JP2009159302A - Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same - Google Patents

Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same Download PDF

Info

Publication number
JP2009159302A
JP2009159302A JP2007335082A JP2007335082A JP2009159302A JP 2009159302 A JP2009159302 A JP 2009159302A JP 2007335082 A JP2007335082 A JP 2007335082A JP 2007335082 A JP2007335082 A JP 2007335082A JP 2009159302 A JP2009159302 A JP 2009159302A
Authority
JP
Japan
Prior art keywords
phase
power line
wire
winding
plc signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335082A
Other languages
Japanese (ja)
Other versions
JP4956411B2 (en
Inventor
Yuji Minamitani
祐次 南谷
Shoji Jinpo
照司 神宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PREMINET Inc
Original Assignee
PREMINET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PREMINET Inc filed Critical PREMINET Inc
Priority to JP2007335082A priority Critical patent/JP4956411B2/en
Publication of JP2009159302A publication Critical patent/JP2009159302A/en
Application granted granted Critical
Publication of JP4956411B2 publication Critical patent/JP4956411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single-phase three-wire alternating power line PLC signal gate device which can prevent a PLC signal flowing through a single-phase three-wire alternating power line at a power receiving side from flowing out to a power supplying side in power line communication using an in-house PLC modem. <P>SOLUTION: The single-phase three-wire alternating power line PLC signal gate device 10 has a first inductive coil L1 inserted into a branching point of a power supplying side and a power receiving side in the single-phase three-wire alternating power line, wherein a neutral line coil L11 of the first inductive coil L1, one side phase winding L12, and other side phase winding L13 are respectively inserted in series into an intermediate portion of a neutral line 9 of the single-phase three-wire alternating power line, an intermediate portion of another phase power line 8 of the single-phase three-wire alternating power line, and an intermediate portion of the other phase power line 7 of the single-phase three-wire alternating power line and a winding direction of one phase winding L12 and a winding direction of the other side phase winding L13 are made opposite to the winding direction of the neutral winding line L11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、PLCモデムを用いてPLC通信が行われる単相3線式交流電力線に用いられる単相3線式交流電力線用PLC信号ゲート装置、及び、該単相3線式交流電力線用PLC信号ゲート装置を備えた分電盤、及び、電力計に関する。   The present invention relates to a PLC signal gate device for a single-phase three-wire AC power line used for a single-phase three-wire AC power line in which PLC communication is performed using a PLC modem, and a PLC signal for the single-phase three-wire AC power line. The present invention relates to a distribution board provided with a gate device and a wattmeter.

屋内における情報の伝送手段としては、有線LANや、無線LAN、赤外線通信等が用いられているが、最近、商用電源の電力線を通信媒体として用いる電力線通信(Power Line Communication)が、注目されている。   As a means for transmitting information indoors, wired LAN, wireless LAN, infrared communication, and the like are used. Recently, power line communication using a power line of a commercial power source as a communication medium has attracted attention. .

この電力線通信(PLC)は、電源として使用される交流50/60Hzの商用周波数より上の空いている高周波帯域を利用することにより、情報伝送用の微弱な信号を電力と並行して搬送する情報伝送方式である。   This power line communication (PLC) uses an available high frequency band above a commercial frequency of AC 50/60 Hz used as a power source, thereby conveying a weak signal for information transmission in parallel with power. It is.

この電力線通信は、上述したように、電力線を通信媒体として用いることから、有線LANを敷設する場合に必要なLANケーブル等の敷設が不要であり、且つ、有線通信であることから、無線LANで問題となるセキュリテイ上の問題も対策が容易である等の利点を備えている。   As described above, this power line communication uses a power line as a communication medium, so that it is not necessary to lay a LAN cable or the like necessary for laying a wired LAN, and since it is wired communication, It also has advantages such as easy countermeasures against problematic security issues.

ところで、日本の家屋では、配電方式が一般に単相3線式となっている。そこで、この単相3線式配電方式において、PLCモデムを単相3線式交流電力線の中性線(C)と一方の相の電力線(例えば、R相)との間に接続して使用する場合、相手側のPLCモデムが、単相3線式交流電力線の中性線(C)と他方の相の電力線(例えば、T相)との間に接続されていると、異なる相間でPLC信号が十分に伝わらないため、良好な通信を行うことができない。   By the way, in a Japanese house, the power distribution system is generally a single-phase three-wire system. Therefore, in this single-phase three-wire distribution system, the PLC modem is used by being connected between the neutral line (C) of the single-phase three-wire AC power line and one phase power line (for example, R phase). In this case, if the counterpart PLC modem is connected between the neutral line (C) of the single-phase three-wire AC power line and the power line (for example, T phase) of the other phase, the PLC signal between different phases Cannot be communicated satisfactorily, so good communication cannot be performed.

そこで、この単相3線式交流電力線において、異なる相間で、PLC信号を伝達する仕組が種々提案されている(例えば、特許文献1参照)。特許文献1の図3には、単相3線式交流電力線を用いた電力線通信装置が記載されている。   Therefore, various mechanisms for transmitting PLC signals between different phases in this single-phase three-wire AC power line have been proposed (for example, see Patent Document 1). FIG. 3 of Patent Document 1 describes a power line communication device using a single-phase three-wire AC power line.

上記の電力線通信は、家庭内等における単相3線式交流電力線において、この単相3線式交流電力線の電力受給側に設けられた複数のPLCモデムの相互間における通信である。このPLCモデムを、本明細書では、宅内PLCモデムと称する。この宅内PLCモデムでは、電源が、AC100Vである。   The power line communication described above is communication between a plurality of PLC modems provided on the power receiving side of the single-phase three-wire AC power line in a single-phase three-wire AC power line at home or the like. This PLC modem is referred to as a home PLC modem in this specification. In this home PLC modem, the power source is AC 100V.

日本における単相3線式配電方式では、単相3線式交流電力線の中性線(C)と一方の相の電力線(例えば、R相)との間の電圧、及び、中性線(C)と他方の相の電力線(例えば、T相)との間の電圧は、AC100Vである。又、家庭内では、中性線(C)と一方の相の電力線(例えば、R相)、又は、中性線(C)と他方の相の電力線(例えば、T相)による2線式の配線が行われている。そこで、家庭で用いられる電力線通信としては、一般に、上記の宅内PLCモデムが用いられる。   In the single-phase three-wire distribution system in Japan, the voltage between the neutral line (C) of the single-phase three-wire AC power line and the power line of one phase (for example, R phase), and the neutral line (C ) And the power line (for example, T phase) of the other phase is AC100V. In addition, in a home, a two-wire system using a neutral line (C) and one phase power line (for example, R phase) or a neutral line (C) and another phase power line (for example, T phase). Wiring is done. Therefore, the above-described home PLC modem is generally used as power line communication used at home.

ところが、最近、単相3線式交流電力線における電力供給側に設けられたPLCモデムと電力受給側に設けられたPLCモデムの相互間における電力線通信も行われるようになっている。   However, recently, power line communication between a PLC modem provided on a power supply side and a PLC modem provided on a power reception side in a single-phase three-wire AC power line has also been performed.

この単相3線式交流電力線における電力供給側に設けられたPLCモデムと電力受給側に設けられたPLCモデムの相互間における電力線通信の場合は、一般に、単相3線式交流電力線の一方の相の電力線(例えば、R相)と、他方の相の電力線(例えば、T相)との間に、PLCモデムが接続される。このPLCモデムを、本明細書では、宅外PLCモデムと称する。   In the case of power line communication between the PLC modem provided on the power supply side and the PLC modem provided on the power receiving side in this single-phase three-wire AC power line, generally one of the single-phase three-wire AC power lines A PLC modem is connected between a phase power line (for example, R phase) and the other phase power line (for example, T phase). This PLC modem is referred to as an out-of-home PLC modem in this specification.

日本における単相3線式配電方式では、一方の相の電力線(例えば、R相)と、他方の相の電力線(例えば、T相)との間の電圧が、AC200Vであることから、この宅外PLCモデムでは、電源が、AC200Vである。
特開2003−37533号公報
In the single-phase three-wire distribution system in Japan, the voltage between the power line of one phase (for example, R phase) and the power line of the other phase (for example, T phase) is AC200V. In the external PLC modem, the power source is AC200V.
JP 2003-37533 A

ところで、電力線通信では、電力線における商用周波数より上の空いている高周波帯域を有線通信として利用する。しかし、この高周波帯域を用いた電力線通信では、この高周波帯域の信号が電波として電力線から放射されると、他の電子機器等に雑音電波として障害を与えることになるので、この高周波帯域の信号が電波として電力線から放射されることをできるだけ抑える必要がある。   By the way, in power line communication, the vacant high frequency band above the commercial frequency in the power line is used as wired communication. However, in power line communication using this high frequency band, if a signal in this high frequency band is radiated from the power line as a radio wave, it will interfere with other electronic devices as noise radio waves. It is necessary to suppress the radiation from the power line as a radio wave as much as possible.

そこで、宅内PLCモデムを用いた電力線通信では、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で、単相3線式交流電力線から雑音電波として放射されないようにするため、単相3線式交流電力線を流れるPLC信号が、家庭外に出ないようにするのが望ましい。   Therefore, in the power line communication using the home PLC modem, in order to prevent the PLC signal flowing through the single-phase three-wire AC power line in the home from being emitted as noise radio waves from the single-phase three-wire AC power line outside the home, It is desirable to prevent the PLC signal flowing through the single-phase three-wire AC power line from going out of the home.

他方、宅外PLCモデムを用いた事業用電力線通信等の電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号は、家庭内の単相3線式交流電力線に流れ込むようにする必要がある。   On the other hand, in power line communication such as business power line communication using an outside PLC modem, a PLC signal flowing through a single-phase three-wire AC power line outside the home flows into the single-phase three-wire AC power line inside the home. There is a need.

又、家庭内で一般に用いられる宅内PLCモデムについて、上記の特許文献1に記載されている図3の単相3線式交流電力線に接続される従来例の電力線通信装置では、1次側巻線1組と2次側巻線2組の、合計3組の巻線を備えた誘導コイルが必要である。そのため、誘導コイルのコスト増となる。   Further, in a home PLC modem generally used in a home, in the conventional power line communication apparatus connected to the single-phase three-wire AC power line of FIG. An induction coil having three sets of windings in total, one set and two sets of secondary windings, is required. This increases the cost of the induction coil.

又、上記の従来例の電力線通信装置は、単相3線式交流電力線に接続できるようにするために、電力線通信装置の内部に、3組の巻線を備えた誘導コイルを備えており、この電力線通信装置は、単相3線式交流電力線に接続するためのC端子、R相端子、及び、T相端子の3端子を備えていると解される。   Moreover, the power line communication device of the above-described conventional example includes an induction coil having three sets of windings inside the power line communication device so that it can be connected to a single-phase three-wire AC power line. This power line communication device is understood to have three terminals, a C terminal, an R phase terminal, and a T phase terminal for connection to a single-phase three-wire AC power line.

しかし、一般に市販されている宅内PLCモデムは、単相2線式交流電力線に接続するように構成されている。そのため、このような単相2線式交流電力線に接続するように構成されている市販されている宅内PLCモデムを、単相3線式交流電力線に、容易に接続できるようにすることが望まれている。   However, a commercially available home PLC modem is configured to connect to a single-phase two-wire AC power line. Therefore, it is desired that a commercially available home PLC modem configured to connect to such a single-phase two-wire AC power line can be easily connected to the single-phase three-wire AC power line. ing.

そこで、この発明は、上記のような状況に対処するためになされたものであって、宅内PLCモデムを用いた電力線通信では、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で単相3線式交流電力線から雑音電波として放射されないようにすると共に、宅外PLCモデムを用いた電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号が、家庭内の単相3線式交流電力線に流れ込むようにし、さらに、一般に市販されている宅内PLCモデムを、単相3線式交流電力線に接続することが容易で、且つ、そのためのコストアップを抑制することが可能な、単相3線式交流電力線用PLC信号ゲート装置を提供しようとするものである。   Therefore, the present invention has been made to cope with the above situation. In power line communication using a home PLC modem, a PLC signal flowing through a single-phase three-wire AC power line in a home is In the power line communication using a PLC modem outside the home, the PLC signal flowing through the single-phase three-wire AC power line outside the home is not transmitted from the single-phase three-wire AC power line outside the home. In addition, it is easy to connect a commercially available home PLC modem to a single-phase three-wire AC power line, and to suppress an increase in cost. An object of the present invention is to provide a PLC signal gate device for a single-phase three-wire AC power line.

本発明の単相3線式交流電力線用PLC信号ゲート装置は、単相3線式交流電力線における電力供給側と電力受給側との分岐点に挿入される第1誘導コイルを備えた単相3線式交流電力線用PLC信号ゲート装置である。   A PLC signal gate device for a single-phase three-wire AC power line according to the present invention includes a single-phase three including a first induction coil inserted at a branch point between a power supply side and a power reception side in a single-phase three-wire AC power line. It is a PLC signal gate device for a linear AC power line.

上記の単相3線式交流電力線は、該単相3線式交流電力線の電力受給側における該単相3線式交流電力線の中性線と一方の相の電力線との間に宅内PLCモデムのPLC信号が注入されると共に、該PLC信号が、同位相の状態で、単相3線式交流電力線の中性線と他方の相の電力線との間にも注入されるPLC信号相間注入が行われることにより、単相3線式交流電力線の電力受給側の中性線と一方の相又は他方の相との間に接続された宅内PLCモデム相互間の電力線通信が行われる交流電力線である。   The single-phase three-wire AC power line described above is connected to the home PLC modem between the neutral line of the single-phase three-wire AC power line and the one-phase power line on the power receiving side of the single-phase three-wire AC power line. While the PLC signal is injected, the PLC signal is injected between the neutral line of the single-phase three-wire AC power line and the power line of the other phase while the PLC signal is in the same phase. Therefore, the power line communication is performed between the home PLC modems connected between the neutral line of the power receiving side of the single-phase three-wire AC power line and one phase or the other phase.

又、上記の第1誘導コイルでは、該第1誘導コイルに設けられた3個の各巻線の内、単相3線式交流電力線の中性線の途中には中性線巻線が、単相3線式交流電力線の一方の相の電力線の途中には一方の相巻線が、そして、単相3線式交流電力線の他方の相の電力線の途中には他方の相巻線が、それぞれ、直列に挿入されている。   Further, in the first induction coil, a neutral wire winding is provided in the middle of the neutral wire of the single-phase three-wire AC power line among the three windings provided in the first induction coil. One phase winding is in the middle of one phase power line of the phase three-wire AC power line, and the other phase winding is in the middle of the other phase power line in the single-phase three-wire AC power line. Inserted in series.

又、上記の単相3線式交流電力線用PLC信号ゲート装置は、第1誘導コイルにおける一方の相巻線の巻線方向、及び、他方の相巻線の巻線方向が、中性線巻線の巻線方向と反対となるように構成されていることを特徴としている。   In addition, the single-phase three-wire AC power line PLC signal gate device described above is configured so that the winding direction of one phase winding and the winding direction of the other phase winding in the first induction coil are neutral windings. It is characterized by being configured to be opposite to the winding direction of the wire.

上記の単相3線式交流電力線用PLC信号ゲート装置では、第1誘導コイルにおける一方の相巻線の巻線方向、及び、他方の相巻線の巻線方向が、中性線巻線の巻線方向と反対となるように構成されている。   In the above PLC signal gate device for single-phase three-wire AC power line, the winding direction of one phase winding and the winding direction of the other phase winding in the first induction coil are neutral windings. It is configured to be opposite to the winding direction.

そうすると、上述したように、該単相3線式交流電力線の電力受給側における宅内PLCモデムを用いた電力線通信では、単相3線式交流電力線の中性線と一方の相の電力線との間に宅内PLCモデムのPLC信号が注入されると共に、該PLC信号が、同位相の状態で、単相3線式交流電力線の中性線と他方の相の電力線との間にも注入される。   Then, as described above, in the power line communication using the home PLC modem on the power receiving side of the single-phase three-wire AC power line, between the neutral line of the single-phase three-wire AC power line and the power line of one phase The PLC signal of the in-home PLC modem is injected and the PLC signal is also injected between the neutral line of the single-phase three-wire AC power line and the power line of the other phase in the same phase state.

そのため、宅内PLCモデムのPLC信号は、第1誘導コイルにおいて、中性線、一方の相、及び、他方の相が同位相となり、第1誘導コイル内では、磁束を強め合うので、PLC信号の伝播が阻止される。   For this reason, the PLC signal of the home PLC modem has a neutral line, one phase, and the other phase in the first induction coil, and the magnetic flux is strengthened in the first induction coil. Propagation is prevented.

従って、該単相3線式交流電力線の電力受給側における宅内PLCモデムのPLC信号は、第1誘導コイルから単相3線式交流電力線の電力供給側へ伝播するのを阻止することができる。そのため、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で単相3線式交流電力線から雑音電波として放射されることを抑制することができる。   Therefore, the PLC signal of the home PLC modem on the power receiving side of the single-phase three-wire AC power line can be prevented from propagating from the first induction coil to the power supply side of the single-phase three-wire AC power line. Therefore, it is possible to suppress the PLC signal flowing through the single-phase three-wire AC power line in the home from being radiated as noise radio waves from the single-phase three-wire AC power line outside the home.

上記の単相3線式交流電力線用PLC信号ゲート装置において、第1誘導コイルの中性線巻線、一方の相巻線、及び、他方の相巻線の各巻線数は、同数であるのが好適である。このようにすることにより、第1誘導コイルの機能を精度よく発揮させることができる。   In the PLC signal gate device for the single-phase three-wire AC power line, the number of windings of the neutral wire of the first induction coil, one phase winding, and the other phase winding is the same. Is preferred. By doing in this way, the function of the 1st induction coil can be exhibited with sufficient accuracy.

又、上記の単相3線式交流電力線用PLC信号ゲート装置において、単相3線式交流電力線は、該単相3線式交流電力線の電力供給側における一方の相の電力線と他方の相の電力線との間に接続された宅外PLCモデムと、該単相3線式交流電力線の電力受給側における一方の相の電力線と他方の相の電力線との間に接続された宅外PLCモデムとの相互間で、電力線通信が行われる交流電力線とするようにしてもよい。   Also, in the above-described single-phase three-wire AC power line PLC signal gate device, the single-phase three-wire AC power line includes one phase power line on the power supply side of the single-phase three-wire AC power line and the other phase. An external PLC modem connected between the power line and an external PLC modem connected between the power line of one phase and the power line of the other phase on the power receiving side of the single-phase three-wire AC power line; You may make it be the alternating current power line in which power line communication is performed between each other.

上述したように、上記の単相3線式交流電力線用PLC信号ゲート装置では、第1誘導コイルにおける単相3線式交流電力線の一方の相巻線の巻線方向、及び、他方の相巻線の巻線方向が、中性線巻線の巻線方向と反対となるように、第1誘導コイルは構成されている。即ち、第1誘導コイルにおける単相3線式交流電力線の一方の相巻線の巻線方向と、他方の相巻線の巻線方向とは同じである。   As described above, in the above PLC signal gate device for single-phase three-wire AC power line, the winding direction of one phase winding of the single-phase three-wire AC power line in the first induction coil and the other phase winding. The first induction coil is configured so that the winding direction of the wire is opposite to the winding direction of the neutral wire winding. That is, the winding direction of one phase winding of the single-phase three-wire AC power line in the first induction coil is the same as the winding direction of the other phase winding.

そうすると、宅外PLCモデムのPLC信号は、第1誘導コイルにおいて、単相3線式交流電力線の一方の相と他方の相が逆位相となり、第1誘導コイル内で磁束を打ち消し合うので、PLC信号が伝播される。   Then, the PLC signal of the PLC PLC outside the house is in the first induction coil, because one phase and the other phase of the single-phase three-wire AC power line are in opposite phases, and the magnetic flux cancels out in the first induction coil. The signal is propagated.

従って、単相3線式交流電力線の電力供給側における宅外PLCモデムのPLC信号は、第1誘導コイルから該単相3線式交流電力線の電力受給側へ伝播することができる。そのため、宅外PLCモデムを用いた電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号が、家庭内の単相3線式交流電力線に流れ込むようにすることができる。   Therefore, the PLC signal of the outside PLC modem on the power supply side of the single-phase three-wire AC power line can be propagated from the first induction coil to the power receiving side of the single-phase three-wire AC power line. Therefore, in power line communication using an out-of-home PLC modem, a PLC signal flowing through a single-phase three-wire AC power line outside the home can flow into the single-phase three-wire AC power line inside the home.

又、上記の単相3線式交流電力線用PLC信号ゲート装置において、次のようにするのが好適である。即ち、単相3線式交流電力線の中性線と一方の相の電力線との間に、第2誘導コイルの1次側巻線でなる1次側回路が、宅内PLCモデムと共に、直列に接続されるようにする。又、単相3線式交流電力線の中性線と他方の相の電力線との間に、第2誘導コイルの1次側巻線に流れる電流と同位相となる誘導電流が流れる第2誘導コイルの2次側巻線が少なくとも直列接続されてなる2次側回路が接続されるようにする。そして、上記のPLC信号相間注入が、これらの1次側回路と2次側回路とを用いて行われるようにするのである。   In the single-phase three-wire AC power line PLC signal gate device described above, the following is preferable. That is, the primary circuit consisting of the primary winding of the second induction coil is connected in series with the home PLC modem between the neutral line of the single-phase three-wire AC power line and the power line of one phase. To be. Also, a second induction coil in which an induction current having the same phase as the current flowing in the primary winding of the second induction coil flows between the neutral line of the single-phase three-wire AC power line and the power line of the other phase. The secondary side circuit in which at least the secondary side windings are connected in series is connected. Then, the PLC signal phase injection is performed using the primary side circuit and the secondary side circuit.

又、上記の単相3線式交流電力線用PLC信号ゲート装置が、上記の1次側回路と2次側回路とを備えるようにしてもよい。このようにすることにより、上記の単相3線式交流電力線用PLC信号ゲート装置において、単相3線式交流電力線の中性線と一方の相の電力線との間に、第2誘導コイルの1次側巻線でなる1次側回路が、前記宅内PLCモデムと共に、直列に接続されることになる。従って、宅内PLCモデムを、上記の単相3線式交流電力線用PLC信号ゲート装置に2端子による接続で接続することができる。   The PLC signal gate device for a single-phase three-wire AC power line may include the primary circuit and the secondary circuit. By doing in this way, in the PLC signal gate device for the single-phase three-wire AC power line, the second induction coil is interposed between the neutral line of the single-phase three-wire AC power line and the power line of one phase. A primary circuit composed of primary windings is connected in series with the home PLC modem. Therefore, the home PLC modem can be connected to the above-described single-phase three-wire type AC power line PLC signal gate device by connection with two terminals.

上記の単相3線式交流電力線用PLC信号ゲート装置によれば、宅内PLCモデムを、上記の単相3線式交流電力線用PLC信号ゲート装置に2端子による接続で接続することができる。従って、宅内PLCモデムとして、一般に市販されているPLCモデムを、単相3線式交流電力線用PLC信号ゲート装置に接続することができる。   According to the single-phase three-wire AC power line PLC signal gate device described above, the home PLC modem can be connected to the single-phase three-wire AC power line PLC signal gate device by connection using two terminals. Therefore, a commercially available PLC modem can be connected to the PLC signal gate device for a single-phase three-wire AC power line as a home PLC modem.

又、上述したPLC信号相間注入が、上記の1次側回路と2次側回路とを用いて行われるので、単相3線式交流電力線の一方の相に接続された宅内PLCモデムのPLC信号を、同位相で、単相3線式交流電力線の他方の相に注入することができる。そのため、単相3線式交流電力線において、異なる相間で、PLC信号を伝達することができる。従って、一般に市販されている宅内PLCモデムを、単相3線式交流電力線の異なる相間に接続して電力線通信を行うことが可能となる。   Further, since the PLC signal interphase injection described above is performed using the primary side circuit and the secondary side circuit, the PLC signal of the home PLC modem connected to one phase of the single-phase three-wire AC power line. Can be injected into the other phase of the single-phase three-wire AC power line in the same phase. Therefore, a PLC signal can be transmitted between different phases in a single-phase three-wire AC power line. Therefore, it is possible to perform power line communication by connecting a commercially available home PLC modem between different phases of a single-phase three-wire AC power line.

又、この単相3線式交流電力線用PLC信号ゲート装置に用いられる第2誘導コイルは、1次側巻線と2次側巻線の2組の巻線を備えた誘導コイルである。従って、上記の従来例の電力線通信装置における3組の巻線を備えた誘導コイルを用いる場合に比べて、誘導コイルのコストアップを抑制することができる。   The second induction coil used in the single-phase three-wire AC power line PLC signal gate device is an induction coil having two sets of windings, a primary winding and a secondary winding. Therefore, the cost increase of the induction coil can be suppressed as compared with the case where the induction coil having three sets of windings in the power line communication device of the conventional example is used.

上記の単相3線式交流電力線用PLC信号ゲート装置において、第2誘導コイルの1次側巻線の巻線数と2次側巻線の巻線数とは同数とするのが妥当である。このようにすることにより、上記の単相3線式交流電力線用PLC信号ゲート装置に接続されたPLCモデムの入出力を、単相3線式交流電力線の一方の相、及び他方の相の双方に対して、共に、同一レベルで結合することができる。   In the above PLC signal gate device for single-phase three-wire AC power lines, it is appropriate that the number of turns of the primary side winding of the second induction coil is the same as the number of turns of the secondary side winding. . By doing in this way, the input / output of the PLC modem connected to the PLC signal gate device for the single-phase three-wire AC power line described above can be used for both one phase and the other phase of the single-phase three-wire AC power line. Both can be combined at the same level.

又、上記の単相3線式交流電力線用PLC信号ゲート装置に用いられている2次側回路に、直列接続された抵抗とコンデンサとを含むようにするのが妥当である。この直列接続された抵抗とコンデンサの内、コンデンサは、第2誘導コイルの2次側巻線に、商用周波数の交流電流が流れるのを阻止する機能を有し、抵抗は、第2誘導コイルの2次側巻線に流れる電流が少なくなるように抑制する機能を有している。   In addition, it is appropriate to include a resistor and a capacitor connected in series in the secondary circuit used in the PLC signal gate device for the single-phase three-wire AC power line. Of the resistors and capacitors connected in series, the capacitor has a function of preventing an AC current having a commercial frequency from flowing through the secondary winding of the second induction coil. It has a function of suppressing the current flowing through the secondary winding to decrease.

そのため、上記のようにすることにより、上記の第2誘導コイルにおける許容電流を小さくすることができ、単相3線式交流電力線用PLC信号ゲート装置に用いる第2誘導コイルのコストアップを抑制することができる。   Therefore, by doing as described above, the allowable current in the second induction coil can be reduced, and the cost increase of the second induction coil used in the PLC signal gate device for the single-phase three-wire AC power line is suppressed. be able to.

上記の各単相3線式交流電力線用PLC信号ゲート装置は、いずれも、単相3線式配電方式で家庭に配電される場合において、電力供給側と電力受給側との分岐点等に設けられる分電盤に、内蔵することができる。即ち、上記のいずれかの単相3線式交流電力線用PLC信号ゲート装置を備えた分電盤を、構成することができる。   Each of the above PLC signal gate devices for single-phase three-wire AC power lines is provided at the branch point between the power supply side and the power reception side when the home is distributed using the single-phase three-wire distribution system. Can be built into the distribution board. That is, a distribution board provided with any one of the above-described single-phase three-wire AC power line PLC signal gate devices can be configured.

この分電盤によれば、分電盤の機能と、単相3線式交流電力線用PLC信号ゲート装置の機能とを、一箇所で実現することができ、これらの設置スペースの省力化を図ることができる。   According to this distribution board, the function of the distribution board and the function of the PLC signal gate device for the single-phase three-wire AC power line can be realized in one place, and labor saving of these installation spaces is achieved. be able to.

又、上記の各単相3線式交流電力線用PLC信号ゲート装置は、いずれも、単相3線式配電方式で家庭等の電力受給側に配電される場合に用いられる電力計に、内蔵することができる。即ち、上記のいずれかの単相3線式交流電力線用PLC信号ゲート装置を備えた電力計を、構成することができる。   In addition, each of the above PLC signal gate devices for single-phase three-wire AC power lines is built in a wattmeter that is used when power is distributed to a power receiving side such as a home by a single-phase three-wire distribution system. be able to. That is, a wattmeter including any of the above-described single-phase three-wire AC power line PLC signal gate devices can be configured.

この電力計によれば、電力計の機能と、単相3線式交流電力線用PLC信号ゲート装置の機能とを、一箇所で実現することができ、これらの設置スペースの省力化を図ることができる。   According to this wattmeter, the function of the wattmeter and the function of the PLC signal gate device for the single-phase three-wire AC power line can be realized in one place, and labor saving of these installation spaces can be achieved. it can.

本発明によれば、単相3線式交流電力線用PLC信号ゲート装置の第1誘導コイルは、、該第1誘導コイルにおける一方の相巻線の巻線方向、及び、他方の相巻線の巻線方向が、中性線巻線の巻線方向と反対となるように構成されている。   According to the present invention, the first induction coil of the PLC signal gate device for single-phase three-wire AC power line includes the winding direction of one phase winding in the first induction coil and the other phase winding. The winding direction is configured to be opposite to the winding direction of the neutral wire winding.

そうすると、上述したように、該単相3線式交流電力線の電力受給側における宅内PLCモデムを用いた電力線通信では、単相3線式交流電力線の中性線と一方の相の電力線との間に宅内PLCモデムのPLC信号が注入されると共に、該PLC信号が、同位相の状態で、単相3線式交流電力線の中性線と他方の相の電力線との間にも注入される。   Then, as described above, in the power line communication using the home PLC modem on the power receiving side of the single-phase three-wire AC power line, between the neutral line of the single-phase three-wire AC power line and the power line of one phase The PLC signal of the in-home PLC modem is injected and the PLC signal is also injected between the neutral line of the single-phase three-wire AC power line and the power line of the other phase in the same phase state.

そのため、宅内PLCモデムのPLC信号は、第1誘導コイルにおいて、中性線、一方の相、及び、他方の相が同位相となり、第1誘導コイル内では、磁束を強め合うので、PLC信号の伝播が阻止される。   For this reason, the PLC signal of the home PLC modem has a neutral line, one phase, and the other phase in the first induction coil, and the magnetic flux is strengthened in the first induction coil. Propagation is prevented.

従って、該単相3線式交流電力線の電力受給側における宅内PLCモデムのPLC信号は、第1誘導コイルから単相3線式交流電力線の電力供給側へ伝播するのを阻止することができる。そのため、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で単相3線式交流電力線から雑音電波として放射されることを抑制することができる。   Therefore, the PLC signal of the home PLC modem on the power receiving side of the single-phase three-wire AC power line can be prevented from propagating from the first induction coil to the power supply side of the single-phase three-wire AC power line. Therefore, it is possible to suppress the PLC signal flowing through the single-phase three-wire AC power line in the home from being radiated as noise radio waves from the single-phase three-wire AC power line outside the home.

又、第1誘導コイルにおける単相3線式交流電力線の一方の相巻線の巻線方向と、他方の相巻線の巻線方向とは同じである。そうすると、宅外PLCモデムのPLC信号は、第1誘導コイルにおいて、単相3線式交流電力線の一方の相と他方の相が逆位相となり、第1誘導コイル内で磁束を打ち消し合うので、第1誘導コイルでは、宅外PLCモデムのPLC信号が伝播される。   Further, the winding direction of one phase winding of the single-phase three-wire AC power line in the first induction coil is the same as the winding direction of the other phase winding. Then, the PLC signal of the PLC PLC outside the house is in the first induction coil, because one phase and the other phase of the single-phase three-wire AC power line are in opposite phases, and the magnetic flux cancels out in the first induction coil. With one induction coil, the PLC signal of the outside PLC modem is propagated.

従って、単相3線式交流電力線の電力供給側における宅外PLCモデムのPLC信号は、第1誘導コイルから該単相3線式交流電力線の電力受給側へ伝播することができる。そのため、宅外PLCモデムを用いた電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号が、家庭内の単相3線式交流電力線に流れ込むようにすることができる。   Therefore, the PLC signal of the outside PLC modem on the power supply side of the single-phase three-wire AC power line can be propagated from the first induction coil to the power receiving side of the single-phase three-wire AC power line. Therefore, in power line communication using an out-of-home PLC modem, a PLC signal flowing through a single-phase three-wire AC power line outside the home can flow into the single-phase three-wire AC power line inside the home.

又、単相3線式交流電力線用PLC信号ゲート装置では、単相3線式交流電力線の中性線と一方の相の電力線との間に、第2誘導コイルの1次側巻線でなる1次側回路が、宅内PLCモデムと共に、直列に接続される。又、単相3線式交流電力線の中性線と他方の相の電力線との間に、第2誘導コイルの1次側巻線に流れる電流と同位相となる誘導電流が流れる第2誘導コイルの2次側巻線が少なくとも直列接続されてなる2次側回路が接続される。そして、上記のPLC信号相間注入が、これらの1次側回路と2次側回路とを用いて行われる。そのため、単相3線式交流電力線において、異なる相間で、PLC信号を伝達することができる。従って、一般に市販されている宅内PLCモデムを、単相3線式交流電力線の異なる相間に接続して電力線通信を行うことが可能となる。   Further, in the PLC signal gate device for single-phase three-wire AC power line, the primary-side winding of the second induction coil is provided between the neutral line of the single-phase three-wire AC power line and the power line of one phase. The primary circuit is connected in series with the home PLC modem. Also, a second induction coil in which an induction current having the same phase as the current flowing in the primary winding of the second induction coil flows between the neutral line of the single-phase three-wire AC power line and the power line of the other phase. Are connected to a secondary circuit in which at least the secondary windings are connected in series. Then, the above PLC signal interphase injection is performed using the primary side circuit and the secondary side circuit. Therefore, a PLC signal can be transmitted between different phases in a single-phase three-wire AC power line. Therefore, it is possible to perform power line communication by connecting a commercially available home PLC modem between different phases of a single-phase three-wire AC power line.

次に、本発明の実施の形態における単相3線式交流電力線用PLC信号ゲート装置について、図面を参照しながら説明する。図1は、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10の回路構成を示した構成図である。本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10は、単相3線式交流電力線における電力供給側と電力受給側との分岐点に挿入される装置である。そこで、図1において、接続端子J1〜J3は、電力供給側に接続され、接続端子J4〜J6は、電力受給側に接続される。   Next, a PLC signal gate device for a single-phase three-wire AC power line in an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a circuit configuration of a PLC signal gate device 10 for a single-phase three-wire AC power line in the present embodiment. The PLC signal gate device 10 for single-phase three-wire AC power lines in the present embodiment is a device that is inserted at a branch point between the power supply side and the power reception side in the single-phase three-wire AC power line. Therefore, in FIG. 1, the connection terminals J1 to J3 are connected to the power supply side, and the connection terminals J4 to J6 are connected to the power reception side.

本実施の形態における単相3線式交流電力線用PLC信号ゲート装置は、大きくは、2つの機能を備えている。   The PLC signal gate device for a single-phase three-wire AC power line in the present embodiment roughly has two functions.

一つは、宅内PLCモデムを用いた電力線通信において、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で単相3線式交流電力線から雑音電波として放射されないようにすると共に、宅外PLCモデムを用いた電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号が、家庭内の単相3線式交流電力線に流れ込むようにする機能である。これを、本実施の形態では、第1の機能と称する。   First, in power line communication using a home PLC modem, the PLC signal flowing through the single-phase three-wire AC power line in the home is not radiated as noise radio waves from the single-phase three-wire AC power line outside the home. In the power line communication using the PLC modem outside the home, the PLC signal flowing through the single-phase three-wire AC power line outside the home flows into the single-phase three-wire AC power line inside the home. This is referred to as a first function in the present embodiment.

この第1の機能は、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置のPLC信号ゲート回路1aにより、実現される。このPLC信号ゲート回路1aは第1誘導コイルを備えている。   This first function is realized by the PLC signal gate circuit 1a of the PLC signal gate device for a single-phase three-wire AC power line in the present embodiment. The PLC signal gate circuit 1a includes a first induction coil.

他の一つは、単相3線式交流電力線において、異なる相間で、PLC信号を伝達することができるようにすると共に、一般に市販されている宅内PLCモデムを、単相3線式交流電力線に容易に接続することができるようにする機能である。これを、本実施の形態では、第2の機能と称する。   The other one is a single-phase three-wire AC power line that enables a PLC signal to be transmitted between different phases, and a commercially available home PLC modem is replaced with a single-phase three-wire AC power line. This is a function that allows easy connection. This is referred to as a second function in the present embodiment.

この第2の機能は、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置のPLC信号注入回路1bにより、実現される。このPLC信号注入回路1bは第2誘導コイルを備えている。   This second function is realized by the PLC signal injection circuit 1b of the PLC signal gate device for a single-phase three-wire AC power line in the present embodiment. The PLC signal injection circuit 1b includes a second induction coil.

そこで、最初に、本発明の実施の形態における単相3線式交流電力線用PLC信号ゲート装置の第2の機能について説明する。この第2の機能は、1次側巻線と2次側巻線とで構成される上記の第2誘導コイルを用いて、宅内PLCモデムのモデム信号を単相3線式交流電力線の一方の相、及び他方の相に注入するものである。又、この宅内PLCモデムで利用される周波数帯域は、2MHz〜30MHzである。   Therefore, first, the second function of the PLC signal gate device for a single-phase three-wire AC power line in the embodiment of the present invention will be described. This second function uses the above-described second induction coil composed of a primary side winding and a secondary side winding to convert a modem signal of a home PLC modem to one of the single-phase three-wire AC power lines. It is injected into the phase and the other phase. Further, the frequency band used in this home PLC modem is 2 MHz to 30 MHz.

そこで、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置を構成するのに際して、その原理に基づく機能を確認するため、上記の周波数帯域に関し、上記の第2誘導コイルに相当する実験用誘導コイルを用いて、以下に説明する第1番目の実験、第2番目の実験、及び、第3番目の実験の3種類の実験を、まず行った。   Therefore, when configuring the PLC signal gate device for a single-phase three-wire AC power line in the present embodiment, in order to confirm the function based on the principle, the frequency band corresponds to the second induction coil. Using the experimental induction coil, three types of experiments were first performed: a first experiment, a second experiment, and a third experiment described below.

図2は、上述した3種類の実験に用いた上記の実験用誘導コイルL3の構成を示したものである。この実験用誘導コイルL3は、図2に示すように、ドーナツ状のフェライト等の磁性体で形成されたコアに巻回された1次側巻線L31と2次側巻線L32とで構成されている。   FIG. 2 shows the configuration of the experimental induction coil L3 used in the three types of experiments described above. As shown in FIG. 2, the experimental induction coil L3 includes a primary winding L31 and a secondary winding L32 wound around a core formed of a magnetic material such as a donut-shaped ferrite. ing.

この1次側巻線L31と2次側巻線L32の巻数の比は、1対1、即ち、1次側巻線L31の巻数と、2次側巻線L32の巻数とは同じである。又、1次側巻線L31は、1次側端子T1と1次側端子T2とを備え、2次側巻線L32は、2次側端子T3と2次側端子T4とを備えている。   The ratio of the number of turns of the primary side winding L31 and the secondary side winding L32 is 1: 1, that is, the number of turns of the primary side winding L31 and the number of turns of the secondary side winding L32 are the same. The primary winding L31 includes a primary side terminal T1 and a primary side terminal T2, and the secondary side winding L32 includes a secondary side terminal T3 and a secondary side terminal T4.

この実験用誘導コイルL3では、図2において、1次側巻線L31に1次側電流が1次側電流方向15の向きに流れると、2次側巻線L32には、2次側電流としてこの1次側電流により生じる磁束を打ち消す方向に誘導電流が、2次側電流方向16の向きに流れる。実験用誘導コイルL3では、この誘導電流が、1次側電流と同位相となるように、1次側巻線L31と2次側巻線L32とが巻回されている。   In this experimental induction coil L3, when the primary side current flows in the primary side winding L31 in the direction of the primary side current direction 15 in FIG. An induced current flows in the direction of the secondary current direction 16 in a direction to cancel the magnetic flux generated by the primary side current. In the experimental induction coil L3, the primary side winding L31 and the secondary side winding L32 are wound so that the induction current has the same phase as the primary side current.

次に、第1番目の実験について説明する。第1番目の実験は、図2に示す実験用誘導コイルL3と、3芯の電線W1、電線W2、電線W3で構成される長さ4mのケーブル4、及び、2台のネットワークアナライザを用いた実験である。このネットワークアナライザの機能としては、電気信号のレベル測定や波形観測のほか、信号を発生することができる。   Next, the first experiment will be described. The first experiment used the experimental induction coil L3 shown in FIG. 2, a 4-wire cable 4 composed of a three-core electric wire W1, an electric wire W2, and an electric wire W3, and two network analyzers. It is an experiment. As a function of this network analyzer, in addition to measuring the level of electric signals and observing waveforms, signals can be generated.

そこで、2台のネットワークアナライザの内、1台を、ネットワークアナライザの信号発生機能を利用した送信側ネットワークアナライザ11として用い、もう1台を、ネットワークアナライザの電気信号レベル測定、及び、波形観測機能を利用した受信側ネットワークアナライザ12として用いる。   Therefore, one of the two network analyzers is used as the transmission-side network analyzer 11 using the signal generation function of the network analyzer, and the other is used for the electric signal level measurement and waveform observation functions of the network analyzer. Used as the receiving network analyzer 12 used.

即ち、送信側ネットワークアナライザ11により、宅内PLCモデムで利用される周波数帯域である2MHz〜30MHzの正弦波を出力してケーブルの送信端に入力し、受信側ネットワークアナライザ12により、送信側ネットワークアナライザ11からケーブルの送信端に入力された上記の正弦波信号の、ケーブルの受信端における出力の減衰量の測定、及び波形の観測を行う。この2台のネットワークアナライザの使用方法は、以下に述べる第2番目の実験、及び、第3番目の実験においても同様である。   That is, the transmission side network analyzer 11 outputs a sine wave of 2 MHz to 30 MHz, which is a frequency band used in the home PLC modem, and inputs the sine wave to the transmission end of the cable. From the above, the attenuation of the output at the receiving end of the cable and the observation of the waveform of the sine wave signal input to the transmitting end of the cable are performed. The two network analyzers are used in the same way in the second and third experiments described below.

第1番目の実験は、図3〜図5に示す回路を用いた実験である。この第1番目の実験では、ケーブルの3芯の電線W1、電線W2、電線W3の内、電線W1を単相3線式交流電力線の中性線とし、電線W2を単相3線式交流電力線の一方の相の電力線とし、電線W3を単相3線式交流電力線の他方の相の電力線とみなして、実験を行っている。   The first experiment is an experiment using the circuits shown in FIGS. In this first experiment, among the three-core electric wires W1, W2, and W3 of the cable, the electric wire W1 is a neutral wire of a single-phase three-wire AC power line, and the electric wire W2 is a single-phase three-wire AC power line. In this experiment, the power line of one phase of the power line W3 is regarded as the power line of the other phase of the single-phase three-wire AC power line.

この第1番目の実験における図3の回路を用いた実験では、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に、送信側ネットワークアナライザ11を接続し、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側に、抵抗R2(50Ω)と受信側ネットワークアナライザ12を接続して測定を行う。電線W3(他方の相の電力線に相当)の両端には、何も接続されていない。この図3の回路では、実験用誘導コイルL3は用いていない。   In the experiment using the circuit of FIG. 3 in the first experiment, the transmission-side network analyzer 11 is placed on the transmission end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). The measurement is performed by connecting the resistor R2 (50Ω) and the receiving-side network analyzer 12 to the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). Nothing is connected to both ends of the electric wire W3 (corresponding to the power line of the other phase). In the circuit of FIG. 3, the experimental induction coil L3 is not used.

又、第1番目の実験における図4の回路を用いた実験では、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に、送信側ネットワークアナライザ11を接続し、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の送信端側に、抵抗R2を接続している。又、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側に、抵抗R2を接続し、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端側に、受信側ネットワークアナライザ12を接続して測定を行う。この図4の回路でも、実験用誘導コイルL3は用いていない。   Further, in the experiment using the circuit of FIG. 4 in the first experiment, the transmission-side network analyzer 11 is connected to the transmission end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). And a resistor R2 is connected to the transmission end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (corresponding to the power wire of the other phase). Also, a resistor R2 is connected to the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase), and the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (the other wire) The reception side network analyzer 12 is connected to the reception end side (corresponding to the phase power line) and measurement is performed. Also in the circuit of FIG. 4, the experimental induction coil L3 is not used.

そして、第1番目の実験における図5の回路を用いた実験では、電線W2(一方の相の電力線に相当)と電線W3(他方の相の電力線に相当)との間に実験用誘導コイルL3を挿入している。即ち、電線W2(一方の相の電力線に相当)を切断して1次側巻線L31の1次側端子T1及び1次側端子T2に接続することにより、電線W2(一方の相の電力線に相当)の途中に1次側巻線L31を挿入する。又、電線W3(他方の相の電力線に相当)を切断して2次側巻線L32の2次側端子T3及び2次側端子T4に接続することにより、電線W3(他方の相の電力線に相当)の途中に2次側巻線L32を挿入する。   In the experiment using the circuit of FIG. 5 in the first experiment, the experimental induction coil L3 is interposed between the electric wire W2 (corresponding to one phase power line) and the electric wire W3 (corresponding to the other phase power line). Is inserted. That is, by cutting the electric wire W2 (corresponding to one phase power line) and connecting it to the primary side terminal T1 and the primary side terminal T2 of the primary side winding L31, the electric wire W2 (to one phase power line) The primary winding L31 is inserted in the middle). In addition, the electric wire W3 (corresponding to the power line of the other phase) is cut and connected to the secondary side terminal T3 and the secondary side terminal T4 of the secondary side winding L32, so that the electric wire W3 (to the power line of the other phase) The secondary winding L32 is inserted in the middle.

又、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に、送信側ネットワークアナライザ11を接続し、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の送信端側に、抵抗R2を接続している。又、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側に、抵抗R2を接続し、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端側に、受信側ネットワークアナライザ12を接続して測定を行う。   Further, the transmission side network analyzer 11 is connected to the transmission end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase), and the electric wire W1 (corresponding to the neutral wire) and the electric wire W3. A resistor R2 is connected to the transmission end side (corresponding to the power line of the other phase). Also, a resistor R2 is connected to the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase), and the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (the other wire) The reception side network analyzer 12 is connected to the reception end side (corresponding to the phase power line) and measurement is performed.

図6は、上記の第1番目の実験の結果を示したグラフであり、横軸は周波数(MHz)、縦軸は減衰量(dB)を示している。図6のグラフにおいて、D1は、図3の回路を用いた実験の結果であり、D2は、図4の回路を用いた実験の結果であり、そして、D3は、図5の回路を用いた実験の結果である。   FIG. 6 is a graph showing the results of the first experiment, in which the horizontal axis represents frequency (MHz) and the vertical axis represents attenuation (dB). In the graph of FIG. 6, D1 is the result of the experiment using the circuit of FIG. 3, D2 is the result of the experiment using the circuit of FIG. 4, and D3 is the result of using the circuit of FIG. It is the result of an experiment.

図6のグラフからは、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端に入力された正弦波信号に対する、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端における減衰量は、実験用誘導コイルL3を用いない図4の回路を用いた実験では、約−30dB〜約−20dBであるのに対して、実験用誘導コイルL3を用いた図5の回路を用いた実験では、約−10dBである。   From the graph of FIG. 6, the electric wire W1 (corresponding to the neutral wire) and the electric wire W1 (corresponding to the neutral wire) with respect to the sine wave signal input to the transmitting end of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase) The amount of attenuation at the receiving end of the electric wire W3 (corresponding to the power line of the other phase) is about −30 dB to about −20 dB in the experiment using the circuit of FIG. 4 without using the experimental induction coil L3. In the experiment using the circuit shown in FIG. 5 using the experimental induction coil L3, it is about −10 dB.

この結果から分かるように、実験用誘導コイルL3を用いることによって、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端に接続された送信側ネットワークアナライザ11の出力を、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)との間に効果的に誘起することができる。   As can be seen from this result, by using the experimental induction coil L3, the transmission-side network analyzer 11 connected to the transmission ends of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). Can be effectively induced between the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (corresponding to the power line of the other phase).

次に、第2番目の実験について説明する。第2番目の実験は、図7の回路、及び、図8の回路を用いた実験である。この第2番目の実験では、3芯の電線W1(中性線に相当)、電線W2(一方の相の電力線に相当)、電線W3(他方の相の電力線に相当)で構成される長さ4mのケーブル4の電線W2(一方の相の電力線に相当)と、電線W3(他方の相の電力線に相当)との間に、図5に示す回路と同様にして実験用誘導コイルL3を挿入する。そして、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に、送信側ネットワークアナライザ11を接続し、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の送信端側に、抵抗R2を接続する。   Next, the second experiment will be described. The second experiment is an experiment using the circuit of FIG. 7 and the circuit of FIG. In this second experiment, a length constituted by a three-core electric wire W1 (corresponding to a neutral wire), an electric wire W2 (corresponding to a power wire of one phase), and an electric wire W3 (corresponding to a power wire of the other phase). The experimental induction coil L3 is inserted between the electric wire W2 (corresponding to the power line of one phase) of the 4 m cable 4 and the electric wire W3 (corresponding to the power line of the other phase) in the same manner as the circuit shown in FIG. To do. And the transmission side network analyzer 11 is connected to the transmission end side of the electric wire W1 (equivalent to a neutral wire) and the electric wire W2 (equivalent to the power line of one phase), and the electric wire W1 (equivalent to a neutral wire) and the electric wire W3. The resistor R2 is connected to the transmission end side (corresponding to the power line of the other phase).

又、実験用誘導コイルL3が挿入されたケーブル4の受信端側に、2芯の電線W1(中性線に相当)、及び、電線W2(一方の相の電力線に相当)で構成される長さ10mのケーブル5の送信端側と、同じく2芯の電線W1(中性線に相当)、及び、電線W3(他方の相の電力線に相当)で構成される長さ10mのケーブル6の送信端側とを、図7、及び、図8に示すように同名の電線同士を結合して接続する。そして、ケーブル5とケーブル6との相互間の影響を抑えるために、ケーブル5とケーブル6とを、互いに反対方向へ伸ばしている。   Further, a length constituted by a two-core electric wire W1 (corresponding to a neutral wire) and an electric wire W2 (corresponding to a power wire of one phase) on the receiving end side of the cable 4 in which the experimental induction coil L3 is inserted. Transmission of a cable 6 having a length of 10 m composed of a transmission end side of the cable 5 having a length of 10 m, a two-core electric wire W1 (corresponding to a neutral wire), and an electric wire W3 (corresponding to the power line of the other phase). As shown in FIG. 7 and FIG. 8, the end side is connected by connecting electric wires having the same name. And in order to suppress the influence between the cable 5 and the cable 6, the cable 5 and the cable 6 are extended in the mutually opposite direction.

そして、さらに、ケーブル5の受信端側である電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側間に抵抗R2を接続すると共に、ケーブル6の受信端側である電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端側間に抵抗R2を接続する。   Further, a resistor R2 is connected between the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase) on the receiving end side of the cable 5, and the receiving of the cable 6 is performed. A resistor R2 is connected between the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (corresponding to the power line of the other phase) which is the end side.

この状態で、まず、図7に示すように、ケーブル5の受信端側である電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側間に受信側ネットワークアナライザ12を接続して測定を行う。そして、次に、図8に示すように、ケーブル6の受信端側である電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側間に受信側ネットワークアナライザ12を接続して測定を行う。   In this state, first, as shown in FIG. 7, the receiving side is between the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase) which is the receiving end side of the cable 5. A network analyzer 12 is connected to perform measurement. Next, as shown in FIG. 8, the receiving side network between the receiving end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase) on the receiving end side of the cable 6 The analyzer 12 is connected to perform measurement.

図9は、上記の第2番目の実験の結果を示したグラフであり、横軸は周波数(MHz)、縦軸は減衰量(dB)を示している。図9のグラフにおいて、D4は、図7の回路を用いた実験の結果であり、D5は、図8の回路を用いた実験の結果である。   FIG. 9 is a graph showing the results of the second experiment, in which the horizontal axis represents frequency (MHz) and the vertical axis represents attenuation (dB). In the graph of FIG. 9, D4 is the result of the experiment using the circuit of FIG. 7, and D5 is the result of the experiment using the circuit of FIG.

図9のグラフからは、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に入力された正弦波信号に対して、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の受信端側における減衰量と、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端側における減衰量のカーブは、略一致している。   From the graph of FIG. 9, the electric wire W1 (corresponding to the neutral wire) with respect to the sine wave signal input to the transmission end side of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). Equivalent) and the attenuation on the receiving end side of the electric wire W2 (corresponding to the power line of one phase) and the attenuation on the receiving end side of the electric wire W1 (corresponding to the neutral line) and the electric wire W3 (corresponding to the power line of the other phase). The quantity curves are approximately coincident.

この結果から分かるように、実験用誘導コイルL3を用いることによって、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端に接続された送信側ネットワークアナライザ11の出力を、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)との間の出力レベルと略同等のレベルで、電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)との間に、誘起することができる。   As can be seen from this result, by using the experimental induction coil L3, the transmission-side network analyzer 11 connected to the transmission ends of the electric wire W1 (corresponding to the neutral wire) and the electric wire W2 (corresponding to the power line of one phase). Of the electric wire W1 (corresponding to the neutral wire) and the electric wire W3 (corresponding to the power line of the other phase) and the electric wire W1 (corresponding to the neutral wire) and the electric wire W3. (Corresponding to the power line of the other phase).

次に、第3番目の実験について説明する。第3番目の実験は、図10の回路、及び、図11の回路を用いた実験である。この第3番目の実験の図10の回路は、第2番目の実験における図8の回路と同じであり、図11の回路は、図10の回路の電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の送信端側に、接続された抵抗R2と直列にコンデンサC2(0.47μF)を接続したものである。即ち、第3番目の実験は、コンデンサC2の有無による影響を調べるものである。   Next, the third experiment will be described. The third experiment is an experiment using the circuit of FIG. 10 and the circuit of FIG. The circuit of FIG. 10 in the third experiment is the same as the circuit of FIG. 8 in the second experiment, and the circuit of FIG. 11 is an electric wire W1 (corresponding to a neutral wire) of the circuit of FIG. A capacitor C2 (0.47 μF) is connected in series with the connected resistor R2 on the transmission end side of W3 (corresponding to the power line of the other phase). That is, the third experiment examines the influence of the presence or absence of the capacitor C2.

図12は、上記の第3番目の実験の結果を示したグラフであり、横軸は周波数(MHz)、縦軸は減衰量(dB)を示している。図129のグラフにおいて、D6は、図7の回路を用いた実験の結果であり、D7は、図8の回路を用いた実験の結果である。   FIG. 12 is a graph showing the results of the third experiment, in which the horizontal axis represents frequency (MHz) and the vertical axis represents attenuation (dB). In the graph of FIG. 129, D6 is the result of the experiment using the circuit of FIG. 7, and D7 is the result of the experiment using the circuit of FIG.

図9のグラフからは、電線W1(中性線に相当)と電線W2(一方の相の電力線に相当)の送信端側に入力された正弦波信号に対する電線W1(中性線に相当)と電線W3(他方の相の電力線に相当)の受信端側における減衰量のカーブは、コンデンサC2を接続しない場合と接続した場合とでは、ほとんど差がなく、略一致している。即ち、コンデンサC2の有無による影響は、ほとんどないことが分かる。   From the graph of FIG. 9, the electric wire W1 (corresponding to the neutral wire) and the electric wire W1 (corresponding to the neutral wire) with respect to the sine wave signal input to the transmitting end side of the electric wire W1 (corresponding to the power line of one phase) The curve of the attenuation amount on the receiving end side of the electric wire W3 (corresponding to the power line of the other phase) is almost the same between the case where the capacitor C2 is not connected and the case where the capacitor C2 is connected. That is, it can be seen that there is almost no influence due to the presence or absence of the capacitor C2.

上記の実験の結果に基づいて構成したのが、図1に示す本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bである。図1において、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bは、上述した実験用誘導コイルL3と同様の構成で製作された第2誘導コイルL2を用いて、次のように構成されている。   The PLC signal injection circuit 1b of the single-phase three-wire AC power line PLC signal gate device 10 according to the present embodiment shown in FIG. 1 is configured based on the results of the above experiment. In FIG. 1, a PLC signal injection circuit 1b of a PLC signal gate device 10 for a single-phase three-wire AC power line in the present embodiment is a second induction coil L2 manufactured in the same configuration as the experimental induction coil L3 described above. Is configured as follows.

即ち、第2誘導コイルL2は、上述した実験用誘導コイルL3と同様のフェライト等の磁性体で形成されたコアに、上述した実験用誘導コイルL3の1次側巻線L31及び2次側巻線L32と同様にして巻回された1次側巻線L21及び2次側巻線L22を備えて製作されている。   That is, the second induction coil L2 has a core formed of a magnetic material such as ferrite similar to the experimental induction coil L3 described above, and the primary winding L31 and the secondary winding of the experimental induction coil L3 described above. It is manufactured with a primary side winding L21 and a secondary side winding L22 wound in the same manner as the line L32.

そして、1次側巻線L21の一端は、単相3線式交流電力線の一方の相の電力線(例えば、T相)8に接続され、他端は、接続端子J8を介して、宅内PLCモデム3aの入出力端子の一方に接続される。又、2次側巻線L22の一端は、単相3線式交流電力線の他方の相の電力線(例えば、R相)7に接続され、他端には、直列接続された抵抗R1とコンデンサC1が直列接続されて、単相3線式交流電力線の中性線(N)9に接続される。この中性線(N)9には、接続端子J7を介して、宅内PLCモデム3aの入出力端子の他方も接続される。   One end of the primary winding L21 is connected to one phase power line (for example, T phase) 8 of the single-phase three-wire AC power line, and the other end is connected to the home PLC modem via the connection terminal J8. 3a is connected to one of the input / output terminals. One end of the secondary winding L22 is connected to the other phase power line (for example, R phase) 7 of the single-phase three-wire AC power line, and the other end is connected in series to the resistor R1 and the capacitor C1. Are connected in series and connected to the neutral wire (N) 9 of the single-phase three-wire AC power line. The other of the input / output terminals of the home PLC modem 3a is also connected to the neutral line (N) 9 via the connection terminal J7.

上記のようにして構成された回路において、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bには、宅内PLCモデム3aは含まれない。即ち、宅内PLCモデム3aは、PLC信号注入回路1bが備える接続端子J7、及びJ8に接続されることにより、単相3線式交流電力線に接続されることになる。   In the circuit configured as described above, the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line in the present embodiment does not include the home PLC modem 3a. That is, the home PLC modem 3a is connected to the single-phase three-wire AC power line by being connected to the connection terminals J7 and J8 included in the PLC signal injection circuit 1b.

又、単相3線式交流電力線には、宅内PLCモデム3aの通信先の宅内PLCモデムとして、宅内PLCモデム3bや宅内PLCモデム3c等が、図1に示すように接続される。即ち、例えば、宅内PLCモデム3bは、単相3線式交流電力線の中性線(N)9と一方の相の電力線(例えば、T相)8との間に接続され、宅内PLCモデム3cは、単相3線式交流電力線の中性線(N)9と他方の相の電力線(例えば、R相)7との間に接続される。   Further, as shown in FIG. 1, a home PLC modem 3b, a home PLC modem 3c, and the like are connected to the single-phase three-wire AC power line as home PLC modems of the home PLC modem 3a. That is, for example, the home PLC modem 3b is connected between a neutral line (N) 9 of a single-phase three-wire AC power line and a power line (for example, T phase) 8 of one phase, and the home PLC modem 3c Are connected between a neutral line (N) 9 of a single-phase three-wire AC power line and a power line (for example, R phase) 7 of the other phase.

図1における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bでは、単相3線式交流電力線の中性線(N)9と一方の相の電力線(例えば、T相)8との間に、第2誘導コイルL2の1次側巻線L21を介して宅内PLCモデム3aが接続されると共に、単相3線式交流電力線の中性線(N)9と他方の相の電力線(例えば、R相)7との間に、第2誘導コイルL2の2次側巻線L22が接続される。   In the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line in FIG. 1, the neutral line (N) 9 of the single-phase three-wire AC power line and the power line of one phase (for example, T phase) ) 8 is connected to the home PLC modem 3a via the primary winding L21 of the second induction coil L2, and the neutral line (N) 9 of the single-phase three-wire AC power line and the other A secondary winding L22 of the second induction coil L2 is connected between the phase power line (for example, R phase) 7.

そして、第2誘導コイルL2の1次側巻線L21に、1次側電流として宅内PLCモデム3aの出力電流が流れると、第2誘導コイルL2の2次側巻線L22に、2次側電流として上述の実験用誘導コイルL3と同様の誘導電流が流れる。そこで、上述した第1番目の実験、及び第2番目の実験から分かるように、単相3線式交流電力線の一方の相に接続された宅内PLCモデム3aのPLC信号を、同位相で、単相3線式交流電力線の他方の相に注入することができる。即ち、図1において、宅内PLCモデム3aは、宅内PLCモデム3bや宅内PLCモデム3cと通信を行うことができる。   When the output current of the home PLC modem 3a flows as the primary current in the primary winding L21 of the second induction coil L2, the secondary current flows in the secondary winding L22 of the second induction coil L2. As in the above-described experimental induction coil L3, an induced current flows. Therefore, as can be seen from the first experiment and the second experiment described above, the PLC signal of the home PLC modem 3a connected to one phase of the single-phase three-wire AC power line has the same phase, It can be injected into the other phase of the three-phase AC power line. That is, in FIG. 1, the home PLC modem 3a can communicate with the home PLC modem 3b and the home PLC modem 3c.

又、図1において、抵抗R1は、第2誘導コイルL2の1次側巻線L21を流れる電流を制限する電流制限抵抗である。又、コンデンサC1は、第2誘導コイルL2の1次側巻線L21に商用周波数(50Hz、又は、60Hz)の交流電流が流れるのを阻止するコンデンサである。   In FIG. 1, a resistor R1 is a current limiting resistor that limits the current flowing through the primary winding L21 of the second induction coil L2. The capacitor C1 is a capacitor that prevents an alternating current having a commercial frequency (50 Hz or 60 Hz) from flowing through the primary winding L21 of the second induction coil L2.

このコンデンサC1は、上記の第3番目の実験におけるC2に相当し、このコンデンサC1を用いても、上記の第3番目の実験から分かるように、単相3線式交流電力線の一方の相に接続された宅内PLCモデム3aの出力信号を、単相3線式交流電力線の他方の相と結合する機能に対しては、ほとんど影響がない。   This capacitor C1 corresponds to C2 in the third experiment, and even if this capacitor C1 is used, as can be seen from the third experiment, the capacitor C1 is connected to one phase of the single-phase three-wire AC power line. There is almost no influence on the function of coupling the output signal of the connected home PLC modem 3a with the other phase of the single-phase three-wire AC power line.

本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bによれば、単相3線式交流電力線の中性線と一方の相の電力線との間に、第2誘導コイルL2の1次側巻線L21でなる回路が、宅内PLCモデム3aと共に、直列に、接続される。即ち、宅内PLCモデム3aは、PLC信号注入回路1bの接続端子J7及びJ8に、2端子接続で接続される。   According to the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line in the present embodiment, between the neutral line of the single-phase three-wire AC power line and the power line of one phase, A circuit composed of the primary winding L21 of the second induction coil L2 is connected in series with the home PLC modem 3a. That is, the home PLC modem 3a is connected to the connection terminals J7 and J8 of the PLC signal injection circuit 1b by two-terminal connection.

従って、宅内PLCモデム3aを、単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bに、2端子による接続で接続することができることから、一般に市販されている宅内PLCモデムを、単相3線式交流電力線に容易に接続することが可能である。   Accordingly, the home PLC modem 3a can be connected to the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire type AC power line by connecting with two terminals. It is possible to easily connect to a single-phase three-wire AC power line.

又、この単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bを用いることにより、単相3線式交流電力線の一方の相の電力線(例えば、T相)8に接続された宅内PLCモデム3aのPLC信号を、同位相で、単相3線式交流電力線の他方の相の電力線(例えば、R相)7に注入することができる。そのため、単相3線式交流電力線において、異なる相間で、PLC信号を伝達することができる。従って、一般に市販されている宅内PLCモデムを、単相3線式交流電力線の異なる相間に接続して電力線通信を行うことが可能となる。   Further, by using the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line, the single-phase three-wire AC power line is connected to the power line (for example, T phase) 8 of one phase. The PLC signal of the home PLC modem 3a can be injected into the power line (for example, R phase) 7 of the other phase of the single-phase three-wire AC power line in the same phase. Therefore, a PLC signal can be transmitted between different phases in a single-phase three-wire AC power line. Therefore, it is possible to perform power line communication by connecting a commercially available home PLC modem between different phases of a single-phase three-wire AC power line.

又、この単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bに用いられる第2誘導コイルL2は、1次側巻線L21と2次側巻線L22の、2組の巻線を備えた第2誘導コイルである。従って、従来例の電力線通信装置における3組の巻線を備えた第2誘導コイルを用いる場合に比べて、第2誘導コイルのコストアップを抑制することができる。   The second induction coil L2 used in the PLC signal injection circuit 1b of the single-phase three-wire AC power line PLC signal gate device 10 includes two sets of primary winding L21 and secondary winding L22. It is the 2nd induction coil provided with the coil | winding. Therefore, the cost increase of the second induction coil can be suppressed as compared with the case where the second induction coil having three sets of windings in the power line communication device of the conventional example is used.

又、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bでは、第2誘導コイルL2の1次側巻線L21の巻線数と2次側巻線L22の巻線数とは同数である。従って、この単相3線式交流電力線用PLC信号ゲート装置10に接続された宅内PLCモデム3aのPLC信号を、入出力を、単相3線式交流電力線の一方の相、及び他方の相の双方に対して、共に、同一レベルで注入することができる。   Further, in the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line in the present embodiment, the number of windings of the primary winding L21 and the secondary windings of the second induction coil L2. The number of windings of L22 is the same. Therefore, the PLC signal of the home PLC modem 3a connected to the PLC signal gate device 10 for the single-phase three-wire AC power line is used for input / output of one phase of the single-phase three-wire AC power line and the other phase. Both can be injected at the same level.

又、本実施の形態における単相3線式交流電力線用PLC信号ゲート装置10のPLC信号注入回路1bでは、第2誘導コイルL2の2次側巻線L22に、直列接続された抵抗R1とコンデンサC1とを含んでいる。この直列接続された抵抗R1とコンデンサC1の内、コンデンサC1は、第2誘導コイルL2の2次側巻線に、商用周波数の交流電流が流れるのを阻止する機能を有し、抵抗R1は、第2誘導コイルL2の2次側巻線L22に流れる電流が少なくなるように抑制する機能を有している。   Further, in the PLC signal injection circuit 1b of the PLC signal gate device 10 for the single-phase three-wire AC power line in the present embodiment, a resistor R1 and a capacitor connected in series to the secondary winding L22 of the second induction coil L2. C1 is included. Of the resistor R1 and capacitor C1 connected in series, the capacitor C1 has a function of preventing the commercial frequency AC current from flowing through the secondary winding of the second induction coil L2, and the resistor R1 is: It has a function of suppressing the current flowing through the secondary winding L22 of the second induction coil L2 to be small.

そのため、第2誘導コイルL2における許容電流を小さくすることができ、単相3線式交流電力線用PLC信号ゲート装置10に用いる第2誘導コイルL2のコストアップを抑制することができる。   Therefore, the allowable current in the second induction coil L2 can be reduced, and the cost increase of the second induction coil L2 used in the single-phase three-wire AC power line PLC signal gate device 10 can be suppressed.

次に、本発明の実施の形態における単相3線式交流電力線用PLC信号ゲート装置の第1の機能について説明する。この第1の機能は、上述したように、第1誘導コイルL1を備えた、図1に示す、PLC信号ゲート回路1aにより、実現される。   Next, a first function of the PLC signal gate device for a single-phase three-wire AC power line in the embodiment of the present invention will be described. As described above, this first function is realized by the PLC signal gate circuit 1a shown in FIG. 1 including the first induction coil L1.

この第1誘導コイルL1は、図13に示すように、ドーナツ状のフェライト等の磁性体で形成されたコアに巻回された、中性線巻線L11、一方の相巻線L12、及び、他方の相巻線L13で構成されている。これらの中性線巻線L11、一方の相巻線L12、及び、他方の相巻線L13の各巻数は、同数である。   As shown in FIG. 13, the first induction coil L1 includes a neutral wire winding L11 wound around a core formed of a magnetic material such as a donut-shaped ferrite, one phase winding L12, and It is composed of the other phase winding L13. The number of turns of the neutral wire winding L11, the one phase winding L12, and the other phase winding L13 is the same.

この第1誘導コイルの3個の各巻線L11〜L13は、図1に示すように、単相3線式交流電力線の中性線(N)9の途中に中性線巻線L11が、単相3線式交流電力線の一方の相の電力線(例えば、T相)8の途中に一方の相巻線L12が、そして、単相3線式交流電力線の他方の相の電力線(例えば、R相)7の途中に他方の相巻線L13が、それぞれ、直列に挿入されている。尚、図1、及び、図13において、J1a、J1b、及び、J1cは、接続端子である。又、上記の第1誘導コイルは、この第1誘導コイルにおける一方の相巻線L12の巻線方向、及び、他方の相巻線L13の巻線方向は、中性線巻線L11の巻線方向と反対となるように構成されている。   As shown in FIG. 1, each of the three windings L11 to L13 of the first induction coil includes a neutral wire winding L11 in the middle of the neutral wire (N) 9 of the single-phase three-wire AC power line. One phase winding L12 is in the middle of one phase power line (eg, T phase) 8 of the phase three wire AC power line, and the other phase power line (eg, R phase) of the single phase three wire AC power line. ) 7, the other phase winding L13 is inserted in series. In FIGS. 1 and 13, J1a, J1b, and J1c are connection terminals. The first induction coil has a winding direction of one phase winding L12 and a winding direction of the other phase winding L13 in the first induction coil. It is configured to be opposite to the direction.

上記の単相3線式交流電力線用PLC信号ゲート装置のPLC信号ゲート回路1aでは、上記のように、第1誘導コイルL1における一方の相巻線の巻線方向、及び、他方の相巻線の巻線方向が、中性線巻線の巻線方向と反対となるように構成されている。これにより、次のような作用、効果を生じる。   In the PLC signal gate circuit 1a of the PLC signal gate device for a single-phase three-wire AC power line, the winding direction of one phase winding in the first induction coil L1 and the other phase winding are as described above. Is configured to be opposite to the winding direction of the neutral wire winding. This produces the following actions and effects.

即ち、上述したように、単相3線式交流電力線の電力受給側における宅内PLCモデムを用いた電力線通信では、上述したPLC信号注入回路1bにより、単相3線式交流電力線の中性線(N)9と一方の相の電力線(例えば、T相)8との間に宅内PLCモデムのPLC信号が注入されると共に、該PLC信号が、同位相の状態で、単相3線式交流電力線の中性線(N)9と他方の相の電力線(例えば、R相)7との間にも注入される。   That is, as described above, in the power line communication using the home PLC modem on the power receiving side of the single-phase three-wire AC power line, the neutral line of the single-phase three-wire AC power line by the PLC signal injection circuit 1b described above ( N) The PLC signal of the home PLC modem is injected between the power line 9 (for example, the T phase) 8 and a single-phase three-wire AC power line in the same phase state. It is also injected between the neutral line (N) 9 and the power line (for example, R phase) 7 of the other phase.

そうすると、宅内PLCモデムのPLC信号は、第1誘導コイルL1において、中性線(N)9、一方の相の電力線(例えば、T相)8、及び、他方の相の電力線(例えば、R相)7が同位相となり、第1誘導コイルL1内では、磁束を強め合うので、PLC信号の伝播が阻止される。   Then, in the first induction coil L1, the PLC signal of the home PLC modem receives the neutral line (N) 9, one phase power line (for example, T phase) 8, and the other phase power line (for example, R phase). ) 7 has the same phase, and the magnetic flux is strengthened in the first induction coil L1, so that the propagation of the PLC signal is prevented.

従って、該単相3線式交流電力線の電力受給側における宅内PLCモデムのPLC信号は、第1誘導コイルL1から単相3線式交流電力線の電力供給側へ伝播するのを阻止することができる。そのため、家庭内における単相3線式交流電力線を流れるPLC信号が、家庭外で単相3線式交流電力線から雑音電波として放射されることを抑制することができる。   Therefore, the PLC signal of the home PLC modem on the power receiving side of the single-phase three-wire AC power line can be prevented from propagating from the first induction coil L1 to the power supply side of the single-phase three-wire AC power line. . Therefore, it is possible to suppress the PLC signal flowing through the single-phase three-wire AC power line in the home from being radiated as noise radio waves from the single-phase three-wire AC power line outside the home.

又、上記の単相3線式交流電力線用PLC信号ゲート装置10が接続される単相3線式交流電力線では、図14に示すように、単相3線式交流電力線の電力供給側における一方の相の電力線(例えば、T相)18と他方の相の電力線(例えば、R相)17との間に接続された宅外PLCモデム2aと、該単相3線式交流電力線の電力受給側における一方の相の電力線(例えば、T相)8と他方の相の電力線(例えば、R相)7との間に接続された宅外PLCモデム2bとの相互間で、電力線通信が行われることもある。   Further, in the single-phase three-wire AC power line to which the single-phase three-wire AC power line PLC signal gate device 10 is connected, as shown in FIG. 14, one of the single-phase three-wire AC power lines on the power supply side Phase power line (for example, T phase) 18 and the other phase power line (for example, R phase) 17 connected to outside PLC modem 2a, and the power receiving side of the single-phase three-wire AC power line Power line communication between the external PLC modem 2b connected between one phase power line (for example, T phase) 8 and the other phase power line (for example, R phase) 7 in FIG. There is also.

上述したように、上記の単相3線式交流電力線用PLC信号ゲート装置10のPLC信号ゲート回路1aでは、第1誘導コイルL1は、この第1誘導コイルL1における一方の相巻線L12の巻線方向、及び、他方の相巻線L13の巻線方向が、中性線巻線L11の巻線方向と反対となるように、構成されている。即ち、第1誘導コイルL1における単相3線式交流電力線の一方の相巻線L12の巻線方向と、他方の相巻線L13の巻線方向とは同じである。   As described above, in the PLC signal gate circuit 1a of the PLC signal gate device 10 for the single-phase three-wire AC power line, the first induction coil L1 is wound by one phase winding L12 in the first induction coil L1. The line direction and the winding direction of the other phase winding L13 are configured to be opposite to the winding direction of the neutral wire winding L11. That is, the winding direction of one phase winding L12 of the single-phase three-wire AC power line in the first induction coil L1 is the same as the winding direction of the other phase winding L13.

そうすると、宅外PLCモデムのPLC信号は、第1誘導コイルL1において、単相3線式交流電力線の一方の相の電力線(例えば、T相)8と他方の相の電力線(例えば、R相)7が逆位相となり、第1誘導コイルL1内で磁束を打ち消し合うので、第1誘導コイルL1では、PLC信号が伝播される。   Then, the PLC signal of the PLC PLC outside the house is transmitted through the first induction coil L1 to one phase power line (for example, T phase) 8 of the single-phase three-wire AC power line and the other phase power line (for example, R phase). 7 has an opposite phase and cancels out the magnetic flux in the first induction coil L1, so that the PLC signal is propagated in the first induction coil L1.

従って、単相3線式交流電力線の電力供給側における宅外PLCモデムのPLC信号は、第1誘導コイルL1から該単相3線式交流電力線の電力受給側へ伝播することができる。そのため、宅外PLCモデムを用いた電力線通信では、家庭外の単相3線式交流電力線を流れるPLC信号が、家庭内の単相3線式交流電力線に流れ込むようにすることができる。   Therefore, the PLC signal of the outside PLC modem on the power supply side of the single-phase three-wire AC power line can be propagated from the first induction coil L1 to the power receiving side of the single-phase three-wire AC power line. Therefore, in power line communication using an out-of-home PLC modem, a PLC signal flowing through a single-phase three-wire AC power line outside the home can flow into the single-phase three-wire AC power line inside the home.

又、上記の単相3線式交流電力線用PLC信号ゲート装置10は、単相3線式配電方式で家庭に配電される場合において、電力供給側と電力受給側との分岐点等に設けられる分電盤に、内蔵することができる。即ち、上記の単相3線式交流電力線用PLC信号ゲート装置10を備えた分電盤を、構成することができる。   The PLC signal gate device 10 for the single-phase three-wire AC power line is provided at a branch point between the power supply side and the power reception side in the case of distributing power to the home by the single-phase three-wire distribution system. Can be built into the distribution board. That is, the distribution board provided with the PLC signal gate device 10 for the single-phase three-wire AC power line can be configured.

図15は、例として、このような分電盤21の構成を示したものである。この分電盤21は、ブレーカ21aと、上記の単相3線式交流電力線用PLC信号ゲート装置10とで構成されている。   FIG. 15 shows the configuration of such a distribution board 21 as an example. The distribution board 21 includes a breaker 21a and the PLC signal gate device 10 for the single-phase three-wire AC power line.

この分電盤21によれば、ブレーカ21aの機能と、単相3線式交流電力線用PLC信号ゲート装置10の機能とを、一箇所で実現することができ、これらの設置スペースの省力化を図ることができる。   According to this distribution board 21, the function of the breaker 21a and the function of the PLC signal gate device 10 for the single-phase three-wire AC power line can be realized in one place, and labor saving of these installation spaces can be achieved. You can plan.

又、上記の単相3線式交流電力線用PLC信号ゲート装置10は、単相3線式配電方式で家庭等の電力受給側に配電される場合に、電力量の測定に用いられる電力計に内蔵することができる。即ち、上記の単相3線式交流電力線用PLC信号ゲート装置を備えた電力計を、構成することができる。   The single-phase three-wire AC power line PLC signal gate device 10 described above is a power meter used for measuring the amount of electric power when the single-phase three-wire power distribution system is distributed to the power receiving side such as a home. Can be built in. That is, a wattmeter including the above-described single-phase three-wire type AC power line PLC signal gate device can be configured.

図16は、例として、このような電力計22の構成を示したものである。この電力計22は、電力積算部22aと、上記の単相3線式交流電力線用PLC信号ゲート装置10とで構成されている。   FIG. 16 shows such a configuration of the wattmeter 22 as an example. The wattmeter 22 includes a power integrating unit 22a and the single-phase three-wire AC power line PLC signal gate device 10 described above.

この電力計22によれば、電力積算部22aの機能と、上記の単相3線式交流電力線用PLC信号ゲート装置10の機能とを、一箇所で実現することができ、これらの設置スペースの省力化を図ることができる。   According to the wattmeter 22, the function of the power integrating unit 22a and the function of the PLC signal gate device 10 for the single-phase three-wire AC power line can be realized at one place. Labor saving can be achieved.

本実施の形態における単相3線式交流電力線用PLC信号ゲート装置の構成図である。1 is a configuration diagram of a PLC signal gate device for a single-phase three-wire AC power line in the present embodiment. FIG. 本実施の形態における実験に用いられた実験用誘導コイルの構成図である。It is a block diagram of the induction coil for experiment used for the experiment in this Embodiment. 本実施の形態における第1番目の実験に用いられた回路図(その1)である。It is the circuit diagram (the 1) used for the 1st experiment in this Embodiment. 本実施の形態における第1番目の実験に用いられた回路図(その2)である。It is the circuit diagram (the 2) used for the 1st experiment in this Embodiment. 本実施の形態における第1番目の実験に用いられた回路図(その3)である。It is the circuit diagram (the 3) used for the 1st experiment in this Embodiment. 本実施の形態における第1番目の実験の結果を示したグラフである。It is the graph which showed the result of the 1st experiment in this Embodiment. 本実施の形態における第2番目の実験に用いられた回路図(その1)である。It is the circuit diagram (the 1) used for the 2nd experiment in this Embodiment. 本実施の形態における第2番目の実験に用いられた回路図(その2)である。It is the circuit diagram (the 2) used for the 2nd experiment in this Embodiment. 本実施の形態における第2番目の実験の結果を示したグラフである。It is the graph which showed the result of the 2nd experiment in this Embodiment. 本実施の形態における第3番目の実験に用いられた回路図(その1)である。It is the circuit diagram (the 1) used for the 3rd experiment in this Embodiment. 本実施の形態における第3番目の実験に用いられた回路図(その2)である。It is the circuit diagram (the 2) used for the 3rd experiment in this Embodiment. 本実施の形態における第3番目の実験の結果を示したグラフである。It is the graph which showed the result of the 3rd experiment in this Embodiment. 本実施の形態における単相3線式交流電力線用PLC信号ゲート装置の第1誘導コイルL1の構成を示した斜視図である。It is the perspective view which showed the structure of the 1st induction coil L1 of the PLC signal gate apparatus for single-phase three-wire type AC power lines in this Embodiment. 本実施の形態における単相3線式交流電力線用PLC信号ゲート装置を用いた宅外PLCモデムによるPLC通信の構成図である。It is a block diagram of PLC communication by an outside PLC modem using the PLC signal gate device for single-phase three-wire AC power lines in the present embodiment. 本実施の形態における分電盤の構成図である。It is a block diagram of the electricity distribution panel in this Embodiment. 本実施の形態における電力計の構成図である。It is a block diagram of the wattmeter in this Embodiment.

符号の説明Explanation of symbols

1a PLC信号ゲート回路
1b PLC信号注入回路
2a 宅外PLCモデム
2b 宅外PLCモデム
3a 宅内PLCモデム
3b 宅内PLCモデム
3c 宅内PLCモデム
4 ケーブル
5 ケーブル
6 ケーブル
7 R相電力線(R相)
8 T相電力線(T相)
9 中性線(N)
10単相3線式交流電力線用PLC信号ゲート装置
11 送信側ネットワークアナライザ
12 受信側ネットワークアナライザ
15 1次側電流方向
16 2次側電流方向
17 R相電力線(R相)
18 T相電力線(T相)
19 中性線(N)
21 分電盤
21a ブレーカ
22 電力計
22a 電力積算部
C1 コンデンサ
C2 コンデンサ
J1 接続端子
J1a 接続端子
J2 接続端子
J2a 接続端子
J3 接続端子
J3a 接続端子
J4 接続端子
J5 接続端子
J6 接続端子
J7 接続端子
J8 接続端子
L1 第1誘導コイル
L11 中性線巻線
L12 一方の相巻線
L13 他方の相巻線
L2 第2誘導コイル
L21 1次側巻線
L22 2次側巻線
L3 実験用誘導コイル
L31 1次側巻線
L32 2次側巻線
T1 1次側端子
T2 1次側端子
T3 2次側端子
T4 2次側端子
R1 抵抗
R2 抵抗
W1 電線
W2 電線
W3 電線
1a PLC signal gate circuit 1b PLC signal injection circuit 2a External PLC modem 2b External PLC modem 3a Home PLC modem 3b Home PLC modem 3c Home PLC modem 4 Cable 5 Cable 6 Cable 7 R phase power line (R phase)
8 T-phase power line (T-phase)
9 Neutral wire (N)
10 PLC signal gate device for single-phase three-wire AC power line 11 Transmission side network analyzer 12 Reception side network analyzer 15 Primary side current direction 16 Secondary side current direction 17 R phase power line (R phase)
18 T-phase power line (T-phase)
19 Neutral wire (N)
21 Distribution board 21a Breaker 22 Power meter 22a Power integrating part C1 Capacitor C2 Capacitor J1 Connection terminal J1a Connection terminal J2 Connection terminal J2a Connection terminal J3 Connection terminal J3a Connection terminal J4 Connection terminal J5 Connection terminal J6 Connection terminal J7 Connection terminal J8 Connection terminal L1 First induction coil L11 Neutral wire winding L12 One phase winding L13 The other phase winding L2 Second induction coil L21 Primary side winding L22 Secondary side winding L3 Experimental induction coil L31 Primary side winding Wire L32 Secondary side winding T1 Primary side terminal T2 Primary side terminal T3 Secondary side terminal T4 Secondary side terminal R1 Resistance R2 Resistance W1 Wire W2 Wire W3 Wire

Claims (8)

単相3線式交流電力線における電力供給側と電力受給側との分岐点に挿入される第1誘導コイルを備えた単相3線式交流電力線用PLC信号ゲート装置であって、
前記単相3線式交流電力線は、該単相3線式交流電力線の電力受給側における該単相3線式交流電力線の中性線と一方の相の電力線との間に宅内PLCモデムのPLC信号が注入されると共に、該PLC信号が、同位相の状態で、前記単相3線式交流電力線の中性線と他方の相の電力線との間にも注入されるPLC信号相間注入が行われることにより、前記単相3線式交流電力線の電力受給側の中性線と一方の相又は他方の相との間に接続された宅内PLCモデム相互間の電力線通信が行われる交流電力線であり、
前記第1誘導コイルは、
該第1誘導コイルに設けられた3個の各巻線の内、前記単相3線式交流電力線の中性線の途中には中性線巻線が、前記単相3線式交流電力線の一方の相の電力線の途中には一方の相巻線が、そして、前記単相3線式交流電力線の他方の相の電力線の途中には他方の相巻線が、それぞれ、直列に挿入されていると共に、
前記一方の相巻線の巻線方向、及び、前記他方の相巻線の巻線方向が、前記中性線巻線の巻線方向と反対となるように構成されていることを特徴とする単相3線式交流電力線用PLC信号ゲート装置。
A PLC signal gate device for a single-phase three-wire AC power line including a first induction coil inserted at a branch point between a power supply side and a power reception side in a single-phase three-wire AC power line,
The single-phase three-wire AC power line is a PLC of the home PLC modem between the neutral line of the single-phase three-wire AC power line and the one-phase power line on the power receiving side of the single-phase three-wire AC power line. When the signal is injected, the PLC signal is injected between the neutral line of the single-phase three-wire AC power line and the power line of the other phase while the PLC signal is in the same phase. Power line communication between the home PLC modems connected between the neutral line of the single-phase three-wire AC power line and one phase or the other phase of the single-phase three-wire AC power line. ,
The first induction coil is
Among the three windings provided in the first induction coil, a neutral wire winding is one of the single-phase three-wire AC power lines in the middle of the neutral wire of the single-phase three-wire AC power line. One phase winding is inserted in series in the middle of the phase power line, and the other phase winding is inserted in series in the middle of the other phase power line of the single-phase three-wire AC power line. With
The winding direction of the one phase winding and the winding direction of the other phase winding are configured to be opposite to the winding direction of the neutral wire winding. PLC signal gate device for single-phase three-wire AC power line.
請求項1記載の単相3線式交流電力線用PLC信号ゲート装置において、
前記第1誘導コイルの中性線巻線、一方の相巻線、及び、他方の相巻線の各巻線数は、同数である単相3線式交流電力線用PLC信号ゲート装置。
The PLC signal gate device for a single-phase three-wire AC power line according to claim 1,
A PLC signal gate device for a single-phase three-wire AC power line, wherein the number of windings of the neutral wire winding of the first induction coil, the one phase winding, and the other phase winding is the same.
請求項1又は2記載の単相3線式交流電力線用PLC信号ゲート装置において、
前記単相3線式交流電力線は、該単相3線式交流電力線の電力供給側における一方の相の電力線と他方の相の電力線との間に接続された宅外PLCモデムと、該単相3線式交流電力線の電力受給側における一方の相の電力線と他方の相の電力線との間に接続された宅外PLCモデムとの相互間で、電力線通信が行われる交流電力線である単相3線式交流電力線用PLC信号ゲート装置。
The PLC signal gate device for a single-phase three-wire AC power line according to claim 1 or 2,
The single-phase three-wire AC power line includes an external PLC modem connected between one phase power line and the other phase power line on the power supply side of the single-phase three-wire AC power line; Single-phase 3 which is an AC power line in which power line communication is performed between an external PLC modem connected between the power line of one phase and the power line of the other phase on the power receiving side of the 3-wire AC power line PLC signal gate device for linear AC power line.
請求項1〜3のいずれか1項に記載の単相3線式交流電力線用PLC信号ゲート装置において、
前記単相3線式交流電力線の中性線と一方の相の電力線との間に、第2誘導コイルの1次側巻線でなる1次側回路が、前記宅内PLCモデムと共に、直列に接続されると共に、
前記単相3線式交流電力線の中性線と他方の相の電力線との間に、前記第2誘導コイルの1次側巻線に流れる電流と同相となる誘導電流が流れる前記第2誘導コイルの2次側巻線が少なくとも直列接続されてなる2次側回路が接続され、
前記PLC信号相間注入は、前記1次側回路と前記2次側回路とを用いて行われると共に、前記1次側回路と前記2次側回路とを備えている単相3線式交流電力線用PLC信号ゲート装置。
The PLC signal gate device for a single-phase three-wire AC power line according to any one of claims 1 to 3,
A primary circuit composed of a primary winding of a second induction coil is connected in series with the home PLC modem between the neutral line of the single-phase three-wire AC power line and the power line of one phase. As
The second induction coil in which an induction current having the same phase as the current flowing in the primary winding of the second induction coil flows between the neutral line of the single-phase three-wire AC power line and the power line of the other phase A secondary circuit in which at least the secondary windings are connected in series is connected,
The PLC signal phase injection is performed using the primary side circuit and the secondary side circuit, and for the single-phase three-wire AC power line including the primary side circuit and the secondary side circuit. PLC signal gate device.
請求項4記載の単相3線式交流電力線用PLC信号ゲート装置において、
前記第2誘導コイルの1次側巻線の巻線数と2次側巻線の巻線数とは同数である単相3線式交流電力線用PLC信号ゲート装置。
The PLC signal gate device for a single-phase three-wire AC power line according to claim 4,
A PLC signal gate device for a single-phase three-wire AC power line, wherein the number of primary windings of the second induction coil and the number of secondary windings are the same.
請求項4又は5記載の単相3線式交流電力線用PLC信号ゲート装置において、
前記2次側回路に、直列接続された抵抗とコンデンサとが含まれる単相3線式交流電力線用PLC信号ゲート装置。
The PLC signal gate device for a single-phase three-wire AC power line according to claim 4 or 5,
A PLC signal gate device for a single-phase, three-wire AC power line, wherein the secondary circuit includes a resistor and a capacitor connected in series.
請求項1〜6のいずれか1項に記載の単相3線式交流電力線用PLC信号ゲート装置を備えた分電盤。   A distribution board comprising the PLC signal gate device for a single-phase three-wire AC power line according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の単相3線式交流電力線用PLC信号ゲート装置を備えた電力計。   A power meter comprising the PLC signal gate device for a single-phase three-wire AC power line according to any one of claims 1 to 6.
JP2007335082A 2007-12-26 2007-12-26 PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line Active JP4956411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335082A JP4956411B2 (en) 2007-12-26 2007-12-26 PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335082A JP4956411B2 (en) 2007-12-26 2007-12-26 PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line

Publications (2)

Publication Number Publication Date
JP2009159302A true JP2009159302A (en) 2009-07-16
JP4956411B2 JP4956411B2 (en) 2012-06-20

Family

ID=40962817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335082A Active JP4956411B2 (en) 2007-12-26 2007-12-26 PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line

Country Status (1)

Country Link
JP (1) JP4956411B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244668A (en) * 2011-05-16 2012-12-10 Sony Corp Power supply device and power supply method, and program
JP7347338B2 (en) 2020-06-03 2023-09-20 住友電気工業株式会社 Power converter and its operating method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296313A (en) * 1990-04-13 1991-12-27 Matsushita Electric Ind Co Ltd Single phase three wire blocking filter for power line carrier communication
JPH07235897A (en) * 1994-02-22 1995-09-05 Oskar Denshi Kk Power line communication equipment and power line communication network
JP2001119327A (en) * 1999-10-18 2001-04-27 Toshiba Corp Transmission signal conversion device, load device, repeater and distribution system using them
JP2001326493A (en) * 2000-05-17 2001-11-22 Nec Corp Method and device for artificial grounding
JP2002373812A (en) * 2001-06-15 2002-12-26 Matsushita Electric Ind Co Ltd Carrier wave filter
JP2003069728A (en) * 2001-08-24 2003-03-07 Hitachi Ltd Communication method, bidirectional television receiver, power line carrier and blocking filter
JP2003163619A (en) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd Distributor
JP2004147226A (en) * 2002-10-25 2004-05-20 Sumitomo Electric Ind Ltd Filter for communication
JP2004297249A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines
JP2006033113A (en) * 2004-07-13 2006-02-02 Saga Univ Power line communication adapter
JP2006261940A (en) * 2005-03-16 2006-09-28 Smk Corp Power line communication coupling circuit
JP2007028194A (en) * 2005-07-15 2007-02-01 Matsushita Electric Works Ltd Power distributor and power line carrier communication system
JP2007082124A (en) * 2005-09-16 2007-03-29 Saga Univ Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296313A (en) * 1990-04-13 1991-12-27 Matsushita Electric Ind Co Ltd Single phase three wire blocking filter for power line carrier communication
JPH07235897A (en) * 1994-02-22 1995-09-05 Oskar Denshi Kk Power line communication equipment and power line communication network
JP2001119327A (en) * 1999-10-18 2001-04-27 Toshiba Corp Transmission signal conversion device, load device, repeater and distribution system using them
JP2001326493A (en) * 2000-05-17 2001-11-22 Nec Corp Method and device for artificial grounding
JP2002373812A (en) * 2001-06-15 2002-12-26 Matsushita Electric Ind Co Ltd Carrier wave filter
JP2003069728A (en) * 2001-08-24 2003-03-07 Hitachi Ltd Communication method, bidirectional television receiver, power line carrier and blocking filter
JP2003163619A (en) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd Distributor
JP2004147226A (en) * 2002-10-25 2004-05-20 Sumitomo Electric Ind Ltd Filter for communication
JP2004297249A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines
JP2006033113A (en) * 2004-07-13 2006-02-02 Saga Univ Power line communication adapter
JP2006261940A (en) * 2005-03-16 2006-09-28 Smk Corp Power line communication coupling circuit
JP2007028194A (en) * 2005-07-15 2007-02-01 Matsushita Electric Works Ltd Power distributor and power line carrier communication system
JP2007082124A (en) * 2005-09-16 2007-03-29 Saga Univ Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244668A (en) * 2011-05-16 2012-12-10 Sony Corp Power supply device and power supply method, and program
US9806531B2 (en) 2011-05-16 2017-10-31 Sony Corporation Power supply device and method, and program
JP7347338B2 (en) 2020-06-03 2023-09-20 住友電気工業株式会社 Power converter and its operating method

Also Published As

Publication number Publication date
JP4956411B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR101532466B1 (en) Device for determining a common-mode signal in a power line communication network
US7307512B2 (en) Power line coupling device and method of use
US5659273A (en) Line termination for multiple differential transmission lines
JP2011172259A (en) Data communication network and communication method
JPS5829013B2 (en) Signal coupling circuit device for distribution line carrier communication system
CZ56097A3 (en) Distribution network
JP2004297249A (en) Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines
JP2008245202A (en) Bridge circuit for power line carrier communication, and network system therefor
JP4757123B2 (en) Transmission equipment for power line carrier communication, outlet plug, outlet plug box, table tap, coupling device, communication device, and communication system
TW201407984A (en) Power over Ethernet for bi-directional Ethernet over single pair
US9350315B1 (en) Power line communication filter for multiple conductors
US7675386B2 (en) Inductive coupling circuit and telecommunication method by sheathed cables of an electrical current distribution network
JP4956411B2 (en) PLC signal gate device for single-phase three-wire AC power line, and distribution board and wattmeter equipped with PLC signal gate device for single-phase three-wire AC power line
WO2005093765A1 (en) An inductive coupler
Van Rensburg Effective coupling for power-line communications
CN210432055U (en) Power filter and air conditioner
JP5140022B2 (en) Signal coupling device for power line carrier communication
EP3399654B1 (en) Method for signal transmission via an electrical power transmission pathway, and signal transmission system using the same
JPH10510115A (en) Power line signal transmission system
KR100471614B1 (en) Power line communication device for signal blocking and signal transfer function
JP2007335526A (en) Common mode choke coil, outlet plug, outlet adapter, table tap, and wiring adapter
JP2010074632A (en) High frequency signal supplying device
La Manna CHARACTERISATION OF COMMUNICATION CHANNEL ON HIGH VOLTAGE ENERGY TRANSPORT AND DISTRIBUTION SYSTEMS
JP2006033421A (en) Balancing circuit for communication line
JP2008141521A (en) Communication device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4956411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250