JP2009159853A - Method for creating low pressure-resistant yeast and method for producing fermented food and fermented food and method for sterilizing fermented food - Google Patents
Method for creating low pressure-resistant yeast and method for producing fermented food and fermented food and method for sterilizing fermented food Download PDFInfo
- Publication number
- JP2009159853A JP2009159853A JP2007340439A JP2007340439A JP2009159853A JP 2009159853 A JP2009159853 A JP 2009159853A JP 2007340439 A JP2007340439 A JP 2007340439A JP 2007340439 A JP2007340439 A JP 2007340439A JP 2009159853 A JP2009159853 A JP 2009159853A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- yeast
- low
- mpa
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Alcoholic Beverages (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Soy Sauces And Products Related Thereto (AREA)
Abstract
Description
本発明は、非加熱殺菌の利点を損なわない圧力値での圧力処理によって殺菌が可能となる低耐圧性酵母の作出方法、並びに低耐圧性酵母を用いた発酵食品の製造方法、並びに低耐圧性酵母を用いて製造する発酵食品、並びに低耐圧性酵母を用いて製造する発酵食品の殺菌方法に関するものである。 The present invention relates to a method for producing low-pressure-resistant yeast that can be sterilized by pressure treatment at a pressure value that does not impair the advantage of non-heat sterilization, a method for producing fermented foods using low-pressure-resistant yeast, and low pressure resistance The present invention relates to a fermented food produced using yeast and a method for sterilizing fermented food produced using low pressure resistant yeast.
味噌、醤油、酒などの発酵・醸造食品は、いずれも酵母の発酵作用を利用して製造されている。 Fermented and brewed foods such as miso, soy sauce, and liquor are all manufactured using the fermenting action of yeast.
また、これらの発酵・醸造食品は、通常、一定の発酵・熟成期間を経過した後、過発酵などを防ぐために濾過や加熱処理により酵母の分離、殺菌が行われる。 In addition, these fermented and brewed foods are usually subjected to yeast separation and sterilization by filtration or heat treatment to prevent overfermentation after a certain period of fermentation and aging.
例えば、味噌は50〜70℃で60分、醤油は70〜85℃で10〜30分の加熱処理が行われる。また、清酒ではおり引き、濾過した生酒を60〜70℃で10分間加熱処理して殺菌と酵素の失活を行う。 For example, miso is heated at 50 to 70 ° C. for 60 minutes, and soy sauce is heated at 70 to 85 ° C. for 10 to 30 minutes. In addition, the sake that has been pulled and filtered with sake is heat-treated at 60 to 70 ° C. for 10 minutes to sterilize and deactivate the enzyme.
しかし、このような従来の分離・殺菌方法では、加熱処理を伴うことで食品の風味、色合いが変化してしまう恐れがあり、加熱処理後には速やかに冷却する必要があるなど、手間を要するものであった。 However, such conventional separation / sterilization methods may change the flavor and color of food due to heat treatment, and require time-consuming cooling, such as quick cooling after heat treatment. Met.
さらに均一な加熱処理が必要であり、この加熱処理が不十分であると、残存する酵母による過発酵や、炭酸ガスの発生によりパック詰めされた製品の膨れが起こって商品価値が失われるなどの問題もある。 More uniform heat treatment is necessary, and if this heat treatment is insufficient, the product value is lost due to over-fermentation by remaining yeast and swelling of the packed product due to the generation of carbon dioxide gas. There is also a problem.
そこで、このような問題を解決するために、従来、特開平7−213277号(特許文献1)のように発酵・熟成後、0〜15℃の低温域において発酵を抑える方法や、特開2004−73063号(特許文献2)のように低温感受性酵母と乳酸菌を併用した発酵食品の製造方法が提案されている。 Therefore, in order to solve such a problem, conventionally, as in JP-A-7-213277 (Patent Document 1), a method for suppressing fermentation in a low-temperature range of 0 to 15 ° C. after fermentation and ripening, As described in JP-A-73063 (Patent Document 2), a method for producing fermented foods using a combination of low-temperature sensitive yeast and lactic acid bacteria has been proposed.
しかし、これらの方法では酵母が殺菌されるわけではないので、新たに発酵後の温度管理が必要となってしまうものであった。 However, since yeast is not sterilized by these methods, temperature control after fermentation is newly required.
発酵(醸造)食品において、発酵・熟成後に食品の有用成分を変質させず、色合いを損なわずに酵母を殺菌できる方法が望まれている。 In fermented (brewed) foods, there is a demand for a method that can sterilize yeast without altering useful components of foods after fermentation and ripening, and without losing color.
出願人は、これまでに圧力処理(高圧処理とも称される。)をテーマに食品に対する様々な研究・実験を行っており、この圧力処理によって上記課題を解決できないかと考えていた。 The applicant has so far conducted various studies and experiments on foods under the theme of pressure treatment (also referred to as high pressure treatment), and thought that this problem could be solved by this pressure treatment.
この圧力処理は、およそ100MPa以上の圧力を加えて食品の加工・殺菌を行う技術で、従来から、ジャム、米飯、めんつゆ、加工玄米等のほかに、味噌、醤油などの発酵食品の製造にも用いられているという実績がある。 This pressure treatment is a technology that processes and sterilizes food by applying a pressure of about 100 MPa or more, and has traditionally been used to produce fermented foods such as miso and soy sauce in addition to jam, cooked rice, noodle soup, and processed brown rice. There is a track record of being used.
また、非加熱殺菌技術であるこの圧力処理は、食品の有用成分を変質させずに、酵母だけを選択的に殺菌することが可能であり、さらには、一般的に酵母の殺菌には300MPa、10分以上の圧力処理を行えばよいこともわかっている。 In addition, this pressure treatment, which is a non-heat sterilization technique, can selectively sterilize only yeast without altering useful components of food. Furthermore, generally, 300 MPa, It has also been found that pressure treatment for 10 minutes or more may be performed.
従って、この圧力処理によれば、発酵・熟成後に食品の有用成分を変質させず、色合いを損なわずに酵母を殺菌できるのではないかと出願人は着目したのである。 Therefore, the applicant has paid attention to this pressure treatment that yeast can be sterilized without deteriorating useful components of food after fermentation and ripening, and without losing color.
しかし、実験を繰り返したところ、300MPa、10分間の圧力処理を行っても、酵母によっては生残する可能性があり、確実とは言えない結果であった。 However, when the experiment was repeated, even if pressure treatment was performed at 300 MPa for 10 minutes, there was a possibility of survival depending on the yeast, which was not a reliable result.
300MPa以上の圧力を加えれば、さらに高い殺菌効果が得られることになるのであるが、処理設備が大型化・高額化して処理コスト高ともなるほか、食品にも加熱殺菌と同様に有用成分の低減、色合いの変化が生じてしまい、非加熱殺菌としての利点を生かすことができなくなってしまう。また、圧力値が高すぎると、ケフィアヨーグルトを代表とする酵母と乳酸菌の並行複合発酵食品においては、酵母だけでなく、発酵後でも有用な乳酸菌まで死滅させてしまう恐れもある。 If a pressure of 300 MPa or more is applied, a higher sterilization effect can be obtained, but the processing equipment becomes larger and more expensive, resulting in a higher processing cost. Therefore, a change in hue occurs, and the advantage as non-heat sterilization cannot be utilized. In addition, if the pressure value is too high, in the parallel complex fermented food of yeast and lactic acid bacteria represented by kefir yogurt, not only yeast but also useful lactic acid bacteria may be killed after fermentation.
出願人は、このような現状に鑑み、何とか非加熱殺菌技術である圧力処理を利用して食品の変質・色合いの変化などを生じずに酵母を殺菌できる方法はないかと研究を進めた末に、発想の転換を図り、予め圧力に対して耐性の低い酵母を用いて発酵食品を製造すれば、その後の圧力処理によって確実に酵母を殺菌できるのではないかと着眼した。 In light of the current situation, the applicant has been researching whether there is a method that can sterilize yeast without causing alteration or color change of food by using pressure treatment, which is a non-heat sterilization technique. The idea was changed, and if fermented foods were produced in advance using yeast having low resistance to pressure, it was noted that yeast could be reliably sterilized by subsequent pressure treatment.
しかし、従来、低耐圧性の酵母を作出する手法はなく、出願人は先ず、低耐圧性酵母の作出方法について研究を行った。そして、鋭意研究し試行錯誤した末に、低耐圧酵母にはいくつかの特性があることを見出し、この特性から低耐圧性酵母をスクリーニングする方法を完成するに至った。 However, conventionally, there is no method for producing low-pressure-resistant yeast, and the applicant first studied a method for producing low-pressure-resistant yeast. And after intensive research and trial and error, it was found that low-pressure yeast has several characteristics, and from this characteristic, a method for screening low-pressure yeast was completed.
即ち、本発明は、非加熱殺菌の利点を損なわない圧力値での圧力処理によって簡単に殺菌可能となる低耐圧性酵母の作出方法を提供するものである。 That is, the present invention provides a method for producing a low-pressure-resistant yeast that can be easily sterilized by pressure treatment at a pressure value that does not impair the advantages of non-heat sterilization.
また、さらに本発明は、例えば、前記低耐圧性酵母の作出方法で取得した酵母を用いた発酵食品の製造方法、並びに低耐圧性酵母を用いて製造した発酵食品、並びに低耐圧性酵母を用いて製造した発酵食品の殺菌方法を提供することを目的としている。 Furthermore, the present invention uses, for example, a method for producing fermented food using yeast obtained by the method for producing low-pressure-resistant yeast, fermented food produced using low-pressure-resistant yeast, and low-pressure-resistant yeast. It aims at providing the sterilization method of the fermented food manufactured by this.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
野生菌株または突然変異処理を施した菌株について、20℃以下の低温域での増殖が可能な酵母をスクリーニングすることを特徴とする低耐圧性酵母の作出方法に係るものである。 The present invention relates to a method for producing a low-pressure-resistant yeast, characterized by screening a yeast capable of growing in a low temperature range of 20 ° C. or less for a wild strain or a strain subjected to a mutation treatment.
また、野生菌株または突然変異処理を施した菌株を、0℃から20℃までの低温域内で段階的に温度を変更して培養することにより、この低温域にて増殖が可能な酵母をスクリーニングすることを特徴とする請求項1記載の低耐圧性酵母の作出方法に係るものである。 In addition, wild strains or strains that have been subjected to mutation treatment are screened by changing the temperature stepwise in a low temperature range from 0 ° C. to 20 ° C. to screen for yeast that can grow in this low temperature range. It concerns on the production method of the low pressure-resistant yeast of Claim 1 characterized by the above-mentioned.
また、野生菌株または突然変異処理を施した菌株について、栄養型細胞のサイズが、その菌株内の各酵母が持つ栄養型細胞の平均サイズよりも大きい酵母をスクリーニングすることを特徴とする低耐圧性酵母の作出方法に係るものである。 In addition, for wild strains or mutant strains that have been subjected to mutation treatment, a yeast having a vegetative cell size larger than the average size of the vegetative cells possessed by each yeast in the strain is screened. It relates to the production method of yeast.
また、野生菌株または突然変異処理を施した菌株を培養し集菌した後、生理食塩水に懸濁し、この懸濁液から自然沈下法あるいは遠心分離法あるいは密度勾配遠心法あるいはエルトリエータロータ分離により形態サイズが大きい酵母をスクリーニングすることを特徴とする請求項3記載の低耐圧性酵母の作出方法に係るものである。 In addition, after culturing and collecting wild strains or strains that have been subjected to mutation treatment, they are suspended in physiological saline, and this suspension is subjected to natural subsidence, centrifugation, density gradient centrifugation, or Eltriator rotor separation. 4. The method according to claim 3, wherein yeast having a large morphological size is screened.
また、野生菌株または突然変異処理を施した菌株について、湿度20%以下の低湿度条件下での増殖が困難な酵母、あるいは湿度80%以上の高湿度条件下での増殖が可能な酵母をスクリーニングすることを特徴とする低耐圧性酵母の作出方法に係るものである。 In addition, screening for wild strains or mutant strains that are difficult to grow under low humidity conditions with a humidity of 20% or less, or that can grow under high humidity conditions with a humidity of 80% or more. The present invention relates to a method for producing a low-pressure-resistant yeast.
また、野生菌株または突然変異処理を施した菌株について、1MPa以上300MPa以下の圧力処理を行うことでコロニーの形成が認められない酵母をスクリーニングすることを特徴とする低耐圧性酵母の作出方法に係るものである。 Further, the present invention relates to a method for producing a low-pressure-resistant yeast, characterized by screening a yeast in which colony formation is not recognized by performing a pressure treatment of 1 MPa or more and 300 MPa or less with respect to a wild strain or a strain subjected to a mutation treatment. Is.
また、野生菌株または突然変異処理を施した菌株を容体内に封入して静水圧にて1MPa以上300MPa以下の圧力処理を行い、この圧力処理後、3日〜7日程度培養してコロニーの形成が認められない酵母をスクリーニングすることを特徴とする請求項6記載の低耐圧性酵母の作出方法に係るものである。 In addition, a wild strain or a mutant-treated strain is enclosed in a container and subjected to a pressure treatment of 1 MPa to 300 MPa at hydrostatic pressure, and after this pressure treatment, it is cultured for about 3 to 7 days to form a colony. 7. A method for producing a low-pressure-resistant yeast according to claim 6, wherein yeasts that are not recognized are screened.
また、前記請求項1〜7のいずれか2項以上の低耐圧性酵母の作出方法を併用して酵母をスクリーニングすることを特徴とする低耐圧性酵母の作出方法に係るものである。 In addition, the present invention relates to a method for producing a low-pressure-resistant yeast, wherein the yeast is screened together with the method for producing a low-pressure-resistant yeast according to any one of claims 1 to 7.
また、野生菌株または突然変異処理を施した菌株から低耐圧性酵母をスクリーニングし、この低耐圧性酵母を用いて食材を発酵させることを特徴とする発酵食品の製造方法に係るものである。 In addition, the present invention relates to a method for producing a fermented food, characterized in that a low pressure resistant yeast is screened from a wild strain or a strain subjected to a mutation treatment, and a food material is fermented using the low pressure resistant yeast.
また、前記請求項1〜8のいずれか1項に記載の低耐圧性酵母の作出方法によって作出した低耐圧性酵母を用いて食材を発酵させることを特徴とする請求項9記載の発酵食品の製造方法に係るものである。 The fermented food according to claim 9, wherein the food is fermented using the low-pressure-resistant yeast produced by the low-pressure-resistant yeast production method according to any one of claims 1 to 8. It relates to a manufacturing method.
また、前記低耐圧性酵母を用いて食材を発酵させた後、1MPa以上300MPa以下の圧力処理を行うことを特徴とする請求項9,10のいずれか1項に記載の発酵食品の製造方法に係るものである。 The fermented food production method according to any one of claims 9 and 10, wherein after the food is fermented using the low-pressure-resistant yeast, a pressure treatment of 1 MPa or more and 300 MPa or less is performed. It is concerned.
また、食材を、野生菌株または突然変異処理を施した菌株からスクリーニングした低耐圧性酵母を用いて発酵させて成ることを特徴とする発酵食品に係るものである。 In addition, the present invention relates to a fermented food product characterized by being fermented using a low pressure-resistant yeast screened from a wild strain or a mutant strain.
また、食材を、前記請求項1〜8のいずれか1項に記載の低耐圧性酵母の作出方法によって作出した酵母を用いて発酵させて成ることを特徴とする請求項12記載の発酵食品に係るものである。 The fermented food according to claim 12, wherein the food is fermented using the yeast produced by the method for producing low-pressure-resistant yeast according to any one of claims 1 to 8. It is concerned.
また、前記食材を、前記低耐圧性酵母を用いて発酵させた後、1MPa以上300MPa以下の圧力処理を行って成ることを特徴とする請求項12,13のいずれか1項に記載の発酵食品に係るものである。 The fermented food according to any one of claims 12 and 13, wherein the food is fermented using the low pressure-resistant yeast and then subjected to a pressure treatment of 1 MPa to 300 MPa. It is related to.
また、野生菌株または突然変異処理を施した菌株から低耐圧性酵母をスクリーニングし、この低耐圧性酵母を用いて食材を発酵させた発酵食品に、1MPa以上300MPa以下の圧力処理を行って酵母を殺菌することを特徴とする発酵食品の殺菌方法に係るものである。 Moreover, low-pressure-resistant yeast is screened from wild strains or strains subjected to mutation treatment, and the yeast is obtained by subjecting fermented food obtained by fermenting ingredients using this low-pressure-resistant yeast to a pressure treatment of 1 MPa to 300 MPa. The present invention relates to a method for sterilizing fermented foods characterized by sterilization.
また、前記請求項1〜8のいずれか1項に記載の低耐圧性酵母の作出方法によって作出した低耐圧性酵母を用いて食材を発酵させた発酵食品に、1MPa以上300MPa以下の圧力処理を行って酵母を殺菌することを特徴とする請求項15記載の発酵食品の殺菌方法に係るものである。 Moreover, the pressure treatment of 1 MPa or more and 300 MPa or less is applied to the fermented food obtained by fermenting food using the low pressure resistant yeast produced by the method of producing the low pressure resistant yeast according to any one of claims 1 to 8. The method according to claim 15, wherein the yeast is sterilized.
本発明は上述のようにしたから、300MPa以下の圧力処理によって、即ち非加熱殺菌の利点を損なわない圧力値での圧力処理によって簡単に殺菌可能な酵母を作出可能となる極めて実用性に秀れた画期的な低耐圧性酵母の作出方法となる。 Since the present invention has been described above, it is extremely practical to be able to produce yeast that can be easily sterilized by pressure treatment of 300 MPa or less, that is, by pressure treatment at a pressure value that does not impair the advantages of non-heat sterilization. This is a revolutionary low-pressure yeast production method.
また、請求項2,4,7記載の発明においては、一層簡易に且つ確実に低耐圧性酵母を作出できることとなる。 In the inventions according to claims 2, 4 and 7, low-pressure-resistant yeast can be produced more easily and reliably.
また、請求項8記載の発明においては、一層精度良く効果的に低耐圧性酵母を作出できることとなる。 In the invention according to claim 8, low-pressure-resistant yeast can be produced with higher accuracy and efficiency.
また、請求項9,10,12,13記載の発明においては、低耐圧性酵母を用いて、清酒、ビール、ワイン、パン、醤油、味噌等各種の発酵食品をこれまで通りの方法にて容易に製造可能となる上、この低耐圧性酵母は、既存の圧力処理設備での圧力処理にて殺菌可能であるので、大型で高額な圧力処理設備を要せず且つ加熱処理を要せずして簡易に殺菌処理が行われると共に、殺菌処理によって有用成分が変質したり、色合いが損なわれたりすることもないなど、極めて実用性に秀れた画期的な発酵食品の製造方法並びに発酵食品となる。 Moreover, in invention of Claim 9,10,12,13, various fermented foods, such as sake, beer, wine, bread, soy sauce, and miso, are easily made by the conventional method using low pressure resistant yeast. In addition, the low pressure resistant yeast can be sterilized by pressure treatment using existing pressure treatment equipment, so that a large and expensive pressure treatment equipment is not required and heat treatment is not required. In addition to being sterilized easily, the sterilization process does not alter the useful components or impair the color of the product. It becomes.
また、請求項11,14記載の発明においては、大型で高額な圧力処理設備を要せずして、確実に有用成分や色合いを損なわずに酵母を殺菌可能となる一層実用性に秀れた発酵食品の製造方法並びに発酵食品となる。 Moreover, in invention of Claim 11, 14, it was excellent in the further practical use which can sterilize yeast reliably without impairing a useful component and hue, without requiring a large-sized and expensive pressure processing equipment. It becomes the manufacturing method of fermented food, and fermented food.
また、請求項15,16記載の発明においては、発酵食品の酵母を大型で高額な圧力処理設備を要せずして、有用成分や色合いを損なわずに殺菌可能となる極めて実用性に秀れた画期的な発酵食品の殺菌方法となる。 Further, in the inventions according to claims 15 and 16, the yeast for fermented foods does not require a large and expensive pressure treatment facility, and can be sterilized without impairing useful components and colors, and is extremely practical. This is a revolutionary fermented food sterilization method.
好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。 Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.
・請求項1記載の発明
野生菌株または突然変異処理を施した菌株から、20℃以下の低温域での増殖が可能な酵母をスクリーニングする。
-Invention of Claim 1 The yeast which can be propagated in a low temperature range below 20 degreeC is screened from a wild strain or the strain which gave the mutation process.
具体的には、例えば、菌株を、0℃から20℃までの低温域内で段階的に温度を変更して培養することにより、この低温域にて増殖が可能な酵母をスクリーニングする。 Specifically, for example, the strain is cultured by changing the temperature stepwise in a low temperature range from 0 ° C. to 20 ° C. to screen for yeast that can grow in this low temperature range.
更に詳しくは、例えば、野生菌株(突然変異処理を施していない菌株)または突然変異処理を施した菌株をYPD寒天培地等のプレート上に、形成されるコロニー数が200個程度となるように接種する。 More specifically, for example, a wild strain (unmutated strain) or a mutant strain is inoculated on a plate such as a YPD agar medium so that the number of colonies formed is about 200. To do.
プレートを0℃にて7日間程度まで培養し、コロニーの形成(増殖性の良否)を確認する。0℃にて良好に形成されるコロニーがある場合は、それを白金耳等で釣菌し、低耐圧性酵母の候補として、再び培養を行う。 The plate is cultured at 0 ° C. for about 7 days to confirm colony formation (proliferative quality). If there is a colony that is favorably formed at 0 ° C., the colony is caught with a platinum loop or the like and cultured again as a candidate for a low pressure resistant yeast.
0℃にてコロニーの形成が見られないか、各コロニーの生育能の有意差が見られない場合は培養温度を2℃程度上げて、再度7日間程度まで培養を行い、コロニーの形成を確認する。 If colony formation is not observed at 0 ° C, or if there is no significant difference in the viability of each colony, increase the culture temperature by about 2 ° C and repeat the culture for about 7 days to confirm the formation of colonies. To do.
2℃での培養において、コロニーの形成が良好であるものが認められる場合は、そのコロニーを釣菌し、低耐圧性酵母の候補として培養を行う。 In the case of culturing at 2 ° C., if a colony is formed well, the colony is picked and cultured as a candidate for a low pressure resistant yeast.
以下、同様にして0℃から20℃程度までの適宜選択した低温域で3日から7日程度培養後にコロニーの形成の有無を確認し、コロニーの形成が良好であれば低耐圧性酵母の候補として培養し、コロニーの形成が見られないか、各コロニーの生育能の有意差が見られない場合は培養温度を段階的に上げて培養を行うという手順を繰り返して、低温にて増殖が良好であるコロニーを選抜する。 In the same manner, the presence or absence of colonies was confirmed after culturing for about 3 to 7 days in an appropriately selected low temperature range from about 0 ° C. to about 20 ° C. If the colony formation is not observed, or if there is no significant difference in the growth ability of each colony, repeat the procedure of increasing the culture temperature step by step, and grow well at low temperature Select the colonies that are
このようにして選抜された酵母は、300MPa以下の圧力処理を施すことによって殺菌されることが出願人の実験により確認されている。即ち、一般的な酵母の培養至適温度が30℃前後であるのに対し、低耐圧性の酵母は、0℃〜20℃程度の低温域にて良好に増殖するという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by applying a pressure treatment of 300 MPa or less. That is, it is found that the optimum temperature for culturing yeast is around 30 ° C., whereas the low pressure resistant yeast has a characteristic that it grows well in a low temperature range of about 0 ° C. to 20 ° C. Using this property, we succeeded in screening low-pressure-resistant strains.
・請求項3記載の発明
野生菌株または突然変異処理を施した菌株から、栄養型細胞のサイズが、その菌株内の各酵母が持つ栄養型細胞の平均サイズよりも大きい酵母をスクリーニングする。
-Invention of Claim 3 The yeast whose size of a vegetative cell is larger than the average size of the vegetative cell which each yeast in the strain has is screened from a wild strain or a strain subjected to a mutation treatment.
具体的には、例えば、野生菌株または突然変異処理を施した菌株を培養し集菌した後、生理食塩水に懸濁し、この懸濁液から自然沈下法あるいは遠心分離法あるいは密度勾配遠心法あるいはエルトリエータロータにより形態サイズが大きい酵母(栄養型細胞のサイズが大きい酵母は形態サイズが大きい。)をスクリーニングする。 Specifically, for example, a wild strain or a strain subjected to mutation treatment is cultured and collected, and then suspended in physiological saline. From this suspension, a natural settlement method, a centrifugation method, a density gradient centrifugation method, The yeast having a large morphological size is screened by an L-triator rotor (yeast having a large vegetative cell size has a large morphological size).
更に詳しくは、例えば、野生菌株または突然変異処理を施した菌株を培養し、集菌、洗浄後に、適当な菌濃度になるように生理食塩水に懸濁する。 More specifically, for example, a wild strain or a strain subjected to a mutation treatment is cultured, and after collection and washing, it is suspended in a physiological saline so as to have an appropriate bacterial concentration.
懸濁液の菌濃度は好ましくは103〜104/ml程度であり、菌体の凝集塊を解離させるために、懸濁液を超音波装置に低出力条件にて15〜30秒程度かけるとよい。 The bacterial concentration of the suspension is preferably about 10 3 to 10 4 / ml. In order to dissociate the aggregates of the bacterial cells, the suspension is subjected to an ultrasonic device for about 15 to 30 seconds under low output conditions. Good.
このようにして調整した懸濁液から、例えば、自然沈降法、遠心分離法、密度勾配遠心法、エルトリエータロータなどの方法により形態上のサイズが大きい酵母を選抜する。 From the suspension thus prepared, for example, yeast having a large morphological size is selected by a method such as natural sedimentation, centrifugation, density gradient centrifugation, or L-triator rotor.
例えば、自然沈降法としては、適当な濃度に調整したショ糖溶液等に菌液を懸濁し、一定時間静置し、細胞密度の大きいものを沈降させる。酵母等の微生物においては、概して栄養型細胞のサイズの大きいものの方が細胞密度が大きく、細胞密度の小さいものはサイズが小さい。 For example, as a natural sedimentation method, a bacterial solution is suspended in a sucrose solution or the like adjusted to an appropriate concentration and allowed to stand for a certain period of time to precipitate a cell having a high cell density. In microorganisms such as yeast, cells having larger vegetative cells generally have a higher cell density, and cells having a lower cell density have a smaller size.
よって一定時間静置後の沈殿物を採取することにより、栄養型細胞のサイズの大きい酵母を分離することが可能である。 Therefore, it is possible to isolate yeast having a large size of vegetative cells by collecting the precipitate after standing for a certain period of time.
また、密度勾配遠心法としては、例えば60%ショ糖溶液などの密度の高い液体を遠沈管の底におき、15%ショ糖などの密度の低い液体を上部において、その間を密度が順次変わるように調整する。 In the density gradient centrifugation method, for example, a high-density liquid such as a 60% sucrose solution is placed at the bottom of the centrifuge tube, and a low-density liquid such as 15% sucrose is placed at the top, and the density is changed sequentially between them. Adjust to.
また、もう一つの密度勾配を作る方法として、塩化セシウム溶液のように強い遠心を施すとその遠心力により自然に密度勾配が生じるものもある。 As another method for creating a density gradient, there is a method in which a density gradient is naturally generated by centrifugal force when a strong centrifugation is performed like a cesium chloride solution.
このような方法により形成した密度勾配液の上層部に適当に希釈した菌液を静かに重層し、一定時間放置した後、遠心分離機にかけると、各溶液層の密度に応じて酵母を密度ごとに分離することができる。 Gently overlay the appropriately diluted bacterial solution on the upper part of the density gradient solution formed by such a method, leave it for a certain period of time, and centrifuge it, and the yeast will have a density according to the density of each solution layer. Can be separated.
また、エルトリエータロータは、遠心力と懸濁液を流す流速に応じて、種々の大きさに応じて、各フラクションとして分離することができる。 In addition, the L triator rotor can be separated as each fraction according to various sizes according to the centrifugal force and the flow rate of flowing the suspension.
酵母のサイズとして、出芽酵母であるサッカロミセス・セレビシエの一倍体細胞では長径5μm程度の卵形をしており、二倍体細胞はそれより若干大きく、両端が多少とがったようなレモン形をしている。 Saccharomyces cerevisiae haploid cells, which are the budding yeast, have an oval shape with a major axis of about 5 μm, and the diploid cells are slightly larger than that and have a lemon shape with both ends slightly cut off. ing.
上記のような方法により、酵母を栄養型細胞のサイズごとに分離する場合、予め光学顕微鏡、ミクロメーター等で混在する酵母のサイズ、形態等を観察しておく必要があり、好ましくはフローサイトメトリー法などにより懸濁液中の酵母の粒度分布を計測しておくことが望ましい。 When separating yeast according to the size of the vegetative cell by the method as described above, it is necessary to observe the size and form of the yeast mixed with an optical microscope, a micrometer, etc., preferably flow cytometry. It is desirable to measure the particle size distribution of the yeast in the suspension by a method or the like.
酵母の分離、分画は、好ましくは1μm程度ごとの範囲が望ましいが、手法や使用する装置にもよるため、確認した懸濁液中の酵母サイズ、形態をもとに、適切な手法、装置を選択することとする。 The separation and fractionation of yeast is preferably in the range of about 1 μm. However, since it depends on the method and the device used, an appropriate method and device are used based on the confirmed yeast size and form in the suspension. Will be selected.
選抜する酵母のサイズの基準として、特に明確なものはないが、概ね全体の細胞サイズの粒径分布のうち、サイズの大きい方から10%以下の範囲を対象に選抜を行うものとする。 Although there is no particular standard for the size of yeast to be selected, selection is generally made for a range of 10% or less from the larger size of the particle size distribution of the overall cell size.
このようにして選抜された酵母は、300MPa以下の圧力処理によって殺菌されることが出願人の実験により確認されている。即ち、低耐圧性の酵母は、栄養型細胞のサイズが、菌株内の各酵母が持つ栄養型細胞の平均サイズよりも大きいという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by a pressure treatment of 300 MPa or less. That is, the low-pressure-resistant yeast has the characteristic that the size of the vegetative cells is larger than the average size of the vegetative cells of each yeast in the strain. Succeeded in screening.
・請求項5記載の発明
野生菌株または突然変異処理を施した菌株について、湿度20%以下の低湿度条件下での生育が困難な酵母、あるいは湿度80%以上の高湿度条件下での生育が可能な酵母をスクリーニングする。
-Invention of Claim 5 About a wild strain or a strain subjected to a mutation treatment, it is difficult to grow under low humidity conditions with a humidity of 20% or less, or under high humidity conditions with a humidity of 80% or more. Screen for possible yeast.
具体的には、例えば、野生菌株または突然変異処理を施した菌株を、湿度20%以下の低湿度条件下で培養してこの低湿度条件下で増殖が困難な酵母をスクリーニングするか、若しくは野生菌株または突然変異処理を施した菌株を、湿度80%以上の高湿度条件下で培養してこの高湿度条件下で増殖が可能な酵母をスクリーニングする。 Specifically, for example, a wild strain or a strain subjected to a mutation treatment is cultured under a low humidity condition with a humidity of 20% or less and a yeast that is difficult to grow under this low humidity condition is screened, or The strain or the strain subjected to the mutation treatment is cultured under a high humidity condition with a humidity of 80% or more, and a yeast capable of growing under the high humidity condition is screened.
更に詳しくは、例えば、野生菌株または突然変異処理を施した菌株をYPD培地等のプレート上に形成されるコロニー数が200程度となるように接種する。 More specifically, for example, a wild strain or a strain subjected to mutation treatment is inoculated so that the number of colonies formed on a plate such as a YPD medium is about 200.
プレートを30℃などの適当な温度と、湿度10%以下の低湿度条件下にて3日から7日間程度の培養を行い、生育が悪く増殖性の悪い菌株、つまり形成されるコロニーの小さいものを選抜する。 The plate is cultured for about 3 to 7 days under a suitable temperature such as 30 ° C. and a low humidity condition of 10% or less, and the strain has poor growth and poor growth, that is, a small colony is formed. To select.
あるいは30℃、湿度90%以上の高湿度条件下にて良好に生育し増殖する菌株、つまり形成されるコロニーの大きいものを選抜する。 Alternatively, a strain that grows and grows well under a high humidity condition of 30 ° C. and a humidity of 90% or more, that is, a large colony formed is selected.
本方法により、低湿度条件下にて増殖が困難である酵母、高湿度条件下にて増殖が良好である酵母、つまり乾燥に対して耐性の弱い酵母を選抜することが可能である。 By this method, it is possible to select yeasts that are difficult to grow under low humidity conditions, yeasts that grow well under high humidity conditions, that is, yeasts that have low resistance to drying.
このようにして選抜された酵母は、300MPa以下の圧力処理によって殺菌されることが出願人の実験により確認されている。即ち、低耐圧性の酵母は、湿度20%以下の低湿度条件下にて増殖が特に困難であり、湿度80%以上の高湿度条件下にて増殖が良好であること、即ち乾燥に対して耐性が弱いという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by a pressure treatment of 300 MPa or less. That is, low pressure-resistant yeast is particularly difficult to grow under low humidity conditions with a humidity of 20% or less, and has good growth under high humidity conditions with a humidity of 80% or more. We found that it has the characteristic that resistance is weak, and succeeded in screening a low-pressure-resistant strain using this characteristic.
・請求項6記載の発明
野生菌株または突然変異処理を施した菌株について、1MPa以上300MPa以下の圧力処理を行うことでコロニーの形成が認められない酵母をスクリーニングする。
-Invention of Claim 6 About the wild strain or the strain which performed the mutation process, the yeast in which colony formation is not recognized is screened by performing a pressure process of 1 MPa or more and 300 MPa or less.
具体的には、例えば、野生菌株または突然変異処理を施した菌株を容体内に封入して静水圧にて1MPa以上300MPa以下の圧力処理を行い、この圧力処理後、3日〜7日程度培養してコロニーの形成が認められない酵母をスクリーニングする。 Specifically, for example, a wild strain or a mutant-treated strain is enclosed in a container and subjected to a pressure treatment of 1 MPa or more and 300 MPa or less under hydrostatic pressure, and cultured for about 3 to 7 days after this pressure treatment. And screening for yeast in which colony formation is not observed.
更に詳しくは、例えば、野生菌株または突然変異処理を施した菌株を適当に希釈し、プレート上に形成されるコロニーが200個程度となるように接種し、これをマスタープレートとする。 More specifically, for example, a wild strain or a strain subjected to mutation treatment is appropriately diluted and inoculated so that about 200 colonies are formed on the plate, and this is used as a master plate.
レプリカ平板法により、マスタープレートよりレプリカを作製する。 A replica is produced from the master plate by the replica plate method.
菌液を接種したプレートを軟質製のプラスチックパウチに入れ、なるべく空気が混入しないようにヒートシールした後、例えば200MPaで圧力処理を行う。 The plate inoculated with the bacterial solution is placed in a soft plastic pouch, heat sealed so as not to mix air as much as possible, and then subjected to pressure treatment at 200 MPa, for example.
圧力処理後にパウチを開封し、無菌的に滅菌シャーレ等に移し、30℃にて3日から7日間程度培養する。 After the pressure treatment, the pouch is opened, transferred aseptically to a sterile petri dish, etc., and cultured at 30 ° C. for about 3 to 7 days.
また、作製したレプリカ平板のうちのもう一方は、圧力処理を施さない無処理区として30℃、3日から7日間程度培養を行う。 The other of the produced replica plates is cultured at 30 ° C. for 3 to 7 days as an untreated section where no pressure treatment is applied.
これより、無処理区ではコロニーを形成し、圧力処理区ではコロニーが形成されないものを低耐圧性酵母として選抜する。 From this, colonies are formed in the untreated section, and those that do not form colonies in the pressure-treated section are selected as low-pressure resistant yeast.
このほかにマスタープレートより、白金耳等で各コロニーを採取し、プラスチック樹脂性チューブに入れた液体培地あるいは生理食塩水に懸濁する。 In addition, each colony is collected from the master plate with a platinum loop or the like and suspended in a liquid medium or physiological saline in a plastic resin tube.
各コロニーに対して、2本ずつチューブを用意し、なるべくチューブ内に空気が残存しないように液体培地あるいは生理食塩水等を満たす。 Prepare two tubes for each colony and fill with liquid medium or physiological saline so that air does not remain in the tube as much as possible.
ここで使用するチューブは例えばマイクロチューブなどのように圧力処理に耐えうるものであればよい。 The tube used here may be any tube that can withstand pressure treatment, such as a microtube.
菌液を懸濁したチューブごと例えば200MPaにて圧力処理を行い、処理後の菌液をプレートに接種する。 The tube in which the bacterial solution is suspended is subjected to pressure treatment, for example, at 200 MPa, and the treated bacterial solution is inoculated on the plate.
30℃にて3日から7日間程度培養し、コロニーの形成されないものを低耐圧性酵母として選抜する。 The cells are cultured at 30 ° C. for about 3 to 7 days, and those having no colony formed are selected as low-pressure-resistant yeast.
上記のいずれの方法においても、圧力処理を200MPaにて行い、生育が認められない場合、圧力条件を100MPa等に下げ、分離された低耐圧性酵母がどの程度の圧力処理にて死滅するのかを必要に応じて限定するものとする。 In any of the above methods, when the pressure treatment is performed at 200 MPa and no growth is observed, the pressure condition is lowered to 100 MPa, etc., and how much pressure treatment the separated low-pressure yeast is killed. Limit as necessary.
このようにして選抜された酵母は、200MPa以下の圧力処理を施すことでコロニーが形成されない。即ちこの酵母は、200MPa以下の圧力処理によって殺菌される。 The yeast thus selected does not form colonies when subjected to a pressure treatment of 200 MPa or less. That is, this yeast is sterilized by pressure treatment of 200 MPa or less.
この方法は直接的に低耐圧性酵母を得られる有効な手法であるが、多数の菌株を扱う必要があり、上記した他の手法と比べると効率が良いとはいえない。よって、例えば、後述の2つ以上の作出方法を併用する場合において、他のスクリーニング方法を一次スクリーニングとし、本方法を2次スクリーニングとして用いるような用法とすることが望ましい。 This method is an effective method for directly obtaining a low-pressure-resistant yeast, but it is necessary to handle a large number of strains and cannot be said to be efficient compared to the other methods described above. Therefore, for example, when two or more production methods described later are used in combination, it is desirable that the other screening method is a primary screening and the method is used as a secondary screening.
・請求項8記載の発明
上記した4つの低耐圧性酵母の作出方法のうちのいずれか2つ以上を併用して酵母をスクリーニングすると、より精度良く効果的に低耐圧性酵母を作出できる。
-Invention of Claim 8 If yeast is screened together using any two or more of the above four methods for producing low-pressure yeast, low-pressure yeast can be produced more accurately and effectively.
尚、これら作出方法の併用数や、順序は特に限定されるものではない。また、選択した2つ以上の各作出方法を順序だてて行う必要性はなく、例えば2つの方法を同時的に行うことも可能である。 In addition, the number of combined use and order of these production methods are not particularly limited. Further, there is no need to perform the selected two or more creation methods in order, and for example, the two methods can be performed simultaneously.
・請求項9,12記載の発明
野生菌株または突然変異処理を施した菌株から低耐圧性酵母をスクリーニングし、この低耐圧性酵母を用いて食材を発酵させて発酵食品とする。
-Invention of Claim 9,12 Low-pressure-resistant yeast is screened from the wild strain or the strain which gave the mutation process, and foodstuffs are fermented using this low-pressure-resistant yeast, and it is set as fermented food.
具体的には、例えば、上記した5つの作出方法にて作出した低耐圧性酵母を用いることができるし、他の作出方法で作出した低耐圧性酵母を用いることもできる。そして、この低耐圧性酵母を用いて、定法に従い食材を発酵させて清酒、ビール、ワイン、パン、醤油、味噌等各種の発酵食品を製造可能である。 Specifically, for example, low-pressure-resistant yeast produced by the above-mentioned five production methods can be used, and low-pressure-resistant yeast produced by other production methods can also be used. And using this low pressure-resistant yeast, fermented foodstuffs can be produced according to a conventional method to produce various fermented foods such as sake, beer, wine, bread, soy sauce, and miso.
尚、本発明でいう「発酵食品」とは、酵母による発酵作用を利用して製造される醸造食品も含む意味合いで用いている。 In addition, the "fermented food" as used in the field of this invention is used in the meaning including the brewed food manufactured using the fermenting action by yeast.
・請求項15記載の発明
低耐圧性酵母(例えば、上記した5つの作出方法にて作出した低耐圧性酵母)を用いて製造された発酵食品(例えば、請求項9記載の発明で製造した発酵食品や請求項12記載の発明の発酵食品)は、例えば、1MPa以上300MPa以下の圧力処理を行うことで十分に酵母を殺菌可能となる。
-Invention of Claim 15 Fermented food manufactured using low pressure-resistant yeast (for example, low pressure-resistant yeast produced by the above-mentioned five production methods) (for example, fermentation produced by the invention of Claim 9) The food or the fermented food of the invention according to claim 12 can sufficiently sterilize the yeast by performing a pressure treatment of 1 MPa or more and 300 MPa or less, for example.
このような圧力値での圧力処理は、既存の圧力処理設備で問題なく行うことができるので、追加の設備投資を必要とせず、また、食品の変質・色合いの変化なども生じない。 The pressure treatment at such a pressure value can be carried out without any problem with existing pressure treatment equipment, so that no additional equipment investment is required, and there is no change in food quality or color.
即ち、本発明によれば、新たに大型で高額な設備を要せずとも、有用成分や色合いを損なわずに発酵食品の酵母を殺菌できた。 That is, according to the present invention, yeast of fermented foods can be sterilized without damaging useful components and colors without newly requiring large and expensive equipment.
本発明の具体的な実施例1について図1に基づいて説明する。 A specific embodiment 1 of the present invention will be described with reference to FIG.
本実施例における対象菌株としては、例えば、サッカロミセス・セレビシエに属する酵母菌株で、突然変異処理を施していない野生菌株、または突然変異処理した株を対象とすることができる。突然変異処理は、X線、UV照射、エチルメタンスルホン酸(EMS)、ニトロソグアニジン(NTG)処理など何らかの方法で行うものとする。通常、変異処理後の生存率が10%以下となるように処理を行う。これ以上生存率を低くすると、余分な変異が生じ、好ましくない。変異処理は、2倍体の酵母でもよいが、1倍体の胞子株を用いる方がより効率的である。 As a target strain in this example, for example, a yeast strain belonging to Saccharomyces cerevisiae, which has not been subjected to mutation treatment, or a mutant treatment strain can be used. Mutation treatment is carried out by some method such as X-ray, UV irradiation, ethylmethanesulfonic acid (EMS), nitrosoguanidine (NTG) treatment. Usually, the treatment is performed so that the survival rate after the mutation treatment is 10% or less. If the survival rate is further reduced, an extra mutation occurs, which is not preferable. Although the diploid yeast may be used for the mutation treatment, it is more efficient to use a haploid spore strain.
また、本実施例に使用する培地としては、炭素源、窒素源、無機イオン、さらに必要に応じて有機微量栄養素を含有する通常の培地が使用できる。例えば、YPD寒天培地(酵母エキス、グルコース、ポリペプトン、寒天、蒸留水)、YM寒天培地(酵母エキス、麦芽エキス、ペプトン、グルコース、寒天、蒸留水、pH5〜6)等が用いられる(液体培地では寒天を除く)。培養方法として、例えば30℃、3日間培養し、遠心分離(3000rpm、10分)にて集菌後、生理食塩水で2回遠心洗浄し、適当な菌濃度になるように生理食塩水に懸濁する。 Moreover, as a culture medium used for a present Example, the normal culture medium containing a carbon source, a nitrogen source, an inorganic ion, and the organic trace nutrient as needed can be used. For example, YPD agar medium (yeast extract, glucose, polypeptone, agar, distilled water), YM agar medium (yeast extract, malt extract, peptone, glucose, agar, distilled water, pH 5-6), etc. are used (in liquid medium) Except agar). As a culture method, for example, it is cultured at 30 ° C. for 3 days, collected by centrifugation (3000 rpm, 10 minutes), washed twice with physiological saline, and suspended in physiological saline to obtain an appropriate bacterial concentration. It becomes cloudy.
培養は一般的な条件でよく、培養温度は一般に20〜30℃、好ましくは30℃前後、培養日数は1〜7日間、好ましくは3日間程度である。 The culture may be performed under general conditions, and the culture temperature is generally 20 to 30 ° C., preferably around 30 ° C., and the culture days are 1 to 7 days, preferably about 3 days.
変異処理を行う場合、この懸濁液をUV、NTG、EMSなどの変異剤を用いて、生存率がおよそ10%以下になるように処理し、遠心集菌後、生菌数が約4×107程度になるように液体培地に懸濁し、30℃、12時間振とう培養する。 When mutation treatment is performed, this suspension is treated with a mutation agent such as UV, NTG, EMS or the like so that the survival rate is about 10% or less. After centrifugation, the number of viable bacteria is about 4 ×. Suspend in a liquid medium to about 10 7 and culture with shaking at 30 ° C. for 12 hours.
尚、以上の点は、後述の実施例2〜5においても同様である。 In addition, the above point is the same also in Examples 2 to 5 described later.
Saccharomyces cerevisiae NBRC1136(生物基盤技術評価研究所 分譲株)をYM培地にて30℃、3日間初期培養を行った。 Saccharomyces cerevisiae NBRC1136 (Biotechnology Research Institute) was initially cultured in YM medium at 30 ° C. for 3 days.
菌体を3000rpm、3分間の遠心分離により回収した後、滅菌水を5ml添加して洗浄した。 The cells were collected by centrifugation at 3000 rpm for 3 minutes, and then washed by adding 5 ml of sterilized water.
この洗浄操作を2回繰返した後、適当な濃度となるように生理食塩水に懸濁した。 This washing operation was repeated twice and then suspended in physiological saline so as to obtain an appropriate concentration.
懸濁液を希釈した後、プレート上に形成されるコロニー数が200程度となるように接種した。 After the suspension was diluted, it was inoculated so that the number of colonies formed on the plate was about 200.
0℃で3日から7日間程度培養を行い、コロニーの形成の有無を日々確認した。 Cultivation was performed at 0 ° C. for about 3 to 7 days, and the presence or absence of colony formation was confirmed every day.
コロニーの形成が認められない場合、20℃までの低温域内で温度を2℃ずつ段階的に上げながら培養を行い、低温域にて増殖可能なコロニーを形成させた。 When colony formation was not observed, the cells were cultured in a low temperature range up to 20 ° C. while gradually increasing the temperature by 2 ° C. to form colonies capable of growing in the low temperature range.
その結果、10℃、5日から7日間にて目視で確認できる程度のコロニーが形成され、その中より、特に生育の良好なものを複数個(10〜20個程度)白金耳にて採取し、YM培地にて再び30℃、3日間培養を行った。 As a result, colonies of a degree that can be visually confirmed at 10 ° C. for 5 to 7 days are formed. Among them, a plurality (about 10 to 20) of particularly good growth are collected with platinum ears. Then, the cells were again cultured in YM medium at 30 ° C. for 3 days.
その後、200MPaの圧力処理にて耐圧性を評価し、低耐圧性株を取得した。 Thereafter, pressure resistance was evaluated by pressure treatment at 200 MPa, and a low pressure resistant strain was obtained.
図1は、本実施例でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 1 is a graph in which the pressure resistance of each of the yeast screened in this example and the untreated yeast under pressure conditions was verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、本実施例でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in this example can be sterilized by a pressure treatment of about 200 MPa.
尚、ここでいう圧力処理は、水などの液体を媒体とした静水圧処理をいい、以下に記載する実施例2〜5の圧力処理もすべてこれを意味している。 In addition, the pressure process here means the hydrostatic pressure process which used liquids, such as water, as a medium, and all the pressure processes of Examples 2-5 described below also mean this.
本発明の具体的な実施例2について図2,図3に基づいて説明する。 A second embodiment of the present invention will be described with reference to FIGS.
実施例1と同様にして調整した懸濁液を、CR22GII形高速冷却遠心機(日立工機(株)製)、R5E形エルトリエータロータ(日立工機(株)製)からなるエルトリエータ分離システムにより、栄養細胞のサイズによる各フラクションごとに分画を行い、栄養型細胞のサイズが、菌株内に存在する菌の栄養型細胞の平均サイズよりも大きい酵母(低耐圧性株)を取得した(図3参照。)。処理条件として、温度4℃、回転速度3000rpm、流速9ml/min〜23ml/minである(表1参照。)。
The suspension prepared in the same manner as in Example 1 is an L triator separation system consisting of a CR22GII type high speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) and an R5E type L triator rotor (manufactured by Hitachi Koki Co., Ltd.). Thus, fractionation was performed for each fraction depending on the size of vegetative cells, and yeast (low pressure resistant strain) was obtained in which the size of vegetative cells was larger than the average size of vegetative cells present in the strain ( (See FIG. 3). The processing conditions are a temperature of 4 ° C., a rotational speed of 3000 rpm, and a flow rate of 9 ml / min to 23 ml / min (see Table 1).
図2は、本実施例でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 2 is a graph in which the pressure resistance of each of the yeast screened in this example and the untreated yeast under the pressure conditions was verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、本実施例でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in this example can be sterilized by a pressure treatment of about 200 MPa.
本発明の具体的な実施例3について図4に基づいて説明する。 A specific third embodiment of the present invention will be described with reference to FIG.
実施例1と同様に調整した菌液を形成されるコロニー数が200程度となるようにプレートに接種する。30℃、湿度90%にて培養を開始し、経時的にコロニー形成の様子を確認した。 The plate is inoculated so that the number of colonies forming the bacterial solution prepared in the same manner as in Example 1 is about 200. Cultivation was started at 30 ° C. and a humidity of 90%, and colony formation was confirmed over time.
3日から7日間程度の培養にて目視でコロニーの形成が確認でき、その中で特に生育性の良好であるものを10〜20個程度を白金耳にて採取し、YM培地にて再び30℃、3日間培養を行った。 The formation of colonies can be confirmed visually by culturing for about 3 to 7 days. Among them, about 10 to 20 samples having particularly good growth are collected with platinum ears, and again in YM medium. Culturing was carried out at 3 ° C. for 3 days.
その後、菌液を200MPaまでの圧力処理にて耐圧性を評価し、低耐圧性株を取得した。 Thereafter, the pressure resistance of the bacterial solution was evaluated by pressure treatment up to 200 MPa, and a low pressure-resistant strain was obtained.
図4は、本実施例でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 4 is a graph in which the pressure resistance under each pressure condition of the yeast screened in this example and the untreated yeast is verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、本実施例でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in this example can be sterilized by a pressure treatment of about 200 MPa.
本発明の具体的な実施例4について図5に基づいて説明する。 A specific embodiment 4 of the present invention will be described with reference to FIG.
実施例1と同様にして調整した懸濁液について、凝集塊を破壊したり、また成熟した出芽娘細胞をその母細胞より分離したりするために、菌の希釈液を軽く超音波処理(低出力で10〜15秒)し、その後無菌ペトリ皿に移し紫外線照射を行った。 For the suspension prepared in the same manner as in Example 1, in order to break up aggregates and separate mature budding daughter cells from their mother cells, the diluted solution of the bacteria was gently sonicated (low 10 to 15 seconds at output), then transferred to a sterile petri dish and irradiated with ultraviolet light.
紫外線照射は、滅菌シャーレに5ml採取し、5cmの距離から出力15Wの殺菌灯にて行った。殺菌灯は松下電工製のGL-15殺菌灯を用いた。 For ultraviolet irradiation, 5 ml was collected in a sterilized petri dish and subjected to a germicidal lamp with an output of 15 W from a distance of 5 cm. As the germicidal lamp, a GL-15 germicidal lamp manufactured by Matsushita Electric Works was used.
処理後の菌液をYM寒天培地に段階希釈した後に接種し、30℃、3日間培養した。 The treated bacterial solution was inoculated after serial dilution in YM agar medium and cultured at 30 ° C. for 3 days.
コロニーの形成されたプレートをマスタープレートとして、レプリカを作製した。 A replica was prepared using the plate on which the colony was formed as a master plate.
レプリカした平板培地を無菌的にパウチに封入し、なるべく空気を排出しつつ、ヒートシールして密封した。 The replicated plate medium was aseptically sealed in a pouch and heat sealed while discharging air as much as possible.
密封した平板培地ごと200MPaの圧力処理を行なった後、無菌的に開封し、再び滅菌シャーレに移して、30℃、3日程度培養させてコロニーを形成させた。 After the sealed flat plate medium was pressure treated at 200 MPa, it was opened aseptically, transferred again to a sterile petri dish, and cultured at 30 ° C. for about 3 days to form colonies.
無処理区と比較して、コロニーの形成されないものを低耐圧性酵母として取得した。 Compared with the untreated section, the one in which no colony was formed was obtained as a low pressure resistant yeast.
本実施例での紫外線照射後の生菌数は2.3×102(処理前は6.3×106)であり、紫外線照射による殺菌率は99.9%である。 In this example, the viable cell count after irradiation with ultraviolet rays is 2.3 × 10 2 (6.3 × 10 6 before treatment), and the sterilization rate by ultraviolet irradiation is 99.9%.
また、紫外線照射後に形成されたコロニー100個をレプリカし、そのうち200MPaの圧力処理で死滅するコロニーを2個取得した。 In addition, 100 colonies formed after ultraviolet irradiation were replicated, and 2 colonies that died by pressure treatment of 200 MPa were obtained.
また、取得した2個のコロニーを増殖させ、100MPaの圧力処理で死滅するものは0個であった。 In addition, two colonies obtained were proliferated, and 0 were killed by pressure treatment of 100 MPa.
図5は、本実施例でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 5 is a graph in which the pressure resistance of each of the yeast screened in this example and the untreated yeast under pressure conditions was verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、本実施例でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in this example can be sterilized by a pressure treatment of about 200 MPa.
本発明の具体的な実施例5について図6に基づいて説明する。 A specific embodiment 5 of the present invention will be described with reference to FIG.
本実施例は、前記実施例1と前記実施例4を組み合わせた場合である。 The present embodiment is a case where the first embodiment and the fourth embodiment are combined.
実施例1と同様に調整した菌液を形成されるコロニー数が200程度となるようにプレートに接種する。 The plate is inoculated so that the number of colonies forming the bacterial solution prepared in the same manner as in Example 1 is about 200.
10℃にて7日間程度培養を行い、形成されるコロニーのうち、特に生育の良好なもの約300個を採取して、プレートに移し、マスタープレートとした。 Cultivation was carried out at 10 ° C. for about 7 days, and about 300 colonies with particularly good growth among the formed colonies were collected and transferred to a plate to obtain a master plate.
マスタープレートより、レプリカを作製し、実施例4と同様に圧力処理を施し、低耐圧性酵母を取得した。 A replica was prepared from the master plate and subjected to pressure treatment in the same manner as in Example 4 to obtain a low pressure resistant yeast.
本実施例では低耐圧性酵母の一次スクリーニングとして実施例1の方法により、約300個のコロニーを分離した。 In this example, about 300 colonies were isolated by the method of Example 1 as a primary screening for low-pressure resistant yeast.
その後、二次スクリーニングとして実施例4の方法により、4個の低耐圧性酵母を取得した。 Thereafter, four low-pressure-resistant yeasts were obtained by the method of Example 4 as secondary screening.
実施例1あるいは実施例4単独でのスクリーニング方法に比べて、高確率で低耐圧性酵母をスクリーニングすることができた。 Compared with the screening method of Example 1 or Example 4 alone, it was possible to screen low-pressure-resistant yeast with high probability.
図6は、本実施例でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 6 is a graph that verifies the pressure resistance of each of the yeast screened in this example and the untreated yeast under pressure conditions.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、本実施例でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in this example can be sterilized by a pressure treatment of about 200 MPa.
本発明の具体的な実施例6について説明する。 A specific embodiment 6 of the present invention will be described.
本実施例は、低耐圧性酵母を用いた発酵食品の製造方法である。 A present Example is a manufacturing method of fermented foods using the low pressure resistant yeast.
具体的には、例えば、上記した5つの作出方法にて作出した低耐圧性酵母を使用する。 Specifically, for example, the low pressure-resistant yeast produced by the above-mentioned five production methods is used.
この低耐圧性酵母を用いて、定法に従い食材を発酵させて清酒、ビール、ワイン、パン、醤油、味噌等各種の発酵食品を製造可能である。 Using this low pressure resistant yeast, various fermented foods such as sake, beer, wine, bread, soy sauce and miso can be produced by fermenting food ingredients according to a conventional method.
続いて、この発酵食品に200MPa以下の圧力処理を行うことで酵母を殺菌する。 Subsequently, the yeast is sterilized by subjecting this fermented food to a pressure treatment of 200 MPa or less.
このような圧力値での圧力処理は、既存の圧力処理設備で問題なく行うことができるので、追加の設備投資を必要とせず、また、食品の変質・色合いの変化なども生じない。 The pressure treatment at such a pressure value can be carried out without any problem with existing pressure treatment equipment, so that no additional equipment investment is required, and there is no change in food quality or color.
従って、本発明によれば、新たに大型で高額な設備を要せずとも、有用成分を変質させず、色合いを損なわずに発酵食品の酵母を選択的に殺菌できる。 Therefore, according to the present invention, it is possible to selectively sterilize yeasts of fermented foods without altering useful components and without impairing the hue, without requiring new large and expensive equipment.
尚、本発明は、実施例1〜6に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 In addition, this invention is not restricted to Examples 1-6, The concrete structure of each component can be designed suitably.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007340439A JP5517406B2 (en) | 2007-12-28 | 2007-12-28 | Fermentation stop method by non-heat sterilization of fermented food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007340439A JP5517406B2 (en) | 2007-12-28 | 2007-12-28 | Fermentation stop method by non-heat sterilization of fermented food |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012111299A Division JP5579774B2 (en) | 2012-05-15 | 2012-05-15 | Fermentation stop method by non-heat sterilization of fermented food |
JP2014025827A Division JP5753599B2 (en) | 2014-02-13 | 2014-02-13 | Fermentation stop method by non-heat sterilization of fermented food |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009159853A true JP2009159853A (en) | 2009-07-23 |
JP5517406B2 JP5517406B2 (en) | 2014-06-11 |
Family
ID=40963227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007340439A Expired - Fee Related JP5517406B2 (en) | 2007-12-28 | 2007-12-28 | Fermentation stop method by non-heat sterilization of fermented food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5517406B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011250721A (en) * | 2010-06-01 | 2011-12-15 | Yoshio Maekawa | Oxidation-reduction potential dropping method of substance |
JP2012217393A (en) * | 2011-04-11 | 2012-11-12 | Echigo Seika Co Ltd | Production method of pressure sensitive microorganisms, production method of fermented food, fermented food, and killing microorganism method for fermented food |
CN113598342A (en) * | 2021-07-27 | 2021-11-05 | 洽洽食品股份有限公司 | Cheese-flavored melon seeds and processing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003210136A (en) * | 2002-01-23 | 2003-07-29 | Enzamin Kenkyusho:Kk | Method for producing health nutritive food |
JP2004229563A (en) * | 2003-01-30 | 2004-08-19 | Nippon Beet Sugar Mfg Co Ltd | Method for producing new bread |
JP2006224042A (en) * | 2005-02-21 | 2006-08-31 | National Research Inst Of Brewing | Breeding method of wastewater treatment yeast, yeast bred by the method, and phosphorus removing and recovering method using the yeast |
-
2007
- 2007-12-28 JP JP2007340439A patent/JP5517406B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003210136A (en) * | 2002-01-23 | 2003-07-29 | Enzamin Kenkyusho:Kk | Method for producing health nutritive food |
JP2004229563A (en) * | 2003-01-30 | 2004-08-19 | Nippon Beet Sugar Mfg Co Ltd | Method for producing new bread |
JP2006224042A (en) * | 2005-02-21 | 2006-08-31 | National Research Inst Of Brewing | Breeding method of wastewater treatment yeast, yeast bred by the method, and phosphorus removing and recovering method using the yeast |
Non-Patent Citations (1)
Title |
---|
JPN6012030004; 日本農芸化学会誌 Vol. 69, No. 8, 199508, pp. 1021-1026 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011250721A (en) * | 2010-06-01 | 2011-12-15 | Yoshio Maekawa | Oxidation-reduction potential dropping method of substance |
JP2012217393A (en) * | 2011-04-11 | 2012-11-12 | Echigo Seika Co Ltd | Production method of pressure sensitive microorganisms, production method of fermented food, fermented food, and killing microorganism method for fermented food |
CN113598342A (en) * | 2021-07-27 | 2021-11-05 | 洽洽食品股份有限公司 | Cheese-flavored melon seeds and processing method thereof |
CN113598342B (en) * | 2021-07-27 | 2023-06-30 | 洽洽食品股份有限公司 | Cheese-flavored melon seeds and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5517406B2 (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107523504A (en) | Schizochytrium limacinum mutant strain | |
JP2011167190A (en) | Fermented soya milk lactobacillus beverage and method for producing the same | |
JP5517406B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
JP4630389B1 (en) | Novel yeast and method for producing food fermented with the yeast | |
CN110564580A (en) | Method for producing vinegar containing pyrroloquinoline quinone through microbial co-culture fermentation | |
CN112544342B (en) | Efficient special culture medium for amanita sinensis and preparation method and application thereof | |
CN104830696B (en) | A kind of high yield CNNS Marasmius mutagenic strain and breeding method | |
DK3140416T3 (en) | COLLECTION OF PROPIONI BACTERIUM AND Yeast | |
CN104498372B (en) | Fusarium oxysporum BM201, its compound pectinase produced and compound pectinase preparation method and application | |
CN107058283B (en) | Method for constructing mutant strain by mutagenizing ganoderma protoplast by using plasma | |
CN109337833A (en) | Biological agent of Leuconostoc mesenteroides of mutagenesis and application thereof | |
JP5579774B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
JP6618792B2 (en) | Natto that can be heat sterilized | |
TW201026220A (en) | Fungal bed cultivation method of hon-shimeji mushroom | |
JP5753599B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
JP2904879B2 (en) | Low temperature sensitive lactic acid bacterium mutant, fermented plant produced using the same, and method for producing the same | |
CN110835619A (en) | Acetobacter pasteurianus mutant strain and mutagenesis and screening method thereof | |
CN109486731A (en) | A kind of resistance to acetate ethanol bacterium and its application | |
CN111304108B (en) | Leuconostoc lactis and application thereof | |
CN112553124B (en) | Lactobacillus plantarum strain and application thereof | |
KR102169686B1 (en) | Method for preparing citric acid using Aspergillus sp. mutation by methanol | |
JP5953544B2 (en) | Production method of pressure sensitive yeast | |
Mani et al. | An effective approach of strain improvement in Cordyceps militaris using abrin | |
JP2009213423A (en) | Bacillus natto with suppressed ammonia production, and natto (fermented soybean) produced using the same | |
CN113234605B (en) | Simple preparation method of phlebopus portentosus solid and liquid strains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110627 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120515 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120522 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20120615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5517406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |