JP2009162720A - Automatic analysis apparatus - Google Patents

Automatic analysis apparatus Download PDF

Info

Publication number
JP2009162720A
JP2009162720A JP2008003087A JP2008003087A JP2009162720A JP 2009162720 A JP2009162720 A JP 2009162720A JP 2008003087 A JP2008003087 A JP 2008003087A JP 2008003087 A JP2008003087 A JP 2008003087A JP 2009162720 A JP2009162720 A JP 2009162720A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
detector
vessel
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008003087A
Other languages
Japanese (ja)
Other versions
JP4901766B2 (en
Inventor
Goro Yoshida
悟郎 吉田
Masahito Ishizawa
雅人 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008003087A priority Critical patent/JP4901766B2/en
Publication of JP2009162720A publication Critical patent/JP2009162720A/en
Application granted granted Critical
Publication of JP4901766B2 publication Critical patent/JP4901766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic analysis apparatus that yields high-precision measurement reproducibility without increasing costs. <P>SOLUTION: The automatic analysis apparatus measures the amount of light transmitted through the reaction container 105 by disposing a reaction container 105 and a reaction container detection mechanism on the outer circumference of the reaction disk 104: disposing a detector 204 which detects passage of the reaction container 105 on a path; and a light source 113 and a spectroscopic detector 114 at positions to sandwich the reaction container 105. When rotating the reaction disk, the automatic analysis apparatus calculates the speed of rotation of the reaction disk based on the detection of the passage of the reaction container 105 by the detector 204 and corrects the timings of start and end of photometry with use of the calculated speed. When rotating the reaction disk, the automatic analysis apparatus calculates the speed of rotation of the reaction disk based on an output signal from the spectroscopic detector 114 and corrects the timings of start and end of photometry by use of the calculated speed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動分析装置に関し、特に反応ディスクの外周の円周上に複数の反応容器を配置し、反応容器を挟んで光源と分光検出器を配置して、反応容器を透過する光量を測定する回転反応器の測定方式に関する。   The present invention relates to an automatic analyzer, and in particular, a plurality of reaction vessels are arranged on the circumference of the outer periphery of a reaction disk, and a light source and a spectroscopic detector are arranged across the reaction vessel to measure the amount of light transmitted through the reaction vessel. The present invention relates to a measurement method of a rotating reactor.

従来、反応ディスクの外周の円周上に複数の反応容器を配置し、反応容器を挟んで光源と分光検出器を配置して反応容器を透過する光量を測定する回転反応器が知られている。このような反応器による測定においては、各セルに対応した検知板からセル位置を検出し、測光開始位置を決定している。また、エンコーダの信号と測光データからセル位置を検出して測光開始位置を決定する測定方式もある。   Conventionally, a rotary reactor is known in which a plurality of reaction vessels are arranged on the circumference of the outer periphery of a reaction disk, and a light source and a spectroscopic detector are arranged with the reaction vessel interposed therebetween to measure the amount of light transmitted through the reaction vessel. . In measurement using such a reactor, the cell position is detected from the detection plate corresponding to each cell, and the photometric start position is determined. There is also a measurement method in which a cell position is detected from an encoder signal and photometric data to determine a photometric start position.

しかし、上記検知板寸法や、検知板とセル間寸法およびセル取り付け位置には誤差が存在する。このため、それぞれの誤差を考慮すると、測光開始から終了までの時間を短くする必要が出てくる。現方式では、これらの誤差を極力相殺すべく、検知板位置から測光開始位置の時間を調整可能としているが、反応容器総数が増えると、全反応容器における寸法誤差は相殺しきれない。この問題を解決するために、各セルに対して個々に時間調整値を持たせるシステムを搭載した場合でも、反応ディスクの速度ムラによるばらつきは残り、この分、測光可能時間を短くしなければならない。また、エンコーダから位置情報を直接検出して測光開始位置を算出する方式もあるが、必要になる分解能を持つエンコーダは非常に高価でありコスト的に現実的ではない。   However, there are errors in the size of the detection plate, the size between the detection plate and the cell, and the cell attachment position. For this reason, when each error is taken into consideration, it is necessary to shorten the time from the start to the end of photometry. In the current method, in order to cancel out these errors as much as possible, the time from the detection plate position to the photometric start position can be adjusted. However, when the total number of reaction vessels increases, the dimensional errors in all the reaction vessels cannot be offset. In order to solve this problem, even when a system that individually adjusts the time for each cell is installed, variations due to uneven speed of the reaction disk remain, and the photometric time must be shortened accordingly. . In addition, there is a method of directly detecting the position information from the encoder and calculating the photometric start position, but an encoder having the necessary resolution is very expensive and not practical in terms of cost.

本発明は、上記課題を解決するためのもので、コストを上げることなく、高精度の測定再現性が得られる自動分析装置を提供することを目的とする。   An object of the present invention is to provide an automatic analyzer that can achieve high-precision measurement reproducibility without increasing costs.

本発明は、反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、反応容器位置を検出する検出器を軌道上に少なくとも一つ配置し、反応容器を挟んで光源と分光検出器を配置して反応容器の光量を測定する測定方式において、反応ディスク回転中に、検出器から得られる反応容器位置間隔時間から反応ディスク回転速度を逐次算出し、算出された速度から測光開始位置と測光終了時間を決定することを特徴とする。   In the present invention, the reaction vessel and the reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the reaction vessel position is arranged on the track, and the light source and the spectral detection are sandwiched between the reaction vessels. In the measurement method that measures the amount of light in the reaction vessel by arranging the vessel, the reaction disc rotation speed is sequentially calculated from the reaction vessel position interval time obtained from the detector during reaction disc rotation, and the photometry start position from the calculated speed And determining the photometric end time.

すなわち、本発明は、反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、前記反応ディスク回転時に、前記検出器による前記反応容器の通過検出を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正する自動分析装置である。   That is, in the present invention, a reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, at least one detector for detecting the passage of the reaction vessel is arranged on the track, and the reaction vessel is sandwiched between them. In an automatic analyzer that measures the amount of light transmitted through the reaction vessel by arranging a light source and a spectroscopic detector at a position, the reaction disc rotation speed is based on detection of passage of the reaction vessel by the detector when the reaction disc rotates. Is an automatic analyzer that corrects the timing of the start and end of photometry using the calculated speed.

反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、前記反応ディスク回転時に、前記分光検出器の出力信号を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正する自動分析装置である。   A reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the passage of the reaction vessel is arranged on the orbit, and a light source and spectral detection are arranged at a position sandwiching the reaction vessel. In the automatic analyzer that measures the amount of light that passes through the reaction vessel by arranging a vessel, when the reaction disk rotates, the reaction disk rotation speed is calculated based on the output signal of the spectroscopic detector, and the calculated speed is used. This is an automatic analyzer that corrects the timing of the start and end of photometry.

反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、前記反応ディスク回転時に、前記分光検出器の出力信号を用いて前記反応容器と隣りの反応容器との間を検出し、検出結果を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正する自動分析装置である。   A reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the passage of the reaction vessel is arranged on the orbit, and a light source and spectral detection are arranged at a position sandwiching the reaction vessel. In the automatic analyzer for measuring the amount of light transmitted through the reaction vessel by arranging a vessel, the output signal of the spectroscopic detector is detected between the reaction vessel and the adjacent reaction vessel when the reaction disk rotates. The automatic analysis device calculates the reaction disk rotation speed based on the detection result and corrects the timing of the photometry start and the photometry end using the calculated speed.

本発明によれば、速度ムラによる測光開始および測光終了時間のばらつきが補正可能であるため、測光可能時間を長くでき、データ再現性を向上できる。なお、本方式はエンコーダや平滑制御モータコントローラなどの部品を追加することなく、現状機構で実現可能であるため、コストアップすることがない。   According to the present invention, it is possible to correct the variation in the photometry start time and the photometry end time due to the speed unevenness, so that the photometry possible time can be lengthened and the data reproducibility can be improved. In addition, since this system can be realized with the current mechanism without adding parts such as an encoder and a smoothing control motor controller, the cost does not increase.

本発明を実施するための最良の形態を説明する。
図1は、自動分析装置の原理的な全体構成概略図である。まずは、自動分析装置の説明と測光の流れについての概要を解説する。図1において、操作部101から検体の分析測定項目を選択し、スタートボタンを押下して実行すると、インターフェース102より、分析部103に送信される。分析装置では、分析指示に従い、反応ディスク104を回転させて、反応容器105に順番に検体分注106、試薬分注109、攪拌112を行う。そして、光源113、多波長光度計114を用いて、通過する反応容器105の吸光度を測定し、濃度演算を行う。測定後の反応容器105は洗浄機構115により、洗浄される。分析部103は検体の分析項目の濃度演算結果を、インターフェース102より、操作部101に送信することで、ユーザは依頼した検体の分析項目の濃度を知ることができる。なお、107は検体容器支持ディスク、108は検体容器セットポジション、110は試薬容器支持ディスク、111は試薬容器線とポジションである。
The best mode for carrying out the present invention will be described.
FIG. 1 is a schematic diagram of the overall configuration of the automatic analyzer. First, I will explain the automatic analyzer and outline the flow of photometry. In FIG. 1, when an analysis measurement item of a sample is selected from the operation unit 101 and is executed by pressing a start button, the sample is transmitted from the interface 102 to the analysis unit 103. In the analyzer, the reaction disk 104 is rotated in accordance with the analysis instruction, and the sample dispensing 106, the reagent dispensing 109, and the stirring 112 are sequentially performed in the reaction container 105. Then, using the light source 113 and the multi-wavelength photometer 114, the absorbance of the reaction vessel 105 passing through is measured, and the concentration calculation is performed. The reaction container 105 after the measurement is cleaned by the cleaning mechanism 115. The analysis unit 103 transmits the concentration calculation result of the analysis item of the sample to the operation unit 101 from the interface 102, so that the user can know the concentration of the requested analysis item of the sample. Reference numeral 107 denotes a specimen container support disk, 108 denotes a specimen container set position, 110 denotes a reagent container support disk, and 111 denotes a reagent container line and position.

図2は反応ディスクと検知器、反応容器(セル)の概要図である。図3は反応容器を通過した時の吸光度と検知板の検出タイミングでのクロックに関して表した説明図である。図4は図3において、最適な測光可能領域への測光タイミングに速度ムラによるずれが生じた場合についての説明図である。   FIG. 2 is a schematic diagram of a reaction disk, a detector, and a reaction vessel (cell). FIG. 3 is an explanatory diagram showing the absorbance when passing through the reaction container and the clock at the detection timing of the detection plate. FIG. 4 is an explanatory diagram of a case where a shift due to speed unevenness occurs in the metering timing to the optimum meterable region in FIG.

現在の自動分析装置では、反応ディスク201には、検知板202と反応容器203が1対1の関係で対応しており、同数セットされている。この検知板202が反応ディスク201の回転中に検出器204により検出されると、図3のように検出器の検知信号が出力される。この出力立下りから、設定されているタイミング(T1)を消化した時点を測光開始タイミングとしている。このT1は、全ての反応容器に対して、一値のみ存在する場合と、各セルに対して一つずつ調整して存在する場合がある。基本的に、この調整値は、部品交換しない限り変更されることはない。一方で、モータ定速駆動時には、少なからず速度ムラが生じる。反応ディスクの駆動も例外ではなく、その結果、図4のように測光開始タイミングのばらつき原因になる。検知器パルス幅は周速度に依存し、速いとき短くなる。そして、測光時間は通常固定であるため、測光開始と測光終了のタイミングも同様にばらつくことになる。このばらつきを考慮すると、セル内平坦部以外を測光しないようするため、測光可能時間を減らさなければならず、その分、測光データの積算平均効果が薄れ、再現性の点で不利になる可能性がある。   In the current automatic analyzer, the detection plate 202 and the reaction vessel 203 correspond to the reaction disk 201 in a one-to-one relationship, and the same number is set. When the detection plate 202 is detected by the detector 204 while the reaction disk 201 is rotating, a detection signal of the detector is output as shown in FIG. The time at which the set timing (T1) is digested from the output fall is set as the photometry start timing. This T1 may exist only for one value for all reaction vessels, or may exist after being adjusted for each cell. Basically, this adjustment value is not changed unless parts are replaced. On the other hand, when the motor is driven at a constant speed, there is a considerable amount of speed unevenness. The driving of the reaction disk is no exception, and as a result, the photometry start timing varies as shown in FIG. The detector pulse width depends on the peripheral speed and decreases when it is fast. Since the photometry time is normally fixed, the timing of the photometry start and the photometry end also varies. In consideration of this variation, in order not to measure the light other than the flat part in the cell, the photometric time must be reduced, and the integrated average effect of the photometric data may be reduced accordingly, which may be disadvantageous in terms of reproducibility. There is.

ここで、速度ムラを算出し、その結果から測光開始タイミングや測光終了タイミングの少なくとも一方を補正すれば、ばらつきを考慮する必要が少なくなるため、測光可能時間が増し、再現性をより向上できる。   Here, if the speed unevenness is calculated and at least one of the photometry start timing and the photometry end timing is corrected based on the result, it is not necessary to consider the variation, so that the photometry possible time is increased and the reproducibility can be further improved.

次に本実施例について説明する。
通常、測光開始タイミングを調整する作業を行う際は反応ディスクを分析時と同様の速度で回転させる。反応容器1つずつに対して、測光開始タイミングを決定できるシステムの場合には、検知板検出出力立下り信号からの特定時間幅Tx(N)を反応容器の数Nだけ記憶させる。このとき、各検知板の検出時間幅を、基準時間幅TD1(N)として反応容器の数だけ記憶させる。分析動作時は、速度ムラにより、各検知板の検出時間幅が基準時間幅TD1(N)から若干ずれることになる。そのときの各検知板の検出時間幅TD2(N)をそれぞれ算出し、調整時に記憶した基準時間幅TD1(N)との比較を行う。例えば分析動作時の方が速く回転していた場合、Tx(N)が固定だと測光開始タイミングが遅れてしまう。これを防ぐために、Tx(N)に対して(TD1(N)−TD2(N))分だけ補正することで測光開始タイミングがずれないようにすることができる。この補正手段としては、例えば図5のように、特定時間幅Tx(N)をクロックパルスで与え、このパルス数を速度ムラに応じて増減させる方式が考えられる。
Next, this embodiment will be described.
Usually, when the work for adjusting the photometric start timing is performed, the reaction disk is rotated at the same speed as at the time of analysis. In the case of a system in which the photometry start timing can be determined for each reaction vessel, the specific time width Tx (N) from the detection plate detection output falling signal is stored for the number N of reaction vessels. At this time, the detection time width of each detection plate is stored as the reference time width T D1 (N) by the number of reaction vessels. During the analysis operation, the detection time width of each detection plate slightly deviates from the reference time width T D1 (N) due to speed unevenness. The detection time width T D2 (N) of each detection plate at that time is calculated and compared with the reference time width T D1 (N) stored at the time of adjustment. For example, when the analysis operation is rotating faster, the photometric start timing is delayed if Tx (N) is fixed. In order to prevent this, the photometry start timing can be prevented from shifting by correcting Tx (N) by (T D1 (N) −T D2 (N)). As this correction means, for example, as shown in FIG. 5, a method of giving a specific time width Tx (N) by a clock pulse and increasing or decreasing the number of pulses according to the speed unevenness can be considered.

この方式では次のような応用も可能である。仮に、図4よりも、速度ムラにより回転速度が速まっている場合には本実施例の方式により測光開始タイミングを補正したとしても、測光時間が固定であると、測光終了タイミングが測光可能領域外となるため、データ不正の原因になる。したがって、測光時間もクロックパルスで規定し、速度ムラ補正によって増減させる制御を行えば、想定以上の速度ムラによるデータ不正を防ぐことが可能になる。   This method can be applied as follows. As shown in FIG. 4, if the rotation speed is increased due to speed unevenness, even if the metering start timing is corrected by the method of the present embodiment, the metering end timing is set to the meterable region when the metering time is fixed. Since it is outside, it causes data fraud. Therefore, if the photometry time is also defined by the clock pulse and is controlled to increase or decrease by speed unevenness correction, it is possible to prevent data fraud due to speed unevenness more than expected.

本実施例では検知板を利用して補正値を決定しているが、反応容器の測光データからも速度の算出が可能である。反応容器そのものの測光データでは、反応液の濃度や、反応容器の劣化などにより波形が変化し、基準データとして利用しにくいため、反応容器と隣りの反応容器との間を検出する信号を利用して速度ムラ補正を行っても良い。従って、検知板を用いなくとも、測光データから補正値に利用する方式も同様の効果があると考えられる。   In this embodiment, the correction value is determined using the detection plate, but the speed can also be calculated from the photometric data of the reaction vessel. In the photometric data of the reaction vessel itself, the waveform changes due to the concentration of the reaction solution or the deterioration of the reaction vessel and is difficult to use as reference data. Therefore, a signal is used to detect between the reaction vessel and the adjacent reaction vessel. Speed unevenness correction may be performed. Therefore, it is considered that the method of using the photometric data for the correction value without using the detection plate has the same effect.

自動分析装置の概要図。The schematic diagram of an automatic analyzer. 反応ディスクと検知器、反応容器の概要図。Schematic diagram of reaction disk, detector, and reaction vessel. 周速度が正常のときの説明図。Explanatory drawing when peripheral speed is normal. 周速度が速いときの説明図。Explanatory drawing when peripheral speed is quick. 周速度が速いときの補正イメージの説明図。Explanatory drawing of the correction image when peripheral speed is quick.

符号の説明Explanation of symbols

101 操作部、102 インターフェース、103 分析部、104 反応ディスク、105 反応容器、106 検体分注、109 試薬分注、112 攪拌、113 光源、114 多波長光度計、115 洗浄機構。 101 operation unit, 102 interface, 103 analysis unit, 104 reaction disk, 105 reaction vessel, 106 sample dispensing, 109 reagent dispensing, 112 stirring, 113 light source, 114 multi-wavelength photometer, 115 cleaning mechanism.

Claims (3)

反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、
前記反応ディスク回転時に、前記検出器による前記反応容器の通過検出を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正することを特徴とする自動分析装置。
A reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the passage of the reaction vessel is arranged on the orbit, and a light source and spectral detection are arranged at a position sandwiching the reaction vessel. In an automatic analyzer for measuring the amount of light transmitted through the reaction vessel by arranging a vessel,
An automatic analysis characterized in that, when the reaction disk rotates, the reaction disk rotation speed is calculated on the basis of detection of the passage of the reaction container by the detector, and the timing of photometric start and photometry end is corrected using the calculated speed. apparatus.
反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、
前記反応ディスク回転時に、前記分光検出器の出力信号を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正することを特徴とする自動分析装置。
A reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the passage of the reaction vessel is arranged on the orbit, and a light source and spectral detection are arranged at a position sandwiching the reaction vessel. In an automatic analyzer for measuring the amount of light transmitted through the reaction vessel by arranging a vessel,
An automatic analyzer that calculates the reaction disk rotation speed based on an output signal of the spectroscopic detector when the reaction disk rotates, and corrects the timing of the start and end of photometry using the calculated speed.
反応ディスク外周の円周上に反応容器と反応容器検出機構を配置し、前記反応容器の通過を検出する検出器を軌道上に少なくとも一つ配置し、前記反応容器を挟む位置に光源と分光検出器を配置して前記反応容器を透過する光量を測定する自動分析装置において、
前記反応ディスク回転時に、前記分光検出器の出力信号を用いて前記反応容器と隣りの反応容器との間を検出し、検出結果を基に前記反応ディスク回転速度を算出し、算出速度を用いて測光開始と測光終了のタイミングを補正することを特徴とする自動分析装置。
A reaction vessel and a reaction vessel detection mechanism are arranged on the circumference of the outer periphery of the reaction disk, and at least one detector for detecting the passage of the reaction vessel is arranged on the orbit, and a light source and spectral detection are arranged at a position sandwiching the reaction vessel. In an automatic analyzer for measuring the amount of light transmitted through the reaction vessel by arranging a vessel,
When the reaction disk rotates, the output signal of the spectroscopic detector is used to detect between the reaction container and the adjacent reaction container, the reaction disk rotation speed is calculated based on the detection result, and the calculated speed is used. An automatic analyzer characterized by correcting the timing of metering start and metering end.
JP2008003087A 2008-01-10 2008-01-10 Automatic analyzer Active JP4901766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003087A JP4901766B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003087A JP4901766B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2009162720A true JP2009162720A (en) 2009-07-23
JP4901766B2 JP4901766B2 (en) 2012-03-21

Family

ID=40965490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003087A Active JP4901766B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP4901766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052021A (en) * 2018-09-28 2020-04-02 シスメックス株式会社 Device and method for measuring sample

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760248A (en) * 1980-08-11 1982-04-12 Coulter Electronics Optical timing and a/d conversion method and apparatus
JPH02162261A (en) * 1988-12-16 1990-06-21 Hitachi Ltd A/d conversion start timing forming means of automatic analyzer
JPH0424064A (en) * 1990-05-18 1992-01-28 Brother Ind Ltd Sewing machine
JPH0475964A (en) * 1990-07-13 1992-03-10 Tokyo Kikai Seisakusho Ltd Chopper folded paper restricting device for rotary press
JPH06258327A (en) * 1993-03-08 1994-09-16 Jeol Ltd Measuring system using rotary reactor
JPH0980055A (en) * 1995-09-12 1997-03-28 Hitachi Ltd Automatic multiple item analyzer
JP2000258433A (en) * 1999-03-10 2000-09-22 Jeol Ltd Measuring system of rotary reactor
JP2007198739A (en) * 2006-01-23 2007-08-09 Hitachi High-Technologies Corp Autoanalyzer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760248A (en) * 1980-08-11 1982-04-12 Coulter Electronics Optical timing and a/d conversion method and apparatus
JPH02162261A (en) * 1988-12-16 1990-06-21 Hitachi Ltd A/d conversion start timing forming means of automatic analyzer
JPH0424064A (en) * 1990-05-18 1992-01-28 Brother Ind Ltd Sewing machine
JPH0475964A (en) * 1990-07-13 1992-03-10 Tokyo Kikai Seisakusho Ltd Chopper folded paper restricting device for rotary press
JPH06258327A (en) * 1993-03-08 1994-09-16 Jeol Ltd Measuring system using rotary reactor
JPH0980055A (en) * 1995-09-12 1997-03-28 Hitachi Ltd Automatic multiple item analyzer
JP2000258433A (en) * 1999-03-10 2000-09-22 Jeol Ltd Measuring system of rotary reactor
JP2007198739A (en) * 2006-01-23 2007-08-09 Hitachi High-Technologies Corp Autoanalyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052021A (en) * 2018-09-28 2020-04-02 シスメックス株式会社 Device and method for measuring sample

Also Published As

Publication number Publication date
JP4901766B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8765475B2 (en) Colorimetric absorbance measurement method, apparatus and system
WO2007148686A1 (en) Dispensing device and automatic analysis device
JPH0134337B2 (en)
WO2013183459A1 (en) Automatic analysis device
US8133742B2 (en) Method for measuring immunochromato test piece
JP2013224870A (en) Mass spectrometer and mass spectroscopic method
US20100061894A1 (en) Apparatus for measuring immunochromato test piece
JP4901766B2 (en) Automatic analyzer
EP1550859B1 (en) Analysis method and analysis device
JP3794012B2 (en) Rotary reactor measurement method
JP6256216B2 (en) Spectrometer, liquid chromatograph and spectrometer wavelength calibration method
JP3749321B2 (en) Automatic analyzer
WO2011090173A1 (en) Automatic analyzer
CN110617785B (en) Turntable eccentricity error measuring method based on modulation period photoelectric detection
JP2009162719A (en) Automatic analysis apparatus
US9575083B2 (en) Automatic analysis apparatus
JP6771938B2 (en) How to determine the location of the measurement location of the measurement system
JP3242500B2 (en) Self-diagnosis method of spectrophotometer
JP6012367B2 (en) Automatic analyzer
JPH1082733A (en) Method for detecting fouling of reference reflector, method for measuring reflectance, and storage medium
CN113777333A (en) Automatic analyzer, method for determining contamination of reaction cup of automatic analyzer, and storage medium
WO2013061681A1 (en) Component measurement device and component measurement method
JP2590678B2 (en) Biochemical automatic analyzer
JPH0980055A (en) Automatic multiple item analyzer
JP2013011473A (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350