに調整している。この回路が有効に動作する条件は、低速信号のプリアンブル信号パターンが、第5実施例(図12)と同様に、その周期の半分のところで極性反転し、前半のパターンの反転符号が後半のパターンとなっていることである。
<Sixth embodiment>
FIG. 14 shows the configuration of the speed determination circuit according to the sixth embodiment of the present invention. 3 and 12 are denoted by the same reference numerals, and 27 and 28 are delay elements. This embodiment, like the fifth embodiment (FIG. 12), solves the problem of erroneous determination caused by using the coincidence detection circuit 4 in the second embodiment (FIG. 3). 27 a delay time difference D 3 caused by 28, is adjusted to the length of one of the odd multiple of half of the pattern period of the preamble signal of the low-speed signal input to the circuit. The conditions under which this circuit operates effectively are the same as in the fifth embodiment (FIG. 12), where the polarity of the low-speed preamble signal pattern is inverted at half the period, and the inversion code of the first half pattern is the latter half pattern. It is that.

図15に本発明の第6実施例の動作を示すタイムチャートを示す。図中、図4と同様のものは同じ符号で示す。図では図13と同様に最も簡単なプリアンブルパターンとして「1010」の交番信号を用いている。図15(a)は低速信号に対する動作、図15(b)は高速信号に対する動作を示す。図15(a)は図4(a)、図13(a)の説明と同様に、比較回路7の出力端子10にはプリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号が出力されることになることは明らかである。   FIG. 15 is a time chart showing the operation of the sixth embodiment of the present invention. In the figure, components similar to those in FIG. In the figure, as in FIG. 13, the alternating signal “1010” is used as the simplest preamble pattern. FIG. 15A shows an operation for a low-speed signal, and FIG. 15B shows an operation for a high-speed signal. In FIG. 15A, a finite-width pulse signal having a rising edge in the middle of the preamble is output to the output terminal 10 of the comparison circuit 7 in the same manner as in FIGS. 4A and 13A. It is clear that

一方、高速信号が入力された場合、低速信号のプリアンブル周期が高速信号のプリアンブル周期の奇数倍でない場合は、図13(b)で説明したのと同様に、プリアンブル部分の不一致検出回路26の出力が同符号連続とならないため、積分回路13の出力は比較回路7の閾値を越えない。しかし、図4(b)で説明したのと同様に低速信号のプリアンブル周期が高速信号のプリアンブル周期の奇数倍である場合は、不一致検出回路26の出力が同符号連続となってしまう。積分回路13の時定数τが低速信号のプリアンブル長とほば等しい値とすると、一般には高速信号のプリアンブル長は伝送速度に反比例して短くなるためτ<τとなる。ペイロード部分では不一致検出回路26の出力の積分値が低下することを前提とすれば、τ程度の長さの連続符号では十分に閾値を超えず、τ程度の長さの同符号連続でようやく閾値を超えるように閾値電圧(参照電位Vref)を設定すれば、高速信号の入力に対してプリアンブルの途中に立ち上がりエッジを有する有限幅のパルス信号を出力しないよう調整することが出来る。 On the other hand, when a high-speed signal is input, if the preamble period of the low-speed signal is not an odd multiple of the preamble period of the high-speed signal, the output of the preamble portion mismatch detection circuit 26 is the same as described with reference to FIG. Since the same sign is not continuous, the output of the integrating circuit 13 does not exceed the threshold value of the comparing circuit 7. However, when the preamble period of the low-speed signal is an odd multiple of the preamble period of the high-speed signal, as described with reference to FIG. If the time constant τ 1 of the integrating circuit 13 is almost equal to the preamble length of the low-speed signal, the preamble length of the high-speed signal generally decreases in inverse proportion to the transmission speed, so that τ 01 . Assuming that the integrated value of the output of the mismatch detection circuit 26 decreases in the payload portion, a continuous code having a length of about τ 0 does not sufficiently exceed the threshold value, and a continuous code of the same code having a length of about τ 1 is used. If the threshold voltage (reference potential Vref) is finally set so as to exceed the threshold, it is possible to adjust so as not to output a finite-width pulse signal having a rising edge in the middle of the preamble with respect to the input of the high-speed signal.

以上、説明したように、第6実施例の構成を用いることで、第2実施例と同等の機能を実現できるだけで無く、ペイロードに含まれる同符号連続や信号間に長い無信号状態が含まれていても誤判定が生じない。   As described above, by using the configuration of the sixth embodiment, not only functions equivalent to those of the second embodiment can be realized, but also the same code sequence included in the payload and a long no-signal state between signals are included. Misjudgment does not occur.

<第7実施例>
図16に本発明の第7実施例の速度判定装置の構成を示す。図中、図5と同様のものは同じ符号で示し、29、30は本発明の第5実施例(図12)もしくは第6実施例(図14)の速度判定回路、を示す。図17は第7実施例の動作を示すタイムチャートで、図中の符号は図16に記載の同一の符号で示したノードの電位を示す。速度判定回路29、30がそれぞれ異なる速度の信号を判定する回路であるとする(図16では29が低速信号の判定回路)。各々の速度判定回路が判定信号として各々の速度の信号のプリアンブル部にパルス信号を出力した場合、図17に示すような信号が出力端子10および反転出力端子17に得られる。この出力信号でどちらの速度の信号が入力されているか判定できる。本実施例は第4実施例のような長い無信号状態に対する誤判定が生じないことが分かる。
<Seventh embodiment>
FIG. 16 shows the configuration of the speed determination device according to the seventh embodiment of the present invention. In the figure, the same components as those in FIG. 5 are denoted by the same reference numerals, and reference numerals 29 and 30 denote speed judging circuits of the fifth embodiment (FIG. 12) or the sixth embodiment (FIG. 14) of the present invention. FIG. 17 is a time chart showing the operation of the seventh embodiment, and the reference numerals in the figure indicate the potentials of the nodes indicated by the same reference numerals shown in FIG. Assume that the speed determination circuits 29 and 30 are circuits for determining different speed signals (in FIG. 16, 29 is a low-speed signal determination circuit). When each speed determination circuit outputs a pulse signal to the preamble portion of each speed signal as a determination signal, signals as shown in FIG. 17 are obtained at the output terminal 10 and the inverted output terminal 17. With this output signal, it is possible to determine which speed signal is being input. It can be seen that this embodiment does not cause an erroneous determination for a long no-signal state as in the fourth embodiment.

<第8実施例>
図18に本発明の第8実施例の速度判定装置の構成を示す。図中の符号は図5および図16と同様のものを示す。本実施例では、第1実施例(図1)の判定回路15と第6実施例(図14)の判定回路29を用いた。図19に示すように、速度判定回路29の出力が入力するS端子には誤判定を生じないので、第4実施例(図8)の効果と同様の効果が得られ、組み合わせて動作させた場合でも誤判定が生じないことが分かる。
<Eighth embodiment>
FIG. 18 shows the configuration of the speed determining apparatus according to the eighth embodiment of the present invention. The reference numerals in the figure are the same as those in FIGS. In this embodiment, the determination circuit 15 of the first embodiment (FIG. 1) and the determination circuit 29 of the sixth embodiment (FIG. 14) are used. As shown in FIG. 19, since no erroneous determination occurs at the S terminal to which the output of the speed determination circuit 29 is input, the same effect as that of the fourth embodiment (FIG. 8) can be obtained and operated in combination. It can be seen that no erroneous determination occurs even in the case.

<第9実施例>
図20に本発明の第9実施例の速度判定装置の構成を示す。図中、図18と同様のものは同じ符号で示し、31は否定回路、32、33は遅延素子、34は論理積回路、を示す。本実施例では、第2実施例(図3)の速度判定回路14と第5実施例(図12)の速度判定回路30を用いた。速度判定回路14は、長い無信号状態や同符号連続、低速信号のプリアンブル周期が高速信号のプリアンブル周期の整数倍である場合に誤判定を生じる。本実施例は遅延素子32、33によって一定の遅延時間差(フリップフロップ16が反応可能な時間差)を生じさせ、論理積回路34で速度判定回路14の出力パルスを立ち上がりエッジ部のみを残して前記遅延時間差の幅に圧縮することで誤判定を回避している。図21のタイムチャートから明らかなように、誤判定が生じないことが分かる。
<Ninth embodiment>
FIG. 20 shows the configuration of the speed determining apparatus according to the ninth embodiment of the present invention. In the figure, the same components as those in FIG. 18 are denoted by the same reference numerals, 31 is a negation circuit, 32 and 33 are delay elements, and 34 is an AND circuit. In this embodiment, the speed determination circuit 14 of the second embodiment (FIG. 3) and the speed determination circuit 30 of the fifth embodiment (FIG. 12) are used. The speed determination circuit 14 makes an erroneous determination when the long no-signal state, the same sign continuation, and the low-speed signal preamble period is an integral multiple of the high-speed signal preamble period. In this embodiment, the delay elements 32 and 33 cause a certain delay time difference (a time difference in which the flip-flop 16 can react), and the AND circuit 34 leaves the output pulse of the speed determination circuit 14 except for the rising edge portion. Misjudgment is avoided by compressing to the width of the time difference. As is apparent from the time chart of FIG. 21, it can be seen that no erroneous determination occurs.

<第10実施例>
図22に本発明の第10実施例の速度判定装置の構成を示す。図中、図18と同様のものは同じ符号で示し、35,36,37は本発明の第1実施例(図1)もしくは第2実施例(図3)もしくは第5実施例(図12)もしくは第6実施例(図14)の速度判定回路、38は論理和回路、39,40,41は出力端子、42,43,44は反転出力端子、を示す。本実施例では、3つ以上の速度判定回路の組み合わせを示す。各速度判定回路35,36,37が誤動作を起こさない条件化での仕様を前提としたとき、第3実施例(図5)の2つの速度判定回路を用いた実施例は、図22のように複数個の判定回路を用いたものに拡張できる。各フリップフロップ16のR端子へは、S端子に入力される速度判定回路以外の速度判定回路出力の論理和を入力すれば、各フリップフロップ16の出力信号から伝送速度を判定できる。
<Tenth embodiment>
FIG. 22 shows the configuration of the speed determination device according to the tenth embodiment of the present invention. In the figure, the same components as those in FIG. 18 are denoted by the same reference numerals, and reference numerals 35, 36 and 37 denote the first embodiment (FIG. 1), the second embodiment (FIG. 3) or the fifth embodiment (FIG. 12) of the present invention. Or, the speed judgment circuit of the sixth embodiment (FIG. 14), 38 is an OR circuit, 39, 40, 41 are output terminals, and 42, 43, 44 are inverted output terminals. In this embodiment, a combination of three or more speed determination circuits is shown. FIG. 22 shows an embodiment in which the two speed determination circuits of the third embodiment (FIG. 5) are used, assuming that the speed determination circuits 35, 36, and 37 are premised on the specification under conditions that do not cause malfunction. Can be expanded to those using a plurality of determination circuits. If the logical sum of the speed determination circuit outputs other than the speed determination circuit input to the S terminal is input to the R terminal of each flip-flop 16, the transmission speed can be determined from the output signal of each flip-flop 16.

<第11実施例>
図23に本発明の第11実施例の速度判定装置の構成を示す。図中、図22と同様のものは同じ符号で示し、45、46、47は本発明の第1実施例(図1)もしくは第2実施例(図3)の速度判定回路、48,49,50は遅延素子、を示す。一致判定を用いた第1実施例や第2実施例の速度判定回路を複数用いる場合には、第4実施例(図8)に示した回路を拡張して、本実施例のような構成をとれば良い。複数の速度判定回路45,46,47の出力するパルスの立ち下がりエッジを遅延素子48,49,50を用いて揃えるとともに、複数の速度判定回路45,46,47が同時に“1”を出力する場合に、その中で最も高速な信号の速度判定回路の出力を“1”とし、残りを強制的に“0”にすれば禁止入力を回避できる。図23では、符号47が最も高速な信号を判定する速度判定回路で、符号45が最も低速な信号を判定する速度判定回路である。低速の速度判定回路45は、中速の速度判定回路46と高速の速度判定回路47の出力の否定論理和をとりさらに速度判定回路45の判定出力との論理積をとった信号を判定出力とし、中速の速度判定回路46は、高速の速度判定回路47の出力の否定をとりさらに速度判定回路46の判定出力との論理積をとった信号を判定出力とする。つまり、特定の速度判定回路は、判定する速度よりも高速な信号を判定する全ての速度判定回路の出力の否定論理和をとり、当該特定の速度判定回路の判定出力との論理積を取った信号を判定出力とすればよい。
<Eleventh embodiment>
FIG. 23 shows the configuration of the speed determination device according to the eleventh embodiment of the present invention. In the figure, the same components as those in FIG. 22 are denoted by the same reference numerals, 45, 46 and 47 are the speed judgment circuits 48, 49, 47 of the first embodiment (FIG. 1) or the second embodiment (FIG. 3) of the present invention. Reference numeral 50 denotes a delay element. When using a plurality of speed determination circuits of the first embodiment and the second embodiment using coincidence determination, the circuit shown in the fourth embodiment (FIG. 8) is expanded to have a configuration like this embodiment. Take it. The falling edges of the pulses output from the plurality of speed determination circuits 45, 46, 47 are aligned using the delay elements 48, 49, 50, and the plurality of speed determination circuits 45, 46, 47 output "1" simultaneously. In this case, forbidden input can be avoided by setting the output of the speed judgment circuit of the fastest signal among them to "1" and forcing the rest to "0". In FIG. 23, reference numeral 47 is a speed determination circuit for determining the fastest signal, and reference numeral 45 is a speed determination circuit for determining the slowest signal. The low-speed speed determination circuit 45 takes a negative logical sum of the outputs of the medium-speed speed determination circuit 46 and the high-speed speed determination circuit 47 and further obtains a logical product of the determination output of the speed determination circuit 45 as a determination output. The medium speed determination circuit 46 negates the output of the high speed determination circuit 47 and uses a logical product with the determination output of the speed determination circuit 46 as a determination output. That is, the specific speed determination circuit performs a negative logical sum of the outputs of all the speed determination circuits that determine a signal faster than the determination speed, and performs a logical product with the determination output of the specific speed determination circuit. A signal may be used as a determination output.

<第12実施例>
図24に本発明の第12実施例の速度判定装置の構成を示す。図中、図20および図23と同様のものは同じ符号で示し、51,53は本発明の第5実施例(図12)もしくは第6実施例(図14)の速度判定回路、52は本発明の第1実施例(図1)もしくは第2実施例(図3)の速度判定回路、を示す。一致判定を用いた第1実施例や第2実施例の速度判定回路を1つだけ用い、それ以外の速度判定回路は全て第5実施例もしくは第6実施例の速度判定回路で構成された場合、本実施例の構成を用いれば、第9実施例(図20)と同様の効果が得られる。
<Twelfth embodiment>
FIG. 24 shows the configuration of the speed determination device according to the twelfth embodiment of the present invention. In the figure, the same components as those in FIGS. 20 and 23 are denoted by the same reference numerals, 51 and 53 are speed determination circuits of the fifth embodiment (FIG. 12) or the sixth embodiment (FIG. 14) of the present invention, and 52 is the main circuit. The speed judgment circuit of 1st Example (FIG. 1) or 2nd Example (FIG. 3) of invention is shown. When only one speed determination circuit of the first embodiment or the second embodiment using coincidence determination is used, and all other speed determination circuits are configured by the speed determination circuit of the fifth embodiment or the sixth embodiment. If the configuration of this embodiment is used, the same effect as that of the ninth embodiment (FIG. 20) can be obtained.

<他の実施例>
以上説明した各実施例では、便宜上、高速信号と低速信号で同一のプリアンブルパターンを用いたが、必ずしも同一である必要はない。また、遅延素子は遅延を与えるものであれば遅延回路でも伝送線路等でも良く、回路構成や材料に依らない。記憶回路にリセットセット・フリップフロップ回路を用いた例や、禁止入力を回避する論理回路を用いた例を示したが、同様の動作をする論理回路であれば別の構成の回路を用いても同様の効果が得られる。回路構成を示す図中、便宜上、要素回路のインターフェイスをシングルエンド構成で示したが、差動インターフェイスでも構わない。特に、分岐後に否定回路を用いている部分は、差動出力インターフェイスを用いて否定回路を省略可能である。
<Other embodiments>
In each of the embodiments described above, for the sake of convenience, the same preamble pattern is used for the high-speed signal and the low-speed signal, but it is not necessarily the same. The delay element may be a delay circuit or a transmission line as long as it gives a delay, and does not depend on the circuit configuration or material. Examples of using a reset set flip-flop circuit as a memory circuit and an example using a logic circuit that avoids forbidden input have been shown. However, if the logic circuit operates in the same way, a circuit with a different configuration may be used. Similar effects can be obtained. In the drawing showing the circuit configuration, for convenience, the interface of the element circuit is shown as a single-ended configuration, but it may be a differential interface. In particular, a part using a negation circuit after branching can be omitted by using a differential output interface.

以上、説明したように、既知のプリアンブル信号の同一パターンの繰り返しを判別するものであり、より詳しくはその同一パターンの繰り返しを同符号連続信号に変換し、信号に含まれる同符号連続長よりは長いものの、従来回路に要していた時定数に比べて1桁から3桁程度短い(数十ビットから数千ビット程度の長さの)同符号連続信号を発生させることで、積分時間を該発生させた同符号連続信号長と同程度に短縮化できるため、プリアンブル信号受信時間内に高速に速度を判定することが出来る。また、判定結果の有限幅のパルス信号を記憶回路に保持することで、判定結果が変更になるまで判定結果を保持することができる。   As described above, the repetition of the same pattern of a known preamble signal is discriminated. More specifically, the repetition of the same pattern is converted into a continuous signal of the same sign, and the continuous length of the same code included in the signal is determined. Although it is long, the integration time is reduced by generating the same sign continuous signal (having a length of about several tens of bits to several thousand bits) which is about 1 to 3 digits shorter than the time constant required for the conventional circuit. Since it can be shortened to the same length as the generated same code continuous signal length, the speed can be determined at high speed within the preamble signal reception time. Further, by holding a pulse signal having a finite width as a determination result in the memory circuit, the determination result can be held until the determination result is changed.

本発明の第1実施例の速度判定回路の構成を示す図である。It is a figure which shows the structure of the speed determination circuit of 1st Example of this invention. 本発明の第1実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 1st Example of this invention. 本発明の第2実施例の速度判定回路の構成を示す図である。It is a figure which shows the structure of the speed determination circuit of 2nd Example of this invention. 本発明の第2実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 2nd Example of this invention. 本発明の第3実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 3rd Example of this invention. 本発明の第3実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 3rd Example of this invention. 本発明の第3実施例の誤動作を示すタイムチャートである。It is a time chart which shows the malfunctioning of 3rd Example of this invention. 本発明の第4実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 4th Example of this invention. 本発明の第4実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 4th Example of this invention. 本発明の第4実施例の誤動作を示すタイムチャートである。It is a time chart which shows the malfunctioning of 4th Example of this invention. 本発明の第4実施例の応用例の動作を示すタイムチャートである。It is a time chart which shows the operation | movement of the application example of 4th Example of this invention. 本発明の第5実施例の速度判定回路の構成を示す図である。It is a figure which shows the structure of the speed determination circuit of 5th Example of this invention. 本発明の第5実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 5th Example of this invention. 本発明の第6実施例の速度判定回路の構成を示す図である。It is a figure which shows the structure of the speed determination circuit of 6th Example of this invention. 本発明の第6実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 6th Example of this invention. 本発明の第7実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 7th Example of this invention. 本発明の第7実施例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of 7th Example of this invention. 本発明の第8実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 8th Example of this invention. 本発明の第8実鹿例の動作を示すタイムチャートである。It is a time chart which shows the operation | movement of the 8th real deer example of this invention. 本発明の第9実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 9th Example of this invention. 本発明の第9実施例の動作を示すタイムチャートである。It is a time chart which shows the operation | movement of 9th Example of this invention. 本発明の第10実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 10th Example of this invention. 本発明の第11実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 11th Example of this invention. 本発明の第12実施例の速度判定装置の構成を示す図である。It is a figure which shows the structure of the speed determination apparatus of 12th Example of this invention.

符号の説明Explanation of symbols

1:入力端子、2,3:遅延素子、4:一致検出回路(排他的否定論理和回路)、5:終端回路、6:積分回路(時定数はτ)、7:比較回路、8:電源もしくは接地、9:参照電位入力端子、10:出力端子、11,12:遅延素子、13:積分回路(時定数はτ)、14,15:本発明の第1実施例もしくは第2実施例の速度判定回路、16:リセットセット・フリップフロップ回路(RS・FF)、17:反転出力端子、18:誤動作部分、19,20:遅延素子、21:否定回路、22:論理積回路、23:低速信号のプリアンブル長より長い無信号状態の後、低速信号が入力された際に判定回路が出力するパルスの立ち下がりエッジの時間差、24,25:遅延素子、26:不一致検出回路(排他的論理和回路)、27,28:遅延素子、29,30:本発明の第5実施例もしくは第6実施例の速度判定回路、31:否定回路、32,33:遅延素子、34:論理積回路、35,36,37:本発明の第1実施例もしくは第2実施例もしくは第5実施例もしくは第6実施例の速度判定回路、38:論理和回路、39,40,41:出力端子、42,43,44:反転出力端子、45,46,47:本発明の第1実施例もしくは第2実施例の速度判定回路、48,49,50:遅延素子、51,53:本発明の第5実施例もしくは第6実施例の速度判定回路、52:本発明の第1実施例もしくは第2実施例の速度判定回路。 1: input terminal, 2: 3: delay element, 4: coincidence detection circuit (exclusive NOR circuit), 5: termination circuit, 6: integration circuit (time constant is τ 0 ), 7: comparison circuit, 8: Power supply or ground, 9: reference potential input terminal, 10: output terminal, 11, 12: delay element, 13: integrating circuit (time constant is τ 1 ), 14, 15: first or second embodiment of the present invention Example speed determination circuit, 16: reset set flip-flop circuit (RS / FF), 17: inverted output terminal, 18: malfunctioning part, 19, 20: delay element, 21: negation circuit, 22: AND circuit, 23 : Time difference between falling edges of pulses output by the determination circuit when a low-speed signal is input after a no-signal state longer than the preamble length of the low-speed signal, 24, 25: delay element, 26: mismatch detection circuit (exclusive OR circuit), 27, 2 : Delay element, 29, 30: speed judgment circuit of the fifth or sixth embodiment of the present invention, 31: negation circuit, 32, 33: delay element, 34: AND circuit, 35, 36, 37: book Speed judging circuit of the first embodiment, the second embodiment, the fifth embodiment or the sixth embodiment of the invention, 38: logical sum circuit, 39, 40, 41: output terminal, 42, 43, 44: inverted output terminal 45, 46, 47: Speed determination circuit according to the first or second embodiment of the present invention, 48, 49, 50: Delay element, 51, 53: According to the fifth or sixth embodiment of the present invention. Speed determination circuit 52: Speed determination circuit according to the first or second embodiment of the present invention.

Claims (9)

入力信号に含まれる固有のプリアンブル信号の内の同一パターンの繰り返しを判別して、前記入力信号の速度を判定することを特徴とする速度判定方法。   A speed determining method, wherein the speed of the input signal is determined by determining repetition of the same pattern in a unique preamble signal included in the input signal. 請求項1に記載の速度判定方法において、
前記同一パターンの繰り返しを同符号連続信号に変換し、該同符号連続信号を積分して閾値判定することで、プリアンブル信号受信時間内に信号速度を判別することを特徴とする速度判定方法。
The speed determination method according to claim 1,
A speed determination method comprising: converting a repetition of the same pattern into a continuous signal of the same sign, integrating the continuous signal of the same sign, and determining a threshold value to determine a signal speed within a preamble signal reception time.
入力信号から該入力信号に含まれる固有のプリアンブル信号のパターン周期の整数倍に相当する遅延差をもつ2つの信号を生成する遅延手段と、該遅延手段から出力する前記2つの信号の論理を比較する一致検出手段と、該一致検出手段の出力信号を積分する積分手段と、該積分手段で得られた信号を閾値と比較して判定結果を出力する比較手段とを備えることを特徴とする速度判定回路。   The delay means for generating two signals having a delay difference corresponding to an integral multiple of the pattern period of the inherent preamble signal included in the input signal from the input signal is compared with the logic of the two signals output from the delay means. A speed detecting means comprising: a coincidence detecting means; an integrating means for integrating an output signal of the coincidence detecting means; and a comparing means for comparing a signal obtained by the integrating means with a threshold value and outputting a determination result. Judgment circuit. 入力信号から該入力信号に含まれる固有のプリアンブル信号のパターン周期の2分の1の奇数倍に相当する遅延差をもつ2つの信号を生成する遅延手段と、該遅延手段から出力する前記2つの信号の論理を比較する不一致検出手段と、該不一致検出手段の出力信号を積分する積分手段と、該積分手段で得られた信号を閾値と比較して判定結果を出力する比較手段とを備えることを特徴とする速度判定回路。   Delay means for generating two signals having a delay difference corresponding to an odd multiple of one-half of the pattern period of the inherent preamble signal included in the input signal from the input signal, and the two outputs from the delay means A non-coincidence detection unit that compares the logic of the signal, an integration unit that integrates the output signal of the non-coincidence detection unit, and a comparison unit that compares the signal obtained by the integration unit with a threshold value and outputs a determination result. A speed judgment circuit characterized by the above. 請戎項3又は4に記載の速度判定回路において、
前記積分手段は、判定しようとする伝送速度の信号のプリアンブル信号受信時間に相当する積分時定数が設定されていることを特徴とする速度判定回路。
In the speed determination circuit according to claim 3 or 4,
An integration time constant corresponding to a preamble signal reception time of a transmission speed signal to be determined is set in the integration means.
共通の入力端子に請求項3、4又は5に記載の速度判定回路を複数個接続し、各速度判定回路が各々有する前記遅延差、前記積分手段の積分時定数を異なる値とすることで、複数の速度の判定を可能としたことを特徴とする速度判定装置。   A plurality of speed determination circuits according to claim 3, 4 or 5 are connected to a common input terminal, and the delay difference of each speed determination circuit and the integration time constant of the integration means are set to different values. A speed determination apparatus characterized in that a plurality of speeds can be determined. 請求項3、4、5又は6に記載の速度判定回路の判定結果を記憶する記憶回路を備え、該記憶回路は判定結果が変更になるまで前の判定結果を保持することを特徴とする速度判定装置。   7. A speed circuit comprising: a storage circuit that stores the determination result of the speed determination circuit according to claim 3, wherein the storage circuit holds a previous determination result until the determination result is changed. Judgment device. 請求項6を引用する請求項7に記載の速度判定装置において、
使用する複数の速度判定回路のうち、2以上の速度判定回路が自己が担当する伝送速度であると同時に判定したとき、該2以上の速度判定回路のうち、最も高速な信号の判定を担当する速度判定回路の判定を優先することを特徴とする速度判定装置。
In the speed determination device according to claim 7, which refers to claim 6,
Among two or more speed determination circuits to be used, when two or more speed determination circuits determine at the same time as the transmission speed that they are responsible for, they determine the fastest signal among the two or more speed determination circuits. A speed judgment device that prioritizes judgment of a speed judgment circuit.
請求項7に記載の速度判定装置において、
請求項3に記載の1つの速度判定回路を低速信号の速度判定回路とし、請求項4に記載の1つの速度判定回路を高速信号の速度判定回路として、各々共通の入力端子に接続し、前記請求項3に記載の速度判定回路の判定出力信号を立ち上がりエッジ部にパルス幅圧縮するパルス圧縮手段を設けたことを特徴とする速度判定装置。
The speed determination device according to claim 7,
One speed determination circuit according to claim 3 is a speed determination circuit for a low speed signal, and one speed determination circuit according to claim 4 is connected to a common input terminal as a speed determination circuit for a high speed signal. 4. A speed determining apparatus comprising pulse compression means for compressing a pulse width of a determination output signal of the speed determination circuit according to claim 3 at a rising edge portion.
JP2008001017A 2008-01-08 2008-01-08 Speed judgment method, speed judgment circuit and speed judgment device Active JP5334087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001017A JP5334087B2 (en) 2008-01-08 2008-01-08 Speed judgment method, speed judgment circuit and speed judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001017A JP5334087B2 (en) 2008-01-08 2008-01-08 Speed judgment method, speed judgment circuit and speed judgment device

Publications (2)

Publication Number Publication Date
JP2009164938A true JP2009164938A (en) 2009-07-23
JP5334087B2 JP5334087B2 (en) 2013-11-06

Family

ID=40967012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001017A Active JP5334087B2 (en) 2008-01-08 2008-01-08 Speed judgment method, speed judgment circuit and speed judgment device

Country Status (1)

Country Link
JP (1) JP5334087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034119A (en) * 2011-08-02 2013-02-14 Mitsubishi Electric Corp Phase comparison device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326572A (en) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Signal variable delay circuit
JPH09139754A (en) * 1995-11-16 1997-05-27 Nitsuko Corp Repeater
JP2000040960A (en) * 1998-07-23 2000-02-08 Nec Corp Bit rate variable optical receiver and variable optical transmission and reception system
JP2005050257A (en) * 2003-07-31 2005-02-24 Toshiba Corp Electronic device having serial ata interface and automatic signal amplitude adjustment method
JP2007004587A (en) * 2005-06-24 2007-01-11 Ricoh Co Ltd Oob signal detection circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326572A (en) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Signal variable delay circuit
JPH09139754A (en) * 1995-11-16 1997-05-27 Nitsuko Corp Repeater
JP2000040960A (en) * 1998-07-23 2000-02-08 Nec Corp Bit rate variable optical receiver and variable optical transmission and reception system
JP2005050257A (en) * 2003-07-31 2005-02-24 Toshiba Corp Electronic device having serial ata interface and automatic signal amplitude adjustment method
JP2007004587A (en) * 2005-06-24 2007-01-11 Ricoh Co Ltd Oob signal detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034119A (en) * 2011-08-02 2013-02-14 Mitsubishi Electric Corp Phase comparison device

Also Published As

Publication number Publication date
JP5334087B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
KR100877680B1 (en) Method and Computer readable recording media, and apparatus for interfacing between semiconductor devices using single ended parallel interface system
JP6461018B2 (en) Change the state for each state period, and make data lane skew and data state transition glitches
US7701368B2 (en) Balanced data bus inversion
AU647515B2 (en) A communication link
JP5394318B2 (en) Differential communication device
CN103259512A (en) Multi-level amplitude signaling receiver
US20100098203A1 (en) Digital phase interpolation control for clock and data recovery circuit
JP6460049B2 (en) Ringing suppression circuit
KR20080112893A (en) Signal encoder and signal decoder
JP5778099B2 (en) Receiver circuit
KR20200041425A (en) Transition detector and clock data recovery unit including the same
US6745353B2 (en) Method and apparatus for sliding window link physical error detection
KR20180042396A (en) Transmitter circuit and method for generating a modulated signal at a transmitter
KR101081365B1 (en) Squelch detection circuit
KR100569749B1 (en) Circuit for data dependent voltage bias level
US8369713B2 (en) Bit-rate discrimination method and its apparatus
KR100309233B1 (en) Single-end-zero receiver circiut
JP5334087B2 (en) Speed judgment method, speed judgment circuit and speed judgment device
US20070086792A1 (en) Data receiver with positive feedback
CN112859663A (en) Fieldbus system with switchable slew rate
US7823003B1 (en) Voltage referencing clock for source-synchronous multi-level signal buses
EP1065850A2 (en) ISI-rejecting differential receiver
US6232796B1 (en) Apparatus and method for detecting two data bits per clock edge
US10904048B2 (en) Pulse width modulated receiver systems and methods
US20090219072A1 (en) Apparatus, circuit and method of transmitting signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5334087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350