JP2007082124A - Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire - Google Patents

Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire Download PDF

Info

Publication number
JP2007082124A
JP2007082124A JP2005270621A JP2005270621A JP2007082124A JP 2007082124 A JP2007082124 A JP 2007082124A JP 2005270621 A JP2005270621 A JP 2005270621A JP 2005270621 A JP2005270621 A JP 2005270621A JP 2007082124 A JP2007082124 A JP 2007082124A
Authority
JP
Japan
Prior art keywords
line
communication
phase
neutral
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270621A
Other languages
Japanese (ja)
Inventor
Shinichi Sasaki
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Original Assignee
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC filed Critical Saga University NUC
Priority to JP2005270621A priority Critical patent/JP2007082124A/en
Publication of JP2007082124A publication Critical patent/JP2007082124A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for communication between different phase lines for indoor power line communication capable of making communication between a low voltage line (L1-N system, L2-N system) and a high voltage line (line L1-line L2 system) which has been impossible by prior arts. <P>SOLUTION: The apparatus for communication between different phase lines for the indoor power line communication uses single phase three-wire lines comprising two power lines L1, L2 whose phases differ by 180 degrees and a neutral line N and is configured such that a series circuit comprising a primary winding L10 of a transformer 17 and a first capacitor C2 is connected between the line L1 and the neutral line N, a series circuit comprising a secondary winding L20 of the transformer 17 and a second capacitor C3 is connected between the line L2 and the neutral line N so that the polarity of the secondary winding is inverse to that of the primary winding, and the mutual inductance M between the primary winding and the secondary winding permits transmission/reception of a signal with a carrier whose frequency is sufficiently higher than that of a commercial power supply among a line L1-neutral line N system, a line L2-neutral line N system, and a line L1-line L2 system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、屋内の電力線を通信回線として利用する電力線通信において、単相3線を用いた屋内電力線通信用の異相間通信装置に関する。   The present invention relates to an inter-phase communication apparatus for indoor power line communication using single-phase three-wire in power line communication using an indoor power line as a communication line.

屋内の電力線を通信回線として利用する電力線通信(PLC:Power Line Communication)が注目されている。これは、電気のコンセントに通信用アダプタを設置してパソコンや電気器具などをつなぐことにより、2Mbps〜30Mbpsのデータ通信や遠隔制御を行う技術である。この技術を用いることにより、新たにケーブルなどを屋内に敷設することなく、構内通信網(LAN)やイントラネットを構築することができる。   Power line communication (PLC) that uses an indoor power line as a communication line has attracted attention. This is a technology for performing data communication and remote control of 2 Mbps to 30 Mbps by installing a communication adapter in an electrical outlet and connecting a personal computer or an electric appliance. By using this technique, it is possible to construct a local communication network (LAN) or an intranet without newly laying a cable or the like indoors.

一般的な屋内配線では、単相3線100Vが用いられており、中性線Nを共通線として、位相差が180度のL1相とL2相の2種類があり、必要に応じてL1−L2間で200Vとして利用されている。   In general indoor wiring, a single-phase three-wire 100V is used, and there are two types of L1 phase and L2 phase having a phase difference of 180 degrees with a neutral wire N as a common wire. It is used as 200V between L2.

図3は、単相3線電力線の屋内分電盤の概略構成を示す系統図である。分電盤の配線は、L1線電極プレート11、L2線電力プレート12、中性線N電極プレート13で構成され、2系統に別れている。L1−N系統と、L2−N系統には、それぞれAC100Vの電圧が印加されており、L1−L2間ではAC200Vを取り出すことができる。   FIG. 3 is a system diagram showing a schematic configuration of an indoor distribution board of single-phase three-wire power lines. The distribution board wiring is composed of an L1 line electrode plate 11, an L2 line power plate 12, and a neutral line N electrode plate 13, and is divided into two systems. A voltage of AC100V is applied to the L1-N system and the L2-N system, respectively, and AC200V can be taken out between L1-L2.

図4は、単相3線電力線を通信回線として使用した例を示す配電系統図であり、L1−N系統(AC100V)には、ブレーカ14を介してPC(パーソナルコンピュータ)21〜23が接続されており、L2−N系統(AC100V)には、ブレーカ14を介してPC24,25、テレビ26が接続されており、L1−L2系統(AC200V)にはブレーカ14を介してクーラー27が接続されている。図中15は低圧配電線と電力線との間に設けられる漏電ブレーカ、16は過電圧検出リード線である。図4に示すように、同一系統内のPC21〜23間、およびPC24,25、テレビ26間はそれぞれ相互通信可能であるが、系統が異なる機器間、例えばPC21とPC24間、あるいは、PC23とクーラー27間は通信ができない。   FIG. 4 is a distribution system diagram showing an example in which a single-phase three-wire power line is used as a communication line. PCs (personal computers) 21 to 23 are connected to the L1-N system (AC100V) via a breaker 14. The L2-N system (AC100V) is connected to the PCs 24, 25 and the television 26 via the breaker 14, and the L1-L2 system (AC200V) is connected to the cooler 27 via the breaker 14. Yes. In the figure, 15 is a leakage breaker provided between the low voltage distribution line and the power line, and 16 is an overvoltage detection lead wire. As shown in FIG. 4, the PCs 21 to 23 in the same system and the PCs 24 and 25 and the television 26 can communicate with each other. However, between devices having different systems, for example, between the PC 21 and the PC 24 or between the PC 23 and the cooler. 27 cannot communicate.

L1線系統とL2線系統間の通信を実現する方法として、図5に示すように、L1線電極プレート11とL2線電極プレート12間をコンデンサC1で接続する方法がある(例えば、特許文献1参照)。   As a method for realizing communication between the L1 line system and the L2 line system, as shown in FIG. 5, there is a method of connecting the L1 line electrode plate 11 and the L2 line electrode plate 12 with a capacitor C1 (for example, Patent Document 1). reference).

このコンデンサC1によって、ハイパスフィルタを構成し、低周波の商用電力(50Hz,60Hz)は通過せずに、高周波(2MHz〜30MHz)の信号のみを通過させることができ、これにより、L1−N系統とL2−N系統間で通信が可能となる。   This capacitor C1 constitutes a high-pass filter, and can pass only high-frequency (2 MHz to 30 MHz) signals without passing through low-frequency commercial power (50 Hz, 60 Hz). And communication between the L2-N systems.

特開平10−208184号公報JP-A-10-208184

しかしながら、L1線電極プレート11とL2線電極プレート12間をコンデンサC1で接続する方法では、図6に示すように、L1線とL2線に同じ信号1が流れているため、200V系統であるL1線−L2線間ではその信号1を取り出すことができず、低圧線系統と高圧線系統間の通信はできない。   However, in the method of connecting the L1 line electrode plate 11 and the L2 line electrode plate 12 with the capacitor C1, the same signal 1 flows through the L1 line and the L2 line as shown in FIG. The signal 1 cannot be taken out between the line and the L2 line, and communication between the low voltage line system and the high voltage line system is not possible.

本発明は、従来の技術では不可能であった低圧線(L1−N系統、L2−N系統)と高圧線(L1線−L2線系統)間の通信を可能とする屋内電力線通信用の異相間通信装置を提供することを目的とする。   The present invention is a different phase for indoor power line communication that enables communication between a low-voltage line (L1-N system, L2-N system) and a high-voltage line (L1-line-L2-line system), which was impossible with the prior art. An object is to provide an intercommunication device.

前記課題を解決するため、本発明は、位相が180度異なるL1線およびL2線の2系統の電力線および中性線Nからなる単相3線を用いた屋内電力線通信用の異相間通信装置であって、前記L1線と中性線Nとの間に、トランスの一次巻線と第1コンデンサの直列回路を接続し、前記L2線と中性線Nとの間に、前記トランスの二次巻線と第2コンデンサの直列回路を、前記一次巻線に対して二次巻線が逆相になるように接続し、前記一次巻線と二次巻線間の相互インダクタンスにより、L1線−中性線N系統、L2線−中性線N系統、およびL1線−L2線系統の相互間で、商用電源の周波数よりも十分高い搬送波を持つ信号の授受を行う構成としたことを特徴とする、単相3線を用いた屋内電力線通信用の異相間通信装置である。   In order to solve the above-mentioned problems, the present invention is an inter-phase communication apparatus for indoor power line communication using a single-phase three-wire composed of two power lines of L1 line and L2 line and a neutral line N that are 180 degrees out of phase. A series circuit of a transformer primary winding and a first capacitor is connected between the L1 line and the neutral line N, and a secondary circuit of the transformer is connected between the L2 line and the neutral line N. A series circuit of a winding and a second capacitor is connected so that the secondary winding is in reverse phase with respect to the primary winding, and the mutual inductance between the primary winding and the secondary winding causes the L1 line − It is characterized in that a signal having a carrier wave sufficiently higher than the frequency of the commercial power supply is exchanged between the neutral line N system, the L2 line-neutral line N system, and the L1-line-L2 line system. The inter-phase communication apparatus for indoor power line communication using single-phase three-wire.

本発明においては、例えば、L1線と中性線Nとの間に2MHz〜30MHzの搬送波を有する交流信号e1を印加すると、トランスの一次巻線と二次巻線の相互インダクタンス−M(M>0)により、L2線と中性線Nとの間に、交流信号e1に応じた信号e2が誘導される。すなわち、L2線に、交流信号e1が伝送されたことになる。さらに、L1線とL2線間に、e3=e1−e2なる差分電圧が表れる。ここで、一次巻線と二次巻線とは、逆相の関係であるので、e1とe2は逆位相である。したがって、e3として、信号e1が増幅された信号が表れることになる。このようにして、低圧線相互間のみならず、低圧線と高圧線間にも、信号を伝送することが可能になる。   In the present invention, for example, when an AC signal e1 having a carrier of 2 MHz to 30 MHz is applied between the L1 line and the neutral line N, the mutual inductance −M (M> of the primary winding and secondary winding of the transformer 0) induces a signal e2 corresponding to the AC signal e1 between the L2 line and the neutral line N. That is, the AC signal e1 is transmitted to the L2 line. Further, a differential voltage e3 = e1-e2 appears between the L1 line and the L2 line. Here, since the primary winding and the secondary winding are in an antiphase relationship, e1 and e2 are in antiphase. Therefore, a signal obtained by amplifying the signal e1 appears as e3. In this way, signals can be transmitted not only between the low-voltage lines but also between the low-voltage lines and the high-voltage lines.

第1コンデンサと第2コンデンサは、中性線NとL1線間、および中性線NとL2線間に送電される商用電源(50Hz,60Hz)が一次巻線、二次巻線により短絡しないようにするためであり、信号の搬送波である高周波のみを通過させる機能を有する。   In the first capacitor and the second capacitor, the commercial power (50 Hz, 60 Hz) transmitted between the neutral wire N and the L1 wire and between the neutral wire N and the L2 wire is not short-circuited by the primary winding and the secondary winding. In order to do so, it has a function of allowing only a high frequency signal carrier wave to pass through.

本発明によれば、L1線と中性線Nとの間に、トランスの一次巻線と第1コンデンサの直列回路を接続し、L2線と中性線Nとの間に、トランスの二次巻線と第2コンデンサの直列回路を、一次巻線に対して二次巻線が逆相になるように接続したので、一次巻線と二次巻線間の相互インダクタンスにより、L1線−中性線N系統、L2線−中性線N系統、およびL1線−L2線系統の相互間で、信号の授受ができるようになり、これにより、従来の技術では不可能であった低圧線(L1−N系統、L2−N系統)と高圧線(L1線−L2線系統)間の通信が可能となる。   According to the present invention, a series circuit of the transformer primary winding and the first capacitor is connected between the L1 line and the neutral line N, and the transformer secondary is connected between the L2 line and the neutral line N. Since the series circuit of the winding and the second capacitor is connected so that the secondary winding is in reverse phase with respect to the primary winding, the mutual inductance between the primary winding and the secondary winding causes the L1 line to be in the middle The signal line can be exchanged between the sex line N system, the L2 line-neutral line N system, and the L1 line-L2 line system. Communication between the L1-N system and the L2-N system) and the high voltage line (L1 line-L2 line system) becomes possible.

以下、本発明の実施の形態を、図面を用いて説明する。図1は本発明の基本的構成を示す回路図、図2は本発明の実施の形態を示す配電系統図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a basic configuration of the present invention, and FIG. 2 is a distribution system diagram showing an embodiment of the present invention.

図1に示すように、L1線系統とL2線系統は、トランス17とコンデンサC2,C3で構成される結合回路18により結合されている。具体的には、L1線電極プレート11と中性線N電極プレート13の端子には、トランス17の一次巻線を構成するインダクタンスL10とコンデンサC2の直列回路が接続され、また、L2線電極プレート12と中性線N電極プレート13の端子には、トランス17の二次巻線を構成するインダクタンスL20とコンデンサC3の直列回路が接続されている。インダクタンスL10とL20は位相が逆相になるように接続されており、インダクタンスL10とL20との間は、相互インダクタンス−M(M>0)で結合されている。コンデンサC2,C3は50Hzまたは60Hzの商用電力周波数を含む1kHz以下の信号をカットする目的で挿入されている。このコンデンサC2,C3により、信号帯域のみ、トランス17の相互インダクタンス−Mを介してL1線とL2線間相互に信号を伝送することが可能になる。また、コンデンサC2,C3により、L1線と中性線NおよびL2線と中性線Nの100Vが短絡することを防止している。   As shown in FIG. 1, the L1 line system and the L2 line system are coupled by a coupling circuit 18 including a transformer 17 and capacitors C2 and C3. Specifically, a series circuit of an inductance L10 and a capacitor C2 constituting the primary winding of the transformer 17 is connected to terminals of the L1 wire electrode plate 11 and the neutral wire N electrode plate 13, and the L2 wire electrode plate 12 and a terminal of the neutral wire N electrode plate 13 are connected to a series circuit of an inductance L20 and a capacitor C3 that constitute a secondary winding of the transformer 17. The inductances L10 and L20 are connected so that their phases are opposite to each other, and the inductances L10 and L20 are coupled by a mutual inductance −M (M> 0). Capacitors C2 and C3 are inserted for the purpose of cutting signals of 1 kHz or less including a commercial power frequency of 50 Hz or 60 Hz. The capacitors C2 and C3 enable signals to be transmitted between the L1 line and the L2 line via the mutual inductance -M of the transformer 17 only in the signal band. Capacitors C2 and C3 prevent the L1 line and the neutral line N and the L2 line and the neutral line N from being short-circuited.

インダクタンスL10を通る電流をi1、L1線と中性線Nとの間の電圧をe1とし、インダクタンスL20を通る電流をi2、L2線と中性線Nとの間の電圧をe2とすると、次式が成立する。 The current passing through the inductance L10 is i 1 , the voltage between the L1 line and the neutral line N is e 1 , the current passing through the inductance L20 is i 2 , and the voltage between the L2 line and the neutral line N is e 2. Then, the following equation is established.

Figure 2007082124
Figure 2007082124

ここで、i1=I1sinωt、i2=I2sin(ωt+α)とすると、式(1),(2)は次のようになる。但し、ωは注入される信号の角速度、αは位相である。 Here, if i 1 = I 1 sin ωt and i 2 = I 2 sin (ωt + α), equations (1) and (2) are as follows. Where ω is the angular velocity of the injected signal and α is the phase.

Figure 2007082124
Figure 2007082124

簡単のため、I2=0とすると、式(3),(4)は次のようになる。 For simplicity, if I 2 = 0, equations (3) and (4) are as follows.

Figure 2007082124
Figure 2007082124

このように、L2−N系統には、L1−N系統から注入された信号の角速度ωに応じた信号が伝達される。   Thus, a signal corresponding to the angular velocity ω of the signal injected from the L1-N system is transmitted to the L2-N system.

一方、高圧線であるL1線−L2線間には、e3=e1−e2なる信号が検出される。これを式(5),(6)を用いて表すと、次式のようになる。 On the other hand, a signal e 3 = e 1 -e 2 is detected between the L1 line and the L2 line which are high voltage lines. This can be expressed using the equations (5) and (6) as follows.

Figure 2007082124
Figure 2007082124

(7)式において、   In the equation (7),

Figure 2007082124
でない限り、e3として、L1−N系統から注入された信号の角速度ωに応じた信号が伝達される。
Figure 2007082124
Unless otherwise, a signal corresponding to the angular velocity ω of the signal injected from the L1-N system is transmitted as e 3 .

このようにして、100VのL1線系統とL2線系統間の通信のみならず、100V系統と200V系統間でも通信を実現することができる。   In this way, communication can be realized not only between the 100V L1 line system and the L2 line system but also between the 100V system and the 200V system.

図2は、本発明の実施の形態を示す配電系統図である。L1−N系統(AC100V)には、ブレーカ14を介してPC21〜23が接続されており、L2−N系統(AC100V)には、ブレーカ14を介してPC24,25、テレビ26が接続されており、L1−L2系統(AC200V)には、ブレーカ14を介してクーラー27が接続されている。図中15は低圧配電線と電力線との間に設けられる漏電ブレーカ、16は過電圧検出リード線である。   FIG. 2 is a power distribution system diagram showing an embodiment of the present invention. PCs 21 to 23 are connected to the L1-N system (AC100V) via a breaker 14, and PCs 24 and 25 and a television 26 are connected to the L2-N system (AC100V) via a breaker 14. The cooler 27 is connected to the L1-L2 system (AC200V) via the breaker 14. In the figure, 15 is a leakage breaker provided between the low voltage distribution line and the power line, and 16 is an overvoltage detection lead wire.

L1線系統とL2線系統には、図1に示したトランス17とコンデンサC2,C3を含む結合回路18が接続されているため、同一系統内のPC21〜23間、およびPC24,25、テレビ26間のみならず、系統が異なる機器間、例えばPC21とPC24間、あるいは、PC23とクーラー27間も通信が可能となる。   Since the coupling circuit 18 including the transformer 17 and the capacitors C2 and C3 shown in FIG. 1 is connected to the L1 line system and the L2 line system, between the PCs 21 to 23 in the same system, the PCs 24 and 25, and the television 26 Communication between devices having different systems, for example, between the PC 21 and the PC 24 or between the PC 23 and the cooler 27 becomes possible.

本実施の形態において、それぞれの系統(L1−N系統、L2−N系統、L1−L2系統)に5mの電力線を接続し、図1の構成の結合回路18を接続した状態で、それぞれの相間で伝送特性を評価した結果、伝送可能なことを確認した。トランス17の自己インダクタンスL10,L20、相互インダクタンスM、コンデンサC2,C3の各回路定数を適宜選ぶことにより、2〜30MHzでの相互通信が可能である。   In the present embodiment, a 5 m power line is connected to each system (L1-N system, L2-N system, L1-L2 system) and the coupling circuit 18 having the configuration shown in FIG. As a result of evaluating the transmission characteristics with, it was confirmed that transmission was possible. By appropriately selecting the circuit constants of the self-inductances L10 and L20, the mutual inductance M, and the capacitors C2 and C3 of the transformer 17, mutual communication at 2 to 30 MHz is possible.

ちなみに、試験回路では、自己インダクタンスL10=L20=5〜20μH、相互インダクタンスM=4.5〜18μH、コンデンサC2,C3のキャパシタンスC2=C3=5〜20nFとした。なお、相互インダクタンスMは、結合係数をkとすると、自己インダクタンスL10,L20との間に、次の関係が成り立つ。   Incidentally, in the test circuit, the self-inductance L10 = L20 = 5 to 20 μH, the mutual inductance M = 4.5 to 18 μH, and the capacitance C2 of the capacitors C2 and C3 = C3 = 5 to 20 nF. The mutual inductance M has the following relationship with the self-inductances L10 and L20, where k is the coupling coefficient.

Figure 2007082124
Figure 2007082124

本例の場合は、k=0.9である。コンデンサC2,C3および自己インダクタンスL10,L20の値は、上記の範囲であれば、透過特性において、低い周波数はカットし、信号帯域にフラットな特性を得ることができる。   In this example, k = 0.9. If the values of the capacitors C2 and C3 and the self-inductances L10 and L20 are within the above ranges, the low frequency can be cut in the transmission characteristics, and a flat characteristic in the signal band can be obtained.

本発明は、従来の技術では不可能であった低圧線(L1−N系統、L2−N系統)と高圧線(L1線−L2線系統)間の通信を可能とする位相間通信装置として、単相3線を用いた屋内電力線通信の分野に適用することができる。   The present invention is an inter-phase communication device that enables communication between a low-voltage line (L1-N system, L2-N system) and a high-voltage line (L1-line-L2-line system), which was impossible with conventional technology. The present invention can be applied to the field of indoor power line communication using single-phase three wires.

本発明の基本的構成を示す回路図である。It is a circuit diagram which shows the basic composition of this invention. 本発明の実施の形態を示す配電系統図である。It is a power distribution system diagram showing an embodiment of the present invention. 単相3線電力線の屋内分電盤の概略構成を示す系統図である。It is a systematic diagram which shows schematic structure of the indoor distribution board of a single phase 3 wire power line. 単相3線電力線を通信回線として使用した例を示す配電系統図である。It is a power distribution system figure which shows the example which used the single phase 3 wire power line as a communication line. 従来技術を示す配電系統図である。It is a distribution system diagram which shows a prior art. 従来技術の問題を示す回路図である。It is a circuit diagram which shows the problem of a prior art.

符号の説明Explanation of symbols

11 L1線電極プレート
12 L2線電力プレート
13 中性線N電極プレート
14 ブレーカ
15 漏電ブレーカ
16 過電圧検出リード線
17 トランス
18 結合回路
21〜25 PC(パーソナルコンピュータ)
26 テレビ
27 クーラー
L10,L20 自己インダクタンス
M 相互インダクタンス
11 L1 Wire Electrode Plate 12 L2 Wire Power Plate 13 Neutral Wire N Electrode Plate 14 Breaker 15 Earth Leakage Breaker 16 Overvoltage Detection Lead Wire 17 Transformer 18 Coupling Circuit 21-25 PC (Personal Computer)
26 TV 27 Cooler L10, L20 Self-inductance M Mutual inductance

Claims (2)

位相が180度異なるL1線およびL2線の2系統の電力線および中性線Nからなる単相3線を用いた屋内電力線通信用の異相間通信装置であって、
前記L1線と中性線Nとの間に、トランスの一次巻線と第1コンデンサの直列回路を接続し、
前記L2線と中性線Nとの間に、前記トランスの二次巻線と第2コンデンサの直列回路を、前記一次巻線に対して二次巻線が逆相になるように接続し、
前記一次巻線と二次巻線間の相互インダクタンスにより、L1線−中性線N系統、L2線−中性線N系統、およびL1線−L2線系統の相互間で、商用電源の周波数よりも十分高い搬送波を持つ信号の授受を行う構成としたことを特徴とする、単相3線を用いた屋内電力線通信用の異相間通信装置。
A phase-to-phase communication apparatus for indoor power line communication using a single-phase three-wire composed of two power lines of L1 line and L2 line and a neutral line N that are 180 degrees out of phase,
A series circuit of a transformer primary winding and a first capacitor is connected between the L1 line and the neutral line N,
A series circuit of a secondary winding of the transformer and a second capacitor is connected between the L2 line and the neutral line N so that the secondary winding is in reverse phase with respect to the primary winding,
Due to the mutual inductance between the primary winding and the secondary winding, the frequency of the commercial power source between the L1 line-neutral line N system, the L2 line-neutral line N system, and the L1 line-L2 line system The inter-phase communication apparatus for indoor power line communication using single-phase three-wire, characterized in that a signal having a sufficiently high carrier wave is exchanged.
前記信号の周波数は、2〜30MHzである請求項1記載の、単相3線を用いた屋内電力通信用の異相間通信装置。   The inter-phase communication apparatus for indoor power communication using single-phase three-wire according to claim 1, wherein the frequency of the signal is 2 to 30 MHz.
JP2005270621A 2005-09-16 2005-09-16 Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire Pending JP2007082124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270621A JP2007082124A (en) 2005-09-16 2005-09-16 Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270621A JP2007082124A (en) 2005-09-16 2005-09-16 Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire

Publications (1)

Publication Number Publication Date
JP2007082124A true JP2007082124A (en) 2007-03-29

Family

ID=37941902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270621A Pending JP2007082124A (en) 2005-09-16 2005-09-16 Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire

Country Status (1)

Country Link
JP (1) JP2007082124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159302A (en) * 2007-12-26 2009-07-16 Preminet Inc Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same
JP2011014975A (en) * 2009-06-30 2011-01-20 Mega Chips Corp Communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235897A (en) * 1994-02-22 1995-09-05 Oskar Denshi Kk Power line communication equipment and power line communication network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235897A (en) * 1994-02-22 1995-09-05 Oskar Denshi Kk Power line communication equipment and power line communication network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159302A (en) * 2007-12-26 2009-07-16 Preminet Inc Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same
JP2011014975A (en) * 2009-06-30 2011-01-20 Mega Chips Corp Communication system

Similar Documents

Publication Publication Date Title
US10097242B2 (en) Power line communication apparatus including AC power socket
US9071339B2 (en) Closed-circuit power line communication
KR100719829B1 (en) Power line terminating circuit and method, and power line relay device
US6590493B1 (en) System, device, and method for isolating signaling environments in a power line communication system
JP2008245202A (en) Bridge circuit for power line carrier communication, and network system therefor
CN103516397B (en) A kind of signal of telecommunication separation method and system based on power line carrier
US9325377B2 (en) Powerline communication adapter for powerline communication systems
US9660696B2 (en) Power line communication AC/DC adaptor
US9350315B1 (en) Power line communication filter for multiple conductors
CN204068968U (en) Based on the signal of telecommunication separator of power line carrier
JP2007082124A (en) Apparatus for communication between different phase lines for indoor power line communication using single phase three-wire
JP2003244039A (en) Switchboard and wired communication network system using the switchboard
JP2004356771A (en) Impedance improving unit, distribution board, distribution breaker, and receptacle box
JP4284317B2 (en) Power line communication method
JP4810664B2 (en) Inter-phase communication device using single-phase three-wire indoor power line
JP2006261940A (en) Power line communication coupling circuit
JP2003347976A (en) Power line communication relaying apparatus
JP2629131B2 (en) Power line communication device and power line communication network
JP3840420B2 (en) SS transmission system
KR101680063B1 (en) Cable identification system and method of application of power line communication technology
CN215264870U (en) Household variable relation recognizer
AU2017100113A4 (en) A powerline communication impedance conditioning circuit
JP2008236279A (en) Signal transmission system
JP2004312114A (en) Power line communication system
JP4385757B2 (en) Signal transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A131 Notification of reasons for refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329