JP2009162850A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2009162850A
JP2009162850A JP2007339806A JP2007339806A JP2009162850A JP 2009162850 A JP2009162850 A JP 2009162850A JP 2007339806 A JP2007339806 A JP 2007339806A JP 2007339806 A JP2007339806 A JP 2007339806A JP 2009162850 A JP2009162850 A JP 2009162850A
Authority
JP
Japan
Prior art keywords
polymer
unit
resin composition
ring structure
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007339806A
Other languages
Japanese (ja)
Other versions
JP5226299B2 (en
Inventor
Yoshiyuki Shioya
佳之 塩谷
Takashi Miyai
孝 宮井
Hideo Asano
英雄 浅野
Hirokazu Niwa
宏和 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007339806A priority Critical patent/JP5226299B2/en
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to TW097151163A priority patent/TWI570450B/en
Priority to KR1020107014667A priority patent/KR101572284B1/en
Priority to EP08866375A priority patent/EP2237086A4/en
Priority to CN2008801232066A priority patent/CN101910888B/en
Priority to PCT/JP2008/073808 priority patent/WO2009084663A1/en
Priority to US12/810,462 priority patent/US20100272971A1/en
Publication of JP2009162850A publication Critical patent/JP2009162850A/en
Application granted granted Critical
Publication of JP5226299B2 publication Critical patent/JP5226299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new resin composition for lessening birefringence by shortening wavelength of light and achieving a birefringence member having reverse wavelength dispersion without performing lamination of two kinds of the birefringence members different in a phase difference or wavelength dispersion or addition of particulates having specific optical characteristics. <P>SOLUTION: The resin composition contains a polymer (A) having positive inherent birefringence and having a ring structure in a main ring, and a polymer (B) having negative birefringence regarding α,β-unsaturated monomer unit having a complex aromatic group as a composition unit. The ring structure is, for example, a lactone ring structure, glutarimide structure and anhydrous glutaric acid structure. The unsaturated monomer unit is at least one selected from vinylcarbazole unit, vinylpridine unit, vinylimid azole unit and vinylthiophene unit, for example. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学部材、具体的には位相差板などの複屈折性を有する光学部材、の製造に用いられる樹脂組成物に関する。   The present invention relates to a resin composition used in the production of an optical member, specifically, an optical member having birefringence such as a retardation plate.

高分子の配向により生じる複屈折を利用した、複屈折性を有する光学部材が、画像表示分野において幅広く使用されている。例えば、複屈折により生じる位相差を利用した位相差板が、画像表示装置の色調の補償、視野角の補償などに広く用いられている。具体的な例として、反射型の液晶表示装置(LCD)では、複屈折により生じた位相差に基づく光路長差(リターデーション)が波長の1/4である位相差板(λ/4板)が用いられる。また例えば、有機ELディスプレイ(OLED)では、外光の反射防止を目的として、偏光板とλ/4板とを所定の角度で組み合わせた反射防止板が用いられることがある。これら複屈折性を有する光学部材(以下、単に「複屈折部材」ともいう)は、今後のさらなる用途拡大が期待される。   Optical members having birefringence utilizing birefringence caused by polymer orientation are widely used in the field of image display. For example, a phase difference plate using a phase difference caused by birefringence is widely used for color tone compensation and viewing angle compensation of an image display device. As a specific example, in a reflective liquid crystal display device (LCD), a retardation plate (λ / 4 plate) whose optical path length difference (retardation) based on the phase difference caused by birefringence is 1/4 of the wavelength. Is used. For example, in an organic EL display (OLED), an antireflection plate in which a polarizing plate and a λ / 4 plate are combined at a predetermined angle may be used for the purpose of preventing reflection of external light. These optical members having birefringence (hereinafter, also simply referred to as “birefringent members”) are expected to further expand applications in the future.

複屈折部材には、これまで、ポリカーボネート、環状オレフィンが主に用いられてきたが、これら一般的な高分子は、光の波長が短くなるほど複屈折が大きくなる(即ち、位相差が増大する)特性を有する。表示特性に優れる画像表示装置とするためには、これとは逆に、少なくとも可視光の領域において、光の波長が短くなるほど複屈折が小さくなる(即ち、位相差が減少する)波長分散性を有する複屈折部材が望まれる。なお、本明細書では、少なくとも可視光領域において光の波長が短くなるほど複屈折が小さくなる波長分散性を、一般的な高分子(ならびに当該高分子により形成された複屈折部材)が有する波長分散性とは逆であることに基づいて、「逆波長分散性」と呼ぶ。   Up to now, polycarbonate and cyclic olefin have been mainly used for the birefringent member, but these general polymers have larger birefringence (that is, the phase difference increases) as the wavelength of light becomes shorter. Has characteristics. In order to obtain an image display device having excellent display characteristics, on the contrary, at least in the visible light region, the birefringence becomes smaller (that is, the phase difference is reduced) as the wavelength of light becomes shorter. A birefringent member is desired. In this specification, a wavelength dispersion having a general polymer (and a birefringent member formed of the polymer) has a wavelength dispersibility in which birefringence decreases as the wavelength of light becomes shorter at least in the visible light region. It is called “reverse wavelength dispersibility” based on the opposite of the property.

これまで、逆波長分散性を有する複屈折部材を得るために、位相差あるいは波長分散性が異なる2種の複屈折部材を積層したり、特定の光学特性を有する微粒子を部材に添加したりすることがなされている(例えば、微粒子の添加について、特許文献1を参照)。しかし、2種の複屈折部材を積層して逆波長分散性を実現するためには、双方の部材を所定の角度で精密に裁断し、さらに両者を所定の角度で精密に積層することが求められるため、製造工程が複雑となって、複屈折部材のコスト性、生産性に大きな課題が生じる。また、モバイル機器に用いる画像表示装置では、その小型化、軽量化に対する要求が高いが、2種の部材を積層して逆波長分散性を実現する方法では、得られる複屈折部材が厚くなるため、この要求への対応が難しい。一方、微粒子を添加する方法では、製造工程が複雑となり、複屈折部材のコスト性、生産性に大きな課題が残る。   Until now, in order to obtain a birefringent member having reverse wavelength dispersion, two types of birefringent members having different phase differences or wavelength dispersion are laminated, or fine particles having specific optical characteristics are added to the member. (For example, see Patent Document 1 for the addition of fine particles). However, in order to realize the reverse wavelength dispersion by laminating two kinds of birefringent members, it is required to cut both members precisely at a predetermined angle and to laminate them precisely at a predetermined angle. As a result, the manufacturing process becomes complicated, resulting in significant problems in cost and productivity of the birefringent member. In addition, image display devices used in mobile devices are highly demanded for miniaturization and weight reduction. However, in a method of realizing reverse wavelength dispersion by laminating two kinds of members, the resulting birefringent member becomes thick. It is difficult to respond to this request. On the other hand, in the method of adding fine particles, the manufacturing process becomes complicated, and significant problems remain in the cost and productivity of the birefringent member.

これらの技術とは別に、特許文献2には、正の固有複屈折を有するポリマーと、負の固有複屈折を有するポリマーとをブレンドして得た、逆波長分散性を有する位相差板が開示されている。当該文献には、正の固有複屈折を有するポリマーとしてノルボルネン系樹脂が、負の固有複屈折を有するポリマーとしてスチレン系ポリマーが例示されている。
特開2005−156864号公報 特開2001−337222号公報
Apart from these technologies, Patent Document 2 discloses a retardation plate having reverse wavelength dispersion obtained by blending a polymer having positive intrinsic birefringence and a polymer having negative intrinsic birefringence. Has been. In this document, a norbornene resin is exemplified as a polymer having positive intrinsic birefringence, and a styrene polymer is exemplified as a polymer having negative intrinsic birefringence.
JP 2005-156864 A JP 2001-337222 A

本発明は、位相差または波長分散性が異なる2種の複屈折部材の積層、あるいは特定の光学特性を有する微粒子の添加などを行うことなく、逆波長分散性を有する複屈折部材を実現可能な、新規の樹脂組成物の提供を目的とする。   The present invention can realize a birefringent member having reverse wavelength dispersion without laminating two types of birefringent members having different phase differences or wavelength dispersion or adding fine particles having specific optical characteristics. An object is to provide a novel resin composition.

本発明の樹脂組成物は、固有複屈折が正であり、主鎖に環構造を有する重合体(A)と、固有複屈折が負であり、複素芳香族基を有するα,β−不飽和単量体単位を構成単位として有する重合体(B)と、を含む。   The resin composition of the present invention comprises a polymer (A) having a positive intrinsic birefringence and a ring structure in the main chain, and an α, β-unsaturation having a negative intrinsic birefringence and a heteroaromatic group. And a polymer (B) having a monomer unit as a constituent unit.

なお、固有複屈折とは、重合体の分子鎖が一軸配向した層(例えば、シートあるいはフィルム)における、分子鎖が配向する方向(配光軸)に平行な方向の光の屈折率n1から、配光軸に垂直な方向の光の屈折率n2を引いた値(即ち、“n1−n2”)をいう。   The intrinsic birefringence is a refractive index n1 of light in a direction parallel to the direction in which the molecular chains are oriented (light distribution axis) in a layer (for example, a sheet or film) in which the molecular chains of the polymer are uniaxially oriented. A value obtained by subtracting the refractive index n2 of light in the direction perpendicular to the light distribution axis (that is, "n1-n2").

本発明の樹脂組成物は、固有複屈折が正の重合体(A)と固有複屈折が負の重合体(B)とを含むが、例えば樹脂組成物を成形した後に延伸を加えることによって、双方の重合体に対して同一方向に配向を加えると、各々の重合体の遅相軸(あるいは進相軸)が直交するために、互いの複屈折が打ち消しあう。このとき、複屈折が打ち消し合う程度が波長によって異なるために、逆波長分散性を有する複屈折部材を形成できる。即ち、本発明の樹脂組成物によれば、位相差または波長分散性が異なる2種の複屈折部材の積層、あるいは特定の光学特性を有する微粒子の添加などを行うことなく、逆波長分散性を有する複屈折部材を実現できる。   The resin composition of the present invention includes a polymer having a positive intrinsic birefringence (A) and a polymer having a negative intrinsic birefringence (B). For example, by stretching after molding the resin composition, If orientation is applied to both polymers in the same direction, the slow axes (or fast axes) of the respective polymers are orthogonal to each other, so that the birefringence of each other cancels. At this time, since the degree to which birefringence cancels differs depending on the wavelength, a birefringent member having reverse wavelength dispersion can be formed. That is, according to the resin composition of the present invention, the reverse wavelength dispersibility can be achieved without laminating two kinds of birefringent members having different phase differences or wavelength dispersibility or adding fine particles having specific optical characteristics. The birefringent member which has is realizable.

また、本発明の樹脂組成物では、固有複屈折が負である重合体(B)が、複素芳香族基を有するα,β−不飽和単量体単位を主鎖に有する。このような重合体(B)の複屈折の波長分散性は、固有複屈折が正であり、主鎖に環構造を有する重合体(A)に比べて、かなり大きい。本発明の樹脂組成物では、このように、複屈折の波長分散性が大きく異なる重合体(A)と(B)とを組み合わせており、複屈折部材としたときの逆波長分散性の制御の自由度を向上できる。   In the resin composition of the present invention, the polymer (B) having a negative intrinsic birefringence has an α, β-unsaturated monomer unit having a heteroaromatic group in the main chain. The birefringence wavelength dispersion of such a polymer (B) is considerably larger than that of the polymer (A) having a positive intrinsic birefringence and having a ring structure in the main chain. In the resin composition of the present invention, as described above, the polymers (A) and (B) having greatly different birefringence wavelength dispersibility are combined, and the control of the reverse wavelength dispersibility when the birefringent member is obtained. The degree of freedom can be improved.

[重合体(A)]
重合体(A)は、固有複屈折が正であり、かつ主鎖に環構造を有する重合体である限り特に限定されない。
[Polymer (A)]
The polymer (A) is not particularly limited as long as it has a positive intrinsic birefringence and a polymer having a ring structure in the main chain.

重合体(A)の環構造として、例えば、エステル基、イミド基、または酸無水物基を有する環構造が挙げられる。   Examples of the ring structure of the polymer (A) include a ring structure having an ester group, an imide group, or an acid anhydride group.

環構造のより具体的な例として、ラクトン環構造、グルタルイミド構造、または無水グルタル酸構造が挙げられる。これらの環構造を主鎖に有する重合体(A)は、配向によって大きな正の固有複屈折を示すため、重合体(B)と組み合わせた樹脂組成物とすることにより、複屈折部材としたときの逆波長分散性の制御の自由度をより向上でき、用途に応じた良好な逆波長分散性を有する複屈折部材を実現できる。   More specific examples of the ring structure include a lactone ring structure, a glutarimide structure, or a glutaric anhydride structure. Since the polymer (A) having such a ring structure in the main chain exhibits a large positive intrinsic birefringence depending on the orientation, when a birefringent member is formed by using a resin composition combined with the polymer (B). The degree of freedom in controlling the reverse wavelength dispersion can be further improved, and a birefringent member having good reverse wavelength dispersion according to the application can be realized.

重合体(A)の環構造は、ラクトン環構造またはグルタルイミド構造が好ましく、ラクトン環構造がより好ましい。これらの環構造を主鎖に有する重合体(A)は、上述したように、配向によって大きな正の固有複屈折を示すが、さらに、その波長分散性が非常に小さいという特徴を有する。このため、主鎖にラクトン環構造またはグルタルイミド構造、好ましくはラクトン環構造、を有する重合体(A)と、重合体(B)とを組み合わせた樹脂組成物とすることにより、複屈折部材としたときの逆波長分散性の制御の自由度をさらに向上できる。   The ring structure of the polymer (A) is preferably a lactone ring structure or a glutarimide structure, and more preferably a lactone ring structure. The polymer (A) having such a ring structure in the main chain exhibits a large positive intrinsic birefringence depending on the orientation as described above, and further has a feature that the wavelength dispersion is very small. Therefore, a birefringent member can be obtained by combining a polymer (A) having a lactone ring structure or a glutarimide structure, preferably a lactone ring structure, and the polymer (B) in the main chain. In this case, the degree of freedom in controlling the reverse wavelength dispersion can be further improved.

重合体(A)が有していてもよい具体的なラクトン環構造は特に限定されないが、例えば、以下の式(1)に示される構造であってもよい。   Although the specific lactone ring structure which the polymer (A) may have is not specifically limited, For example, the structure shown by the following formula | equation (1) may be sufficient.

Figure 2009162850
Figure 2009162850

上記式(1)において、R1、R2およびR3は、互いに独立して、水素原子または炭素数1〜20の範囲の有機残基である。当該有機残基は酸素原子を含んでいてもよい。 In the above formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom.

有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数が1〜20の範囲のアルキル基;エテニル基、プロペニル基などの炭素数が1〜20の範囲の不飽和脂肪族炭化水素基;フェニル基、ナフチル基などの炭素数が1〜20の範囲の芳香族炭化水素基;上記アルキル基、上記不飽和脂肪族炭化水素基、および上記芳香族炭化水素基において、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種の基により置換された基;である。   The organic residue is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, or a propyl group; an unsaturated aliphatic carbonization having 1 to 20 carbon atoms such as an ethenyl group or a propenyl group. A hydrogen group; an aromatic hydrocarbon group having 1 to 20 carbon atoms such as a phenyl group or a naphthyl group; in the alkyl group, the unsaturated aliphatic hydrocarbon group, and the aromatic hydrocarbon group, One or more is a group substituted by at least one group selected from a hydroxyl group, a carboxyl group, an ether group and an ester group.

式(1)に示すラクトン環構造は、例えば、メタクリル酸メチル(MMA)と2−(ヒドロキシメチル)アクリル酸メチル(MHMA)とを含む単量体群を共重合した後、得られた共重合体における隣り合ったMMA単位とMHMA単位とを脱アルコール環化縮合させて形成できる。このとき、R1はH、R2はCH3、R3はCH3である。 The lactone ring structure represented by the formula (1) is obtained by copolymerizing a monomer group including, for example, methyl methacrylate (MMA) and 2- (hydroxymethyl) methyl acrylate (MHMA), Adjacent MMA units and MHMA units in the coalescence can be formed by dealcoholization cyclocondensation. At this time, R 1 is H, R 2 is CH 3 , and R 3 is CH 3 .

重合体(A)が有していてもよいグルタルイミド構造は、以下の式(2)により示される環構造である。グルタルイミド構造は、例えば、(メタ)アクリル酸エステルを含む単量体群を重合した後、得られた重合体をメチルアミンなどのイミド化剤によりイミド化して形成できる。   The glutarimide structure that the polymer (A) may have is a ring structure represented by the following formula (2). The glutarimide structure can be formed, for example, by polymerizing a monomer group containing (meth) acrylic acid ester and imidizing the obtained polymer with an imidizing agent such as methylamine.

Figure 2009162850
Figure 2009162850

上記式(2)において、R4、R5およびR6は、互いに独立して、水素原子または式(1)における有機残基として例示した基である。 In the above formula (2), R 4 , R 5 and R 6 are each independently a hydrogen atom or a group exemplified as the organic residue in the formula (1).

重合体(A)が有していてもよい無水グルタル酸構造は、以下の式(3)により示される環構造である。無水グルタル酸構造は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸とを含む単量体群を共重合した後、得られた共重合体を分子内で脱アルコール環化縮合させて形成できる。   The glutaric anhydride structure that the polymer (A) may have is a ring structure represented by the following formula (3). The glutaric anhydride structure is obtained by, for example, copolymerizing a monomer group containing (meth) acrylic acid ester and (meth) acrylic acid, and then subjecting the obtained copolymer to dealcoholization cyclocondensation in the molecule. Can be formed.

Figure 2009162850
Figure 2009162850

上記式(3)において、R7およびR8は、互いに独立して、水素原子または式(1)における有機残基として例示した基である。 In the above formula (3), R 7 and R 8 are each independently a group exemplified as a hydrogen atom or an organic residue in formula (1).

重合体(A)は、構成単位として(メタ)アクリル酸エステル単位およびその誘導体である上記環構造を含む(メタ)アクリル系樹脂であることが好ましい。このような重合体(A)を含む樹脂組成物とすることによって、透明性、機械的強度、成型加工性などの諸特性に優れる複屈折部材を実現できる。(メタ)アクリル系樹脂の全構成単位に占める、(メタ)アクリル酸エステル単位の割合およびその誘導体である上記環構造の割合の合計は、通常、50%以上であり、好ましくは60%以上、より好ましくは70%以上である。   The polymer (A) is preferably a (meth) acrylic resin containing the above-mentioned ring structure which is a (meth) acrylic acid ester unit and a derivative thereof as a structural unit. By setting it as the resin composition containing such a polymer (A), the birefringent member excellent in various characteristics, such as transparency, mechanical strength, and moldability, is realizable. The total of the proportion of the (meth) acrylic acid ester unit and the proportion of the ring structure which is a derivative thereof in all the structural units of the (meth) acrylic resin is usually 50% or more, preferably 60% or more, More preferably, it is 70% or more.

なお、式(1)〜(3)の説明において例示した、ラクトン環構造、グルタルイミド構造、および無水グルタル酸構造を形成する各方法では、各々の環構造の形成に用いる重合体が全て(メタ)アクリル酸エステル単位を含むため、(メタ)アクリル系樹脂の重合体(A)を得ることができる。   In each method for forming a lactone ring structure, a glutarimide structure, and a glutaric anhydride structure exemplified in the description of formulas (1) to (3), all the polymers used for forming each ring structure are (meta ) Since it contains an acrylic ester unit, a polymer (A) of a (meth) acrylic resin can be obtained.

重合体(A)は、正の固有複屈折を有し、かつ主鎖に環構造を有する限り、任意の構成単位を含んでいてもよい。例えば、(メタ)アクリル系樹脂である重合体(A)は、(メタ)アクリル酸エステル単位(例えば、上述したMMA単位、MHMA単位)を含む。また例えば、重合体(B)との相容性を向上できることから、重合体(A)が、複素芳香族基を有するα,β−不飽和単量体単位を含んでいてもよい。α,β−不飽和単量体単位の具体例は、重合体(B)の説明において後述するが、例えば、ビニルカルバゾール単位である。   The polymer (A) may contain any structural unit as long as it has positive intrinsic birefringence and a ring structure in the main chain. For example, the polymer (A) which is a (meth) acrylic resin includes a (meth) acrylic acid ester unit (for example, the above-described MMA unit or MHMA unit). For example, since compatibility with the polymer (B) can be improved, the polymer (A) may contain an α, β-unsaturated monomer unit having a heteroaromatic group. Specific examples of the α, β-unsaturated monomer unit will be described later in the description of the polymer (B), and are, for example, a vinylcarbazole unit.

重合体(A)は公知の方法により製造できる。   The polymer (A) can be produced by a known method.

環構造としてラクトン環構造を有する重合体(A)は、例えば、分子鎖内に水酸基とエステル基とを有する重合体(a)を任意の触媒存在下で加熱し、脱アルコールを伴うラクトン環化縮合反応を進行させて、得ることができる。具体的には、重合体(A)は、特開2001−151814号公報に記載の方法により製造できる。   The polymer (A) having a lactone ring structure as a ring structure is prepared by, for example, heating a polymer (a) having a hydroxyl group and an ester group in the molecular chain in the presence of an arbitrary catalyst, and lactone cyclization accompanied by dealcoholization. It can be obtained by advancing the condensation reaction. Specifically, the polymer (A) can be produced by the method described in JP-A No. 2001-151814.

重合体(a)は、例えば、以下の式(4)に示される単量体を含む単量体群の重合により形成できる。   The polymer (a) can be formed, for example, by polymerization of a monomer group including a monomer represented by the following formula (4).

Figure 2009162850
Figure 2009162850

上記式(4)において、R9およびR10は、互いに独立して、水素原子または式(1)における有機残基と同様の基である。 In the above formula (4), R 9 and R 10 are each independently a hydrogen atom or a group similar to the organic residue in the formula (1).

式(4)により示される単量体の具体的な例としては、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸t−ブチルなどが挙げられる。なかでも、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルが好ましく、高い透明性および耐熱性を有する複屈折部材が実現できることから、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)が特に好ましい。   Specific examples of the monomer represented by the formula (4) include methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- (Hydroxymethyl) normal butyl acrylate, 2- (hydroxymethyl) acrylate t-butyl and the like. Among these, 2- (hydroxymethyl) methyl acrylate and 2- (hydroxymethyl) ethyl acrylate are preferable, and since a birefringent member having high transparency and heat resistance can be realized, 2- (hydroxymethyl) methyl acrylate (MHMA) is particularly preferred.

重合体(a)の形成に用いる単量体群は、上記式(4)により示される単量体を2種以上含んでいてもよい。   The monomer group used for forming the polymer (a) may contain two or more monomers represented by the above formula (4).

重合体(a)の形成に用いる単量体群は、上記式(4)により示される単量体以外の単量体を含んでいてもよい。このような単量体は、式(4)により示される単量体と共重合できる単量体である限り特に限定されず、例えば、(メタ)アクリル酸エステルであってもよい。   The monomer group used for forming the polymer (a) may contain a monomer other than the monomer represented by the above formula (4). Such a monomer is not particularly limited as long as it is a monomer that can be copolymerized with the monomer represented by the formula (4), and may be, for example, a (meth) acrylic acid ester.

ここで、(メタ)アクリル酸エステルとしては、式(4)により示される単量体以外の単量体であって、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などが挙げられる。なかでも、高い透明性および耐熱性を有する複屈折部材が実現できることから、メタクリル酸メチル(MMA)が特に好ましい。   Here, the (meth) acrylic acid ester is a monomer other than the monomer represented by the formula (4), for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate. Acrylates such as t-butyl acrylate, cyclohexyl acrylate, benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, methacrylic acid And methacrylic acid esters such as cyclohexyl and benzyl methacrylate; Among these, methyl methacrylate (MMA) is particularly preferable because a birefringent member having high transparency and heat resistance can be realized.

重合体(a)の形成に用いる単量体群は、これら(メタ)アクリル酸エステルを2種以上含んでいてもよい。   The monomer group used for forming the polymer (a) may contain two or more of these (meth) acrylic acid esters.

重合体(a)の形成に用いる単量体群は、重合体(a)を環化縮合反応させて得られた重合体(A)が正の固有複屈折を有する限り、複素芳香族基を有するα,β−不飽和単量体、例えば以下の式(5)に示されるビニルカルバゾール、を含んでいてもよい。この場合、複素芳香族基を有するα,β−不飽和単量体単位(例えばビニルカルバゾール単位)を構成単位として含む重合体(A)とすることができ、重合体(B)との相容性を向上できる。   As long as the polymer (A) obtained by subjecting the polymer (a) to a cyclization condensation reaction has a positive intrinsic birefringence, the monomer group used for forming the polymer (a) has a heteroaromatic group. An α, β-unsaturated monomer having, for example, vinyl carbazole represented by the following formula (5) may be included. In this case, a polymer (A) containing an α, β-unsaturated monomer unit having a heteroaromatic group (for example, a vinyl carbazole unit) as a constituent unit can be obtained, and compatibility with the polymer (B). Can be improved.

Figure 2009162850
Figure 2009162850

なお、式(5)に示す環上の水素原子の一部が、式(1)における有機残基として例示した基により置換されていてもよい。   In addition, a part of hydrogen atoms on the ring shown in Formula (5) may be substituted with the group exemplified as the organic residue in Formula (1).

重合体(a)の形成に用いる単量体群は、その他、スチレン、ビニルトルエン、α−メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどの単量体を、1種または2種以上含んでいてもよい。   The monomer group used for forming the polymer (a) is one or two other monomers such as styrene, vinyl toluene, α-methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, and vinyl acetate. More than one species may be included.

重合体(A)は主鎖に環構造を有するため、本発明の樹脂組成物によれば、耐熱性に優れる複屈折部材を形成できる。   Since the polymer (A) has a ring structure in the main chain, the resin composition of the present invention can form a birefringent member having excellent heat resistance.

[重合体(B)]
重合体(B)は、固有複屈折が負であり、かつ複素芳香族基を有するα,β−不飽和単量体単位を構成単位として有する限り特に限定されない。複素芳香族基を有する上記不飽和単量体単位は、当該単位を主鎖に含む重合体(B)の波長分散性を大きく増加させる作用を有する。このため、重合体(A)、特に環構造としてラクトン環構造またはグルタルイミド構造を有する重合体(A)(上述したように、ラクトン環構造またはグルタルイミド構造を有する重合体(A)、なかでもラクトン環構造を有する重合体(A)、の波長分散性は非常に小さい)、との組み合わせにより、複屈折部材としたときの逆波長分散性の制御の自由度をさらに向上できる。
[Polymer (B)]
The polymer (B) is not particularly limited as long as it has an α, β-unsaturated monomer unit having a negative intrinsic birefringence and a heteroaromatic group as a constituent unit. The unsaturated monomer unit having a heteroaromatic group has an effect of greatly increasing the wavelength dispersibility of the polymer (B) containing the unit in the main chain. Therefore, the polymer (A), particularly a polymer (A) having a lactone ring structure or a glutarimide structure as a ring structure (as described above, a polymer (A) having a lactone ring structure or a glutarimide structure, In combination with the polymer (A) having a lactone ring structure, the wavelength dispersion is very small), the degree of freedom in controlling the reverse wavelength dispersion when a birefringent member is formed can be further improved.

なお、特許文献2(特開2001−337222号公報)に開示されている樹脂の組み合わせでは、両者の波長分散性の差はそれほど大きくないため、重合体(A)と(B)とを組み合わせたときのような効果を得ることができない。   In the combination of resins disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2001-337222), the difference in wavelength dispersion between the two is not so large, so the polymers (A) and (B) were combined. You can't get the same effect.

また、上記不飽和単量体単位が重合体(B)の波長分散性を大きく増加させる作用を有することから、重合体(B)の全構成単位に占める上記不飽和単量体単位の割合が低い場合にも、重合体(B)は大きな波長分散性を示す(本願比較例3の結果[表6]を参照。なお、ポリカーボネート、ポリスチレンなど、従来の光学部材に用いられている樹脂は、ホモポリマーの場合においても、本願実施例で示す可視光領域内のR/R0値にして、およそ0.95〜1.15程度の範囲に入る波長分散性しか示さない)。一方、芳香環は、当該環を含む重合体の光弾性係数を増大させる作用を通常有するため、光学部材用の樹脂組成物とする場合には、当該組成物における芳香環の含有量を抑えることが望まれる。本発明の樹脂組成物では、上記不飽和単量体単位の割合が低いときにも大きな波長分散性を示す重合体(B)を用いているため、樹脂組成物中の芳香環の含有量を低減でき、複屈折部材としたときの光弾性係数の上昇を抑制できる。   In addition, since the unsaturated monomer unit has a function of greatly increasing the wavelength dispersibility of the polymer (B), the proportion of the unsaturated monomer unit in all the structural units of the polymer (B) is Even when the polymer is low, the polymer (B) exhibits a large wavelength dispersion (see the results of Comparative Example 3 of the present application [Table 6]. Incidentally, resins used for conventional optical members such as polycarbonate and polystyrene are Even in the case of a homopolymer, only the wavelength dispersion within the range of about 0.95 to 1.15 is shown as the R / R0 value in the visible light region shown in the examples of the present application). On the other hand, since an aromatic ring usually has an action of increasing the photoelastic coefficient of a polymer containing the ring, when the resin composition for an optical member is used, the content of the aromatic ring in the composition is suppressed. Is desired. In the resin composition of the present invention, since the polymer (B) showing a large wavelength dispersibility even when the ratio of the unsaturated monomer unit is low, the aromatic ring content in the resin composition is reduced. It is possible to reduce the increase of the photoelastic coefficient when the birefringent member is used.

上記不飽和単量体単位の種類は特に限定されない。複素芳香族基におけるヘテロ原子は、例えば、酸素原子、硫黄原子、窒素原子であるが、重合体(B)の波長分散性を増大させる作用に優れることから、窒素原子が好ましい。   The kind of the unsaturated monomer unit is not particularly limited. The hetero atom in the heteroaromatic group is, for example, an oxygen atom, a sulfur atom, or a nitrogen atom, and a nitrogen atom is preferable because of excellent action of increasing the wavelength dispersibility of the polymer (B).

上記不飽和単量体単位の具体的な種類は、例えば、ビニルカルバゾール単位、ビニルピリジン単位、ビニルイミダゾール単位、およびビニルチオフェン単位から選ばれる少なくとも1種である。   A specific type of the unsaturated monomer unit is, for example, at least one selected from a vinyl carbazole unit, a vinyl pyridine unit, a vinyl imidazole unit, and a vinyl thiophene unit.

重合体(B)の波長分散性を増大させる作用に特に優れることから、上記不飽和単量体単位は、ビニルカルバゾール単位およびビニルピリジン単位から選ばれる少なくとも1種であることが好ましく、ビニルカルバゾール単位がより好ましい。   The unsaturated monomer unit is preferably at least one selected from a vinyl carbazole unit and a vinyl pyridine unit, since it is particularly excellent in the action of increasing the wavelength dispersibility of the polymer (B). Is more preferable.

ビニルカルバゾール単位は、以下の式(6)に示される構成単位である。なお、式(6)に示す環上の水素原子の一部が、式(1)における有機残基として例示した基により置換されていてもよい。   The vinyl carbazole unit is a structural unit represented by the following formula (6). In addition, a part of hydrogen atom on the ring shown in Formula (6) may be substituted by the group exemplified as the organic residue in Formula (1).

Figure 2009162850
Figure 2009162850

重合体(B)の具体的な構成は、固有複屈折が負であり、かつ複素芳香族基を有するα,β−不飽和単量体単位を有する限り特に限定されず、例えば、上記不飽和単量体と他のモノマーとの共重合体であってもよい。   The specific configuration of the polymer (B) is not particularly limited as long as it has an intrinsic α, β-unsaturated monomer unit having a negative intrinsic birefringence and a heteroaromatic group. The copolymer of a monomer and another monomer may be sufficient.

より具体的には、重合体(B)は、上記不飽和単量体と(メタ)アクリル酸エステルとの共重合体、即ち、構成単位として(メタ)アクリル酸エステル単位を含む樹脂であってもよい。この場合、重合体(A)が(メタ)アクリル系樹脂であるときに、重合体(A)と重合体(B)との相容性を向上できる。このような重合体(B)として、例えば、ビニルカルバゾールと(メタ)アクリル酸エステルとの共重合体が挙げられる。   More specifically, the polymer (B) is a copolymer of the unsaturated monomer and the (meth) acrylate ester, that is, a resin containing a (meth) acrylate ester unit as a constituent unit. Also good. In this case, when the polymer (A) is a (meth) acrylic resin, the compatibility between the polymer (A) and the polymer (B) can be improved. Examples of such a polymer (B) include a copolymer of vinyl carbazole and (meth) acrylic acid ester.

また例えば、重合体(B)は、重合体(A)が有する環構造と同様の環構造を主鎖に有していてもよい。この場合、より耐熱性に優れる複屈折部材を形成できる。   For example, the polymer (B) may have a ring structure similar to the ring structure of the polymer (A) in the main chain. In this case, a birefringent member having better heat resistance can be formed.

重合体(B)は、公知の方法により製造できる。   The polymer (B) can be produced by a known method.

[樹脂組成物]
本発明の樹脂組成物における重合体(A)と重合体(B)との混合比は、各重合体の固有複屈折の絶対値、あるいは、複屈折部材としたときに要求される逆波長分散性の程度などに応じて調整できる。例えば、正の固有複屈折を有する樹脂組成物とする場合、樹脂組成物の固有複屈折が正となる範囲で、重合体(A)と(B)とを混合すればよい。
[Resin composition]
The mixing ratio of the polymer (A) and the polymer (B) in the resin composition of the present invention is the absolute value of the intrinsic birefringence of each polymer or the reverse wavelength dispersion required when a birefringent member is used. It can be adjusted according to the degree of sex. For example, when a resin composition having positive intrinsic birefringence is used, the polymers (A) and (B) may be mixed within a range in which the intrinsic birefringence of the resin composition is positive.

樹脂組成物全体に含まれる上記環構造の含有率X1(重量%)と、複素芳香族基を有するα,β−不飽和単量体単位の含有率X2(重量%)に着目すると、X1とX2との比は、例えば、X1:X2=99.5:0.5〜70:30の範囲であり、X1:X2=95:5〜75:25の範囲が好ましく、X1:X2=95:5〜80:20の範囲がより好ましい。この範囲において、複屈折部材としたときの逆波長分散性の制御の自由度をより向上でき、用途に応じた良好な逆波長分散性を有する複屈折部材を形成できる。   When attention is paid to the content X1 (% by weight) of the ring structure contained in the entire resin composition and the content X2 (% by weight) of the α, β-unsaturated monomer unit having a heteroaromatic group, X1 and The ratio to X2 is, for example, in the range of X1: X2 = 99.5: 0.5 to 70:30, preferably in the range of X1: X2 = 95: 5 to 75:25, and X1: X2 = 95: A range of 5 to 80:20 is more preferable. Within this range, the degree of freedom in controlling the reverse wavelength dispersion when used as a birefringent member can be further improved, and a birefringent member having good reverse wavelength dispersion according to the application can be formed.

なお、環構造の含有率X1は、特開2001−151814号公報に記載の方法により評価できる。ビニルカルバゾール単位をはじめとする上記不飽和単量体単位の含有率X2は、公知の手法、例えば1H核磁気共鳴(1H−NMR)あるいは赤外線分光分析(IR)、により求めることができる。 The ring structure content X1 can be evaluated by the method described in JP-A No. 2001-151814. The content X2 of the unsaturated monomer units including the vinylcarbazole unit can be determined by a known method, for example, 1 H nuclear magnetic resonance ( 1 H-NMR) or infrared spectroscopic analysis (IR).

本発明の樹脂組成物は、例えば、重合体(A)および(B)を、双方の重合体を溶解する溶媒に溶解させて、得ることができる。重合体(A)および(B)を溶解させた溶液は、そのまま流通させることも可能であるし、溶媒を揮発させて、固形の樹脂組成物として流通させてもよい。   The resin composition of the present invention can be obtained, for example, by dissolving the polymers (A) and (B) in a solvent that dissolves both polymers. The solution in which the polymers (A) and (B) are dissolved may be circulated as it is, or may be circulated as a solid resin composition by volatilizing the solvent.

本発明の樹脂組成物は、本発明の効果が得られる範囲を限度に、重合体(A)および(B)以外の重合体、あるいはその他の各種の材料を含んでいてもよい。このような材料として、例えば、重合体(A)および(B)の相容性を向上させる相溶化剤、あるいは、重合体(A)および(B)を溶液としたときに、当該溶液の安定性を向上させる安定化剤、などが挙げられる。   The resin composition of the present invention may contain a polymer other than the polymers (A) and (B), or other various materials, as long as the effect of the present invention is obtained. As such a material, for example, when the compatibilizing agent for improving the compatibility of the polymers (A) and (B) or the polymers (A) and (B) is used as a solution, the stability of the solution is increased. And stabilizers that improve the properties.

[複屈折部材]
本発明の樹脂組成物から、例えば、複屈折部材を形成できる。この場合、本発明の樹脂組成物は、複屈折部材用樹脂組成物であるともいえる。
[Birefringent member]
For example, a birefringent member can be formed from the resin composition of the present invention. In this case, it can be said that the resin composition of the present invention is a resin composition for a birefringent member.

本発明の樹脂組成物から形成した複屈折部材(本発明の複屈折部材)は、逆波長分散性を有する。即ち、当該複屈折部材は、少なくとも可視光領域において、波長が短くなるほど複屈折(あるいは、位相差もしくはリターデーション)が小さくなる複屈折特性を有する。このような複屈折部材は広帯域の複屈折部材であり、例えば、この複屈折部材を用いることにより、表示特性に優れる画像表示装置を構築できる。   The birefringent member (birefringent member of the present invention) formed from the resin composition of the present invention has reverse wavelength dispersion. That is, the birefringent member has a birefringence characteristic that birefringence (or phase difference or retardation) decreases as the wavelength becomes shorter, at least in the visible light region. Such a birefringent member is a broadband birefringent member. For example, by using this birefringent member, an image display device having excellent display characteristics can be constructed.

また、本発明の複屈折部材は、例えば、単層でありながら逆波長分散性を示す。このため当該複屈折部材は、その生産性、コスト性に優れる他、当該複屈折部材が組み込まれた画像表示装置の小型化、軽量化、低コスト化などを図ることができる。   In addition, the birefringent member of the present invention exhibits, for example, reverse wavelength dispersion while being a single layer. Therefore, the birefringent member is excellent in productivity and cost, and the image display device incorporating the birefringent member can be reduced in size, weight, and cost.

本発明の複屈折部材の具体的な形状は特に限定されない。複屈折部材としての用途に応じて適宜選択すればよく、例えば、シートあるいはフィルムとしてもよい。   The specific shape of the birefringent member of the present invention is not particularly limited. What is necessary is just to select suitably according to the use as a birefringent member, for example, it is good also as a sheet | seat or a film.

本発明の複屈折部材は、その用途に応じて、他の光学部材(光学部材には複屈折部材が含まれる)と組み合わせて用いてもよい。   The birefringent member of the present invention may be used in combination with another optical member (the optical member includes a birefringent member) depending on the application.

本発明の複屈折部材の具体的な種類も特に限定されず、例えば、位相差板としてもよいし、得られる位相差に基づくリターデーションを光の波長の1/4として、位相差板の一種であるλ/4板としてもよい。また、偏光板などの他の光学部材と組み合わせて、反射防止板とすることもできる。   The specific type of the birefringent member of the present invention is not particularly limited, and may be, for example, a retardation plate, or a retardation plate based on the retardation based on the obtained retardation, which is 1/4 of the wavelength of light. A λ / 4 plate may be used. Moreover, it can also be set as an antireflection plate combining with other optical members, such as a polarizing plate.

本発明の複屈折部材は、特にその用途が制限されることなく、従来の複屈折部材と同様の用途(例えば、LCD、OLEDなどの画像表示装置)に使用が可能である。   The use of the birefringent member of the present invention is not particularly limited, and the birefringent member of the present invention can be used for the same use as a conventional birefringent member (for example, an image display device such as an LCD or an OLED).

本発明の樹脂組成物に含まれる重合体(A)は、その主鎖に環構造を有する。このため、本発明の複屈折部材は、高い耐熱性を有し、例えば、画像表示装置において、光源などの発熱部に近接した配置が可能である。   The polymer (A) contained in the resin composition of the present invention has a ring structure in its main chain. For this reason, the birefringent member of the present invention has high heat resistance, and can be disposed close to a heat generating part such as a light source in an image display device, for example.

本発明の樹脂組成物から複屈折部材を形成する方法は特に限定されず、公知の手法に従えばよい。本発明の樹脂組成物が溶液状である場合、例えば、当該溶液をキャストなどの手法により成形してシートとし、得られたシートを所定の方向に延伸、典型的には一軸延伸あるいは逐次二軸延伸、し、シートに含まれる双方の重合体の分子鎖を配向させることで、シート状の複屈折部材を形成できる。固形の樹脂組成物であれば、例えば、溶融押出やプレス成形などの成形手法により樹脂組成物をシートあるいはフィルムとし、得られたシート(フィルム)を上述したように所定の方向に延伸して、シート状(フィルム状)の複屈折部材を形成できる。   The method for forming the birefringent member from the resin composition of the present invention is not particularly limited, and a known technique may be followed. When the resin composition of the present invention is in the form of a solution, for example, the solution is molded into a sheet by a technique such as casting, and the obtained sheet is stretched in a predetermined direction, typically uniaxially stretched or sequentially biaxially. A sheet-like birefringent member can be formed by stretching and orienting the molecular chains of both polymers contained in the sheet. If it is a solid resin composition, for example, the resin composition is formed into a sheet or film by a molding technique such as melt extrusion or press molding, and the obtained sheet (film) is stretched in a predetermined direction as described above, A sheet-like (film-like) birefringent member can be formed.

以下、実施例により、本発明をより詳細に説明する。本発明は、以下に示す実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples shown below.

(製造例1)
攪拌装置、温度センサー、冷却管、および窒素導入管を備えた反応装置に、15重量部の2−(ヒドロキシメチル)アクリル酸メチル(MHMA)、35重量部のメタクリル酸メチル(MMA)、および重合溶媒として50重量部のトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.03重量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、商品名:ルペロックス570)を添加するとともに、3.34重量部のトルエンに上記t−アミルパーオキシイソノナノエート0.06重量部を溶解した溶液を2時間かけて滴下しながら、約105〜110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
(Production Example 1)
In a reactor equipped with a stirrer, temperature sensor, condenser, and nitrogen inlet, 15 parts by weight of methyl 2- (hydroxymethyl) acrylate (MHMA), 35 parts by weight of methyl methacrylate (MMA), and polymerization 50 parts by weight of toluene was charged as a solvent, and the temperature was raised to 105 ° C. while passing nitrogen through the solvent. At the start of reflux accompanying the temperature rise, 0.03 parts by weight of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi Co., Ltd., trade name: Luperox 570) was added as a polymerization initiator and 3.34 parts by weight. While a solution of 0.06 part by weight of the above t-amylperoxyisononanoate dissolved in toluene was added dropwise over 2 hours, solution polymerization was allowed to proceed under reflux at about 105 to 110 ° C., and further aged for 4 hours. Went.

次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、0.1重量部のリン酸オクチル/ジオクチル混合物を加え、約80〜105℃の還流下において2時間、環化縮合反応を進行させた。   Next, 0.1 parts by weight of an octyl phosphate / dioctyl mixture is added to the resulting polymerization solution as a catalyst for the cyclization condensation reaction (cyclization catalyst), and the mixture is refluxed at about 80 to 105 ° C. for 2 hours. The cyclization condensation reaction proceeded.

次に、このようにして得た重合溶液を、減圧下240℃で1時間乾燥させて、主鎖にラクトン環構造を有する透明な重合体(A−1)を形成した。   Next, the polymerization solution thus obtained was dried at 240 ° C. under reduced pressure for 1 hour to form a transparent polymer (A-1) having a lactone ring structure in the main chain.

(製造例2)
攪拌装置、温度センサー、冷却管、および窒素導入管を備えた反応装置に、15重量部のMHMA、25重量部のMMA、10重量部のメタクリル酸ベンジル、および重合溶媒として50重量部のトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.03重量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、商品名:ルペロックス570)を添加するとともに、3.34重量部のトルエンに上記t−アミルパーオキシイソノナノエート0.06重量部を溶解した溶液を6時間かけて滴下しながら、約105〜111℃の還流下で溶液重合を進行させ、さらに2時間の熟成を行った。
(Production Example 2)
A reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe was charged with 15 parts by weight of MHMA, 25 parts by weight of MMA, 10 parts by weight of benzyl methacrylate, and 50 parts by weight of toluene as a polymerization solvent. The mixture was charged and heated to 105 ° C. while passing nitrogen through it. At the start of reflux accompanying the temperature rise, 0.03 parts by weight of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi Co., Ltd., trade name: Luperox 570) was added as a polymerization initiator and 3.34 parts by weight. While the solution of 0.06 part by weight of t-amylperoxyisononanoate dissolved in toluene was added dropwise over 6 hours, solution polymerization was allowed to proceed under reflux at about 105 to 111 ° C., and the aging was continued for 2 hours. Went.

次に、得られた重合溶液に、環化触媒として、0.1重量部のリン酸オクチル/ジオクチル混合物を加え、約80〜105℃の還流下において2時間、環化縮合反応を進行させた。   Next, 0.1 part by weight of an octyl phosphate / dioctyl mixture was added to the resulting polymerization solution as a cyclization catalyst, and the cyclization condensation reaction was allowed to proceed for 2 hours under reflux at about 80 to 105 ° C. .

次に、このようにして得た重合溶液を、減圧下240℃で1時間乾燥させて、主鎖にラクトン環構造を有する透明な重合体(A−2)を形成した。   Next, the polymerization solution thus obtained was dried at 240 ° C. under reduced pressure for 1 hour to form a transparent polymer (A-2) having a lactone ring structure in the main chain.

形成した重合体(A−2)の固有複屈折を、実施例1に記載の方法で延伸フィルム化した重合体(A−2)の配向角を全自動複屈折計(王子計測機器社製、KOBRA−21ADH)を用いて測定することにより評価したところ、正であった。   The intrinsic birefringence of the formed polymer (A-2), the orientation angle of the polymer (A-2) formed into a stretched film by the method described in Example 1, is determined by a fully automatic birefringence meter (manufactured by Oji Scientific Instruments, It was positive when evaluated by measuring using KOBRA-21ADH).

(製造例3)
攪拌装置、温度センサー、冷却管、および窒素導入管を備えた反応装置に、10重量部のビニルカルバゾール、18重量部のMHMA、72重量部のMMA、および重合溶媒として80重量部のトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤として0.1重量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、商品名:ルペロックス570)を添加するとともに、10重量部のトルエンに上記t−アミルパーオキシイソノナノエート0.2重量部を溶解した溶液を2時間かけて滴下しながら、約105〜110℃の還流下で溶液重合を進行させ、さらに4時間の熟成を行った。
(Production Example 3)
A reactor equipped with a stirrer, a temperature sensor, a cooling tube, and a nitrogen introduction tube was charged with 10 parts by weight of vinylcarbazole, 18 parts by weight of MHMA, 72 parts by weight of MMA, and 80 parts by weight of toluene as a polymerization solvent. The temperature was raised to 105 ° C. while nitrogen was passed through. When the reflux with the temperature increase started, 0.1 parts by weight of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 570) was added as a polymerization initiator and 10 parts by weight of toluene. While a solution in which 0.2 parts by weight of t-amylperoxyisononanoate was dissolved in 2 hours was added dropwise over 2 hours, solution polymerization was allowed to proceed under reflux at about 105 to 110 ° C., followed by aging for 4 hours. It was.

次に、得られた重合溶液に10重量部のトルエンに溶解させた0.9重量部のリン酸オクチル/ジオクチル混合物を加え、還流下において2時間、上記重合により形成した重合体中のMHMA単位とMMA単位との間に環化縮合反応を進行させた。   Next, 0.9 parts by weight of an octyl phosphate / dioctyl mixture dissolved in 10 parts by weight of toluene was added to the obtained polymerization solution, and MHMA units in the polymer formed by the above polymerization for 2 hours under reflux. A cyclocondensation reaction was allowed to proceed between the MMA unit and the MMA unit.

次に、このようにして得た重合溶液を、減圧下240℃で1時間乾燥させて、ビニルカルバゾール単位を主鎖に有する透明な重合体(B−1)を形成した。なお、得られた重合体(B−1)は、その主鎖にラクトン環構造を有するが、この環構造は、重合体(B−1)と、重合体(A−1)または(A−2)との相容性を向上させることを目的として形成した。   Next, the polymerization solution thus obtained was dried at 240 ° C. under reduced pressure for 1 hour to form a transparent polymer (B-1) having vinylcarbazole units in the main chain. In addition, although the obtained polymer (B-1) has a lactone ring structure in the main chain, this ring structure is composed of the polymer (B-1) and the polymer (A-1) or (A- It was formed for the purpose of improving the compatibility with 2).

(実施例1)
重合体(A)として製造例1で作製した重合体(A−1)10重量部と、重合体(B)として製造例3で作製した重合体(B−1)20重量部とを、メチルイソブチルケトンに溶解させ、得られた溶液を攪拌して、重合体(A−1)および(B−1)を均一に混合した。次に、得られた混合溶液を、減圧下240℃で1時間乾燥させて、固形の樹脂組成物30重量部を得た。
Example 1
10 parts by weight of the polymer (A-1) produced in Production Example 1 as the polymer (A) and 20 parts by weight of the polymer (B-1) produced in Production Example 3 as the polymer (B) The polymer (A-1) and (B-1) were uniformly mixed by dissolving in isobutyl ketone and stirring the resulting solution. Next, the obtained mixed solution was dried at 240 ° C. under reduced pressure for 1 hour to obtain 30 parts by weight of a solid resin composition.

次に、得られた樹脂組成物を、プレス成形機により250℃でプレス成形して、厚さ100μmのフィルムとした。次に、作製したフィルムを、二軸延伸装置(東洋精機製作所社製、TYPE EX4)により、MD方向の延伸倍率が2倍となるように、延伸温度138℃で一軸延伸して、厚さ40μmの延伸フィルムを得た。   Next, the obtained resin composition was press-molded at 250 ° C. with a press molding machine to obtain a film having a thickness of 100 μm. Next, the produced film was uniaxially stretched at a stretching temperature of 138 ° C. by a biaxial stretching device (TYPE EX4, manufactured by Toyo Seiki Seisakusho Co., Ltd.) so that the stretching ratio in the MD direction was doubled, and the thickness was 40 μm. A stretched film was obtained.

得られた延伸フィルムの位相差(フィルム面内の位相差)の波長分散性ならびに配向角を、全自動複屈折計(王子計測機器社製、KOBRA−21ADH)を用いて評価した。波長分散性の評価結果を、以下の表1に示す。なお、測定波長を589nmとしたときの位相差を基準(R0)として、その他の波長における位相差Rとの比(R/R0)を併せて示す。   The wavelength dispersibility and the orientation angle of retardation (in-plane retardation) of the obtained stretched film were evaluated using a fully automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH). The evaluation results of wavelength dispersion are shown in Table 1 below. The phase difference when the measurement wavelength is 589 nm is used as a reference (R0), and the ratio (R / R0) to the phase difference R at other wavelengths is also shown.

Figure 2009162850
Figure 2009162850

表1に示すように、実施例1で得られた延伸フィルムは、光の波長が短くなるほど位相差が小さくなる逆波長分散性を示した。   As shown in Table 1, the stretched film obtained in Example 1 exhibited reverse wavelength dispersibility in which the phase difference decreased as the wavelength of light decreased.

実施例1で得られた延伸フィルムの配向角(φ)は−0.8°であり、即ち、その固有複屈折は正であった。   The orientation angle (φ) of the stretched film obtained in Example 1 was −0.8 °, that is, its intrinsic birefringence was positive.

(実施例2)
重合体(A)として、重合体(A−1)の代わりに、製造例2で作製した重合体(A−2)を用いた以外は、実施例1と同様にして延伸フィルムを作製し、作製した延伸フィルムの位相差の波長分散性ならびに配向角を、実施例1と同様に評価した。波長分散性の評価結果を、以下の表2に示す。
(Example 2)
As the polymer (A), a stretched film was produced in the same manner as in Example 1 except that the polymer (A-2) produced in Production Example 2 was used instead of the polymer (A-1). The wavelength dispersion of the retardation and the orientation angle of the produced stretched film were evaluated in the same manner as in Example 1. The evaluation results of wavelength dispersion are shown in Table 2 below.

Figure 2009162850
Figure 2009162850

表2に示すように、実施例2で得られた延伸フィルムは、光の波長が短くなるほど位相差が小さくなる逆波長分散性を示した。   As shown in Table 2, the stretched film obtained in Example 2 exhibited reverse wavelength dispersibility in which the phase difference decreased as the wavelength of light decreased.

実施例2で得られた延伸フィルムの配向角(φ)は0.6°であり、即ち、その固有複屈折は正であった。   The orientation angle (φ) of the stretched film obtained in Example 2 was 0.6 °, that is, its intrinsic birefringence was positive.

(実施例3)
重合体(A)としてアクリルイミド樹脂(ロームアンドハース社製、KAMAX T−240)10重量部と、重合体(B)として製造例3で形成した重合体(B−1)25重量部とを用いた以外は、実施例1と同様にして、固形の樹脂組成物35重量部を得た。なお、重合体(A)として用いたアクリルイミド樹脂は、以下の式(7)に示すように、その構成単位としてN−メチル−ジメチルグルタルイミド単位およびメチルメタアクリレート単位を有する。
(Example 3)
10 parts by weight of an acrylic imide resin (Rohm and Haas, KAMAX T-240) as the polymer (A) and 25 parts by weight of the polymer (B-1) formed in Production Example 3 as the polymer (B) Except that it was used, 35 parts by weight of a solid resin composition was obtained in the same manner as in Example 1. The acrylic imide resin used as the polymer (A) has an N-methyl-dimethylglutarimide unit and a methyl methacrylate unit as its constituent units, as shown in the following formula (7).

Figure 2009162850
Figure 2009162850

次に、得られた樹脂組成物を、プレス成形機により250℃でプレス成形して、厚さ100μmのフィルムとした。次に、作製したフィルムを、二軸延伸装置(東洋精機製作所社製、TYPE EX4)により、MD方向の延伸倍率が2倍となるように、延伸温度143℃で一軸延伸して、厚さ50μmの延伸フィルムを得た。   Next, the obtained resin composition was press-molded at 250 ° C. with a press molding machine to obtain a film having a thickness of 100 μm. Next, the produced film was uniaxially stretched at a stretching temperature of 143 ° C. by a biaxial stretching apparatus (TYPE EX4, manufactured by Toyo Seiki Seisakusho Co., Ltd.) so that the stretching ratio in the MD direction was doubled, and the thickness was 50 μm. A stretched film was obtained.

次に、得られた延伸フィルムの位相差の波長分散性ならびに配向角を、実施例1と同様に評価した。波長分散性の評価結果を、以下の表3に示す。   Next, the wavelength dispersion of the retardation and the orientation angle of the obtained stretched film were evaluated in the same manner as in Example 1. The evaluation results of wavelength dispersion are shown in Table 3 below.

Figure 2009162850
Figure 2009162850

表3に示すように、実施例3で得られた延伸フィルムは、光の波長が短くなるほど位相差が小さくなる逆波長分散性を示した。   As shown in Table 3, the stretched film obtained in Example 3 exhibited reverse wavelength dispersibility in which the phase difference decreased as the wavelength of light decreased.

実施例3で得られた延伸フィルムの配向角(φ)は−2.1°であり、即ち、その固有複屈折は正であった。   The orientation angle (φ) of the stretched film obtained in Example 3 was −2.1 °, that is, its intrinsic birefringence was positive.

(比較例1)
製造例1で形成した重合体(A−1)のみを用いて、実施例1と同様にプレス成形および一軸延伸を行うことで、重合体(A−1)の延伸フィルム(厚さ40μm)を得た。得られた延伸フィルムの位相差の波長分散性ならびに配向角を、実施例1と同様に評価した。波長分散性の評価結果を、以下の表4に示す。
(Comparative Example 1)
By using only the polymer (A-1) formed in Production Example 1 and performing press molding and uniaxial stretching in the same manner as in Example 1, a stretched film (thickness 40 μm) of the polymer (A-1) is obtained. Obtained. The wavelength dispersion of the retardation and the orientation angle of the obtained stretched film were evaluated in the same manner as in Example 1. The evaluation results of wavelength dispersion are shown in Table 4 below.

Figure 2009162850
Figure 2009162850

表4に示すように、比較例1で得られた延伸フィルムは、光の波長が短くなるほど位相差が大きくなる、即ち、ポリカーボネートなどの一般的な高分子を用いた複屈折部材と同様の、波長分散性を示した。   As shown in Table 4, the stretched film obtained in Comparative Example 1 has a larger retardation as the wavelength of light is shorter, that is, similar to a birefringent member using a general polymer such as polycarbonate, It showed wavelength dispersion.

比較例1で得られた延伸フィルムの配向角(φ)は−0.7°であり、即ち、その固有複屈折は正であった。   The orientation angle (φ) of the stretched film obtained in Comparative Example 1 was −0.7 °, that is, its intrinsic birefringence was positive.

(比較例2)
実施例3で用いたアクリルイミド樹脂のみを用いて、実施例1と同様にプレス成形および一軸延伸を行うことで、厚さ50μmの延伸フィルムを得た。得られた延伸フィルムの位相差の波長分散性ならびに配向角を、実施例1と同様に評価した。波長分散性の評価結果を、以下の表5に示す。
(Comparative Example 2)
A stretched film having a thickness of 50 μm was obtained by performing press molding and uniaxial stretching in the same manner as in Example 1 using only the acrylic imide resin used in Example 3. The wavelength dispersion of the retardation and the orientation angle of the obtained stretched film were evaluated in the same manner as in Example 1. The evaluation results of wavelength dispersion are shown in Table 5 below.

Figure 2009162850
Figure 2009162850

表5に示すように、比較例2で得られた延伸フィルムは、光の波長が短くなるほど位相差が大きくなる、即ち、ポリカーボネートなどの一般的な高分子を用いた複屈折部材と同様の、波長分散性を示した。   As shown in Table 5, the stretched film obtained in Comparative Example 2 has a larger retardation as the wavelength of light becomes shorter, that is, similar to a birefringent member using a general polymer such as polycarbonate, It showed wavelength dispersion.

比較例2で得られた延伸フィルムの配向角(φ)は−0.8°であり、即ち、その固有複屈折は正であった。   The orientation angle (φ) of the stretched film obtained in Comparative Example 2 was −0.8 °, that is, its intrinsic birefringence was positive.

(比較例3)
製造例3で形成した重合体(B−1)のみを用いて、実施例1と同様にプレス成形および一軸延伸を行うことで、重合体(B−1)の延伸フィルムを得た。得られた延伸フィルムの位相差の波長分散性ならびに配向角を、実施例1と同様に評価した。波長分散性の評価結果を、以下の表6に示す。
(Comparative Example 3)
By using only the polymer (B-1) formed in Production Example 3, press forming and uniaxial stretching were performed in the same manner as in Example 1 to obtain a stretched film of the polymer (B-1). The wavelength dispersion of the retardation and the orientation angle of the obtained stretched film were evaluated in the same manner as in Example 1. The evaluation results of wavelength dispersion are shown in Table 6 below.

Figure 2009162850
Figure 2009162850

表6に示すように、比較例3で得られた延伸フィルムは、光の波長が短くなるほど位相差が大きくなる、即ち、ポリカーボネートなどの一般的な高分子を用いた複屈折部材と同様の、波長分散性を示した。   As shown in Table 6, the stretched film obtained in Comparative Example 3 has a larger retardation as the wavelength of light is shorter, that is, similar to a birefringent member using a general polymer such as polycarbonate, It showed wavelength dispersion.

比較例3で得られた延伸フィルムの配向角(φ)は89.4°であり、即ち、その固有複屈折は負であった。   The orientation angle (φ) of the stretched film obtained in Comparative Example 3 was 89.4 °, that is, its intrinsic birefringence was negative.

本発明の樹脂組成物によれば、位相差または波長分散性が異なる2種の複屈折部材の積層、あるいは特定の光学特性を有する微粒子の添加などを行うことなく、逆波長分散性を有する複屈折部材を実現できる。また、本発明の樹脂組成物によれば、複屈折部材としたときの逆波長分散性の制御の自由度を向上できる。   According to the resin composition of the present invention, a compound having reverse wavelength dispersion can be obtained without laminating two kinds of birefringent members having different phase differences or wavelength dispersion or adding fine particles having specific optical characteristics. A refractive member can be realized. Moreover, according to the resin composition of this invention, the freedom degree of control of reverse wavelength dispersion when it is set as a birefringent member can be improved.

本発明の樹脂組成物から形成した複屈折部材は、従来の複屈折部材と同様に、液晶表示装置(LCD)、有機ELディスプレイ(OLED)をはじめとする画像表示装置に広く使用でき、この複屈折部材の使用により、画像表示装置の小型化、軽量化が可能となる。   The birefringent member formed from the resin composition of the present invention can be widely used in image display devices such as liquid crystal display devices (LCD) and organic EL displays (OLEDs), as with conventional birefringent members. By using the refractive member, the image display device can be reduced in size and weight.

Claims (10)

固有複屈折が正であり、主鎖に環構造を有する重合体(A)と、
固有複屈折が負であり、複素芳香族基を有するα,β−不飽和単量体単位を構成単位として有する重合体(B)と、を含む樹脂組成物。
A polymer (A) having a positive intrinsic birefringence and a ring structure in the main chain;
A resin composition comprising: a polymer (B) having a negative intrinsic birefringence and having an α, β-unsaturated monomer unit having a heteroaromatic group as a constituent unit.
前記α,β−不飽和単量体単位が、ビニルカルバゾール単位、ビニルピリジン単位、ビニルイミダゾール単位、およびビニルチオフェン単位から選ばれる少なくとも1種である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the α, β-unsaturated monomer unit is at least one selected from a vinylcarbazole unit, a vinylpyridine unit, a vinylimidazole unit, and a vinylthiophene unit. 前記α,β−不飽和単量体単位が、ビニルカルバゾール単位である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the α, β-unsaturated monomer unit is a vinyl carbazole unit. 前記環構造が、エステル基、イミド基、または酸無水物基を有する請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the ring structure has an ester group, an imide group, or an acid anhydride group. 前記環構造が、ラクトン環構造、グルタルイミド構造、または無水グルタル酸構造である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the ring structure is a lactone ring structure, a glutarimide structure, or a glutaric anhydride structure. 前記環構造が、ラクトン環構造、またはグルタルイミド構造である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the ring structure is a lactone ring structure or a glutarimide structure. 前記環構造が、ラクトン環構造である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the ring structure is a lactone ring structure. 前記環構造が、以下の式(1)により示されるラクトン環構造である、請求項7に記載の樹脂組成物。
Figure 2009162850
上記式(1)において、R1、R2およびR3は、互いに独立して、水素原子または炭素数1〜20の範囲の有機残基であり、当該有機残基は酸素原子を含んでいてもよい。
The resin composition according to claim 7, wherein the ring structure is a lactone ring structure represented by the following formula (1).
Figure 2009162850
In the above formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms, and the organic residue contains an oxygen atom. Also good.
前記重合体(A)が、(メタ)アクリル系樹脂である請求項1〜8のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 8, wherein the polymer (A) is a (meth) acrylic resin. 前記重合体(B)が、構成単位として(メタ)アクリル酸エステル単位を有する請求項9に記載の樹脂組成物。   The resin composition according to claim 9, wherein the polymer (B) has a (meth) acrylic acid ester unit as a structural unit.
JP2007339806A 2007-12-28 2007-12-28 Resin composition Expired - Fee Related JP5226299B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007339806A JP5226299B2 (en) 2007-12-28 2007-12-28 Resin composition
KR1020107014667A KR101572284B1 (en) 2007-12-28 2008-12-26 Optical film and image forming apparatus having the same
EP08866375A EP2237086A4 (en) 2007-12-28 2008-12-26 Optical film and image forming apparatus having the same
CN2008801232066A CN101910888B (en) 2007-12-28 2008-12-26 Optical film and image forming apparatus having the same
TW097151163A TWI570450B (en) 2007-12-28 2008-12-26 An optical film, a method of manufacturing the same, and an image display device provided with the same
PCT/JP2008/073808 WO2009084663A1 (en) 2007-12-28 2008-12-26 Optical film and image forming apparatus having the same
US12/810,462 US20100272971A1 (en) 2007-12-28 2008-12-26 Optical film and image display apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339806A JP5226299B2 (en) 2007-12-28 2007-12-28 Resin composition

Publications (2)

Publication Number Publication Date
JP2009162850A true JP2009162850A (en) 2009-07-23
JP5226299B2 JP5226299B2 (en) 2013-07-03

Family

ID=40965582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339806A Expired - Fee Related JP5226299B2 (en) 2007-12-28 2007-12-28 Resin composition

Country Status (1)

Country Link
JP (1) JP5226299B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123165A (en) * 2009-12-09 2011-06-23 Nippon Shokubai Co Ltd Retardation film
JP2015127361A (en) * 2013-12-27 2015-07-09 株式会社日本触媒 Thermoplastic resin composition, film, polarizing plate, and image display device
JP2017186509A (en) * 2016-03-31 2017-10-12 旭化成株式会社 Methacrylic resin composition
US10067277B2 (en) 2014-12-01 2018-09-04 Samsung Electronics Co., Ltd. Compensation film, and optical film and display device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098812A (en) * 2000-09-26 2002-04-05 Hitachi Chem Co Ltd Optical film, film for optics using the same, and liquid crystal display device
JP2009069745A (en) * 2007-09-18 2009-04-02 Sumitomo Chemical Co Ltd Composition for retardation plate and retardation plate comprising the same
JP2009138171A (en) * 2007-09-18 2009-06-25 Sumitomo Chemical Co Ltd Optical film and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098812A (en) * 2000-09-26 2002-04-05 Hitachi Chem Co Ltd Optical film, film for optics using the same, and liquid crystal display device
JP2009069745A (en) * 2007-09-18 2009-04-02 Sumitomo Chemical Co Ltd Composition for retardation plate and retardation plate comprising the same
JP2009138171A (en) * 2007-09-18 2009-06-25 Sumitomo Chemical Co Ltd Optical film and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123165A (en) * 2009-12-09 2011-06-23 Nippon Shokubai Co Ltd Retardation film
JP2015127361A (en) * 2013-12-27 2015-07-09 株式会社日本触媒 Thermoplastic resin composition, film, polarizing plate, and image display device
US10067277B2 (en) 2014-12-01 2018-09-04 Samsung Electronics Co., Ltd. Compensation film, and optical film and display device including the same
JP2017186509A (en) * 2016-03-31 2017-10-12 旭化成株式会社 Methacrylic resin composition

Also Published As

Publication number Publication date
JP5226299B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5291361B2 (en) Resin composition for optical materials
JP5057807B2 (en) Retardation film containing acrylic resin and styrene resin
JP5220128B2 (en) Optical film and information electronic device including the same
WO2009084663A1 (en) Optical film and image forming apparatus having the same
WO2007043356A1 (en) Resin composition for optical material
JPWO2007061041A1 (en) Optical film
JP5204703B2 (en) Optical member and image display device including the same
JP2008216998A (en) Multilayer optical film
KR20120040964A (en) Resin compositions for optical films and optical films formed by using the same
WO2009139353A1 (en) Stretched optical film and polarizing plate and image display device using the same
JP5226299B2 (en) Resin composition
JP2007197703A (en) Acrylic film and polarizing plate
JP2010054750A (en) Method for manufacturing retardation film
JP5364365B2 (en) Optical member and image display device including the same
JP5433328B2 (en) Retardation film
JP2012098649A (en) Brightness enhanced film
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP2009128638A (en) Optical molded body
JP5412211B2 (en) Polarizing plate and stretched image display device with optical stretched film
KR101606534B1 (en) Optical film having reverse wavelength dispersion and display device comprising same
JP2008179813A (en) Planar thermoplastic resin molded article
JP2009276420A (en) Optical film and retardation film
JP5308891B2 (en) Acrylic polymer, method for producing the same, acrylic resin composition, retardation film, and image display device
JP5563348B2 (en) Retardation film and image display device having the same
JP2019179124A (en) Optical molding body and optical product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees