JP2009162530A - Chemical modification method of biocomponent - Google Patents

Chemical modification method of biocomponent Download PDF

Info

Publication number
JP2009162530A
JP2009162530A JP2007339887A JP2007339887A JP2009162530A JP 2009162530 A JP2009162530 A JP 2009162530A JP 2007339887 A JP2007339887 A JP 2007339887A JP 2007339887 A JP2007339887 A JP 2007339887A JP 2009162530 A JP2009162530 A JP 2009162530A
Authority
JP
Japan
Prior art keywords
sugar chain
sialo
sialic acid
amidation
amidated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007339887A
Other languages
Japanese (ja)
Inventor
Akihiko Kameyama
昭彦 亀山
Masatetsu Toyoda
雅哲 豊田
Hisashi Narimatsu
久 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007339887A priority Critical patent/JP2009162530A/en
Publication of JP2009162530A publication Critical patent/JP2009162530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative amidation method of a sialo-sugar chain usable for marker search. <P>SOLUTION: In the amidation method of a carboxyl group of a sialic acid residue executed by mixing the sialo-sugar chain with a nucleophilic agent and by adding a condensation agent thereto, which is characterized by generating a condensation reaction at pH3 or lower, a compound having a hydrazide group and carbodiimide are used as a preferable nucleophilic agent and a preferable condensation agent, respectively. By chemical modification of a biocomponent, quantitative and highly-sensitive detection of the sialo-sugar chain by a mass spectrometry which is difficult hitherto, and comparative quantitative analysis of a biomarker having the sialo-sugar chain become possible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体成分の質量分析における解析感度を向上させる技術に関し、より詳しくは、生体成分であるシアロ糖鎖を化学修飾することにより、解析感度を向上させる技術に関する。   The present invention relates to a technique for improving analytical sensitivity in mass spectrometry of biological components, and more particularly to a technique for improving analytical sensitivity by chemically modifying a sialo-glycan that is a biological component.

シアロ糖鎖を有するタンパク質は、癌などの疾患との関連が示唆された新たな診断マーカーとしての可能性が注目されている。
マーカー探索を目的として、該シアロ糖鎖を鋭敏に検出するのに質量分析法は有力な手段となるが、シアル酸は不安定であり分解し易いので、安定化するために、化学修飾した後に分析する方法が利用されている。
A protein having a sialoglycochain has attracted attention as a new diagnostic marker that has been suggested to be associated with diseases such as cancer.
For the purpose of marker search, mass spectrometry is an effective means to detect the sialoglycan sensitively, but sialic acid is unstable and easily decomposed. Analytical methods are used.

こうした化学修飾法の例としては、完全メチル化、エステル化、アミド化が挙げられる。
完全メチル化は、強アルカリ条件で行うため、O−アセチル基を持つ糖鎖は分解される。また、カルボン酸以外にヒドロキシル基もメチル化するため、もともとO−メチル基を一部に持つ糖鎖の場合は、メチル化されている部位の特定が不可能となる。
またエステル誘導体はアミド誘導体に比べ加水分解されやすく、また近傍のヒドロキシル基との間でラクトンを形成し易い。
Examples of such chemical modification methods include complete methylation, esterification, and amidation.
Since complete methylation is performed under strongly alkaline conditions, sugar chains having an O-acetyl group are decomposed. In addition, since the hydroxyl group is methylated in addition to the carboxylic acid, in the case of a sugar chain originally having an O-methyl group as a part, it is impossible to specify the methylated site.
In addition, ester derivatives are more easily hydrolyzed than amide derivatives, and easily form lactones with nearby hydroxyl groups.

これらの点から、マーカー探索を目的とした修飾としてはアミド化が有望な手法であるが(特許文献1、非特許文献1参照)、シアル酸の結合位置によって、アミド化効率が異なり、反応性の低い結合位置の場合には、アミド化ができないという問題がある。
すなわち、一般的にカルボジイミドを用いたアミド化は、カルボジイミドそのものの反応性が高いpH3.5〜4.5付近で行われる。このpHよりも高い場合は、反応性が低くなり、またこのpHより低い場合はカルボジイミドが不安定になり分解されることが報告されている(非特許文献3)。しかし、この条件では反応性の低い結合位置の場合には、アミド化ができない。
以上のとおり、マーカー探索に利用できる定量的なシアロ糖鎖の修飾法がないのが現状である。
特開2005−148054号公報 Sekiya S, Wada Y, Tanaka K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem. 2005 Aug 1;77(15):4962-8. Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconugate Chem. 1995 6. 123-30.
From these points, amidation is a promising technique for the purpose of marker search (see Patent Document 1 and Non-Patent Document 1), but the amidation efficiency differs depending on the binding position of sialic acid, and the reactivity In the case of a low bonding position, there is a problem that amidation cannot be performed.
That is, amidation using carbodiimide is generally performed at a pH of around 3.5 to 4.5 where carbodiimide itself has high reactivity. It has been reported that when the pH is higher than this, the reactivity becomes low, and when it is lower than this pH, the carbodiimide becomes unstable and decomposes (Non-patent Document 3). However, under these conditions, amidation is not possible in the case of a bonding position having low reactivity.
As described above, there is no quantitative sialo-glycan modification method that can be used for marker search.
JP 2005-148054 A Sekiya S, Wada Y, Tanaka K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem. 2005 Aug 1; 77 (15): 4962-8. Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconugate Chem. 1995 6. 123-30.

シアロ糖鎖は、リンケージによって化学反応性が異なることが知られているが、シアロ糖鎖を有するバイオマーカー探索において、反応性の低いシアル酸リンケージをも完全に修飾できれば、比較定量解析が可能になると考えられる。
本発明は、以上のような事情に鑑みてなされたものであって、マーカー探索に利用できる定量的なシアロ糖鎖の修飾法を提供することを目的とするものである。
It is known that sialicosaccharides have different chemical reactivity depending on the linkage. However, if a sialic acid linkage with low reactivity can be completely modified in the search for biomarkers with sialo-glycan, comparative quantitative analysis is possible. It is considered to be.
The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a quantitative sialo-glycan modification method that can be used for marker search.

既知の方法でアミド化が可能なシアル酸のリンケージは、α2−6シアル酸であって、該シアル酸を有する糖鎖を、求核剤としてアミノ基を有する化合物である塩化アンモニウムと混合し、縮合剤である4-(4,6-ジメトキシ-1,3,5-トリアジン-2イル)-4-メチルモルホリニウムクロライドを添加する方法が採用されている。
本発明者らは、反応性の低いシアル酸リンケージを完全に修飾できる方法について鋭意検討した結果、生体試料を水に溶解し、求核剤を添加した後、pHを酸性側の適切な値に調節し、過剰量の縮合剤を添加し、一定時間攪拌または放置することにより、反応性の低いシアル酸部分を化学修飾できるという知見を得た。
The linkage of sialic acid that can be amidated by a known method is α2-6 sialic acid, and the sugar chain having the sialic acid is mixed with ammonium chloride, which is a compound having an amino group as a nucleophile, A method of adding 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride as a condensing agent is employed.
As a result of intensive studies on a method that can completely modify a low-reactivity sialic acid linkage, the present inventors dissolved a biological sample in water, added a nucleophile, and then adjusted the pH to an appropriate value on the acidic side. It was found that the sialic acid moiety having low reactivity can be chemically modified by adjusting, adding an excessive amount of a condensing agent, and stirring or standing for a certain period of time.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)シアロ糖鎖と求核剤を混合した後、pHを3以下に調節し、これに縮合剤を添加して、シアロ糖鎖のカルボキシル基をアミド化することを特徴とするシアロ糖鎖のアミド化方法。
(2)前記求核剤が、ヒドラジド基を有する化合物であることを特徴とする請求項1に記載のシアロ糖鎖のアミド化方法。
(3)前記縮合剤が、カルボジイミドであることを特徴とする請求項1に記載のシアロ糖鎖のアミド化方法。
(4)前記シアロ糖鎖が、α2−3シアル酸を有する糖鎖を含有することを特徴とする請求項1〜3のいずれか1項に記載の方法。
The present invention has been completed based on these findings, and is as follows.
(1) A sialo-sugar chain characterized by mixing a sialo-sugar chain and a nucleophile, adjusting the pH to 3 or less, and adding a condensing agent to amidate the carboxyl group of the sialo-sugar chain. Method of amidation of
(2) The method for amidation of a sialo-sugar chain according to claim 1, wherein the nucleophile is a compound having a hydrazide group.
(3) The method for amidating a sialo-sugar chain according to claim 1, wherein the condensing agent is carbodiimide.
(4) The method according to any one of claims 1 to 3, wherein the sialo-sugar chain contains a sugar chain having α2-3 sialic acid.

本発明の方法により、生体成分を化学修飾することで、従来困難であった質量分析法によるシアロ糖鎖の高感度かつ定量的な検出、及びシアロ糖鎖を有するバイオマーカーの比較定量解析が可能となる。   The method of the present invention enables highly sensitive and quantitative detection of sialo-glycans by mass spectrometry, which has been difficult in the past, by chemically modifying biological components, and comparative quantitative analysis of biomarkers having sialo-glycans It becomes.

以下、本発明のシアロ糖鎖のアミド化方法について説明する。
本発明におけるシアル酸残基のカルボキシル基のアミド化方法は、シアロ糖鎖と求核剤とを混合し、これに縮合剤を添加して行われる。
本発明は、前記縮合反応を、pH3以下で行うことを特徴とするものであり、好ましくはpH2〜3で行う。
なお、試料中に、α2−6等の、反応性の低くないシアル酸リンケージと、α2−3等の、反応性の低いシアル酸リンケージが混在する場合には、あらかじめ通常の条件で修飾反応を実施した後、続いて本発明の方法でアミド化を行っても良い。
Hereinafter, the amidation method of the sialo-sugar chain of the present invention will be described.
The method for amidating a carboxyl group of a sialic acid residue in the present invention is performed by mixing a sialo-sugar chain and a nucleophile and adding a condensing agent thereto.
The present invention is characterized in that the condensation reaction is carried out at a pH of 3 or less, preferably at a pH of 2 to 3.
In addition, when a sialic acid linkage with low reactivity such as α2-6 and a sialic acid linkage with low reactivity such as α2-3 are mixed in the sample, the modification reaction is performed in advance under normal conditions. After carrying out, amidation may be subsequently carried out by the method of the present invention.

本発明において、求核剤としては、ヒドラジド基を有する化合物が用いられるが、該ヒドラジド基を有する化合物としては、好ましくは、アセトヒドラジドが用いられる。求核剤として用いる化合物がかさ高くなると、縮合反応における収率が低下するため好ましくない。よって、小さなヒドラジド体、特に、アセトヒドラジドを用いるのが好ましい。   In the present invention, a compound having a hydrazide group is used as the nucleophile, and an acetohydrazide is preferably used as the compound having the hydrazide group. If the compound used as the nucleophilic agent becomes bulky, the yield in the condensation reaction decreases, which is not preferable. Therefore, it is preferable to use a small hydrazide, particularly acetohydrazide.

また、本発明において、縮合剤としては、カルボジイミド類が用いられるが、修飾する分子が親水性に富むシアロ糖鎖であるため、反応は水系がより好ましい。よって、該縮合剤としては、水溶性のカルボジイミド、特に、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(以下、「EDAC」と記す。)を用いるのが好ましい。   In the present invention, carbodiimides are used as the condensing agent. Since the molecule to be modified is a sialo-sugar chain rich in hydrophilicity, the reaction is more preferably aqueous. Therefore, it is preferable to use water-soluble carbodiimide, particularly 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (hereinafter referred to as “EDAC”) as the condensing agent.

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれらによって何ら限定されるものではない。
(参考例:既知の方法による、リンケージの異なるシアロ糖鎖のアミド化)
既知のアミド化法によるシアル酸のアミド化をまず示す。リンケージの異なるシアロ糖鎖について、既知の方法によるアミド化を行った。
このアミド化法は、アミノ基を有する化合物である塩化アンモニウムと、シアル酸を有する糖鎖を混合し、縮合剤である4-(4,6-ジメトキシ-1,3,5-トリアジン-2イル)-4-メチルモルホリニウムクロライドを添加する方法であり、この方法でアミド化が可能なシアル酸のリンケージは、α2−6シアル酸が報告されている。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(Reference example: amidation of sialo-glycans with different linkages by a known method)
First, the amidation of sialic acid by a known amidation method is shown. Amidation by a known method was performed on sialo-sugar chains with different linkages.
In this amidation method, ammonium chloride, which is a compound having an amino group, is mixed with a sugar chain having sialic acid, and 4- (4,6-dimethoxy-1,3,5-triazine-2yl which is a condensing agent is mixed. ) -4-Methylmorpholinium chloride is added, and α2-6 sialic acid has been reported as the linkage of sialic acid that can be amidated by this method.

そこで、末端にα2−6シアル酸を2つ有する蛍光標識したN型2本鎖糖鎖(下記の式(A))を修飾反応のコントロールとして用いた。
リンケージの異なるシアロ化糖鎖の比較は、末端にα2−6シアル酸を1つ有する蛍光標識したN型2本鎖糖鎖(下記の式(B))、及び末端にα2−3シアル酸を1つ有する蛍光標識したN型2本鎖糖鎖(下記の式(C))を用いた。糖鎖BとCはシアル酸のリンケージのみが異なる位置異性体である。
Therefore, a fluorescently labeled N-type double-chain sugar chain (the following formula (A)) having two α2-6 sialic acids at the ends was used as a control for the modification reaction.
A comparison of sialicated glycans with different linkages is as follows: a fluorescently labeled N-type double-stranded glycan chain (formula (B) below) having one α2-6 sialic acid at the end, and α2-3 sialic acid at the end. One fluorescently labeled N-type double-stranded sugar chain (the following formula (C)) was used. Sugar chains B and C are positional isomers that differ only in the linkage of sialic acid.

Figure 2009162530
Figure 2009162530

最初に、糖鎖A(4pmol)と糖鎖B(4pmol)の混合物を既知の方法でアミド化し、逆相高速液体クロマトグラフ(以下、「HPLC」と記す。)に供したところ、図1の上段に示すように、2つのピーク(ピーク1、2)がみられた。
これらの2つのピーク1、2を質量分析法(以下、「MS」と記す。)に供したところ、質量電荷比(以下、「m/z値」と記す。)がそれぞれ2031.95、2322.21であり、順に糖鎖A、Bがアミド化されNaイオンが付加した質量数(2031.75、2321.86)に一致した。
よって、α2−6シアル酸含有糖鎖は容易にアミド化されることを確認した。このことは過去の知見とも一致する。
First, a mixture of sugar chain A (4 pmol) and sugar chain B (4 pmol) was amidated by a known method and subjected to reverse phase high performance liquid chromatography (hereinafter referred to as “HPLC”). As shown in the upper part, two peaks (peaks 1 and 2) were observed.
When these two peaks 1 and 2 were subjected to mass spectrometry (hereinafter referred to as “MS”), the mass-to-charge ratio (hereinafter referred to as “m / z value”) was 2031.95 and 232.21, respectively. In order, the sugar chains A and B were amidated, and the mass numbers (2031.75, 2321.86) were added with Na ions.
Therefore, it was confirmed that the α2-6 sialic acid-containing sugar chain was easily amidated. This is consistent with past findings.

次に糖鎖A(4pmol)と糖鎖C(4pmol)の混合物を用いて同様にアミド化し、逆相HPLCに供したところ、図1の下段に示すように、ピークが3つ(ピーク3、4、5)みられた。
これらのピーク3、4、5をMSに供したところ、m/z値がそれぞれ2031.96、2321.94、2054.71であり、順にアミド化された糖CにNaイオンが付加した質量数(2031.75)、アミド化された糖鎖AにNaイオンが付加した質量数(2321.86)、未反応の糖鎖CにNaイオンが2個付加した質量数(2054.71)に一致した。シアル酸が修飾されていない糖鎖はNaイオンがシアル酸の数と同じ数だけ余分に付加することが知られている。
未反応の糖鎖Cがみられること、糖鎖Cのアミド化されたものが、わずかしかみられないことより、α2−3シアル酸含有糖鎖のアミド化は効率の悪いことが確認された。
このときの反応は、糖鎖Aがほぼ完全にアミド化されていることから、アミド化反応そのものが不十分である可能性はないと判断される。
したがって、これらの結果より、既知のアミド化法が、シアル酸のリンケージにより反応性が異なることがわかる。
Next, amidation was similarly performed using a mixture of sugar chain A (4 pmol) and sugar chain C (4 pmol), and the mixture was subjected to reverse phase HPLC. As shown in the lower part of FIG. 4, 5) It was seen.
When these peaks 3, 4, and 5 were subjected to MS, the m / z values were 2031.96, 2332.94, and 2054.71, respectively, and the mass number (2031.75) and amidation in which Na ions were added to the amidated sugar C in order. This corresponds to the mass number (2321.86) in which Na ions were added to the sugar chain A, and the mass number (2054.71) in which two Na ions were added to the unreacted sugar chain C. It is known that a sugar chain in which sialic acid is not modified adds an extra number of Na ions by the same number as the number of sialic acids.
From the fact that unreacted sugar chain C was observed and that only amidated sugar chain C was observed, it was confirmed that the amidation of α2-3 sialic acid-containing sugar chains was inefficient. .
In this reaction, since the sugar chain A is almost completely amidated, it is judged that there is no possibility that the amidation reaction itself is insufficient.
Therefore, these results show that the known amidation method has different reactivity depending on the linkage of sialic acid.

以下、本発明による新たなアミド化方法を用いて、α2−3シアル酸含有糖鎖をアミド化した例を記載する。
(実施例1)
α2−3シアル酸を有する糖鎖D(上記の式(D)、4pmol)を、1Mのアセトヒドラジド溶液30μlに溶解し、HClを用いてpH3.5に合わせ、1MのEDAC溶液4μlを添加し、2時間室温で反応させた。同様に、pHをそれぞれ3.1、2.5、2.1、1.5、及び1.2に合わせた反応も行った。
反応物を逆相HPLCに供したところ、図2の左側に示すとおり、pH2.1、2.5、3.1でピーク6が顕著に高くなることが示された。
該図におけるピーク6、ピーク7を分取し、MSに供したところ、m/z値がそれぞれ790.35、712.43であり、順にアミド化された糖鎖DにNaイオンが付加した質量数(790.30)、未反応の糖鎖Dにプロトンが1個付加した質量数(712.28)に一致した。
糖鎖DのpH2.5での反応後に、さらに1MのEDAC溶液4μlを添加し2時間反応させることを2回繰り返した。得られた反応物を同様に逆相HPLCに供したところ、図2の右側に示すとおり、糖鎖Dのアミド化物に相当するピーク6が主要生成物となった。
Hereinafter, an example in which an α2-3 sialic acid-containing sugar chain is amidated using a new amidation method according to the present invention will be described.
Example 1
Sugar chain D having α2-3 sialic acid (formula (D), 4 pmol) is dissolved in 30 μl of 1M acetohydrazide solution, adjusted to pH 3.5 with HCl, and 4 μl of 1M EDAC solution is added. The reaction was performed at room temperature for 2 hours. Similarly, reactions with pH adjusted to 3.1, 2.5, 2.1, 1.5, and 1.2 were performed.
When the reaction product was subjected to reverse phase HPLC, as shown on the left side of FIG. 2, it was shown that the peak 6 was remarkably increased at pH 2.1, 2.5, and 3.1.
When the peak 6 and peak 7 in the figure were separated and subjected to MS, the m / z values were 790.35 and 712.43, respectively, and the mass number in which Na ions were added to the amidated sugar chain D in order (790.30) This corresponds to the mass number (712.28) in which one proton was added to the unreacted sugar chain D.
After the reaction of sugar chain D at pH 2.5, 4 μl of 1M EDAC solution was further added and the reaction was repeated for 2 hours twice. When the obtained reaction product was similarly subjected to reverse phase HPLC, peak 6 corresponding to the amidation product of sugar chain D became the main product as shown on the right side of FIG.

(実施例2)
既知のアミド化法との比較のため、つぎにN型2本鎖糖鎖A、B、Cを用いて、新たなアミド化法の検討を行った。
末端にα2−6シアル酸を2つ有する蛍光標識したN型2本鎖糖鎖(上記の式(A))を修飾反応のコントロールとして用いた。
リンケージの異なるシアロ化糖鎖の比較は、末端にα2−6シアル酸を1つ有する蛍光標識したN型2本鎖糖鎖(上記の式(B))、及び末端にα2−3シアル酸を1つ有する蛍光標識したN型2本鎖糖鎖(上記の式(C))を用いた。糖鎖BとCはシアル酸のリンケージのみが異なる位置異性体である。
最初に、前記の糖鎖A(4pmol)とB(4pmol)の混合物を、1Mのアセトヒドラジド溶液50μlに溶解し、HClを用いてpH2.5に合わせ、2MのEDAC溶液4μlを添加し、2時間室温で反応させた。その後、2MのEDAC溶液4μlを再添加し2時間室温で反応させた。さらにその後、2MのEDAC溶液4μlを再添加し2時間室温で反応させた。計6時間かけてアミド化したものを、逆相HPLCに供したところ、図3に示すとおり、2つのピーク(ピーク8、9)がみられた。
これらの2つのピークをMSに供したところm/z値がそれぞれ2088.77、 2436.14であり、順にアミド化された糖鎖BにNaイオンが付加した質量数(2088.77)、アミド化された糖鎖AにNaイオンが付加した質量数(2435.91)に一致した。
以上のとおり、α2−6シアル酸含有糖鎖はこの条件でアミド化されることが確認できた。
(Example 2)
Next, for comparison with known amidation methods, a new amidation method was examined using N-type double-chain sugar chains A, B, and C.
A fluorescently labeled N-type double-chain sugar chain having the two α2-6 sialic acids at the ends (the above formula (A)) was used as a control for the modification reaction.
A comparison of sialicated glycans with different linkages is as follows: a fluorescently labeled N-type double-chain glycan chain having one α2-6 sialic acid at the end (the above formula (B)), and α2-3 sialic acid at the end One fluorescently labeled N-type double-stranded sugar chain (the above formula (C)) was used. Sugar chains B and C are positional isomers that differ only in the linkage of sialic acid.
First, the above mixture of sugar chains A (4 pmol) and B (4 pmol) is dissolved in 50 μl of 1M acetohydrazide solution, adjusted to pH 2.5 using HCl, 4 μl of 2M EDAC solution is added, 2 The reaction was performed at room temperature for an hour. Thereafter, 4 μl of 2M EDAC solution was added again and reacted at room temperature for 2 hours. After that, 4 μl of 2M EDAC solution was added again and reacted at room temperature for 2 hours. When amidated over 6 hours in total was subjected to reversed phase HPLC, two peaks (peaks 8 and 9) were observed as shown in FIG.
When these two peaks were subjected to MS, the m / z values were 2088.77 and 2436.14, respectively, the mass number (2088.77) in which Na ions were added to the amidated sugar chain B, and the amidated sugar chain A This coincided with the mass number (2435.91) in which Na ions were added.
As described above, it was confirmed that the α2-6 sialic acid-containing sugar chain was amidated under these conditions.

次に前記の糖鎖AとCの混合物を用いて同様の方法でアミド化し、逆相HPLCに供したところ、図3に示すとおり、ピークが2つ(ピーク10、11)みられた。
これらの2つのピークをMSに供したところm/z値がそれぞれ2089.02、2435.84であり、順にアミド化された糖鎖CにNaイオンが付加した質量数(2088.77)、アミド化された糖鎖AにNaイオンが付加した質量数(2435.91)に一致した。
よって、α2−3シアル酸含有糖鎖もこの方法で容易にアミド化されることを確認した。
これらの結果から、上記で示した新たなアミド化法は、これまでアミド化が困難であった反応性の低いシアル酸も容易に修飾できることがわかる。
Next, amidation was performed in the same manner using the mixture of sugar chains A and C, and the mixture was subjected to reverse phase HPLC. As shown in FIG. 3, two peaks (peaks 10 and 11) were observed.
When these two peaks were subjected to MS, the m / z values were 2089.02 and 2435.84, respectively, the mass number (2088.77) in which Na ions were added to the amidated sugar chain C, and the amidated sugar chain A This coincided with the mass number (2435.91) in which Na ions were added.
Therefore, it was confirmed that the α2-3 sialic acid-containing sugar chain was easily amidated by this method.
From these results, it can be seen that the new amidation method shown above can easily modify low-reactivity sialic acid which has been difficult to amidate until now.

(実施例3)
さらに、α2−3シアル酸の位置が異なる糖鎖E(下記の式(E))、糖鎖Eの位置異性体でありリンケージがα2−6シアル酸である糖鎖F(下記の式(F))、シアル酸が多数結合している糖鎖G(下記の式(G))についても同様にアミド化した。
(Example 3)
Furthermore, sugar chain E (formula (E) below) having a different position of α2-3 sialic acid, sugar chain F (position (I) below) that is a positional isomer of sugar chain E and linkage is α2-6 sialic acid )), And the sugar chain G to which a large number of sialic acids are bonded (the following formula (G)) was amidated in the same manner.

Figure 2009162530
Figure 2009162530

糖鎖EとA、糖鎖FとA、糖鎖GとAの混合物を、実施例2と同様の方法で修飾し、逆相HPLCに供したところ、それぞれ、図4の上段、中段、及び下段に示すように、ピーク12,13、ピーク14,15、及びピーク16,17を得た。
これらのピーク13、15、16のm/z値(2435.78, 2436.00, 2435.88)は、すべてアミド化された糖鎖AにNaイオンが付加した質量数(2435.91)に一致した。ピーク12、14、17 (m/z: 2088.88, 2089.01, 3496.04)は、それぞれアミド化された糖鎖E、F、GにNaイオンが付加した質量数(2088.77、2088.77、3495.30)に一致した。
これらの結果から、シアル酸の位置が異なる場合でも、シアル酸の数が多い場合でも、本発明によるアミド化法は効率よくシアル酸をアミド化できることがわかる。
A mixture of sugar chains E and A, sugar chains F and A, and sugar chains G and A was modified by the same method as in Example 2 and subjected to reverse phase HPLC. As shown in the lower part, peaks 12 and 13, peaks 14 and 15, and peaks 16 and 17 were obtained.
The m / z values (2435.78, 2436.00, 2435.88) of these peaks 13, 15, and 16 coincided with the mass number (2435.91) in which Na ions were added to the amidated sugar chain A. The peaks 12, 14, 17 (m / z: 2088.88, 2089.01, 3496.04) corresponded to the mass numbers (2088.77, 2088.77, 3495.30) in which Na ions were added to the amidated sugar chains E, F, G, respectively.
From these results, it can be seen that the amidation method according to the present invention can amidate sialic acid efficiently even when the position of sialic acid is different or when the number of sialic acids is large.

(実施例4)
α2−3シアル酸含有糖鎖を含む糖タンパク質であるFetuinの糖鎖を本発明のアミド化法を用いて解析した。Fetuinは、N型3本鎖糖鎖にシアル酸が3つ結合したものが最も含有量が多く、90%以上がα2−3シアル酸を含有している。
FetuinをPNGase F処理し、得られたN型糖鎖をピリジルアミンで標識し、実施例2と同様の方法で修飾し、MSにより解析した。
得られたMSスペクトルでは、図5に示すように、m/z値が3148.28のシグナルが最も高く、これは最も含有量の多い3本鎖糖鎖にシアル酸が3つ結合したものに相当する質量数(理論値:3148.17)に一致する。
このように、α2−3シアル酸が修飾できていることを反映する結果が得られた。
Example 4
The sugar chain of Fetuin, which is a glycoprotein containing an α2-3 sialic acid-containing sugar chain, was analyzed using the amidation method of the present invention. Fetuin has the highest content of three sialic acids bonded to an N-type three-chain sugar chain, and 90% or more contains α2-3 sialic acid.
Fetuin was treated with PNGase F, and the resulting N-type sugar chain was labeled with pyridylamine, modified in the same manner as in Example 2, and analyzed by MS.
In the obtained MS spectrum, as shown in FIG. 5, the signal with the m / z value of 3148.28 is the highest, which corresponds to the three-chain sugar chain having the highest content with three sialic acids bound thereto. It corresponds to the mass number (theoretical value: 3148.17).
Thus, a result reflecting that α2-3 sialic acid was modified was obtained.

本発明によれば、従来困難であった質量分析法によるシアロ糖鎖の高感度かつ定量的な検出、及びシアロ糖鎖を有するバイオマーカーの比較定量解析が可能となるので、疾患関連マーカーの探索、疾患診断に新たな手法を提供することができる。   According to the present invention, it has become possible to perform highly sensitive and quantitative detection of sialo-glycan by mass spectrometry, which has been difficult in the past, and comparative quantitative analysis of biomarkers having sialo-glycan. A new technique can be provided for disease diagnosis.

既知のアミド化反応で得られた反応物の逆相HPLCの結果を示す図The figure which shows the result of the reverse phase HPLC of the reaction material obtained by known amidation reaction 実施例1で得られた反応物の逆相HPLCの結果を示す図The figure which shows the result of the reverse phase HPLC of the reaction material obtained in Example 1 実施例2で得られた反応物の逆相HPLCの結果を示す図The figure which shows the result of the reverse phase HPLC of the reaction material obtained in Example 2 実施例3で得られた反応物の逆相HPLCの結果を示す図The figure which shows the result of the reverse phase HPLC of the reaction material obtained in Example 3 実施例4で得られた反応物のm/z値を示す図The figure which shows the m / z value of the reactant obtained in Example 4

Claims (4)

シアロ糖鎖と求核剤を混合した後、pHを3以下に調節し、これに縮合剤を添加して、シアロ糖鎖のカルボキシル基をアミド化することを特徴とするシアロ糖鎖のアミド化方法。   After mixing the sialo-sugar chain and the nucleophilic agent, the pH is adjusted to 3 or less, and a condensing agent is added thereto to amidate the carboxyl group of the sialo-sugar chain. Method. 前記求核剤としてヒドラジド基を有する化合物を用いることを特徴とする請求項1に記載のシアロ糖鎖のアミド化方法。   The method for amidating a sialoglycosaccharide according to claim 1, wherein a compound having a hydrazide group is used as the nucleophile. 前記縮合剤が、カルボジイミドである請求項1に記載のシアロ糖鎖のアミド化方法。   The method for amidating a sialo-sugar chain according to claim 1, wherein the condensing agent is carbodiimide. 前記シアロ糖鎖が、α2−3シアル酸を有する糖鎖を含有することを特徴とする請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the sialosugar chain contains a sugar chain having α2-3 sialic acid.
JP2007339887A 2007-12-28 2007-12-28 Chemical modification method of biocomponent Pending JP2009162530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339887A JP2009162530A (en) 2007-12-28 2007-12-28 Chemical modification method of biocomponent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339887A JP2009162530A (en) 2007-12-28 2007-12-28 Chemical modification method of biocomponent

Publications (1)

Publication Number Publication Date
JP2009162530A true JP2009162530A (en) 2009-07-23

Family

ID=40965333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339887A Pending JP2009162530A (en) 2007-12-28 2007-12-28 Chemical modification method of biocomponent

Country Status (1)

Country Link
JP (1) JP2009162530A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068594A (en) * 2011-09-05 2013-04-18 Sumitomo Bakelite Co Ltd Amidation modification method of sialo-sugar chain
WO2016159291A1 (en) * 2015-03-31 2016-10-06 株式会社島津製作所 Method of preparing sample for analysis and analysis method
JP2016194500A (en) * 2015-03-31 2016-11-17 株式会社島津製作所 Preparation method of sample for analysis, and analytical method
JP2019152475A (en) * 2018-03-01 2019-09-12 株式会社島津製作所 Sample preparation method and sample analysis method
CN114127553A (en) * 2019-07-12 2022-03-01 株式会社岛津制作所 Method for preparing sample for analysis, method for analysis, and kit for preparing sample for analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059994A (en) * 1996-08-13 1998-03-03 Mitsubishi Chem Corp Production of sialic acid derivative
JP2002131233A (en) * 2000-10-27 2002-05-09 Yakult Honsha Co Ltd Method for labeling and analysis of uronic acid- containing polysaccharides
JP2005148054A (en) * 2003-10-24 2005-06-09 Shimadzu Corp Label amidating method of living body molecule and method for analyzing living body molecule
WO2006109485A1 (en) * 2005-03-31 2006-10-19 The Noguchi Institute Mass spectrometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059994A (en) * 1996-08-13 1998-03-03 Mitsubishi Chem Corp Production of sialic acid derivative
JP2002131233A (en) * 2000-10-27 2002-05-09 Yakult Honsha Co Ltd Method for labeling and analysis of uronic acid- containing polysaccharides
JP2005148054A (en) * 2003-10-24 2005-06-09 Shimadzu Corp Label amidating method of living body molecule and method for analyzing living body molecule
WO2006109485A1 (en) * 2005-03-31 2006-10-19 The Noguchi Institute Mass spectrometry

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068594A (en) * 2011-09-05 2013-04-18 Sumitomo Bakelite Co Ltd Amidation modification method of sialo-sugar chain
WO2016159291A1 (en) * 2015-03-31 2016-10-06 株式会社島津製作所 Method of preparing sample for analysis and analysis method
JP2016194500A (en) * 2015-03-31 2016-11-17 株式会社島津製作所 Preparation method of sample for analysis, and analytical method
JP2019152475A (en) * 2018-03-01 2019-09-12 株式会社島津製作所 Sample preparation method and sample analysis method
JP7010061B2 (en) 2018-03-01 2022-01-26 株式会社島津製作所 Sample preparation method and analysis method
CN114127553A (en) * 2019-07-12 2022-03-01 株式会社岛津制作所 Method for preparing sample for analysis, method for analysis, and kit for preparing sample for analysis
CN114127553B (en) * 2019-07-12 2024-03-29 株式会社岛津制作所 Method for producing sample for analysis, method for analysis, and kit for producing sample for analysis

Similar Documents

Publication Publication Date Title
Zhu et al. Glycoprotein enrichment analytical techniques: advantages and disadvantages
Strader et al. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic− aqueous solvent systems
Yang et al. Simultaneous quantification of N-and O-glycans using a solid-phase method
JP6135710B2 (en) Analytical sample preparation method and analytical method
Huang et al. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method
JP2009162530A (en) Chemical modification method of biocomponent
Nishikaze Sensitive and structure-informative N-glycosylation analysis by MALDI-MS; ionization, fragmentation, and derivatization
Mazzotti et al. N‐hydroxysuccinimidyl p‐methoxybenzoate as suitable derivative reagent for isotopic dilution assay of biogenic amines in food
Kallemeijn et al. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N-and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation
JP4328625B2 (en) Labeling reagents and their use
CN113015740A (en) Solid phase N-terminal peptide capture and release
Ren et al. N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB)
CN110023763A (en) It can be used for the glycan amino acid complex of label and preparation method thereof of LC-MS analysis
WO2018062162A1 (en) Detection method and detection kit for compound containing formyl dehydropiperidine structure
JP2007255934A (en) Quantitative determination method of oxidation protein, marker reagent for quantitative determination of oxidation protein, and marker reagent kit for quantitative determination of oxidation protein
WO2018036897A1 (en) Labelled compounds and methods for mass spectrometry-based quantification
Scholten et al. Analysis of protein-protein interaction surfaces using a combination of efficient lysine acetylation and nanoLC-MALDI-MS/MS applied to the E9: Im9 bacteriotoxin—immunity protein complex
JP4271687B2 (en) Labeling substance for mass spectrometry and phosphorylation position analysis of phosphorylated protein
JP4165502B2 (en) Method for selectively measuring a specific substance from a mixture by MALDI mass spectrometry
Diedrich et al. Facile identification of photocleavable reactive metabolites and oxidative stress biomarkers in proteins via mass spectrometry
JP7375816B2 (en) Analysis sample preparation method, analysis method, and analysis sample preparation kit
Rusnak et al. Reaction of phosphorylated and O-glycosylated peptides by chemically targeted identification at ambient temperature
Conrotto et al. Lys Tag: an easy and robust chemical modification for improved de novo sequencing with a matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometer
Li et al. Novel isobaric tagging reagent enabled multiplex quantitative glycoproteomics via electron-transfer/higher-energy collisional dissociation (EThcD) mass spectrometry
Drake et al. Elucidation of N-glycosites within human plasma glycoproteins for cancer biomarker discovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100108

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110607

A977 Report on retrieval

Effective date: 20111128

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403